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ABSTRACT. Let D be a unital associative division ring and D[t; o, §] be a skew polynomial
ring, where o is an endomorphism of D and § a left o-derivation. For each f € DJt; o, 9]
of degree m > 1 with a unit as leading coefficient, there exists a unital nonassociative
algebra whose behaviour reflects the properties of f. These algebras yield canonical
examples of right division algebras when f is irreducible. The structure of their right
nucleus depends on the choice of f. In the classical literature, this nucleus appears as the
eigenspace of f, and is used to investigate the irreducible factors of f. We give necessary
and sufficient criteria for skew polynomials of low degree to be irreducible. These yield

examples of new division algebras Sy.

INTRODUCTION

The investigation of skew polynomials is an active area in algebra which has applications
to coding theory, to solving differential and difference equations, and in engineering, to name
just a few. For instance, linear differential operators (where o = id) and linear difference
operators (where § = 0) are special cases of skew polynomials.

Let D be a unital associative division ring and R = DIJt; 0,4] a skew polynomial ring,
where ¢ is an endomorphism of D and ¢ a left o-derivation. Suppose f € DJt; o, 0] has degree
m. Using right division by f to define a multiplication on the set of skew polynomials of
degree less than m, this set becomes a unital nonassociative algebra we denote by Sy. The
algebra Sy generalizes the classical quotient algebra construction when factoring out a two-
sided ideal generated by a right invariant skew polynomial f. When choosing f and R in
the right way, it can be also seen as a generalization of certain crossed product algebras
and some Azumaya algebra constructions. First results on the structure of the algebras Sy
which initially were defined by Petit in [30] have appeared in [30, 31, 5, 6, 35, 36, 34]. First
applications to coding theory have appeared for instance in [37, 38, 39].

Recently, a computational criterion for deciding whether a bounded skew polynomial is
irreducible was developed in [17]. The method heavily relies on being able to find the zero
divisors in the right nucleus of Sy (although the simple algebra employed there, called the
eigenspace of f, is not recognized as the right nucleus of Sy in that paper). The method
is only applicable for certain set-ups when the input data S, ¢ and § are effective and
computable, but it demonstrates the importance of developing a better understanding of the
algebras Sy and their algebraic structure. Independently, effective algorithms to compute
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the eigenspace (and thus the right nucleus of Sy, again not recognized as such) for the special
case that R = Fy(z)[t; 0, 6] can be found in [14], and for R = Fy[t; o] in [13], [40]. In all cases
the eigenspace is a crucial tool to understand the decomposability of the skew polynomial
f.

This paper consists of two parts. The first one considers the structure of the right nucleus
of the algebras Sy, establishing how it reflects the type of the skew polynomial f it is defined
with, but also the important role irreducible polynomials play in the construction of classes
of nonassociative unital (right) division algebras.

The second part looks at skew polynomials of low degree as well as the polynomial f(t) =
t"™ — a, and when these polynomials are irreducible in D[t; 0, d], in order to obtain examples
for the construction of (right) division algebras.

After establishing the basic terminology in Section 1, we define Petit algebras in Section 2
and collect some results on their right nuclei in Section 3. We investigate when the algebras
Sy are right (and not left) division algebras in Section 4. A necessary condition for Sy
being a right division algebra is that the polynomial f is irreducible. We then collect some
irreducibility criteria for polynomials of low degree and the polynomial f(¢) = t™ — a in
both R = D[t;o] and R = DJ[t;0,4] in Sections 5 and 6, including the special case where D
is a finite field.

We point out that there exists some kind of Eisenstein valuation criteria to test a skew
polynomial over a division ring for reducibility, using some (noncommutative) valuation
theory for skew polynomial rings [11, 18]. We believe our criteria are more tractable for the
types of skew polynomials we consider. Moreover, some results on twisted polynomials over
algebraically and real closed fields have been obtained in [2] and [32, 33].

Most of this work is part of the first author’s PhD thesis [4] written under the supervision
of the second author.

1. PRELIMINARIES

1.1. Skew polynomial rings. Let S be a unital associative ring, o a ring endomorphism of
Sand d:S — S a left o-derivation, i.e. an additive map such that 6(ab) = o(a)d(b) + d(a)b
for all a,b € S. Then the skew polynomial ring R = S[t; 0, 0] is the set of skew polynomials
g(t) = agt+art+---+a,t™ with a; € S, with term-wise addition and where the multiplication
is defined via ta = o(a)t + 6(a) for all ¢ € S [29]. That means,
at"bt™ =" a(Ay ; byt
§=0

for all a,b € S, where the map A, ; is defined recursively via
Apj=06(An-15)+0(An-1j-1),

with Ago = ids, A1o =6, A1,1 = 0. Therefore A, ; is the sum of all monomials in o and
d of degree j in o and degree n — j in ¢ [20, p. 2]. If 6 =0, then A, ,, = o".

For o = id and § = 0, we obtain the usual ring of left polynomials S[t] = S|t; id, 0]. Define
Fix(c) = {a € S|o(a) = a} and Const(d) = {a € S|J(a) = 0}.
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For f(t) = ag + a1t + - - + ant™ € R with a,, # 0 define deg(f) = n and deg(0) = —o0.
Then deg(gh) < deg(g) +deg(h) (with equality if A has an invertible leading coefficient, or g
has an invertible leading coefficient and o is injective, or if S is a division ring). An element
f € R is irreducible in R if it is not a unit and it has no proper factors, i.e if there do not
exist g, h € R with 1 < deg(g),deg(h) < deg(f) such that f = gh.

1.2. Nonassociative algebras. Let R be a unital commutative ring and let A be an R-
module. We call A an algebra over R if there exists an R-bilinear map A x A — A,
(z,y) — x -y, usually denoted simply by juxtaposition xy, the multiplication of A. An
algebra A is called unital if there is an element in A, denoted by 1, such that 1z = 21 = x
for all z € A. We will only consider unital algebras.

For an R-algebra A, associativity in A is measured by the associator [z,y,z] = (vy)z —
x(yz). The left nucleus of A is defined as Nuc;(4) = {x € A|[x, A, A] = 0}, the middle
nucleus as Nucy,(4) = {x € A|[A,x, A] = 0} and the right nucleus as Nuc,.(4) = {z €
A|[A, A, x] = 0}. Nuci(A), Nuc,,(A) and Nuc, (A) are associative subalgebras of A. Their
intersection Nuc(A4) = {z € A|[z, A, A] = [A,z, A] = [A, A, z] = 0} is the nucleus of A.
Nuc(A) is an associative subalgebra of A containing R1 and z(yz) = (zy)z whenever one
of the elements z,y, z is in Nuc(A). The commuter of A is defined as Comm(A4) = {z €
A|zy = yx for all y € A} and the center of A is C(A) = Nuc(A4) N Comm(A4) [41].

