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Abstract

Dimensional affect estimation from a face video is a chal-

lenging task, mainly due to the large number of possible

facial displays made up of a set of behaviour primitives in-

cluding facial muscle actions. The displays vary not only in

composition but also in temporal evolution, with each dis-

play composed of behaviour primitives with varying in their

short and long-term characteristics. Most existing work

models affect relies on complex hierarchical recurrent mod-

els unable to capture short-term dynamics well. In this pa-

per, we propose to encode these short-term facial shape and

appearance dynamics in an image, where only the seman-

tic meaningful information is encoded into the dynamic face

images. We also propose binary dynamic facial masks to re-

move ‘stable pixels’ from the dynamic images. This process

allows filtering of non-dynamic information, i.e. only pix-

els that have changed in the sequence are retained. Then,

the final proposed Dynamic Facial Model (DFM) encodes

both filtered facial appearance and shape dynamics of a

image sequence preceding to the given frame into a three-

channel raster image. A CNN-RNN architecture is tasked

with modelling primarily the long-term changes. Experi-

ments show that our dynamic face images achieved superior

performance over the standard RGB face images on dimen-

sional affect prediction task.

1. Introduction

The face is an important asset for automatic human be-

haviour understanding, as it displays a wide range of

cues about our cognitive state, including our affective

state. Analysing human emotions by their face would

find application in many cross-disciplinary fields, such as

medicine [44], security, or entertainment [26]. Automatic

emotion recognition by and large follows two main emo-

tion theories: Ekman’s six basic emotion model[6] or the di-

mensional affect model (a.k.a. Russel’s Circumplex model

[32]). The Circumplex model predicts values of emotional

Figure 1: Illustrations of static facial appearance (SFA) and

shape (SFS), dynamic facial appearance (DFA) and shape

(DFS) and Dynamic Facial Model (DFM).

attributes such as arousal and valence on a continuous scale,

where arousal is a physiological state of being alert, awake,

attentive, and valence represents how negative or positive

someone feels [8]. Although sometimes other dimensions

are added, the combination of these two values represents a

wide span of emotional states.

People express their affect through auditive, visual, and

physiological signals, where the face is a highly valuable

visual signal that can be sensed unobtrusively and that

can also process many individuals at the same time in a

shared scenario without the need for source-separation on

a 1-dimensional signal. Motivated by this, existing affect

analysis approaches build on analyzing the visual informa-

tion provided by facial expressions. While some studies

[17, 7, 33] analyze affect on a frame-by-frame basis, with-

out exploiting the relationships between frames, the pro-

gression of affect has distinct temporal patterns that span

multiple frames, and the values of arousal and valence are

therefore highly correlated over time. Thus, temporal mod-

els should be used.

The standard approach for modelling dynamics is

through sequential latent models, such as Recurrent Neural



Networks (RNN). These models exploit the temporal infor-

mation by applying a set of latent variables that are sup-

posed to model the intrinsic correlation that exists between

the input and the output at a given frame, conditioned to the

latent states at previous frames. However, they are gener-

ally used to learn dynamics from extracted features rather

without considering the context of the face. Other works

proposed to encode dynamics at the input level, by extract-

ing features from a image sequence [25], constructing spec-

trum maps [40, 14] or an encoded image sequence [15].

However, these methods also have practical drawbacks, as

the learning of later approach can become quite complex for

long-term sequences. For instance, [15] proposed a tempo-

ral CNN approach that needs as many input channels as the

number of frames being considered. This results in grow-

ing models and limited capacity: in [15] the number of input

frames (and channels) is set to 5, which limits the temporal

modelling of longer-term expressions at the input side.

