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Understanding and manipulating the non-Hermitian optical property based on coherent atomic gases is of great
importance and has attracted much theoretical and experimental attentions. Advancing this study to the nonlinear
optics regime is highly desirable due to its importance in fundamental physics and potential applications. In
this work, we propose to realize a tunable electromagnetically induced grating (EIG) with parity-time (PT )
symmetry in a cold gas of Rydberg atoms, where interatomic interactions between Rydberg states are mapped to
strong and long-range optical interactions, and investigate nonlinear light diffractions in this system. We show
that for far-field diffraction, laser beams incident upon the PT -symmetric EIG display distinctive asymmetric
diffraction fringes, which can be actively manipulated through tuning the gain-absorption coefficient of the
EIG, the incident intensity of the laser beam, and the nonlocality provided by Rydberg atoms. For near-field
diffraction, the nonlinear Talbot diffraction carpets emerge and can be modulated by PT symmetry in the
presence of strong nonlocal interactions, allowing the realization of controllable optical self-imaging. The results
are not only imperative for the study of non-Hermitian nonlinear optics but also useful for characterizing the
interatomic interaction in Rydberg gases and for designing new optical devices useful in optical information
processing and transmission.
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I. INTRODUCTION

In the past decades, the study of light diffraction in
optical media whose refractive indices can be engineered
has attracted enormous attention due to its significant ap-
plications in optical science and technology [1,2]. Among
many systems, cold gases of trapped atoms have been uti-
lized extensively, as their optical properties can be tuned
through light-atom coupling. One paradigm is the creation
of electromagnetically induced gratings (EIGs) by coupling
atoms with spatially modulating laser lights in the form of
standing waves [3–14]. Propagation of light fields in solid
gratings leads to nontrivial diffraction, such as diffraction
with perfect transmittance and focusing abilities [15,16] and
the Talbot effect [17,18], which is known as a lensless self-
imaging phenomenon. In particular, the Talbot effect has
been experimentally observed recently with EIGs created in
atomic gases [19]. On the other hand, there has been growing
interest in the exploration of EIG-related optical phenomena
in nonlinear regime. In the presence of relatively weak optical
Kerr nonlinearity, the formation of vector dipole solitons [20]
and photonic topological insulators [21] has been predicted
with EIGs.
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More importantly, through laser coupling of multilevel
atoms, the optical refractive index with gain and absorption
can be realized and tuned simultaneously, giving rise to optical
media with parity-time (PT ) symmetry [22–27]. This makes
it possible to simulate non-Hermitian quantum mechanics
[28–31] in the optical domain [32]. In addition to fundamental
interest, the exploration of optical PT symmetry has facili-
tated various applications, including nonreciprocal light prop-
agation and unidirectional invisibility [33–35], coherent per-
fect absorbers [36–38], giant light amplification [39], single-
mode lasers [40,41], supersensitive sensors [42,43], and so
on [44]. The combined effects of PT symmetry and optical
gratings in the linear optics regime lead to many interesting
phenomena, such as beam rectification and dynamic localiza-
tion [45], spatially asymmetric light diffraction [46–49], and
a new class of self-imaging Talbot effects [50].

Optical nonlinearities in atomic gases are typically too
weak for single photons and local. To go beyond the weak,
local Kerr nonlinearity regime, electronically high-lying (Ry-
dberg) states have recently been exploited to enhance inter-
atomic interactions [51] through electromagnetically induced
transparency (EIT). Lifetime in Rydberg states is proportional
to n3 (n is the principal quantum number), which is typically
tens of microseconds. Most importantly, the van der Waals
interactions between Rydberg atoms ∼n11. The mapping of
interatomic interactions to light fields generates strong and
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long-range optical nonlinearities, which opens a new avenue
of research on nonlocal nonlinear optics [52–56] and quantum
nonlinear optics [57,58] and facilitates applications in quan-
tum information processing [59–61]. Using Rydberg gases,
a cooperative nonlinear grating has also been proposed to
identify photon statistics [62] and to create nonlocal opti-
cal solitons with PT symmetry [63]. Although there are
rapid developments in nonlocal nonlinear optics with Rydberg
atoms, how to create EIGs with PT symmetry and explore
and find intriguing properties of nonlinear light diffractions
in the presence of nonlocal Kerr nonlinearity is still an open
question.

In this work, we investigate nonlinear light diffractions
from EIGs with PT symmetry and strong, long-range optical
interactions in a cold gas of Rydberg atoms. Through a system
with Rydberg-dressed EIT, an EIG with PT symmetry is built
with additional ancillary laser fields, and at the same time,
Rydberg interatomic interactions are mapped to the nonlocal
Kerr nonlinearity of the probe light field. For a far-field
diffraction, laser beams incident upon the PT -symmetric EIG
display drastic asymmetric diffraction fringes. We show that
the diffraction asymmetry degree can be controlled by the
gain-absorption coefficient of the EIG, the incident intensity
of the laser beam, and the nonlocality provided by Rydberg
atoms, which might be used to characterize the interatomic
interaction property of the Rydberg gas. The active manipu-
lation of intensities along different diffraction orders through
laser parameters and nonlocal nonlinearity is also explored.
For near-field diffraction, our investigation shows that the
emerging Talbot effect from the PT -symmetric EIG can be
turned on and off by changing Rydberg interatomic interac-
tions. Our study is useful for various applications in optical
information processing and transmission, such as the design
of novel optical beam dividers with desired intensities and the
realization of controllable optical self-imaging.

The structure of the paper is as follows. In Sec. II, we
describe the theoretical model under study and illustrate how
to realize an EIG with PT symmetry in a Rydberg gas.
In Sec. III, we investigate nonlinear Raman-Nath diffraction
when a probe laser beam is normally incident upon a PT -
symmetric EIG with low and high incident intensities. In
Sec. IV, we discuss nonlinear Talbot self-imaging and its
active control in the system. Finally, in Sec. V we summarize
the main results obtained in this work.

II. THEORETICAL MODEL AND PHYSICAL
REALIZATION OF THE PT -SYMMETRIC EIG

A. Model and basic equations

We start by considering a cold gas of a lifetime-broadened
four-level atomic system (with atomic density Na) with
the inverted-Y-type configuration suggested in [25] [see
Fig. 1(a)]. The electric field acting with the atomic sys-
tem reads E = Ep + Ec + Ea, with Eα = eαEα exp[i(kα · r −
ωαt )] + H.c. (eα are unit polarization vectors, Eα are field am-
plitudes). Here, a weak, spatially focused probe laser field Ep

(with center wave number kp = ωp/c and angular frequency
ωp) couples the ground state |1〉 to the intermediate state |3〉; a
strong control laser field Ec (with wave number kc = ωc/c and
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FIG. 1. (a) Level diagram and excitation scheme of the Rydberg-
dressed EIT. States |1〉, |2〉, and |3〉 constitute a �-type EIT configu-
ration, where the probe laser field Ep couples the transition |1〉 ↔ |3〉
and the control laser field Ec couples the transition |2〉 ↔ |3〉. � j are
detunings and � jl are the spontaneous-emission decay rate from |l〉
to | j〉. The �-type EIT is dressed by a high-lying Rydberg state |4〉,
which is far-off-resonantly coupled to state |3〉 through an assistant
laser field Ea. An incoherent pumping (at pumping rate �21) is used to
pump atoms from |1〉 to |2〉. The interaction between Rydberg atoms
is described by the van der Waals potential Vvdw (with its expression
given in the text). (b, c) Possible setups of light diffractions for
probe beams normally incident on PT -symmetric EIGs. A cold
Rydberg gas of 87Rb atoms is filled in atomic cells, consisting of
two parts in the z direction. Ec0 and Ea0 are homogeneous parts of
the control and assistant fields. Ec0 (Ea0) is incident to the atomic
cells along the +z (−z) direction (Ea0 is not shown). Additional
laser pairs E±

c1 and E±
a1 are applied along the x direction, introducing

spatial modulations in the control and assistant laser fields and hence
realizing PT -symmetric EIGs in shaded parts of cells.