A nonassociative ring A # 0 (resp., an algebra A # 0 over a field F) is called a left division
ring (resp., algebra), if for all a € A, a # 0, the left multiplication with a, L,(x) = az, is
a bijective map, and a right division ring (resp., algebra), if for all a € A, a # 0, the right
multiplication with a, R,(z) = za, is a bijective map. An algebra A # 0 over a field F is
called a division algebra if for all a € A, a # 0, both the left and right multiplication with a
are bijective. A division algebra A does not have zero divisors. If A is a finite-dimensional
algebra over F', then A is a division algebra over F if and only if A has no zero divisors [41].
A nonassociative ring A # 0 has no zero divisors if and only if R, and L, are injective for
all 0 #a € A.

Note that every algebra A is a right Nuc,(A4)-module and the left multiplication L, is
Nuc,(A)-linear for all 0 # a € A.

2. NONASSOCIATIVE ALGEBRAS OBTAINED FROM SKEW POLYNOMIALS

Let S be a unital associative ring and S[t; o, 6] a skew polynomial ring where o is injective.

2.1. Assume f(t) = Y1 a;it' € R = S[t;0,6] has an invertible leading coefficient a,, € S*.
Then for all g(t) € R of degree | > m, there exist uniquely determined r(t),q(t) € R
with deg(r) < deg(f), such that g(t) = ¢q(t)f(t) + r(¢), and if o € Aut(D), also uniquely
determined r(t),q(t) € R with deg(r) < deg(f), such that g(t) = f(t)q(t) + r(t) ([4],[35,
Proposition 1]).

Let mod, f denote the remainder of right division by f and mod;f the remainder of left
division by f. The skew polynomials of degree less that m canonically represent the ele-
ments of the (left resp. right) S[t; o, d]-modules S[t; o,0]/S[t; 0, 0] f and S[t; 0,8]/ fS[t; 0, d].
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Moreover,
Ry, = {g € S[t;0,4] | deg(g) < m}
together with the multiplication
gh if deg(g) + deg(h) < m,
gh mod,. f if deg(g) + deg(h) > m,

is a unital nonassociative ring Sy = (R,,,0) also denoted by R/Rf.
If o € Aut(S5), then R, together with

gh if deg(g) + deg(h) < m,
gh mod,; f if deg(g) + deg(h) > m,

is a unital nonassociative ring ;S = (R, 0) also denoted by R/fR. When the context is
clear, we will drop the o notation and simply use juxtaposition for multiplication in Sy.

Sy and ;S are unital nonassociative algebras over the commutative subring
So={a € S|ah = ha for all h € Sy} = Comm(Sf) NS

of S, and

C(S) NFix(o) N Const(d) C Sp.
For all invertible a € S we have S§ = S, ¢, so that without loss of generality it suffices to
only consider monic polynomials in the construction. If f has degree 1 then Sy = S. If f is
reducible then Sy contains zero divisors.

In the following, we assume m > 2 and call the algebras Sy Petit algebras as the construc-
tion goes back to Petit [30, 31] (who only considered division rings S). We will focus on the
algebras Sy, since the algebras ;S are anti-isomorphic to Petit algebras [35, Proposition 3].

For 0 # a € Sy, left multiplication L, is an Sp-module endomorphism. Moreover, R, is
a left S-module homomorphism for 0 # a € Sy.

Let f € S[t;0,6] have degree m > 2 and an invertible leading coefficient. Then Sy is a
free left S-module of rank m with basis t* = 1,¢,...,t™~1. S; is associative if and only if
Rf is a two-sided ideal in R. If Sy is not associative then S C Nuc;(Sy), S C Nuc,,(Sy)
and

{g € R|deg(g9) <m and fg € Rf} = Nuc,(S¢).

When S is a division ring, these inclusions become equalities. We have t € Nuc, (Sy), if and
only if the powers of ¢ are associative, if and only if ¢t = tt™ in S;. If S is a division ring
and Sy is not associative then C(Sy) = Sy. Let f(t) = 31" a;t* € S[t; o] with ag invertible.
If the endomorphism L, (i.e. left multiplication by ¢) is surjective then o is surjective. In
particular, if S is a division ring and f irreducible, then L; surjective implies o surjective.
Moreover, if o is bijective then L; is surjective [35, Theorem 4].

Since C(Sy) = Comm(Sy) N Nuc;(Sf) N Nucy, (Sf) N Nuc, (Sy), we have

So={a € S|ah =hafor all h € Sy} = Comm(Sy) NS C C(Sy)

when S is not associative. If Nuc;(Sy) = Nuc,,(Sy) = S this yields that the center
C(Sf) = Comm(Sy) N SN Nuc,(S5) = Comm(Sf) NS of Sy is identical to the ring Sp.



SKEW POLYNOMIALS AND NONASSOCIATIVE ALGEBRAS 5

3. THE RIGHT NUCLEUS OF Sf

In this Section, let D be a division algebra with center F', R = DIJt;0,4] with o any
endomorphism of D and ¢ any left o-derivation. Let f € R = DJt; o, ] be monic of degree
m >2and Dy = {a € D|ah = ha for all h € Sy}.

The largest subalgebra of R = D[t;o,0] in which Rf is a two-sided ideal is the idealizer
I(f) = {g € R|fg € Rf} of Rf. The eigenring of f is then defined as the quotient
E(f)=1(f)/Rf ={g € R|deg(g) <m and fg € Rf}. This is also the right nucleus of the
algebra S [35, Theorem 4].

3.1. Some general observations. The right nucleus is important when finding right fac-
tors of f; if Nuc,(Sf) contains zero divisors then f is reducible [30]. If u,v € Nuc,(Sy) are
non-zero such that uwv = 0, then the greatest common right divisor gerd(f, ) is a non-trivial
right factor of f, see e.g. [35]. This was employed for instance in [17].

Moreover, if ft € Rf then t € Nuc,(Sy), hence the powers of ¢ are associative in Sy. This
in turn implies t™¢ = tt"™ [35, Theorem 5]. Moreover, ft € Rf if and only if ¢ € Nuc,(Sy),
if and only if the powers of ¢ are associative, if and only if t™¢ = ™ [30]. This yields:

Lemma 1. Let f € D[t;0,6]. Ift ¢ Nuc,(Sy) or f € Rt then Sy does not have any
associative subalgebra that contains all powers of t.
In particular, if f is irreducible and t ¢ Nuc,(Sf), then Sy does not have any associative

subalgebra that contains all powers of t (and then f cannot lie in Dqlt]).