To learn dynamics in the context of the face and avoid the

limited capacity of encoding long sequence, this paper ap-

plies the dynamic image algorithm [1] to encode the short-

term facial dynamics at the image level, which are further

forwarded to a CNN-RNN-based model to re-encode both

long-term and short-term variations at the feature level. Im-

portantly, in doing so it keeps the framework simple. The

dynamic image consists of a 3-channel raster image (simi-

lar to an RGB image) displaying a “summary” of an image

sequence. This idea itself is very similar to temporal tem-

plates as introduced by Bobick & Davis in 2001 [2] but have

proved its better ability in action recognition [1]. The use of

a summarising image allows CNN-based architectures de-

signed to take still images as input to process a video of

variable length. While the dynamic image algorithm has

been successfully applied for human action recognition, its

extension to model the dynamics of facial actions is not

straightforward. Bilen et al. made use of whole images

to generate dynamic appearance [1], without segmentation

of specific, semantically meaningful regions of objects (the

human body, or the face), nor shape information, both of

which are highly valuable for face analysis. In order to

consider such information, this paper extends the dynamic

image algorithm to account for shape domain by combin-

ing facial landmarks to produce a dynamic facial appear-

ance (DFA) and shape image (DFS). After that, a Laplacian

pyramid-based multi-scale transform is applied for the fu-

sion of facial appearance and shape in order to retain maxi-

mum correlation between them.

The Dynamic Facial Images (DFIs) (examples are shown

in Fig. 1) are generated per video frame, summarising the

content from a few frames prior to the current one and are

computationally efficient (please see [1] for details on ef-

ficiency). Importantly, they are still images, and thus can

be processed by standard CNN architectures whilst retain-

ing the short-term temporal information. To learn long-term

dynamics the CNN is followed by a RNN model, and RNN

is trained individually, tasked with returning valence and

arousal values at each time step. In summary, the main con-

tributions of this paper are as follows:

1. We extend the dynamic image algorithm to the face

domain, dismissing non-face related attributes and en-

coding face dynamics in the context of the face.

2. We propose a Dynamic Facial Model (DFM) encod-

ing algorithms that allows to integrate the facial ap-

pearance and shape into a standard RGB image, sum-

marising the variation of both along time.

3. We compared the dynamic face images to standard

RGB face images on two datasets, where the proposed

approach achieved superior results for both arousal and

valence estimation tasks.

2. Related Works

Dimensional affect estimation is often regarded as the re-

gression problem where both valence and arousal are con-

tinuous values lying in the range [−1, 1]. Its growing in-

terest has been investigated by a series of AVEC Chal-

lenges [46, 45, 30, 28, 29], aiming to gather all efforts in

a common benchmark of increasing difficulty. Like many

other Computer Vision disciplines, existing approaches are

generally divided into those that use hand-crafted features

with general-purpose machine learning techniques, and

those that built on the recent advances in Deep Learning.

As time-series data, temporal modeling is crucial for di-

mensional affects analysis. As shown above, traditional

hand-crafted approaches have been [20, 16, 11, 22, 13, 23]

frequently used kernel-based regression, such as SVR,

which by nature cannot model contextual information. To

overcome such limitations, some hand-crafted features have

been extended to the temporal domain. In [25], global and

local features are extended to the temporal domain through

the magnitude of the Fourier transform of each of them. In

order to capture both long and short-term dynamics, they

applied the Fourier transform at different scales i.e. at se-

quences of one to four seconds long. Also, some features

extended the spatial domain to the temporal dimension, re-

ferred as the Three Orthogonal Planes (TOP), were widely

used by AVEC baselines. In [16] the LBP features are ex-

tended to the temporal domain as the LBP-TOP, and further

combined with a novel sparse regression method, achiev-

ing excellent performance on the SEMAINE database [21].

In [17], histogram-based features, such as LPQ, LBP and

LGBP, are extended to the temporal dimension, and were

further combined with deep features.