angular frequency ωc) couples the low-lying state |2〉 and state
|3〉. �3 = ωp − (ω3 − ω1), �2 = ωp − ωc − (ω2 − ω1), and
�4 = (ω4 − ω1) − ωp − ωa are, respectively, the one- and
two-photon detunings; �13, �23, and �34 are, respectively,
the spontaneous-emission decay rates from |3〉 to |1〉, |3〉 to
|2〉, and |4〉 to |3〉. States |1〉, |2〉, and |3〉 and the probe and
control fields constitute a standard �-type EIT configuration.
The �-type EIT is, however, dressed by a high-lying Ry-
dberg state |4〉 (with a large principal quantum number n),
which is far off-resonantly (i.e., �3 + �4 � �a) coupled to
|3〉 through an assistant laser field Ea (with wave number
ka = ωa/c and angular frequency ωa). Moreover, in order to
realize an optical PT symmetry in such a Rydberg-dressed
EIT system, an incoherent population pumping (at pumping
rate �21) is applied, coupled to the two low-lying states |1〉
and |2〉. In addition, the control and the assistant fields are
assumed to be spatially modulated (see below).

For relatively high atomic densities, the dynamics
of the system is described by the spatially continuous
Hamiltonian Ĥ = Na

∫
d3rĤ(r, t ), with the Hamiltonian

density Ĥ(r, t ) = ∑4
j=1 h̄� j Ŝ j j (r, t ) − h̄[�pŜ13(r, t ) +

�aŜ34(r, t ) + �cŜ23(r, t ) + H.c.] + Na
∫

d3r′Ŝ44(r′, t )h̄V
(r′ − r)Ŝ44(r, t ), where the electric-dipole and
rotating-wave approximations have been applied. Here
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Ŝ jl = |l〉〈 j| ei[(kl −k j )·r−(ωl −ω j+�l −� j )t] is the transition
operator related to states | j〉 and |l〉, satisfying the
commutation relation [Ŝ jl (r, t ), Ŝμν (r′, t )] = (1/Na)δ(r −
r′) [δ jν Ŝμl (r′, t ) − δμl Ŝ jν (r′, t )], with h̄ω j the eigenenergy
of level | j〉; �p = (ep · p31)Ep/h̄, �c = (ec · p32)Ec/h̄, and
�a = (ea · p43)Ea/h̄ are, respectively, half Rabi frequencies
of the probe, control, and assistant fields, with pi j the
electric dipole matrix elements associated with the transition
|i〉 ↔ | j〉. The latter term represents the contribution due
to atom-atom interaction. The interaction between the
Rydberg atom at position r and the one at position r′
is described by the long-range potential h̄VL(r′ − r), with
VL(r′ − r) = C6/|r′ − r|6 (C6 is called dispersion coefficient).

The dynamical evolution of atoms is governed by the
optical Bloch equation

∂ρ

∂t
= − i

h̄
[Ĥ , ρ] − �[ρ], (1)

where ρ is the density matrix, with matrix elements ρ jl ≡
〈Ŝ jl〉, and � is the relaxation matrix, contributed from the
spontaneous emission and dephasing in the system. The ex-
plicit form of Eq. (1) is given in Appendix A. The wave equa-
tion of the probe field is described by the Maxwell equation,
which, under the slowly varying amplitude approximation,
reads

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + 1

2kp

(
∂2

∂x2
+ ∂2

∂y2

)
�p + kp

2
χp �p = 0,

(2)
with χp = Nα (ep · p13)2ρ31/(ε0 h̄�p) the probe-field suscepti-
bility. The term with second derivatives with respect to x and
y describes the diffraction effect. The propagation directions
of the laser fields are assumed to be kp = (0, 0, kp), kc =
(0, 0, kc), and ka = (0, 0,−ka) for suppressing the first-order
Doppler effect. We are interested in the stationary state,
in which the probe, control, and assistant fields have very
long durations so that the time derivatives in the Bloch and
Maxwell equations can be neglected.

Since the probe field is much weaker than the other two
fields, perturbation expansions of �p and ρ jl ( j, l = 1–4)
can be employed to solve the Bloch equation, (1) [64,65].
With the solution of ρ31 exact to the third order of �p,
the optical susceptibility of the probe field can be expressed
as χp = χ (1)

p + χ
(3)
p,1|Ep|2 + ∫

d3r′χ (3)
p,2(r′ − r)|Ep(r′)|2, where

χ (1)
p is the linear optical susceptibility and χ

(3)
p,1 [χ (3)

p,2] is the
local [nonlocal] nonlinear optical susceptibility, contributed
by the atom-photon [atom-atom] interaction. The expressions
for χ (1)

p , χ
(3)
p,1, and χ

(3)
p,2 read

χ (1)
p = Nα (ep · p13)2

ε0 h̄
α

(1)
31 , (3a)

χ
(3)
p,1 = Nα (ep · p13)4

ε0 h̄3D

[
d21d41

(
α

(2)
33 − α

(2)
11

)

−�ad41α
(2)
23 − �∗

cd21α
(2)
43

]
, (3b)

χ
(3)
p,2 = N 2

α (ep · p13)4

ε0 h̄3 VL(r′ − r)α(1)∗
41 α

(2)
4141, (3c)

respectively, with D = d32d42d43 − |�c|2d32 − |�a|2d43 and
d jl = � j − �l + iγ jl . Here γi j = (�i + � j )/2 + γ col

i j and

� j = ∑
i< j �i j , with �i j the spontaneous emission decay rate

and γ col
i j the dephasing rate from | j〉 to |i〉. Expressions for

α
(m)
i j (m = 1, 2) and α

(2)
4141 are presented in Appendix A. It is

noteworthy that both χ (1)
p and χ

(3)
p,1 are proportional to Na,

whereas χ
(3)
p,2 is proportional to N 2

a . On the other hand, χ
(3)
p,1

becomes 0 under the exact EIT condition (�2 = 0), however,
χ

(3)
p,2 is nonzero under the exact EIT condition.

For simplicity, we assume that the spatial extension of
the input probe beam along the y and z directions is much
larger than that of the atom-atom interaction, so the behavior
of the third-order nonlocal nonlinear optical susceptibility in
the y and z directions can be taken as a local one. Bearing
this in mind and substituting the derived χp into the Maxwell
equation, (2), we obtain the dimensionless nonlocal nonlinear
Schrödinger equation

i
∂U

∂ζ
= −∂2U

∂ξ 2
+ V (ξ )U

+
∫

dξ ′W2(ξ ′ − ξ )|U (ξ ′, ζ )|2 U (ξ, ζ ), (4)

where U = �p/�p0 (�p0 is the scaled input Rabi frequency of
the probe beam), ζ = z/Ldiff (Ldiff ≡ 2kpw

2
0 is the character-

istic diffraction length, with w0 the width of the probe beam),
and (ξ, ξ ′) = (x, x′)/w0. The dimensionless linear potential
is defined by V (ξ ) = −k2

pw
2
0χ

(1)
p (ξ ); the nonlinear response

function (i.e., the integral kernel) is given by W2(ξ ′ − ξ ) =
−2k3

pw
6
0�

2
p0

∫∫
dηdζχ

(3)
p,2(ξ ′ − ξ, η, ζ ), with η = y/w0. Note

that in Eq. (4) we have neglected the term of the local
Kerr nonlinearity W1|U |2U (W1 ≡ −k2

pw
2
0�

2
p0χ

(3)
p,1), which is

usually much smaller than the term standing for the nonlocal
Kerr nonlinearity [56].