Proof. There exists a subset X of Sy which is a multiplicative group and contains all powers
of t, if and only if ft € Rf and f ¢ Rt [30, (8)], i.e. if and only if ¢ € Nuc,(Sy) and
f ¢ Rt. Now suppose A is an associative subalgebra of Sy that contains all powers of ¢,
choose X = A and obtain that ¢ € Nuc,(Sy) and f & Rt.

If f is irreducible, we know that f ¢ Rt. If, additionally, f € Dg[t] then Dy[t]/(f) is a

subalgebra of Sy that contains all powers of ¢, a contradiction. O

Proposition 2. For all f € Dy[t], Do[t]/(f) is a commutative subring of Sy and
Dolt]/(f) = Do & Sot & - - & Sot™ " C Nuc,(Sp).

If Nuc, (Sy) is larger than Dy[t]/(f), then Nuc,(Sy) is not commutative.

Proof. Sy contains the commutative subring Dy[t]/(f), where Dy = Const(d) N C(D) N
Fix(o). This subring is isomorphic to the ring consisting of the elements Z;Z_Ol a;t’ with
a; € Dy. In particular, we know that the powers of ¢ are associative. By Theorem [35,
Theorem 4], this implies that ¢ € Nuc,(Sy). Clearly Dy C Nuc,(Sy), so if ¢t € Nuc,(Sy)
then Do @ Dot @ --- @ Dot™ ™! C Nuc,(Sf), hence we obtain the assertion. The last part is
trivial then. O

If f € Dy[t] is irreducible in Dy[t], then Dy[t]/(f) is an algebraic field extension of Dy of
degree m contained in Nuc,(Sy). Thus if K is a finite field, 6 = 0 and f irreducible, then
Nuc,(Sf) = F& Ft®--- @ Ft™ ! = F[t]/(f), employing the fact that in this case we know
that the right nucleus has exactly |F[t]/(f)| elements [24].



6 C. BROWN AND S. PUMPLUN

3.2. Right semi-invariant polynomials. We first investigate for which f the algebra D
is contained in the right nucleus of Sy. By [35, Theorem 4], this implies that either Sy is
associative or Nuc(Sy) = D.

Recall that f € R = DJt; 0,4] is called right semi-invariant if for every a € D there is b €
D such that f(t)a = bf(t) which is equivalent to fD C D f. Similarly, f is left semi-invariant
if Df C fD [26, 27]. Moreover, f is right semi-invariant if and only if df is right semi-
invariant for all d € D* [26, p. 8]. Hence we only need to consider monic f. Furthermore,
if o is an automorphism, then f is right semi-invariant if and only if it is left semi-invariant
if and only if fD = Df [26, Proposition 2.7]. Right semi-invariant polynomials canonically
arise in the theory of semi-linear transformations [21]. For a thorough background on right
semi-invariant polynomials see [26, 27].

If f is semi-invariant and also satisfies f(¢)t = (bt + a)f(t) for some a,b € D then f is
called right invariant which is equivalent to fR C Rf. If f is right invariant then Rf is
a two-sided ideal in R and conversely, every two-sided ideal in R is generated by a right-
invariant polynomial. That means R is not simple if and only if there is a non-constant
right-invariant f € R. Moreover, assuming o is an automorphism, R is not simple if and
only if there is a non-constant monic semi-invariant f € R if and only if J is a quasi-algebraic

derivation [27] (this last observation actually holds for any simple ring D).

Theorem 3. f € R is right semi-invariant if and only if D C Nuc,(Sy). In particular, if

f is right semi-invariant, then either Nuc(Sy) = D or Sy is associative.

Proof. If f € R is right semi-invariant, fD C Df C Rf and hence D C E(f) = Nuc,(Sy).
Conversely, if D C Nuc,(Sf) = E(f) then for all d € D, there exists ¢(t) € R such that
ft)d = q(t)f(t). Comparing degrees, we see ¢(t) € D and thus fD C Df.

The second assertion follows by [35, Theorem 4]. O

Proposition 4. ([28, (9.21)]). Suppose o is an automorphism of D, then the following are
equivalent:

(i) There exists a non-constant right semi-invariant polynomial in R.

(i) R is not simple.

(iii) There exist by, ...,b, € D with b, # 0 such that bodco + > 1y b;6' = 0, where 0 is an
endomorphism of D and .9 denotes the 0-derivation of D sending x € D to cx — 6(x)c.

Corollary 5. Suppose o is an automorphism of D and R is simple. Then there are no
nonassociative algebras Sy with D C Nuc,(Sf). In particular, there are no nonassociative
algebras Sy with D C Nuc(Sy).

Proof. R is not simple if and only if there exists a non-constant right semi-invariant poly-
nomial in R by Proposition 4, and hence the assertion follows by Theorem 3. O

Corollary 5 actually also holds when f € St; 0, d], where S is only a simple ring and o
an automorphism of S [27, Theorem 5.2].

Recall that if S is a division ring, or if S is a simple ring and o € Aut(S), then R = S|t; o, ¢]
is not simple if and only if § is quasi-algebraic [27]. Recall also that ¢ is an automorphism

of D of finite inner order k if o% = I, for some v € D*. Using Theorem 3 we can rephrase
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the results [26, Lemma 2.2, Corollary 2.12, Propositions 2.3 and 2.4], [27, Corollary 2.6] on
right semi-invariant polynomials in terms of the right nucleus of the nonassociative algebra
Sy

Theorem 6. Let f(t) = > I" a;t' € R be monic of degree m.
(1) D € Nuc,(S¢) if and only if f(t)c = o™ (c)f(t) for all ¢ € D, if and only if

(1) o™ (c)a; = Z ail;;(c)

forallce D and j € {0,...,m — 1}.

(#) Suppose o is an automorphism of D of infinite inner order. Then D C Nuc,(Sf) implies
Sy is associative.

(i11) Suppose § = 0. Then D C Nuc,(Sy) if and only if

(2) o™ (c) = ajaj(c)a;1

for allc € D and all j € {0,...,m — 1} with a; # 0. Furthermore, Sy is associative if and
only if f(t) satisfies (2) and f(t) € Fix(o)[t] C Fix(o)[t; o].
(iv) Suppose o = id. Then D C Nuc,(Sy) is equivalent to

3 ca; = Z) a; 0" (¢),

®) =3 (})esic0

forallce D, j €{0,...,m—1}. Furthermore, Sy is associative if and only if f(t) satisfies
(3) and f(t) € Const(d)[t] C Const(d)[t; J].