However, the TOP extension of features grows drasti-

cally in complexity as the number of frames increases, and



thus learning temporal models is a better choice. While

graphical models such as HMMs or CRFs are powerful tem-

poral representations, they are prone to failure when mod-

eling long-term dynamics. These drawbacks can be tackled

with Recurrent Neural Networks, which are feed forward

networks of latent states that can be learned through back-

propagation. RNNs can be used with either hand-crafted

features or in combination with CNNs. Some extensions

handling back-propagation problems in RNNs have been

proposed too. In [24] a Bidirectional Long Short Term

Memory Network (BLSTM) is used with hand-crafted fea-

tures, showing better results than SVR. Hasani et al. [12] ex-

tract features using Inception module [42]. Combining the

it with an LSTM yields better results than using the Incep-

tion module only in a per-frame basis. A similar approach is

adopted in [18], where a relatively shallow CNN is used in

combination with a RNN. Kollias et al. [19] showed how

pre-trained networks can be adapted to affect estimation

tasks with great success, as training some networks end-

to-end might not be affordable due to the lack of data or

resources. In particular, When combined with RNN, the

VGG-Face network, with only fully-connected layers fine-

tuned, yielded the best results, showing the great potential

of using existing CNNs to predict the intensity of continu-

ous dimensional affects on data gathered “in-the-wild”.

RNNs can also be combined with other non-temporal re-

gression techniques. In [10], the output of a RNN is com-

bined with an SVR, thus preventing the former to incur in

overfitting, and the latter not to consider the temporal do-

main. The proposed approach, coined Strength Modeling

algorithm, applies the two models in a hierarchical manner.

3. The proposed approach

The main novelty of our method resides in the encoding of

the short-term facial shape and appearance dynamics of im-

age sequences into a single raster image. Our work differs

from that of Nicolle et al. [25] in that we do not rely on the

frequency domain, as it contains nuisance factors that are

hard to capture with a CNN, and in that we incorporate the

temporal modelling of a RNN. Similarly, it differs from [15]

in that the dynamics are encoded into single images, allow-

ing the use of a flexible number of frames, rather than as a

concatenation of frames, which in practice limits the time

extent of the short-term encoding. Finally, our work differs

from that of [39] in that we encode precise dynamic from

a image sequence rather than estimate it from a single im-

age. We further calculate the ’dynamic pixels’ while remov-

ing ’stable pixels’ of the encoded DFA and DFS, allowing

both shape dynamics and appearance dynamics to be sum-

marized in a single image without redundant information

(’stable pixels’) while the dynamic image of [1] only con-

tains appearance dynamics without considering the effects

of redundant information.

Figure 2: Generation of static facial shape (SFS) image

Our approach starts with detecting a set of 66 facial land-

marks for each video frame. These landmarks, depicted in

Fig. 2, are extracted using the publicly available code of

iCCR [34]. These landmarks correspond to specific parts

of the face, are then used to generate a static facial appear-

ance (SFA) and static facial shape (SFS), per frame. Then,

for each subsequence of T frames, the corresponding DFA

and DFS are generated. These images are also generated

per video frame, and subsequently fused into a sequence of

DFM.

3.1. Static Facial Image

Static Facial Shape Image: Based on the detected facial

landmarks, the face is segmented into 15 semantic regions.

These regions correspond to the left and right eyebrows,

left and right eyes, nose, left and right cheekbones, left and

right cheeks, mouth, lips, left and right philtrums, and left

and right jaws. In static shape images, each region is repre-

sented by a unique colour. All pixels lying out of the convex

hull of the face are set to 0 in each colour channel (black).

An example of SFS is shown in Fig. 2.

Static Facial Appearance Image: Using the aforemen-

tioned landmarks, a binary mask is applied to the original

face image, whereby only the pixels lying within the con-

vex hull defined by the landmarks are set to one. This mask

is applied to the input image to generate the static appear-

ance image, which basically accounts for the facial appear-

ance. This way, the background noise is removed before the

feature extraction process.

3.2. Dynamic Facial Image

The dynamic image is a parameter matrix whose param-

eters are learnt to rank the position of the given frames

from their features by implementing dot product between

the per-frame features and the dynamic image. That is to

say, it is an operator that contains the evolution informa-

tion of frames and consequently can be treated as the rep-

resentation of given frames. By extending this algorithm to



include shape and adapting it to the face domain by leverag-

ing facial landmarks, we obtained two novel dynamic facial

images (DFI): dynamic facial appearance (DFA) and dy-

namic facial shape (DFS).