B. Physical realization of PT -symmetric EIGs

The analytical result applies to the Rydberg EIT with cold
alkali atoms in general. To be concrete, we consider laser-
cooled 87Rb atoms as an example, where the atomic lev-
els are assigned as |1〉 = |5S1/2, F = 1〉, |2〉 = |5S1/2, F =
2〉, |3〉 = |5P3/2, F = 3〉, and |4〉 = |nS1/2〉. The incoherent
pumping rate and the spontaneous decay rates are �21 ≈ 2π ×
0.1 MHz, �3 ≈ 2π × 6 MHz, and �4 ≈ 2π × 3 kHz, respec-
tively. The dispersion parameter C6 ≈ 2π × 140 GHz μm6

for n = 60. The density of the atomic gas is chosen as
Na = 1.0 × 1012 cm−3. The detunings in the system are �2 =
−2.74 MHz, �3 = 50 MHz, and �4 = 100 MHz, respec-
tively. The Rabi frequencies of the control and assistant fields
are both of the order of 10 MHz, and hence (�3 + �4)/�a ∼
10 � 1, i.e., the system works in the Rydberg-dressed EIT
regime [63].

The target potential we seek is a PT -symmetric periodic
function with the form

V (ξ ) = V0 + V1 sin2(ξ ) + iV2 sin(2ξ ), (5)

where V0 contributes a constant phase, and V1 and V2 (|V1|
and |V2| � V0) characterize, respectively, the amplitudes of
the real and imaginary parts of the target potential. Using
the method proposed in [22,26], with parameter values from
87Rb atoms, the target potential can be created by the spatially
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modulated control and assistant fields (more details are given
in Appendix B), given by

�c(ξ )/�c0 ≈ 1 + 0.21V2 sin(2ξ ), (6a)

�a(ξ )/�a0 ≈ 1 − 1.67V1 sin2 ξ − 5.74V2 sin(2ξ ), (6b)

with V0 = −27.67, �c0 = 1.5 × 107 s−1, and �a0 = 1.0 ×
107 s−1. Here we remark that expressions (6a) and (6b) ensure
the PT symmetry only in the finite range of ξ (≡ x/w0), while
for large ξ significant deviations may occur.

From Eqs. (5) and (6), the real and imaginary parts of
the potential are determined simultaneously by the spatial
modulations in the control and assistant fields, which can
be generated experimentally by the interference of additional
pairs of laser fields [19,24]. In Figs. 1(b) and 1(c), Ec0 and
Ea0 are homogeneous parts of the control and assistant fields.
Ec0 is assumed to be incident to the atomic cells in the +z
direction, while Ea0 is incident to the atomic cells along
the −z direction (not shown). Additional laser pairs, E±

c1
and E±

a1, along the x direction introduce, respectively, spatial
modulations in the control and assistant fields for realizing
PT -symmetric EIGs. Note that PT -symmetric EIGs are built
only in small parts of atomic cells [denoted by shaded regions
in Figs. 1(b) and 1(c)].

Turning to the nonlocal Kerr nonlinearity, with the param-
eters of 87Rb atoms and �p0 ≈ 3.0 × 106 s−1 we obtain the
expression

W2(ξ ′ − ξ ) ≈ 0.02
∫∫

dηdζ

{
1 + i0.14

+
[
(ξ ′ − ξ )2 + η2 + 4k2

pw
2
0ζ

2
]3

(0.45Rb/w0)6

}−1

, (7)

where Rb ≈ 9.1 μm is the radius of the Rydberg blockade
[66]. Moreover, the response function W2 obeys the normal-
ization condition

∫
dξW2(ξ ′ − ξ ) ≈ 1, which is consistent

with the limit W2(ξ ′ − ξ ) = δ(|ξ ′ − ξ |). Since W2 is positive,
the nonlocal Kerr nonlinearity in Eq. (4) is self-defocusing
due to the repulsive atom-atom interaction considered here.
It is also possible to have a nonlocal self-focusing Kerr
nonlinearity by using attractive interatomic interactions, e.g.,
by considering 88Sr atoms [56].

To characterize the nonlocal optical property, we define
the nonlocality degree of the Kerr nonlinearity of the system,
which is the ratio between Rb and w0, i.e.,

σ ≡ Rb/w0. (8)

When w0 � Rb, one has σ ≈ 0, in which case the nonlocal
nonlinear potential becomes a local one and hence Eq. (4) is
reduced to a local NLSE.

Figure 2(a) shows the real and imaginary parts of the linear
potential, i.e., Re(V − V0) (solid black line) and Im(V − V0)
(dashed red line), as functions of ξ . Rabi frequencies of
the control and assistant fields, i.e., �c(ξ )/�c0 (solid black
line) and �c(ξ )/�c0 (dashed red line), as functions of ξ are
also illustrated. Figure 2(b) shows the spatial distributions
of the real and imaginary parts of the nonlocal nonlinear
response function W2 in Eq. (4), i.e., Re(W2) (solid black
line) and Im(W2) (dotted red line), as functions of ξ with
w0 = Rb and σ = 0.45. It is noteworthy that the maximum
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FIG. 2. (a) Upper panel: Real and imaginary parts of the linear
potential, i.e., Re(V − V0) (solid black line) and Im(V − V0) (dashed
red line), as functions of x/w0. Lower panel: Rabi frequencies of
the control and assistant fields, i.e., �c/�c0 (solid black line) and
�a/�a0 (dashed red line), as functions of x/w0. Here the amplitude
of the real (imaginary) part of the linear potential V1 = 1 (V2 =
0.5). (b) Spatial distributions of the real and imaginary parts of the
nonlinear response function W2 in Eq. (4) (for repulsive atom-atom
interaction), i.e., Re(W2) (solid black line) and Im(W2) (dotted red
line), as functions of x/w0 with w0 = Rb (σ = 1). The dashed blue
line is the plot of the function WGau = e−(ξ/0.45)2

/(0.45
√

π ).

of −Im(W2) is approximately one order of magnitude smaller
than that of Re(W2). To a large extent, W2 can be approximated
by its real part, namely, W2 ≈ Re(W2). Additionally, Re(W2)
can be approximated by a Gaussian function, i.e., WGau =
e−(ξ/0.45)2

/(0.45
√

π ), which is also illustrated in Fig. 2(b) by
the dashed blue line.