(v) Suppose 6 = 0 and o is an automorphism of D of finite inner order k, i.e. o* = I, for
some u € D*. Then the polynomials g € D[t; o] such that D C Nuc,(S,) are precisely those
of the form

(4) g(t) =0y cu Ik,
=0

wheren €N, ¢, =1, ¢; € F and b € D*. Furthermore, S, is associative if and only if g(t)
has the form (4) and g(t) € Fix(o)[t] C Fix(o)[t; 0].

3.3. Right B-weak semi-invariant polynomials. Let now B be a subring of D. We
can find conditions on f such that B is contained in Nuc,(Sf) by generalizing the definition
of right semi-invariant polynomials as follows: we say f € D[t; 0, 4] is (right) B-weak semi-
invariant if fB C Df. Clearly any right semi-invariant polynomial is also B-weak semi-
invariant for every subring B of D. We call f € R a (right) B-weak invariant polynomial if
f is right B-weak semi-invariant and f(¢)t = (bt + a) f(¢) for some a,b € B.

Note that when we have an extension of rings B C D, which induces an extension of skew-
polynomial rings Blt,0,6] C D[t,0,9] (i.e., o|p = o, §|p = ¢), every right semi-invariant
f € Blt,0,0] is right B-weak semi-invariant in D[t, 0, d], and every invariant f € B[t, o, d] is
right B-weak invariant in D¢, o, d].
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Example 7. Let K be a field, o be a non-trivial automorphism of K, L = Fix(¢7) be the
fixed field of o7 for some j > 1 and f(t) = > i, a;t” € K[t;o]. Then

FOUL=aitl =" "a;0" ()7 =" a;lt" =1f(t),
i=0 i=0 i=0
for all [ € L and hence fL C Lf. In particular, f is L-weak semi-invariant.

Proposition 8. Let B be a subring of D.
(i) f is B-weak semi-invariant if and only if B C Nuc,(Sy).
(1t) If f is B-weak semi-invariant but not right invariant, then B C Nuc(Sy) C D.

Proof. (i) If f € R is B-weak semi-invariant, fB C Df C Rf and hence B C Nuc,(Sy).
Conversely, if B C Nuc,(Sy) then for all b € B, there exists ¢(t) € R such that f(t)b =
q(t)f(t). Comparing degrees, we see ¢(t) € D and thus fB C Df.

(ii) If f is B-weak semi-invariant but not right invariant, the assertion follows from (i) and
[35, Theorem 4]. O

Proposition 9. Let B be a subring of D and f € R be a right B-weak invariant polynomial.
Then

B®Bt®---@ Bt"™ ! C Nuc,(Sy).

Proof. (i) If f € R is aright B-weak invariant polynomial then B C Nuc,(Sy) by Proposition
8. Since f(t)t = (bt+a)f(t) for some a,b € B, we have ft € Rf which implies ¢ € Nuc,(Sf),
hence the powers of ¢ are associative. This in turn implies t™t = ¢ ([35, Theorem 5]
and [30]). Now Nuc,(Sy) is an associative subalgebra of S¢, thus B&® Bt & --- & Bt™ ™! C
Nucr (Sf ) Il

We then obtain results similar to Theorem 6 (i), (iii) and (v) for B-weak semi-invariant

polynomials:

Proposition 10. Let f(t) = >I" a;t* € D[t;0,0] be monic of degree m and B a subring
of D.
(i) f is B-weak semi-invariant if and only if f(t)c = o™ (c)f(t) for all ¢ € B, if and only if

(5) o™ (c)a; = Z ail; ;(c)

forallce B, j€{0,...,m—1}.
(ii) Suppose § = 0. Then f is B-weak semi-invariant if and only if o™ (c)a; = ajo’(c) for
allce B, je{0,...,m—1}.

(iii) Suppose o = id. Then f is B-weak semi-invariant if and only if

(6) cay = i C) a:67 ()

forallce B, j€{0,...,m—1}.
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Proof. (i) We have

(7) f®)e= Z a;tic = Z a; Z A; (o)t = Z Z a; A ()t
i=0 i=0  j=0

Jj=0i=j
for all ¢ € B, hence the t" coefficient of f(t)c is Ay, m(c) = 0™(c), and so f is B-weak
semi-invariant if and only if f(t)c = o™ (c)f(t) for all ¢ € B. Comparing the ¢/ coefficient
of (7) and o™ (c)f(¢) for all j € {0,...,m — 1} yields (5).
(ii) When 6 = 0, A; ; = 0 unless i = j in which case A;; = 7. Therefore (5) simplifies to
o™(c)a; = ajoi(c) for all c € B, j € {0,...,m —1}.
(iii) When o = id we have

o=y (e

for all ¢ € D by [20, (1.1.26)] and thus

(8) f(t)c:zoaitzc S <>5H ZZ(')MM )

i= i=0  j= Jj=0i=j
for all ¢ € B. Furthermore f is B-weak semi-invariant is equivalent to f(t)c = cf(t) for
all ¢ € B by (i). Comparing the ¢/ coefficient of (8) and cf(t) = > i~ ca;t* for all ¢ € B,
j €{0,...,m— 1} yields (6). O

4. (RIGHT) DIVISION ALGEBRAS OBTAINED FROM PETIT ALGEBRAS

Petit algebras can be used to find classes of algebras that are right but not left division
algebras.

Let D be a division algebra with center F' and R = D[t;0,d]. We say f € R is bounded if
there exists 0 # f* € R such that Rf* = f*R is the largest two-sided ideal of R contained
in Rf. The element f* is determined by f up to multiplication on the left by elements of
D*. If f € R is irreducible then E(f) is a division ring [30, p. 13-07].

Remark 11. If o is an automorphism and f is bounded, then f is irreducible if and only
if E(f) = Nuc,(Sy) is an associative division algebra [15, Proposition 4] which sums up
classical results from [22]. The condition that f is bounded is necessary here, as is shown
in [15, Example 3] where f € Q(x)[t;d/dt] is reducible in the differential operator ring
Q(z)[t; d/dt], but Nuc,(Sy) is a division algebra. For instance, if D is a finite field and
0 = 0, all polynomials are bounded and hence f is irreducible if and only if E(f) is a finite
field [13, Theorem 3.3].

The argument leading up to [30, Section 2., (6)] implies that Sy has no zero divisors if
and only if f is irreducible, which is in turn equivalent to Sy being a right division ring (i.e.,

right multiplication R, in Sy is bijective for all 0 # a € Sy):

Theorem 12. ([30, (6)], but without a full proof). Let f € R have degree m and 0 # a € Sy.