Let It ∈ R
m×n be the t-th image of a sequence com-

posed of T consecutive face-aligned images, all of size

m × n, and let Vt = 1
τ

∑t

τ=1 Iτ be the average value im-

age up to frame t. Vt is defined as the average of a given

feature mapping of the image, φ(Iτ ). The mapping cho-

sen in this paper is the same as that which attained highest

performance in the original paper by Bilen et al. [1], which

defined φ to be the identity function. Let d ∈ R
d be the raw

DFI of the image sequence. The ranking score for frame t

is defined as the dot product between d and Vt:

S(d, Vt) = 〈d, Vt〉

=
3∑

l=1

N∑

i=1

M∑

l=1

dlij × vtlij

= d11 × vt111 + · · ·+ dLNM × vtLNM

(1)

where dlij and vtlij are the values of pixel lij in the dynamic

face image d and static face image vt, respectively. Thus,

the goal is to learn the DFI so that if q > t, then S(d, Vq) >
S(d, Vt) because those closer frames normally contribute

more information to current face status. In other words, d

is learned so that when projected into the aggregated kernel

of the input image size, it returns a score that sorts frames by

time. This kernel ranks the input SFIs, and hence contains

temporal evolution of the face image sequence end at the

last image, making it a good facial dynamic descriptor for

the last image. In order to learn d, we minimise the hinge

loss between pairs of scores:

d
∗ = argmin

d

E(d) (2)

E(d) =
λ

2
‖d‖2 + γ

∑

q>t

max{0, 1− S(d, Vq) + S(d, Vt)}

(3)

where γ = 2
T (T−1) , is the L2-norm regularised error. The

second term in Eq. 3 defines the number of pairs on the

subset that are incorrectly ranked by the score function. A

pair q > t is said to be correctly ranked if S(d, Vq) ≥
S(d, Vt) + 1. The minimization of Eq. 3 is accomplished

with RankSVM [38]. The parameters in the final learned

kernel d are in the real space. It is worth highlighting that

the RankSVM algorithm is also applied to learn the DFIs d

at test time, i.e. it is learned on the go for each subsequence

of images.

In order to generate a set of DFA and DFS for a video,

we take a set of T − 1 consecutive frames prior to each

frame, for which we first obtained the SFA and SFS, re-

spectively. Then, DFA and DFS for each frame are learned

by a sliding window of T frames. Therefore, for a video of

N frames we have N −T +1 DFA and DFS images (From

frame T to frame N ).

3.3. Fusion of dynamic appearance and dynamic
shape

Both DFA and DFS are separately generated for each frame.

While this is a common approach, after which the two de-

scriptors are combined before being input to a machine

learning hypothesis (e.g. SVR, CNN), we propose to fuse

them into a single dynamic image, unifying shape and ap-

pearance as a single input stream to the ML hypothesis, re-

taining the context of the face. To the best of our knowl-

edge, despite that many reports of approaches combine fa-

cial appearance and shape information at the feature or deci-

sion level for affect analysis, no previous work has proposed

to fuse DFA and DFS into a three channel image and then

learn both features and their correlations at the input level,

which is interesting to explore.

From Equation 1, we can see that variation in pixel val-

ues of a static face image results in differences in the final

score across the image sequence, as the kernel matrix (dy-

namic image) is a constant matrix in each case. In particu-

lar, we found from the Equation 1 that pixels whose values

remain fixed over the image sequence have no influence on

the frame ranking, because the dot product between these

pixels in each frame, and corresponding pixels in dynamic

image, are the same. Thus, they are not discriminative. In

this paper, we call these pixels as the ”stable pixels”, de-

noted as (ista, jsta), while the reminder is called ”dynamic

pixels”, defined as (jdy, jdy), as they can contribute differ-

ent scores to different frames. In this sense, Equation 1 can

be re-written as:

S(d, Vt) = 〈d, Vt〉

= 〈ddy, V
t

dy〉+ 〈dsta, V
t

sta〉

=
∑

i∈dy

(di × vi) +
∑

j∈sta

(dj × vj)
(4)

where the 〈dsta, V
t

sta〉 =
∑

j∈sta(dj × vj) is the constant and

thus only 〈ddy, V
t

dy〉 leads the difference of scores. There-

fore, even we setting all ‘stable pixels’ as 0, making dy-

namic image as a sparse matrix, it can still rank frames cor-

rectly. Since the DFS mainly contains the edge dynamics of

each semantic region while DFA contributes more details

about the detailed facial texture dynamics in each region,

the ’dynamic pixels’ of them are expected to be largely in-

dependent in the space domain, allowing the fusion of them

not to lose significant information or highly distort the dy-

namics of the original DFA and DFS. Motivated by this, as-

suming that the DFA and DFS are generated from sequence

Seq of T face images, the framework applies the following

steps to fuse DFA and DFS images. This process is also

illustrated in Fig. 3.