III. RAMAN-NATH DIFFRACTION BY
PT -SYMMETRIC EIGs

A. General result for Raman-Nath diffraction

When the probe beam is normally incident to a PT -
symmetric EIG and is wide enough to cover several or more
spatial periods of the EIG, a far-field diffraction of the probe
beam may occur. It is noteworthy that plane diffraction grat-
ings operate in two diffraction regimes: the Bragg regime (or
thick grating) and the Raman-Nath regime (or thin grating).
Here we focus on the far-field light diffraction in the Raman-
Nath regime, where multiple diffraction waves are generated.
As a possible setup for observing such light diffraction, we
assume that a cold Rydberg gas of 87Rb atoms is filled in an
atomic cell, consisting of two parts in the z direction, as shown
in Fig. 1(b). The spatial modulations in the control and assis-
tant fields are introduced only in the right part of the atomic
cell and hence realize the PT -symmetric EIG in that part. In
addition, the length of the region without EIG (the left part)
is L and the length of the region with EIG (the right part) is
d , obeying the condition d � L � Ldiff . Then the probe field
experiences an enhanced nonlinearity during its propagation
in the long region without EIG (the left part) and undergoes
diffraction in the short region with EIG (the right part).

The transmission function T (ξ ) of the probe field is defined
by the ratio of the output field amplitude to the input field
amplitude, which can be obtained by solving Eq. (4) in the
absence of the diffraction term because d � L < Ldiff . It is
easy to obtain that

T (ξ ) = e−iV0 (L+d )+[V2 sin(2ξ )−iV1 sin2(ξ )]d

× e−i
∫ L+d

0 dζ
∫ ∞
−∞ dξ ′W2(ξ ′−ξ )|U (ξ ′,ζ )|2 . (9)
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In contrast with previous studies [47–49], the transmission
function, (9), depends not only on the linear potential but also
on the nonlocal nonlinear potential and the intensity of the
probe field.

The diffraction spectrum of the weak probe field is ob-
tained by the Fourier transform of T (ξ ). The diffraction
intensity function can be written as [3]

Ip(θ ) = |F (θ )|2 sin2(Nπ� sin θ/λp)

N2 sin2(π� sin θ/λp)
, (10)

where θ denotes the diffraction angle of the probe beam with
respect to the z direction, N represents the number of spatial
periods of the grating illuminated by the probe beam in the x
direction, � is the period of the grating along the x direction,
and F (θ ) is the Fraunhofer diffraction of a single space period
� given by

F (θ ) = 1

τ

∫ τ

0
dξT (ξ )e−i2πw0ξ sin θ/λp, (11)

with τ = �/w0 and λp = 2πc/ωp the center wavelength of
the probe beam. When the condition sin θm = mλp/� (m =
0,±1,±2, . . . ) is satisfied, we obtain the probe-beam inten-
sity Im

p along the mth-order diffraction direction, given by

Im
p = |F (θm)|2 =

∣∣∣∣ 1

τ

∫ τ

0
dξT (ξ )e−i2πmξ/τ

∣∣∣∣
2

. (12)

B. Raman-Nath diffraction in the linear regime

We first discuss the Raman-Nath diffraction for the case
of a small probe-beam power. For convenience in the fol-
lowing discussion, we adopt the parameters of Rb87 atoms
and set L = 1 cm and d = 10 μm. Additionally, we take
w0 = 2.5πRb ≈ 71 μm, which leads to Ldiff ≈ 7.9 cm and
hence d/Ldiff ∼ 10−3 � 1. A single space period of the EIG
is chosen as � = πRb ≈ 28 μm and hence the number of
illuminated spatial periods is N = 2w0/� = 5.

To investigate the influence of the gain-absorption coeffi-
cient of the PT -symmetric EIG on light diffraction, we fix
V1 = 4 and σ = 0 (i.e., without the long-range interactions),
and increase V2 from 0. We assume that the input beam has
a Gaussian distribution Uin(x) ≡ U (x, z = 0) = U0 e−x2/(2w2

0 ),
where the amplitude U0 = 0.09. The light power of the input
probe beam is small, i.e., P ≡ ∫ ∞

−∞ dx|Uin(x)|2 ≈ 1. Since the
incident intensity of the probe beam is much less than 1, the
nonlinear effect of the system induced by the probe beam is
not important and the light diffraction is mainly a linear one.

Figures 3(a) and 3(b) show the diffraction intensity Ip(θ )
[defined by Eq. (10)] as a function of sin θ and z/d for V2 = 0
and V2 = 2 (the spontaneous PT -symmetry-breaking point of
the grating), respectively. The corresponding diffraction inten-
sity distribution at the position z = d is shown in Fig. 3(c).
We see that when V2 = 0 (the grating is real), the diffraction
intensity distribution is symmetric in the x direction. However,
when V2 > 0 (the grating is complex), the diffraction intensity
distribution becomes asymmetric in the x direction. Moreover,
the power of the probe beam increases rapidly at V2 = 2
because the EIG transforms from the unbroken PT phase
(UPTP) to the broken PT phase (BPTP).
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FIG. 3. Linear Raman-Nath diffraction fringes in the Rydberg
gas for different gain-absorption coefficients of the PT -symmetric
EIG by taking V1 = 4, σ = 0, and P = 1 (i.e., small probe-beam
power). The input condition is given in the text. (a, b) Diffraction
intensities, Ip(θ ), as functions of sin θ and z/d (d is the thickness of
the grating), respectively, for V2 = 0 [i.e., (a), where 0th-order, ±1st-
order, and ±2nd-order diffraction fringes are shown] and for V2 = 2
[i.e., (b), where 0th-order, −1st-order, and −2nd-order diffraction
fringes are shown], respectively. (c) Corresponding diffraction inten-
sity distributions at z = d . (d) Symmetry degree of the diffraction,
A, as a function of V2. The white region denotes the unbroken PT
phase (UPTP), while the shaded region denotes the broken PT phase
(BPTP). Amin ∼ 10−6, obtained at V2(Amin ) = 2. Inset: log10 A as a
function of V2.

The asymmetry of the diffraction intensity distribution
for nonzero V2 is a result of the out-of-phase interplay of
amplitude and phase modulations of transmission function.
In order to present the asymmetry degree of the diffraction
intensity distribution, we define the symmetry degree

A ≡ I (1)
p /I (−1)

p , (13)

which is the ratio between the intensity of the first-order
diffraction intensity distribution (the +1st-order fringe) and
that of the −1st-order diffraction intensity distribution (the
−1st-order fringe). Then the asymmetry degree is determined
by 1 − A, i.e., the larger 1 − A, the more asymmetric the
diffraction intensity distribution. Clearly, the diffraction pat-
tern becomes asymmetric if A �= 1. Figure 3(d) shows A as
a function of V2. We see that A decreases from 1 to nearly
0 as V2 increases from 0 to 2 and then increases slightly as
V2 increases from 2 to 4. In the inset, we show log10 A as a
function of V2. The minimum of A is of the order of 10−6, i.e.,
Amin ∼ 10−6, which is obtained at V2(Amin) = 2.