(i) R, is bijective is equivalent to 1 being a greatest common right divisor of f and a (i.e.,

Da(t) + Df(t) = D).
(i) Sy is a right division algebra if and only if f is irreducible, if and only if Sy has no zero
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divisors.
(i11) If f is irreducible then L, is injective for all 0 # a € Sy.

Proof. (i) Let 0 # a € Sy. Since Sy is a free left D-module of finite rank m and R, is left
D-linear, R, is bijective if and only if it is injective [19, Chapter IV, Corollary 2.14], which
is equivalent to ker(R,) = {0}. Now R,(z) = za = 0 is equivalent to za € Rf, which means

we can write

ker(R,) ={z € Ry, | za € Rf}.

Furthermore, R is a left principal ideal domain, which implies za € Rf if and only if
za € RanN Rf = Rg = Rha, where g = ha is the least common left multiple of a and
f. Therefore za € Rf is equivalent to z € Rh, and hence ker(R,) # {0}, if and only
if there exists a polynomial of degree strictly less than m in Rh, which is equivalent to
deg(h) <m — 1.

Let b € R be a right greatest common divisor of a and f. Then deg(f) + deg(a) =
deg(g)+deg(b) = deg(ha)+deg(b) by [20, Proposition 1.3.1], and so deg(b) = deg(f)—deg(h).
Thus deg(h) < m — 1 if and only if deg(b) > 1. We conclude ker(R,) = {0} if and only if
deg(b) = 0, if and only if 1 is a right greatest common divisor of f(¢) and a. In particular,
Sy is a right division algebra if and only if R, is bijective for all 0 # a € Sy, if and only if
1 is a right greatest common divisor of f(t) and a for all 0 # a € Sy, if and only if f(t) is
irreducible.

(ii) If f is irreducible then L, and R, are injective for all 0 # a € Sy (i), therefore Sy has
no zero divisors. The converse of the last equivalence statement is trivial.
(iii) If Ry is bijective this automatically implies that Ly, is injective, for all 0 # h € Sy. O

Lemma 13. If f € R is right invariant, then Sy is associative and a division algebra if and

only if f is irreducible.

Proof. Suppose f is right invariant. Then S is associative by [35, Theorem 4]. If f is
reducible then S is trivially not a division algebra. Conversely, if f is irreducible the maps
Ry are bijective for all 0 # b € Sy by Theorem 12. This implies the maps L; are also
bijective for all 0 # b € Sy by [7, Lemma 1B], and so Sy is a division algebra. O

This implies a generalization of Theorem [35, Theorem 4]:

Theorem 14. Let f(t) = > ;" a;t' € D[t;o] be monic and a9 # 0. Then for every
j€{l,...,m—1}, Ly is surjective if and only if o is surjective. In particular, if o is not

surjective then Sy is not a left division algebra.

Proof. We first prove the result for j = 1: Given z = fool zit" € Sy, we have

m—

Li(z) = Z 2T+ o (zpog )t o t™ !
i=0
(9) m—1 m—1
:Zazzlt—kazmlz%tl
i=1 =0

=: Suppose L is surjective, then given any b € D there exists z € Sy such that to z = b.
The t%-coefficient of L;(2) is o(2m—_1)ao by (9), and thus for all b € D there exists z,,_; € D
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such that o(z;,—1)ag = b. Therefore o is surjective.
<: Suppose o is surjective and let g = Z?Z)l git' € Sy. Define
Zm—1 =0 "(goag '), zic1 =07 (gi) — Zm-10""(a;)

foralli e {1,...,m —1}. Then

m—1 m—1
Li(z) = 0(zm—1)ao + Z (0(2i-1) + 0 (2m—1)a;)t' = Z gt =g,
i=1 i=0
by (9), which implies L; is surjective.
Hence L; surjective is equivalent to o surjective. To prove the result for all j € {1,...,m—
1} we show that
(10) Ly =1Ij
for all j € {1,...,m — 1}, then it follows o is surjective if and only if L; is surjective if

and only if L{ = L,; is surjective. In the special case when D = I, is a finite field, o is
an automorphism and f is monic and irreducible, the equality (10) is proven in [24, p. 12].
A similar proof also works in our context: suppose inductively that L;; = Lz for some
je{l,...,m—2}. Then LI(b) = t/b mod,f for all b € R,,. Let LI(b) = ¥ so that
t'b = qf + ' for some ¢ € R. We have

LT (0) = Lu(LE (b)) = Lo(V') = Le(t'b — af) =t o (b — gf)
= (/T — tqf) mod, f = t/T1b mod, f = Ly+1(b),
hence (10) follows by induction. O

Recall that for § = 0, L; is a pseudo-linear transformation, i.e. Li(ah(t)) = o(a)L(h(t))
for all @ € S, h(t) € Sy, and that Ly, = h(t)(L;) = S5  a;Li for h(t) = S0 ait?. T f
is irreducible, then L; is irreducible, that means the only L;-invariant subspaces of the left
D-module D™ are {0} and D™, as pointed out in [24].

Corollary 15. Suppose o is not surjective and f € DIt; 0] is irreducible. Then S¢ has no
zero divisors and is a right division algebra but not a left division algebra. In particular, Sy

s an infinite-dimensional Dg-algebra.
The following result was stated but not proved by Petit [30, (7)]:

Theorem 16. Let f € DIt;0,0] be such that Sy is either a finite-dimensional Dg-vector
space or a right Nuc,(Sy)-module which is free of finite rank. Then Sy is a division algebra
if and only if f is irreducible.

Proof. When S; is associative the assertion follows by Lemma 13 so suppose Sy is not asso-
ciative. If f is reducible, S¢ is not a division algebra. Conversely, suppose f is irreducible,
so that Sy is a right division algebra by Theorem 12. Let 0 # a € Sy be arbitrary, then L,
is injective for all 0 # a € Sy by Lemma 12. We prove L, is surjective, hence that S is also
a left division algebra:

(i) If Sy is a finite-dimensional Dy-vector space then L, is clearly surjective by [19, Chapter
IV, Corollary 2.14], since L, is F-linear.
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(ii) Suppose Sy is a free right Nuc, (Sf)-module of finite rank, then E(f) is a division ring.
Furthermore, L, is right Nuc,(S)-linear. Therefore L, is again surjective by [19, Chapter
IV, Corollary 2.14]. O

Theorem 17. Let o be an automorphism of D, B be a subring of D such that D is a free
right B-module of finite rank, and f € DIt;0,6] be B-weak semi-invariant. Then Sy is a
division algebra if and only if f is irreducible. In particular, if o is an automorphism of D

and f is right semi-invariant then Sy is a division algebra if and only if f is irreducible.