Figure 3: The process of DFM generation. All steps are corresponding to the process at the end of Sec. 3.3.

1. For T continuous SFS and SFA, we firstly find their

’stable pixels’ whose R, G, B values keep stable over

T frames. Specifically, for each of them, we calculate

the absolute value of the difference between the given

frame and other frames, respectively, resulting in T −
1 maps. Then, a map representing the sum of these

maps is obtained, of which the pixels (R, G, B) values

equaling to 0 are defined as the ’stable pixels’ while

the reminder are denoted as ’dynamic pixels’.

2. Constructing binary dynamic shape mask and binary

dynamic appearance mask, where the ”dynamic pix-

els” are set as 1 and ‘stable pixels’ are set as 0. Since

the location of some dynamic pixels in two masks may

overlapped, we further set overlapped pixels in dy-

namic appearance mask to 0 to avoid distortion.

3. Generating a new DFS and a new DFA by conduct-

ing dot product between the binary dynamic shape

mask/binary dynamic appearance mask and previously

obtained DFS/DFA, respectively. Consequently, all re-

dundant information and background noise would be

removed from the generated new DFS and DFA as

their pixels’ value would equal to ’0’, while the new

DFS containing all temporal shape information and

new DFA containing most appearance dynamics.

4. Yielding the final fused dynamic facial image by sim-

plely adding the new DFS to new DFA, which con-

tains all temporal shape information and most appear-

ance dynamics without any distortion. In this paper,

we call this fused dynamic facial image as Dynamic

Facial Model (DFM).

4. Deep Learning Dynamic Facial Features

As shown above, the DFM and DFIs are 3-channel raster

images whose dimensions are same to the input SFIs.

Therefore, it allows the information of a video to be learnt

by existing CNN models for still images with fine-tuning.

The features extracted from the CNN representation are

subsequently forwarded to a Recurrent Neural Network

(RNNs), which deals with dynamics at the feature level.

In this paper, we chosen VGG-16 network [37] pre-

trained by VGG face datasets. We applied two simple struc-

tures to illustrate the benefit of each proposed DFI, which

are shown in Fig. 4. The proposed approach, described

above, is depicted in the top of the Figure. In particular,

we investigate this approach against the use of two branches

for the CNN-RNN structure, by which the shape/static face

image and appearance/dynamic face image are not fused at

the lowermost level, but are rather forwarded to two CNN

networks, the output of which is fused by the RNN network.

The output of the CNN is taken from the first fully-

connected layer of the corresponding VGG, which is a

4096-D vector. These features encode the short-term ap-

pearance and shape dynamics, constrained to the length of

the time-window. In order to learn the long-term dynam-

ics, we use a RNN on top of the CNN features. For this

purpose, we adopt the Bidirectional Gated Recurrent Units

(BGRU) [4] as our RNN model. BGRU is a simple ver-

sion of Bidirectional Long-Short-Term-Memory networks

(BLSTMs) due to its less complex structure. It has two mul-

tiplicative gates, i.e. reset gate and forget gate, to capture

both long and short term dependencies in sequences, where

the short-term dynamics will frequently have reset gates be-

ing active while the long-term dependencies will mostly up-

date those forget gates. As a result, the use of BGRU allows



(a) The framework for inputing a single modality

(b) The framework for inputing two modalities

Figure 4: CNN-RNN framework: Top corresponds to the

pipeline described throughout the paper, whereas bottom

corresponds to the approach where shape/static and appear-

ance/dynamic are fused after the CNN processing.

our framework to learn both long- and short-term tempo-

ral dynamics at the feature level. Thus, it compensates the

drawback of DFIs that they only encode short-term dynam-

ics in this paper.