To understand the fact that Amin is obtained when V2 is
taken as the PT -symmetry-breaking point, we rewrite the
optical potential in Eq. (5) as V (ξ ) = V0 + V1 − (V1/4)[(1 −
q)ei2ξ + (1 + q)e−i2ξ ], where q = 2V2/V1. Obviously, V (ξ )
has two components, ei2ξ and e−i2ξ , representing moving grat-
ings towards the positive and negative directions in the x co-
ordinate. When q = 0 (i.e., V2 = 0), moving gratings towards
the positive and negative directions have the same amplitudes,
resulting in a symmetric diffraction [Fig. 3(a)]. However,
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FIG. 4. Nonlinear Raman-Nath diffraction fringes in the Ry-
dberg gas for different gain-absorption coefficients of the PT -
symmetric EIG by taking V1 = 4, σ = 0, and P = 100 (i.e., large
probe-beam power). (a, b) Diffraction intensities Ip(θ ) as functions
of sin θ and z/d for V2 = 0 [(a), where 0th-order, ±1st-order, and
±2nd-order diffraction fringes are shown] and for V2 = 2 [(b),
where 0th-order, −1st-order, and −2nd-order diffraction fringes are
shown], respectively. (c) Corresponding diffraction intensity distri-
butions at z = d . (d) Symmetry degree of the diffraction, A, as a
function of V2. The white (shaded) region denotes the UPTP (BPTP).
Amin ∼ 10−3, obtained at V2(Amin ) ≈ 1.3. Inset: log10 A as a function
of V2.

when q �= 0 (V2 �= 0) the moving gratings towards the positive
and negative directions have different amplitudes, resulting in
the asymmetric diffraction pattern [Fig. 3(b)]. When q = 1
(i.e., V2 = 2, corresponding to the PT -symmetry-breaking
point), there is only one moving grating towards the negative
direction, and hence the most asymmetric diffraction pattern
appears.

C. Raman-Nath diffraction in the nonlinear regime

Because of the strong atom-atom interaction in the Ryd-
berg gas, which brings a significant nonlinear effect to the
light propagation, the diffraction of the probe beam will be-
come highly nonlinear when its incident intensity is increased.
To illustrate this point, we focus here on the case with U0 =
0.9 (and hence P ≈ 100, which corresponds to a diffraction
with a large probe-beam power), with the numerical result
shown in Fig. 4.

In the figure, we see that for both V2 = 0 [Fig. 4(a)] and
V2 = 2 [Fig. 4(b)] the intensity for the zeroth-order diffraction
fringe is greatly enhanced. However, intensities for the high-
order diffraction fringes are largely suppressed, which can be
seen clearly in Figs. 4(a)–4(c). Moreover, in this large-power
diffraction case Amin ≈ 10−3, which is much larger than in the
above case of linear diffraction. This implies that the domain
of the UPTP is significantly reduced [see Fig. 4(d)].

The physical reason behind the result obtained in Fig. 4
is that the linear and nonlinear potentials in Eq. (4) reduce
to an effective optical potential, Veff (ξ ), which is no longer
a periodic function for a large probe-beam power and hence
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FIG. 5. Nonlinear Raman-Nath diffraction fringes in the Ryd-
berg gas for a large nonlocality degree of the Kerr nonlinearity
(σ = 10) by taking V1 = 4 and P = 100. (a, b) Diffraction inten-
sities Ip(θ ) as functions of sin θ and z/d for V2 = 0 and V2 = 2,
respectively. (c) Corresponding diffraction intensity distributions at
z = d . (d) Symmetry degree of the diffraction, A, as a function of V2.
The white (shaded) region denotes the UPTP (BPTP). Amin ∼ 10−4,
obtained at V2(Amin ) ≈ 1.5. Inset: log10 A as a function of V2.

intensities along high-order diffraction directions disappear.
However, Veff (ξ ) is still PT symmetric but has a different
ratio between the real and the imaginary parts in comparison
with the linear potential V (ξ ) in Eq. (4). This implies that the
nonlinear effect can change the domains of UPTP and BPTP,
consistent with the result in Ref. [67]. If the probe beam is
very wide (w0 � �), Veff (ξ ) ≈ V (ξ ) + 0.81, i.e., there is only
a constant difference between Veff (ξ ) and V (ξ ), and Veff (ξ )
becomes period again. In this case, the light diffraction will
be the same as that in the linear case.

However, the nonlocality of the nonlocal Kerr nonlinearity
contributed by the atom-atom interaction plays an impor-
tant role in the nonlinear light diffraction from the EIG. To
demonstrate this, the probe-beam propagation with a large
nonlocality degree σ is numerically calculated, with the re-
sult shown in Fig. 5 for σ = 10. We see that, due to the
large nonlocality degree of the Kerr nonlinearity, intensi-
ties of the diffraction fringes along high-order diffraction
directions suppressed by the Kerr nonlinearity are partially
recovered [see Figs. 5(a)–5(c)]. In addition, due to the large
σ , the value of Amin is decreased to 10−4. Moreover, the
domain of the UPTP is enlarged with the increase in σ

[comparing Fig. 5(d) with Fig. 4(d)], which implies that
the increase in the nonlocality degree of the self-defocusing
Kerr nonlinearity can be used to suppress the PT symmetry
breaking.

The effect of the nonlocality degree on the nonlinear light
diffraction patterns can be understood as follows. Consider
the case of a very large σ , by which the nonlinear response
function W2 in Eq. (4) can be approximated to be spatially
independent, i.e., W2(ξ − ξ ′) = W2(ξ = 0) ≡ W20. As a re-
sult, the nonlocal Kerr nonlinearity term in Eq. (4) reduces
to the form PW20, with W20 > 0 (self-defocusing Kerr non-
linearity). Thus, one obtains an effective optical potential
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p ) as functions of the light power of the probe beam P and the
nonlocality degree of the Kerr nonlinearity σ . I0,±1
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P for V2 = 0 (a) and V2 = 2 (b), with σ = 0; I0,±1

p as a function of σ

for V2 = 0 (c) and V2 = 2 (d), with P = 100. σ as a function of the
minimum of the logarithm of the symmetry degree A, (log10 A)min,
for P = 50 (e) and P = 100 (f); σ as a function of V2 where Amin is
achieved for P = 50 (g) and P = 100 (h).

Veff (ξ ) = V (ξ ) + PW20, and hence the light diffraction in this
case is similar to a linear one and the intensities along high-
order diffraction directions are restored to that of a linear
Raman-Nath diffraction.

It should be stressed that the Raman-Nath diffraction
fringes illustrated above can be manipulated actively, which
is useful for practical applications in the design of optical
devices. Figures 6(a) and 6(b) show I0,±1

p (i.e., the intensities
of the diffraction along the0th- and ±1st-order diffraction
directions) as functions of the probe-beam power P for V2 = 0
[Fig. 6(a)] and V2 = 2 [Fig. 6(b)], respectively, with the nonlo-
cality degree of the Kerr nonlinearity σ = 0; I0,±1

p are shown
as functions of σ for V2 = 0 [Fig. 6(c)] and V2 = 2 [Fig. 6(d)],
respectively, with probe-beam light power P = 100. In the
figure we see that the intensities of the 0th-order and ±1st-
order diffraction fringes can be adjusted by changing the
incident power of the probe beam P and nonlocality degree
of the Kerr nonlinearity σ . This property of the nonlinear
Raman-Nath diffraction can be employed to realize optical
beam dividers with desired intensities in different directions.

Moreover, by measuring the symmetry degree A of the
nonlinear Raman-Nath diffraction fringes, it is possible to
acquire the information of the nonlocality degree σ of the Kerr
nonlinearity and, hence, to deduce values of the radius of the
Rydberg-blockade sphere and the atomic dispersion coeffi-
cient. To demonstrate this, Fig. 6(e) [Fig. 6(f)] shows the result
of σ as a function of the minimum of log10 A, (log10 A)min, for
P = 50 [P = 100], and Fig. 6(g) [Fig. 6(h)] shows the result
of σ as a function of V2(Amin) for P = 50 [P = 100]. We see
that, by measuring either (log10 A)min or V (Amin), the value of
σ can be obtained. Then, by using the relations

Rb = σw0 and |C6| = (σw0)6|δEIT|, (14)

where δEIT is the line width of the EIT transmission spectrum
(i.e., the width of the EIT transparency window [66]), one
can get the values of the radius of the Rydberg-blockade
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FIG. 7. Talbot diffraction patterns (self-imaging recurrences) in
the Rydberg gas for different coefficients V1 and V2 of the PT -
symmetric EIG with σ = 0. The input condition is given in the text.
(a–d) Probe-beam intensity |U |2 as a function of x/� and z/ZT for
(V1,V2) = (1, 0) (a), (V1,V2) = (1, 1) (b), (V1,V2) = (0, 1) (c), and
(V1,V2) = (0, 2) (d). The Talbot distance ZT ≈ 2 mm in all panels.

sphere Rb and the dispersion coefficient C6 at the same time.
Therefore, the intensity distribution of the nonlinear Raman-
Nath diffraction fringes can indeed be used to characterize the
interatomic interaction in Rydberg gases.