Proof. If f is reducible then Sy is not a division algebra. Conversely, suppose f is irreducible.
Then Sy is a right division algebra by Theorem 12 so we are left to show Sy is also a left
division algebra. Let 0 # a € Sy be arbitrary and recall L, is injective by Lemma 12. Since
f is B-weak semi-invariant, B C Nuc,(Sy) which implies that L, is right B-linear. Sy is a
free right D-module of rank m = deg(f) because o is an automorphism. Since D is a free
right B-module of finite rank then also Sy is a free right B-module of finite rank. Thus [19,
Chapter IV, Corollary 2.14] implies L, is bijective as required. O

Theorem 18. Let f € R = D[t;0,0] be irreducible. Then f is bounded if and only if Sy is

free of finite rank as a Nuc,(S¢)-module. In this case, Sy is a division algebra.

Proof. The first part of the statement is [8, Theorem 4]. Since f irreducible, Sy is a right
division algebra and L, is injective for all 0 # a € Sy as observed in [30, Section 2., (7)]. The
second part then follows from the fact that Sy is free of finite rank as a Nuc, (Sy)-module,

which means the injective Nuc, (Sy)-linear map L, is also surjective. O
For o = 0 this is [37, Theorem 2].

Corollary 19. Let f € R = Dlt;0,0] be irreducible.

i) Let o be surjective an = Nuc, . Then f is bounded an is a division algebra.
i) L b jecti d D = Nuc,(Sf). Then f is bounded and Sy is a division algeb
(it) Let f be bounded, then Sy is a division algebra.

Proof. (i) If o is surjective then Sy is a right D-module, free of rank m. Since D = Nuc,(Sy),
Theorem 18 yields the assertion.

(ii) is trivial. O

If o is an automorphism, R = DIt; 0, 4] has finite rank over its center if and only if D is
of finite rank over C; = {a € F |at = ta} if and only if all polynomials of R are bounded
and if for all f of degree non-zero, deg(f*)/deg(f) is bounded in Q (f* being the bound of
f) 9, Theorem IV]. Since C; = Const(§) NFix(c) = Dy C F we conclude:

Proposition 20. Assume R = D|[t;0,6], o is an automorphism, and one of the two following
equivalent conditions hold:

(i) R = D[t;0,d] has finite rank over its center;

(ii) D has finite rank over Dy.

Then every f € R is bounded. In particular, if f is irreducible then Sy is a division algebra.

For o = 0, this is [37, Proposition 3].
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Suppose now that o is an automorphism. Then S is a free right D-module of rank m and
since L, is Nuc,(S)-linear for any non-zero a € Sy, in this case Sy is a division algebra for
an irreducible f if D C Nuc,(Sy) or if there is a subalgebra B C D such that B C Nuc,(S¥)
and D has finite rank as a right B-module (these conditions were not stated in [30, p. 13-14]
but seem necessary). We obtain:

Proposition 21. Suppose that o is an automorphism and f is irreducible.
(i) If D C Nuc,(Sy) then Sy is a division algebra.
(i) If there is a subalgebra B C D such that B C Nuc,(Sf) and D is free of finite rank as

a right B-module then Sy is a division algebra.

Proof. Sy is a right D-module and left multiplication L, is Nuc,(S)-linear, so in particular
D-linear. Since f is irreducible, L, is injective for all nonzero a € Sy. If D C Nuc,(Sy)
then Sy is a free right D-module of rank m, and if there is a subalgebra B C D such that
B C Nuc,(Sy) and S is free of finite rank as a right B-module, then S; is a free right

B-module of finite rank. Thus L, is bijective for all nonzero a € Sy. g

5. IRREDUCIBILITY CRITERIA FOR SOME POLYNOMIALS IN R = D[t; 0]
Let D be a division algebra over F' and f(t) = t™ — Z?:Ol a;t' € R = D[t;o].
5.1. There are already several irreducibility criteria for f available in the literature. We
start by collecting some that are useful for constructing (right) division algebras Sy for the
convenience of the reader.

We first determine the remainder after dividing f(t) on the right by ¢ — b where b € D.
By [20, p. 15ff] we have (¢ — b)|. f(t) is equivalent to

(11) amNm(b) — mz_l aZNl(b) =0

where N;(b) = o®=1(b) - o(b)b for i > 0 and Ny(b) = 1, i.e. to this remainder being zero.
When ¢ is an automorphism of D, we can also determine the remainder after dividing
f(t) on the left by (t —b), b € D: Similarly to [20, p. 15ff] we have

t = bo ()0t (B) = (=) (£ o )R
2 o B)o 23 + ..+ o (D)o (b) - al—i(b>)

for all i € N. Multiplying (12) on the right by o~%(a;), and using a;t* = t'c~%(a;) gives
ait’ —bo 1 (b) - o TH(b)o T (ay)

= (t—b) (ti—l Lo B2 4 o (b)o 2 (b) - al_i(b))a_i(ai).

Summing over 4, we obtain
m—1 )
F(t) = (t=b)q(t) + My (b) = > M;(b)o " (ai),
i=0

for some q(t) € R where My(b) = 1, My(b) = b and M;(b) = bo=1(b)---o'7%(b) for i > 2.

We immediately conclude:
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Proposition 22. Suppose o is an automorphism. Then (t—0b)|f(t) if and only if M,,(b)—

St Mi(b)o i (a;) = 0.

Corollary 23. Suppose o is an automorphism and f(t) =t"™ —a € D[t;o]. Then f(t) has

a left linear divisor if and only if it has a right linear divisor.

Proof. Let b € D, then (t — b)|,.f(t) is equivalent to o™~ 1(b)---o(b)b = a by (11), if and

only if co=1(¢c) -+ o!7™(c) = a where ¢ = ¢™~1(b), if and only if (t — c)|;f(¢) by Proposition

22. g

Theorem 24. [30, (17), (18)] (i) f(t) = t* — a1t — ap € D|t; 0] is irreducible if and only if
o(b)b—aib—ag #0

for allb e D.

(ii) Suppose o is an automorphism. f(t) = t3 —agt® —art —ag € D[t; o] is irreducible if and

only if
a2 (b)o(b)b — o?(b)o(b)ag — o*(b)o(ar) — o*(ag) # 0O
and
a?(b)a(b)b — ago(b)b — arb —ag # 0
for allb e D.

Corollary 25. Suppose o is an automorphism, then f(t) = t3 —a € DI[t; o] is irreducible if
and only if a%(b)o(b)b # a for allb € D.