5. Experiments

5.1. Database

To validate the proposed approach, we have carried out

arousal and valence intensities estimation experiments on

SEMAINE [21] and RECOLA [31] datasets. The SE-

MAINE dataset recorded uncontrolled facial expressions of

participants who have a conversation with an operator, and

it is annotated with valence and arousal dimensions in a

continuous space within −1 and 1. In this paper, we have

used the subset used in AVEC 2012[36], which contains

31 videos for training, 32 videos for development and 32

videos for test. The RECOLA dataset was recorded from

27 French-speaking participants to study socio-affective be-

haviours from video, audio, electro-cardiogram (ECG) and

electro-dermal activity (EDA) in the context of computer

supported collaborative work. Each video is around 300

seconds and labels are given with a rate of 25 Hz.

5.2. Evaluation measures

Three standard measures were used to assess the perfor-

mance of the affect estimation; firstly the Mean Squared

Error (MSE); secondly Pearson Correlation Coefficient

(PCC); and thirdly the Concordance Correlation Coefficient

(CCC, Eq. 5):

ρccc =
2ρx,yσxσx

σ2
x + σ2

y + (µx − µy)
2 , (5)

where ρx,y is the PCC, µx and µy are mean values of pre-

dictions and labels while σx and σy are standard deviations.

5.3. Implementation details

DFIs generation: To generate frame-wise dynamic facial

images for SEMAINE and RECOLA datasets, the lengths

of time-windows are 20, 15 and 6, respectively, with the

stride of 2. Model training: In this paper, VGG-16 net-

works pre-trained by VGG face database and BGRU with

one hidden layer of 200 neurons were utilized. MSE was

chosen as the loss function and standard SGD algorithm was

applied as training method with learning rate of 5 × 10−3,

learning rate decay of 1×10−4, and momentum of 0.85. For

SEMAINE, the development partition was used to adjust

model’s hyper-parameters while test partition was used for

reporting the final results. For RECOLA datasets, five-fold

cross validation was conducted on training partition and re-

ported results were yielded from the development partition.

5.4. Ablation studies

This section firstly conducts the ablation studies in terms

of two experimental variables: 1. Temporal status of the

input: static face images, (SFA, SFS, SFA+SFS) and dy-

namic face images (DFS, DFA, DFA+DFS); 2. Type of the

input: appearance (SFA, DFA, SFA+DFA) and shape (SFS,

DFS, SFS+DFS). All the experiments that have two inputs,

e.g. SFA+SFS, DFA+SFA, DFA+DFS and SFS+DFS, were

processed by the two branch architecture (Fig. 4(b)).

5.4.1 Facial appearance VS Facial shape

We firstly compared the average performance of facial ap-

pearance images to facial shape images in Fig. 5. For

both dataset, the predictions yielded by shape inputs are

more correlated to arousal and valence intensities labels

than the appearance inputs, where the mean CCC values

of shape inputs for arousal and valence are 0.354 and 0.304

for SEMAINE as well as 0.419 and 0.435 for RECOLA,

which are outperformed the corresponding arousal and va-

lence results obtained appearance inputs (0.302 and 0.283

for SEMAINE, 0.366 and 0.396 for RECOLA). Similarly,

the predictions from facial shape features also achieved bet-

ter MSE results than facial appearance features. When com-

bining facial appearance and shape, it is obviously that each

of them can benefit from the other, as the result achieved by

‘Shape + Appearance’ outperformed using shape or appear-

ance independently for two tasks on both datasets.

5.4.2 Dynamic face VS Static face

As illustrated in Fig. 6, dynamic face images achieved

higher average CCC and less average MSE results than

static face images. In particular, the mean CCC value

obtained by dynamic inputs on two datasets are 0.362

(arousal of SEMAINE), 0.302 (valence of SEMAINE) and

0.426 (arousal of RECOLA), 0.443 (valence of RECOLA),



Figure 5: Comparison of the average results achieved by

facial shape and facial appearance.