IV. TALBOT EFFECT BY PT -SYMMETRIC EIGs

Now we turn to investigate a near-field nonlinear diffrac-
tion of the probe beam in the system. Particularly, we focus
on the emergence of the Talbot effect, in which the self-
imaging from the EIG illuminated by the probe beam can
periodically replicate at certain imaging planes (more details
are given in Appendix C). These imaging planes are located
at even integer multiples of the so-called Talbot distance ZT =
2�2/λp (where � is the spatial period of the EIG and λp the
wavelength of the probe field; see Sec. III A). A possible setup
for observing nonlinear Talbot carpets is shown in Fig. 1(c),
where the PT -symmetric EIG is created only in the left part
of the atomic cell.

We first consider how the gain-absorption coefficient V2

of the PT -symmetric EIG influences Talbot self-imaging
recurrences. Shown in Fig. 7 is the numerical result of a
simulation of the Talbot diffraction effect in the Rydberg gas,
with the probe-beam intensity |U |2 taken to be a function
of x/� and z/ZT for σ = 0 and for different gain-absorption
coefficients V1 and V2 of the PT -symmetric EIG. Parameters
are (V1,V2) = (1, 0) [Fig. 7(a)], (V1,V2) = (1, 1) [Fig. 7(b)],
(V1,V2) = (0, 1) [Fig. 7(c)], and (V1,V2) = (0, 2) [Fig. 7(d)].
In the simulation, the Talbot distance ZT ≈ 2 mm, the input
beam Uin(x) = U0 e−x2/(2w2

0 ), with U0 = 0.12, the beam radius
w0 = 10� ≈ 280 μm, and the light power P ≈ 1.

In Fig. 7(a), we see that for (V1,V2) = (1, 0) the Talbot
pattern is not yet developed; but for (V1,V2) = (1, 1) it forms
quite well, which is shown in Fig. 7(b). Thus we conclude
that the Talbot effect is mainly caused by the gain-absorption
coefficient of the PT -symmetric EIG, i.e., by nonzero V2.
To confirm this deduction, we carry out a further simula-
tion with vanishing real part of the potential describing the
PT -symmetric EIG (i.e., V1 = 0). Shown in Figs. 7(c) and
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7(d) are the Talbot patterns with (V1,V2) = (0, 1) and (0,2),
respectively. We see that the Talbot effect becomes more clear
when V1 = 0 and V2 becomes larger. On the other hand, ZT

does not change in Figs. 7(c) and 7(d), indicating that the
Talbot distance does not depend on V2.

To see the influence of the Kerr nonlinearity on the Talbot
effect, we can increase the incident intensity of the probe
beam. We found, however, that the light power of the input
beam P has a marginal effect on the Talbot self-imaging
recurrences, i.e., the Talbot diffraction carpet obtained in the
case has no significant difference from that shown in Fig. 7.
This is because the input beam is a very wide Gaussian one,
which can be approximated as a plane wave, and hence the
Kerr nonlinearity provided by the Rydberg gas contributes
only a constant phase to the probe beam.

However, the nonlocality degree σ of the nonlocal Kerr
nonlinearity of the system has a drastic effect on the Talbot
self-imaging recurrences. Figure 8(a) shows the result of a
simulation of the Talbot effect by taking |U |2 as a function of
x/� and z/ZT for σ = 20. The initial condition is the same as
that used in Fig. 7, but with U0 = 1.2 (and hence P = 100)
and (V1,V2) = (0, 2). In the figure we see that the Talbot
intensity carpet disappears as σ increases.

The dashed red (solid black) line in Fig. 8(b) is the fidelity
of the Talbot effect characterized by the quantity ηJ , which
is taken as a function of σ for z/ZT = 1 (z/ZT = 2). Here,
η(z) ≡ ∫ ∞

−∞ dx|U (x, z)|2/ ∫ ∞
−∞ dx|Uin(x)|2 is the power ratio

between the value at distance z and that at the input (z = 0),
and J (z) is the overlap integration

J (z) = | ∫ ∞
−∞ dxU (x, z)Uin(x)|2∫ ∞

−∞ dx|U (x, z)|2 ∫ ∞
−∞ dx|Uin(x)|2 . (15)

We see that the fidelities at z/ZT = 1 and z/ZT = 2 are both
periodic functions of σ ; furthermore, the maximum position
of the fidelity for z/ZT = 2 on the σ axis is the same as the
minimum position of the fidelity for z/ZT = 1, and vice versa.

The physical reason is that the image at odd-integer multiples
of the Talbot distance has half a period lateral shift with
respect to the one at z = 0, while the image at even-integer
multiples of the Talbot distance duplicates the one at z = 0.
Obviously, the measurement of the fidelities for z/ZT = 1 and
2 allows us to attain the value of the nonlocality degree σ

and, hence, values of the Rydberg-blockade radius Rb and the
dispersion parameter C6 of the Rydberg atoms.

V. SUMMARY

In this work, we have proposed a scheme to realize EIGs
with PT symmetry and investigated nonlinear light diffrac-
tions by PT -symmetric EIGs in a cold Rydberg gas working
under the condition of EIT. We have demonstrated that, for a
far-field diffraction, probe laser beams incident upon the PT -
symmetric EIGs display distinctive asymmetric diffraction
fringes, which can be actively manipulated through tuning the
gain-absorption coefficient of the EIGs, the incident intensity
of the probe beams, and the nonlocality degree of the Kerr
nonlinearity contributed by the atom-atom interaction in the
Rydberg gas. We have also demonstrated that, for a near-field
diffraction, nonlinear Talbot diffraction carpets emerge, which
can be modulated by the nonlocal Kerr nonlinearity, allowing
us to realize controllable optical self-imaging. The results re-
ported here are not only helpful for developing non-Hermitian
nonlinear optics, but also promising for characterizing the
atom-atom interaction in Rydberg gases and for designing
new optical devices useful in optical information processing
and transmission.
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APPENDIX A: BLOCH EQUATIONS OF DENSITY MATRIX
ELEMENTS AND EXPRESSION OF THE NONLOCAL

KERR NONLINEARITY

From the Hamiltonian given in the text, we obtain the
optical Bloch equations of the density matrix elements, ρ jl ≡
〈Ŝ jl〉, with the form

i
∂

∂t
ρ11 + i�21ρ11 − i�13ρ33 − �pρ13 + �∗

pρ31 = 0, (A1a)

i
∂

∂t
ρ22 − i�21ρ11 − i�23ρ33 − �cρ23 + �∗

cρ32 = 0, (A1b)

i
∂

∂t
ρ33 + i�3ρ33 − i�34ρ44 + �pρ13 − �∗

pρ31 + �cρ23 − �∗
cρ32 − �aρ34 + �∗

aρ43 = 0, (A1c)
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i
∂

∂t
ρ44 + i�34ρ44 + �aρ34 − �∗

aρ43 = 0, (A1d)
(

i
∂

∂t
+ d21

)
ρ21 + �∗

cρ31 − �pρ23 = 0, (A1e)