Proof. By Corollary 23, f(t) has a right linear divisor if and only if it has a left linear
divisor. Therefore f(t) is irreducible if and only if (¢ — b) 1, f(¢) for all b € D, if and only if
a2(b)a(b)b # a for all b € D by (11). O

Lemma 26. Let f(t) € R = D[t;o] and suppose f(t) = q(t)g(t) for some q(t),g(t) € R.
Then f(bt) = q(bt)g(bt) for allb € Dy = F NFix(o).

Proof. Write q(t) = Zi:o qtt, g(t) = Z?:o g;t’, then

l n l n
£ =a®)gt) =33 ait'git! =33 qiot (g,

i=0 j=0 i=0 j=0
and so we obtain for all b € Dy:
l n l n
q(bt)g(bt) = aqi(bt) > gi(bt) =D > qio(g;)b
i=0 §=0 i=0 j=0

g0 (9;)(bt)™7 = f(bt).

I

O

Theorem 27. [3, p. 344] Let o be an endomorphism of D, f(t) =t™ —a € R = D[t; 0]
and suppose Dy = F N Fix(c) contains a primitive mth root of unity w. If g(t) € R is a
monic irreducible polynomial dividing f(t) on the right, then the degree d of g(t) divides m
and f(t) is the product of m/d polynomials of degree d.
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For a proof of Theorem 27 see [4]; the special case where o is an automorphism of order
m is shown in [12, Proposition 3.7.5].

Theorem 27 implies [1, Lemma 10], cf. also [36, Theorem 6 (iii)], which improves [30,
(19)]:

Theorem 28. Suppose m is prime, o is an endomorphism of D and Dy = F N Fix(o)
contains a primitive mth root of unity. Then f(t) = t™ — a € DIt; o] is irreducible if and

only if it has no right linear divisors, if and only if
a# o™ b)---a(b)b
for allb e D.

Proof. Let g(t) € DIt; o] be an irreducible polynomial of degree d dividing f(¢) on the right.
Without loss of generality g(t) is monic, otherwise if g(¢) has leading coefficient ¢ € D*,
then ¢~!g(t) is monic and also right divides f(t). Thus d divides m by Theorem 27 and
since m is prime, either d = m, in which case g(t) = f(t), or d = 1, which means f(t)
can be written as a product of m linear factors. Therefore f(t) is irreducible if and only if
(t —0b) 1, f(t) for all b € D, if and only if a # o™~ 1(b) - o (b)b, for all b € D by (11). O

5.2. Skew polynomials of degree four. Suppose o is an automorphism of D and f(t) =
t* — ast® — agt? — a;t —ag € R = D[t;0]. Then either f(t) is irreducible, f(t) is divisible
by a linear factor from the right, from the left, or f(t) = g(t)h(t) for some g(t), h(t) € R of
degree 2. In (11) and Proposition 22 we computed the remainders after dividing f(t) by a
linear polynomial on the right and the left. We now compute the remainder after dividing
f(t) by 2 — ¢t — d on the right, with ¢,d € D. To do this we use the identities

(13) t?2 = (t* —ct —d) + (ct + d),
(14) = (t+o(c)(t* —ct —d) + (o(d) + o(c)c)t + o (c)d,
and

tt = (> + o*(c)t + o*(d) + o*(c)o(c)) (t* — ct — d)

(15) 2 2 2 2 2
+ (6*(c)a(c)c+ o*(d)c+ o*(c)a(d))t + o*(d)d + o*(c)o(c)d.

If we define
My(e,d)(t) =1, Mi(c,d)(t) =t, Ma(e,d)(t) =ct+d
Ms(c,d)(t) = (o(d) + o(c)e)t + o(c)d,
My(c,d)(t) = (o*(c)a(c)c + o*(d)c + o (c)o(d))t + o*(d)d + o*(c)o(c)d,
then multiplying (13), (14) and (15) on the left by a; and summing over ¢ yields
3
F(t) = q(#)(#* = ct — d) + Ma(c,d)(t) = >_ a;M;(c, d)(t)
i=0

for some ¢(t) € R. Thus the remainder after dividing f(¢) on the right by > — ct — d is

3
Mile.d)(t) = 3 aiMi(e. d)(2),
=0

which evidently implies:
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Proposition 29. f(t) = t* — a3t® — ast? — a1t —ag € R = D[t;0]. (2 —ct — d)|, f(t) is
equivalent to
o*(c)o(c)c+ o*(d)c+ o*(c)o(d) — az(o(d) + o(c)c) — azc — ay = 0,
and
o?(d)d + o*(c)o(c)d — azo(c)d — asd — ag = 0.
Propositions 22 and 29 together with (11) yield:
Theorem 30. f(t) =t* — ast® — ast® — art — ag € R = DIt; 0] is irreducible if and only if
(16) a3 (b)o?(b)a(b)b + aza®(b)o(b)b + aza (b)b + arb + ag # 0,
and
a2 (b)a?(b)o (b)b + o (b)o? (b)o (b)az+
a3 (b)o?(b)a(as) + o (b)a?(ay) + 0> (ag) # 0,

for all b € D, and for every c,d € D, we have

(17)

(18) o?(c)a(c)e+ o?(d)c + o*(c)o(d) + az(o(d) + o(c)c) + asc + a; # 0,
(19) o?(d)d + o*(c)o(c)d + azo(c)d + azd + ag # 0.

Le., f(t) is irreducible if and only if (16) and (17) and ((18) or (19)) hold.

Proof. f(t) is irreducible if and only if (¢t —0b) 4, f(¢) for allb € D, (t—b) 1; f(t) for allb € D
and (2 —ct —d) 1, f(t) for all ¢,d € D. Therefore the result follows from (11), Propositions
22 and 29. O

Lemma 31. Let f(t) = t* —a € R. Suppose (t — b)|,.f(t), then f(t) = (t + o3(b))(t*> +
a?(b)a(b))(t — b) and f(t) = (t* + a3 (b)a?(b))(t + o (b))(t — b) are factorisations of f(t). In
particular, (t + o (b))(t —b) = t* — o(b)b also right divides f(t).

Proof. Multiplying out these factorisations gives t* — a3(b)o?(b)o(b)b which is equal to f(t)
by (11). O

Hence if f(t) = t* — a has a right linear divisor then it also has a right quadratic divisor

and Theorem 30 simplifies to:

Corollary 32. f(t) =t* — a € R is reducible if and only if
o2(c)o(c)c+ o (d)c+ o*(c)o(d) =0 and o*(d)d + o?(c)o(c)d = a,
for some ¢,d € D.