Figure 6: Comparison of the average results achieved by

static face and dynamic face.

respectively, beating the corresponding results achieved

by static face images, which are 0.294 (arousal of SE-

MAINE), 0.289 (valence of SEMAINE) and 0.369 (arousal

of RECOLA), 0.405 (valence of RECOLA) respectively.

These results indicate that the temporal dynamics encoded

in the proposed DFIs can provide powerful clues for affect

intensity estimation. We also reported the average results

yielded by ’Static + Dynamic’ which achieved similar re-

sult to dynamic face images, with slightly improvement.

To further investigate the property of DFIs, Fig. 7 com-

pared some predictions of SFA, SFS, DFA and DFS on SE-

MAINE dataset. Obviously, dynamic predictions changed

much heavier than static predictions as well as predic-

tions from facial shape changed heavier than facial appear-

ance because the difference between adjacent DFIs is much

larger than SFIs. Another observation is that when ground-

truth suddenly dropped or increased, e.g. 400th frame,

600th frame, namely high frequency dynamics, the ampli-

tude of dropping or increasing of dynamic predictions were

heavier than static predictions. This means that DFIs are

more sensitive to affect changes.

Figure 7: Predictions of SFIs and DFIs of the 6000th -

8000th frame of the 1st test video from SEMAINE.

5.4.3 Dynamic Facial Model VS Dynamic Facial Im-

ages

We also compared the proposed DFM with the best single

input system, i.e. DFS, in Table. 1 and Table. 2. While DFS

already yielded good performance, DFM achieved signifi-

cant improvement on both datasets. As both system used

the same structure, the only difference is that DFM com-

bined shape and appearance dynamics while DFS only con-

tains shape dynamics. Thus, it can be concluded that our

fusion strategy can effectively encode facial shape dynam-

ics and appearance dynamics for affect estimation. Another

comparison is made between the result produced by DFA

+ DFS + BGRU and DFM + BGRU, as both of them input

dynamic facial shape and appearance information for esti-

mation. As reported, the results obtained by DFM + BGRU

outperformed the results obtained by DFA + DFS + BGRU,

except the arousal predictions in SEMAINE. Although DFA

and DFS contain the original dynamic information rather

than the reduced dynamic information in DFM, the trainable

weights in CNN-RNN architecture used for DFA + DFS is

at least as twice as it for DFM, resulting in higher computa-

tional cost. On the other hand, DFM has some advantages 1.

it removes the redundant information (‘stable pixels’) from

both DFS and DFA; 2. it fused shape and appearance infor-

mation in the context of the face rather than at the feature

level; 3. it can be learned by a simple network, where less

weights need to be optimized.

5.5. Our methods VS state-of-the-art

This section compares our methods with state-of-the-art vi-

sual methods on SEMAINE and RECOLA datasets. As

shown in Table. 1, our best system (DFM+BGRU) beats

all state-of-the-arts for both arousal and valence estima-



tion tasks on SEMAINE dataset, especially for arousal esti-

mation, which has 27.7% relative improvement compared

to the second best system[16]. As shown in Table. 2,

the baselines already generated very promising predictions

in RECOLA dataset. However, features extracted from

the proposed DFM still achieved excellent performance for

both tasks. In terms of the seven recent works on RECOLA

dataset that we have compared, our DFM+BGRU system

yielded both better arousal and valence results than four of

them. For the reminder, the DFM+BDFM+BGRU system

either obtained better arousal predictions or valence predic-

tions. In addition, the model of [27] were pre-trained by

AFLW dataset, which may also an important factor for its

excellent performance.

Table 1: State-of-the-art results on the SEMAINE dataset.

Arousal Valence

Method PCC MSE PCC MSE

Baseline [36] 0.077 N.A. 0.134 N.A.

Kaltwang et al. [16] 0.310 0.042 0.310 0.058

Glodek et al. [9] 0.069 24.71 0.180 23.31

Savran et al. [35] 0.251 N.A. 0.210 N.A.

Cruz et al. [5] 0.227 N.A. 0.141 N.A.

Zhang et al. [47] 0.070 N.A. 0.241 N.A.