(
i
∂

∂t
+ d31

)
ρ31 + �p(ρ11 − ρ33) + �cρ21 + �∗

aρ41 = 0, (A1f)

(
i
∂

∂t
+ d41

)
ρ41 + �aρ31 − �pρ43 − Nα

∫
d3r′V (r′ − r)ρ44,41(r′, r, t ) = 0, (A1g)

(
i
∂

∂t
+ d32

)
ρ32 + �pρ12 + �c(ρ22 − ρ33) + �∗

aρ42 = 0, (A1h)

(
i
∂

∂t
+ d42

)
ρ42 + �aρ32 − �cρ43 − Nα

∫
d3r′V (r′ − r)ρ44,42(r′, r, t ) = 0, (A1i)

(
i
∂

∂t
+ d43

)
ρ43 + �a(ρ33 − ρ44) − �∗

pρ41 − �∗
cρ42 − Nα

∫
d3r′V (r′ − r)ρ44,43(r′, r, t ) = 0, (A1j)

where djl = � j − �l + iγ jl , with γi j = (�i + � j )/2 + γ col
i j . Here � j = ∑

i< j �i j , with �i j the spontaneous emission decay
rate and γ col

i j the dephasing rate from | j〉 to |i〉. In Eqs. (A1g), (A1i), and (A1j), we have used the notation ρ jl,μν (r′, r, t ) ≡
〈Ŝ jl (r′, t )Ŝμν (r, t )〉. Note that we assume all the atoms are initially populated in state |1〉, and hence the average of the operator
Ô means 〈Ô〉 = 〈G|Ô|G〉, with |G〉 = |1, 1, 1, . . . , 1〉.

Since the system satisfies the parameter condition (�3 + �4)/�a ∼ 10 � 1, the atomic population in Rydberg state |4〉 is
very small and can be approximated to be 0. Thus, at zeroth (m = 0) order, we obtain equations for ρ

(0)
11 , ρ

(0)
22 , and ρ

(0)
33 , reading

⎛
⎜⎝

−�21 0 �13

�21 0 �23

1 1 1

⎞
⎟⎠

⎛
⎜⎝

ρ
(0)
11

ρ
(0)
22

ρ
(0)
33

⎞
⎟⎠ =

⎛
⎜⎝

0

2 Im
(
�∗

aρ
(0)
32

)
1

⎞
⎟⎠. (A2)

In order to solve ρ
(0)
32 , we also need equations for ρ

(0)
32 , ρ

(0)
42 , and ρ

(0)
43 , which are given by

⎛
⎜⎝

d32 �∗
c 0

�c d42 −�a

0 −�∗
a d43

⎞
⎟⎠

⎛
⎜⎝

ρ
(0)
32

ρ
(0)
42

ρ
(0)
43

⎞
⎟⎠ =

⎛
⎜⎝

�a
(
ρ

(0)
33 − ρ

(0)
22

)
0

−�cρ
(0)
33

⎞
⎟⎠. (A3)

The solutions of Eqs. (1), (A2), and (A3) read

ρ
(0)
11 = −�13X/[�21�13 − (�21 + �13)X + �21(�23 + Y )], (A4a)

ρ
(0)
22 = �21(�13 + �23 + Y )/[�21�13 − (�21 + �13)X + �21(�23 + Y )], (A4b)

ρ
(0)
33 = −�21X/[�21�13 − (�21 + �13)X + �21(�23 + Y )], (A4c)

ρ
(0)
32 = [−(d42d43 − |�c|2)ρ (0)

22 + (d42d43 − |�c|2 + |�a|2)ρ (0)
33

]
�c/Z, (A4d)

ρ
(0)
42 = [

d43ρ
(0)
22 − (d32 + d43)ρ (0)

33

]
�c�a/Z, (A4e)

ρ
(0)
43 = [|�c|2ρ (0)

22 − (d32d42 + |�c|2 − |�a|2)ρ (0)
33

]
�a/Z, (A4f)

ρ
(0)
21 = ρ

(0)
31 = ρ

(0)
41 = ρ

(0)
44 = 0, (A4g)

where X = 2 Im[(d42d43 − |�c|2)|�c|2/Z] and Y = −2 Im[(d42d43 − |�c|2 + |�a|2)|�c|2/Z], with Z = d32d42d43 − |�c|2d32 −
|�a|2d43.

At first (m = 1) order, the solution for nonzero matrix elements reads ρ
(1)
21 = α

(1)
21 �p, ρ

(1)
31 = α

(1)
31 �p, ρ

(1)
41 = α

(1)
41 �p, where

α
(1)
21 , α

(1)
31 , α

(1)
41 are determined by the equation

⎛
⎜⎝

d21 �∗
a 0

�a d31 �∗
c

0 �c d41

⎞
⎟⎠

⎛
⎜⎝

α
(1)
21

α
(1)
31

α
(1)
41

⎞
⎟⎠ =

⎛
⎜⎝

ρ
(0)
23

ρ
(0)
33 − ρ

(0)
11

ρ
(0)
43

⎞
⎟⎠. (A5)
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Expressions of α
(1)
21 , α

(1)
31 , and α

(1)
41 are obtained from Eq. (A5), reading

α
(1)
21 = [

(d31d41 − |�a|2)ρ (0)
23 + �∗

c�
∗
aρ

(0)
43 − d41�

∗
c

(
ρ

(0)
33 − ρ

(0)
11

)]
/D, (A6a)

α
(1)
31 = [

d21d41
(
ρ

(0)
33 − ρ

(0)
11

) − d41�cρ
(0)
23 − d21�

∗
aρ

(0)
43

]
/D, (A6b)

α
(1)
41 = [

(d21d31 − |�c|2)ρ (0)
43 + �c�aρ

(0)
23 − d21�a

(
ρ

(0)
33 − ρ

(0)
11

)]
/D, (A6c)

where D = d21d31d41 − |�c|2d41 − |�a|2d21.
At second (m = 2) order, the solution for nonzero matrix elements is found to be ρ

(2)
32 = α

(2)
32 |�p|2, ρ

(2)
42 = α

(2)
42 |�p|2, ρ

(2)
43 =

α
(2)
43 |�p|2, ρ

(2)
j j = α

(2)
j j |�p|2 ( j = 1, 2, 3, 4), with α

(2)
32 , α

(2)
42 , α

(2)
43 satisfying the equation

⎛
⎜⎝

d32 �∗
c 0

�c d42 −�a

0 −�∗
2 d43

⎞
⎟⎠

⎛
⎜⎝

α
(2)
32

α
(2)
42

α
(2)
43

⎞
⎟⎠ −

⎛
⎜⎝

�a(α(2)
33 − α

(2)
22 ) − α

(1)
12

0

�c(α(2)
44 − α

(2)
33 ) + α

(1)
41

⎞
⎟⎠ (A7)

and α
(2)
j j satisfying the equation

⎛
⎜⎜⎜⎝

−�21 0 �13 0

�21 0 �23 0

0 0 −�13 − �23 �34

1 1 1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

α
(2)
11

α
(2)
22

α
(2)
33

α
(2)
44

⎞
⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎝

2 Im
(
α

(1)
31

)
2 Im

(
�∗

aα
(2)
32

)
2 Im

(
α

(1)∗
31 + �aα

(2)∗
32 + �∗

cα
(2)
43

)
0

⎞
⎟⎟⎟⎟⎠. (A8)