DFS+BGRU 0.376 0.049 0.310 0.075

DFA+DFS+BGRU 0.385 0.048 0.308 0.075

DFM+BGRU 0.381 0.046 0.322 0.073

Table 2: State-of-the-art results on the RECOLA dataset.

Arousal Valence

Method CCC MSE CCC MSE

Baseline appearance [45] 0.483 N.A. 0.474 N.A.

Baseline shape [45] 0.379 N.A. 0.612 N.A.

Brady et al.[3] 0.346 0.040 0.511 0.010

Povolny et al.[27] 0.617 N.A 0.467 N.A

Tzirakis et al.[43] 0.363 N.A. 0.488 N.A.

Han et al.[10] 0.292 N.A. 0.592 N.A.

Sun et al.[41] 0.215 N.A. 0.366 N.A.

DFS+BGRU 0.432 0.040 0.441 0.030

DFA+DFS+BGRU 0.468 0.038 0.476 0.027

DFM + BGRU 0.498 0.036 0.506 0.022

5.6. Cross dataset evaluation of the DFA parameters

To assess the generalizability of the DFA parameters tuned

for SEMAINE and RECOLA datasets, we trained di-

mensional affect recognition models on Aff-wild dataset

[19]. Here our aim is to demonstrate that the parameters

Table 3: Comparison of the CNN models trained on

Aff-wild dataset using static face inputs and combined

static and dynamic face appearance inputs (with the dy-

namic appearance parameters tuned for SEMAINE and

RECOLA datasets)

Arousal Valence

Inputs CCC MSE CCC MSE

SFA 0.153 0.097 0.283 0.167

SFA+DFA 0.203 0.090 0.392 0.134

learned for generating DFAs of SEMAINE and RECOLA

datasets could extract meaningful representations from a

new dataset. For this reason, we do not include other state-

of-the-art methods on the Aff-wild dataset and the models

that were trained using either DFA or DFS alone. Firstly, the

DFAs of the Aff-wild data were generated using the param-

eters that were tuned for SEMAINE and RECOLA datasets.

Then we trained two different models with randomly ini-

tialized weights, one with SFAs as inputs and the other

with stacked SFAs and DFAs as inputs. As shown in Ta-

ble 3, on the Aff-wild test set, the CNN model trained with

the stacked SFA plus DFA inputs outperformed the model

trained with only the SFA. This performance improvement

clearly demonstrates that the DFA parameters can gener-

alize well and extract meaningful face representations that

complement the static face inputs.

6. Conclusion

This paper proposed a dynamic facial encoding method that

allows a single raster image to encode facial appearance and

shape dynamics of an image sequence. The features learned

from these dynamic inputs using CNN-RNN models out-

performed the static inputs on dimensional affect estima-

tion task. The experimental results suggest the following

conclusions: 1. facial shape features generate better affect

predictions than facial appearance features; 2. combined

static and dynamic face inputs perform better than the static

face inputs alone on dimensional affect estimation; 3. the

proposed DFM can effectively encode facial shape and ap-

pearance dynamics, as it achieved better results than either

using a DFI or SFI as the input, or jointly using DFI and SFI

as the input in most cases. Meanwhile, we believe DFM

still haven’t fully shown its ability on RECOLA database

as the initial weights of VGG face network was pre-trained

by RGB images rather than dynamic images, and the VGG

structure is not specifically designed for dynamic face im-

ages, and thus the trained models may lack of ability to cap-

ture encoded dynamic information.



References

[1] Hakan Bilen, Basura Fernando, Efstratios Gavves, and An-

drea Vedaldi. Action recognition with dynamic image net-

works. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2017.

[2] Aaron F. Bobick and James W. Davis. The recogni-

tion of human movement using temporal templates. IEEE

Transactions on pattern analysis and machine intelligence,

23(3):257–267, 2001.

[3] Kevin Brady, Youngjune Gwon, Pooya Khorrami, Elizabeth

Godoy, William Campbell, Charlie Dagli, and Thomas S

Huang. Multi-modal audio, video and physiological sensor

learning for continuous emotion prediction. In Proceedings

of the 6th International Workshop on Audio/Visual Emotion

Challenge, pages 97–104. ACM, 2016.

[4] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
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