Expressions for α
(2)
32 , α

(2)
42 , α

(2)
43 , and α

(2)
j j ( j = 1, 2, 3, and 4) are obtained from Eqs. (A7) and (A8). However, they are too

lengthy to be presented here and are treated by numerical means.
The expression of the nonlocal Kerr nonlinearity is obtained at third (m = 3) order. The solution of ρ

(3)
j1 ( j = 1, 2, and 3) can

be obtained from the equation
⎛
⎜⎝

d21 �∗
a 0

�a d31 �∗
c

0 �c d41

⎞
⎟⎠

⎛
⎜⎝

ρ
(3)
21

ρ
(3)
31

ρ
(3)
41

⎞
⎟⎠ =

⎛
⎜⎝

α
(2)
23

α
(2)
33 − α

(2)
11

α
(2)
43

⎞
⎟⎠|�p|2�p +

⎛
⎜⎝

0

0

Nα

∫
r′V (r′ − r)α(1)∗

41 α
(2)
4141|�p(r′)|2�p(r)

⎞
⎟⎠, (A9)

where α
(2)
4141 can be obtained from the equation

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d21 0 0 �∗
a 0 0

0 d31 0 �a 0 �∗
c

0 0 d41 − V/2 0 0 �c

�a �∗
a 0 d21 + d31 �∗

c 0

0 0 0 �c d21 + d41 �∗
a

0 �c �∗
c 0 �a d31 + d41

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
(2)
2121

α
(2)
3131

α
(2)
4141

α
(2)
2131

α
(2)
2141

α
(2)
3141

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(0)
23 α

(1)
21(

ρ
(0)
33 − ρ

(0)
11

)
α

(1)
31

ρ
(0)
43 α

(1)
41(

ρ
(0)
33 − ρ

(0)
11

)
α

(1)
21 + ρ

(0)
23 α

(1)
31

ρ
(0)
23 α

(1)
41 + ρ

(0)
43 α

(1)
21(

ρ
(0)
33 − ρ

(0)
11

)
α

(1)
41 + ρ

(0)
43 α

(1)
31

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A10)

Expressions for α
(3)
21 , α

(3)
31 , α

(3)
41 , α

(2)
j1 j1 ( j = 2, 3, and 4),

α
(2)
2131, α

(2)
2141, and α

(2)
3141 are obtained from Eqs. (A9) and

(A10). However, they are too lengthy to be presented here
and are treated by numerical means. With expressions for
α

(1)
31 , α

(2)
11 , α

(2)
33 , α

(2)
23 , α

(2)
43 , α

(1)
41 , and α

(2)
4141 at hand, we can

obtain the expressions for χ (1)
p , χ

(3)
p,1, and χ

(3)
p,2(r′ − r).

APPENDIX B: DESIGN OF THE SPATIALLY MODULATED
CONTROL AND ASSISTED FIELDS

The method for engineering the spatially modulated con-
trol and assisted fields is given in the following. First, we
note that the optical potential with PT symmetry must
be real at the origin ξ = 0, i.e., Vi(ξ = 0) = 0. To get a

PT -symmetric potential that has balanced gain and loss in
the whole space, we assume that the Rabi frequencies of the
control and assisted field are space dependent, �c = �c(ξ )
and �a = �a(ξ ). Thus if �c = �c0 and �a = �a0 at ξ = 0,
the value of �3 can be determined by solving the equation
Vi(�c0,�a0,�3) = 0, referred to as �3 = �30, and hence the
values of �2 and �4 can also be determined.

Next, we expand Vr and Vi around �c = �c0 and �a =
�a0, i.e.,

Vr (�c,�a,�30) = Vr (�c0,�a0,�30) + R1,0(�c − �c0)

+ R0,1(�a − �a0), (B1a)

Vi(�c,�a,�30) = I1,0(�c − �c0) + I0,1(�a − �a0), (B1b)
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where

Rm,n = ∂m+n

∂m�c∂n�a
Vr (�c,�a,�30)|�c=�c0,�a=�a0 ,

Im,n = ∂m+n

∂m�c∂n�a
Vi(�c,�a,�30)|�c=�c0,�a=�a0 . (B2)

Note that we have truncated the expansions by neglecting
high-order terms, which means that �c and �a are taken as
weakly space dependent.

Finally, in order to determine the spatial distributions of
�c(ξ ) and �a(ξ ), we solve the equations

R1,0(�c − �c0) + R0,1(�a − �a0) = VTr (ξ )

−Vr (�c0,�a0,�30), (B3a)

I1,0(�c − �c0) + I0,1(�a − �a0) = VTi(ξ ), (B3b)

where VT (ξ ) denotes the target potential, which possesses
PT symmetry. If �c(ξ ) and �a(ξ ) can be solved through
Eq. (B3), the target PT -symmetric potential will be obtained
successfully.

Note that the potential engineering method described
above provides an accurate PT symmetry only for small
ξ . This imposes a constraint on the choice of the width of
the probe beam, which should be small enough so that the
undesirable deviation from the PT symmetry at large ξ can
be avoided.

APPENDIX C: BASIC THEORY OF THE TALBOT EFFECT

According to the Fresnel-Kirchhoff diffraction theory [68],
the diffracted field amplitude E (R) is defined in terms of
the amplitude transmission of the object A(r) and the co-
herent amplitude of the source S(rs). Here, R, r, and rs

are located at the observation, object, and source planes,
respectively. In the paraxial approximation, E (R) takes

the form

E (R) = exp[2iπ (d1 + d2)/λ]

iλd1d2

∫
drsS(rs)

∫
d�rA(r)

× exp

[
iπ |r − rs|2

λd1

]
exp

[
iπ |R − r|2

λd2

]
, (C1)

where d1 is the propagation distance between the object
and the source and d2 is the distance from the object to
the observation plane. For a plane-wave illumination, the
diffraction amplitude E (R) at a distance z from the object is
proportional to

E (R, z) ∝
∫ ∞

−∞
drA(r)ei�(R,r,z), (C2)

where �(R, r, z) ≡ 2π
λ

(z + R2

2z − r·R
z + r2

2z ). The integration
is performed over the infinite boundary on the object plane.
Substituting

A(r) =
n=∞∑

n=−∞
Cn exp

(
i
2πn|r|

d

)
(C3)

into Eq. (C2), we obtain

E (R, z) ∝
n=∞∑

n=−∞
Cn exp

(
−i

πλn2z

d2

)
exp

(
i
2πn|R|

d

)
, (C4)

where Cn is the amplitude of the nth harmonic. At a certain
distance z, all diffraction orders are in phase and reinforced
by satisfying the condition z = m�2/λp, where m, a positive
integer, is referred to as the self-imaging number. For
m = 1, z = �2/λp ≡ zT is the Talbot length. In planes of
z = mzT , the diffracted field can repeat the amplitude at
the output plane of the grating with and without the shifted
half-period �/2 for odd and even integers m, respectively.

In the text, we calculate the fidelity between the image at
z = mzT and that at z = 0. We find that the fidelity reaches its
maximum (≈1) at even-integer multiples of the Talbot length,
whereas it reaches its minimum (≈0) at odd-integer multiples
of the Talbot length.
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