Proof. By Corollary 23, f(t) has a right linear divisor if and only if it has a left linear
divisor. Moreover if f(t) has a right linear divisor then it also has a quadratic right divisor
by Lemma 31, therefore f(t) is reducible if and only if (t* — ¢t — d)|, f(¢) for some ¢,d € D.

The result now follows from Proposition 29. d
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5.3. Examples in F,.[t;0]. Let K = F,» be a finite field of order p" for some prime p
and o be a non-trivial Fp-automorphism of K. This means 0 : K — K, k — kP", for some
r €{1,...,h—1}. Here o has order n = h/ged(r, h) and Gal(K/Fix(c)) = (o). Algorithms
for efficiently factorising polynomials in Fx [t; o] exist, see [13] or more recently [10].

Lemma 33. ged(ph —1,p" — 1) = psed(®r) — 1,
Proof. Let d = ged(r, h) so that h = dn. We have
ph—1= =)@V ¢ 4 pt 1),

therefore p" — 1 is divisible by p? — 1. A similar argument shows (p? — 1)|(p” — 1). Suppose
mod (c¢). Write

that ¢ is a common divisor of p* — 1 and p” — 1, this means p* = p

d = hz 4+ ry for some integers x,y, then we have
p? = ph Y = (p")*(p")Y = 1 mod ()
which implies ¢|(p? — 1) and hence p? — 1 = ged(p" — 1,p" — 1). O

Given k € K*, we have k € Fix(o) if and only if k»" ~! = 1, if and only if k is a (p" —1)t"
root of unity. There are ged(p” — 1, p" — 1) such roots of unity in K, thus

[Fix(0)| = ged(p” — 1,p" — 1) 4 1 = peedh)
by Lemma 33 and so Fix(o) @ F, where ¢ = peed(rh)

Proposition 34. (i) Suppose n € {2,3}, then f(t) = t" —a € K|[t; 0] is irreducible if and
only if a € K \ Fix(o).

(i) Suppose n is a prime and n|(q — 1). Then f(t) = t" — a € K|t;o] is irreducible if and
only if a € K \ Fix(0).

In particular, in both (i) and (ii), there are precisely p* — q irreducible polynomials in K|[t; o]
of the form t™ — a for some a € K.

Proof. (i) f(t) is irreducible if and only if H;:Ol o' (b) = Nk /pix(o)(b) # a for all b € K by
Theorem 24 or Corollary 25, where Nk /pix(o) is the field norm. It is well-known that as K
is a finite field, Nk /pix(o) : K* — Fix(0)* is surjective and so f(t) is irreducible if and only
if a ¢ Fix(c). There are p" — ¢ elements in K \ Fix(c), hence there are precisely p" — ¢
irreducible polynomials of the form " — a for some a € K.

(ii) Fix(o) = F, contains a primitive n'" root of unity because n|(qg — 1) [23, Proposition
I1.2.1]. The rest of the proof is similar to (i) but uses Theorem 28. O

Let a,b € K and recall (t — b)|.(t™ — a) is equivalent to a = c™~1(b)---a(b)b = b* by
(11) where s = Z;n:_ol pd = (p™ —1)/(p" — 1). Suppose z generates the multiplicative
group K*. Writing b = 2! for some [ € Z yields (t — b)|,.(t™ — a) if and only if a = 2!, This

implies the following;:

Proposition 35. Let f(t) = t™ —a € Klt;o] and write a € K as a = z* for some
u€{0,...,p" —2}.

(i) (t —b) 1. f(t) for all b € K if and only if u ¢ Zs mod (p" — 1).

(ii) If m € {2,3} then f(t) is irreducible if and only if u ¢ Zs mod (p" — 1).
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(iii) Suppose m is a prime divisor of (¢ — 1), then f(t) is irreducible if and only if u ¢
Zs mod (ph —1).

Proof. (i) (t —b) 1, f(t) for all b € K if and only if a = 2% # 2! for all | € Z, if and only if
u ¢ Zs mod (p" — 1).

(ii) f(t) has a left linear divisor if and only if it has a right linear divisor by Corollary 23.
Therefore if m € {2,3} then f(¢) is irreducible if and only if (¢t — b) 1. f(¢) for all b € K and
so the assertion follows by (i).

th

iii) If m is a prime divisor of (¢ — 1) then Fix(c) = F, contains a primitive m™ root of
p q q p

unity. Therefore the result follows by (i) and Theorem 28. O

Corollary 36. (i) There exists a € K such that (t —b) {, ("™ —a) for allb € K if and only
if ged(s,p" — 1) > 1.

(i) [30, (22)] Suppose m € {2,3} or m is a prime dwisor of (¢ —1). Then there exists
a € K* such that t™ — a € K[t; ] is irreducible if and only if ged(s,p™ — 1) > 1.

Proof. There exists u € {0,...,p" — 2} such that u ¢ Zs mod (p" — 1), if and only if s does
not generate Z,n_1, if and only if ged(s, p" —1) > 1. Hence the result follows by Proposition
35. O

Corollary 37. Suppose p =1 mod m.

(i) There exists a € K such that (t —b) 1, ("™ —a) for allb e K.

(ii) If p is an odd prime, then there exists a € K* such that t> — a € K|t; o] is irreducible.
(iii) If m = 3, then there exists a € K* such that 3 — a € K|[t; o] is irreducible.

(iv) Suppose m is a prime divisor of (¢ — 1), then there exists a € K* such that t™ —a €

K|t; o] is irreducible.

Proof. We have

m—1 m—1
smodm:Z(plmodm ) mod m = Zl mod m = 0,
i=0 i=0

and p" =1 mod m. This means m|s and m|(p" — 1), therefore ged(s, p" — 1) > m and so
the assertion follows by Corollary 36. d

6. IRREDUCIBILITY CRITERIA FOR POLYNOMIALS OF DEGREE TWO AND THREE AND FOR
t"™ —a IN D[t;0,0]

In this Section we generalize some results from Section 5 to polynomials in R = D[t; o, §],
where D is a division ring with center F' and ¢ an endomorphism of D. We recursively

define a sequence of maps N, : D — D, i >0, by
No(b) =1, Niy1(b) = a(Ni(b))b+ d(Ny(b)),
Lo, Ni(b) = b, Na(b) = o(b)b+3(b),. .
Let f(t) =™ — 37" " a;t’ € R. Then (t — b)|, f(¢) is equivalent to

(20) Nm(b) — Z alNz(b) =0
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[25, Lemma 2.4].

If o is an automorphism of D, we can also view R = DIt;0,d] as a right polynomial

ring. In particular, this means we can write f(t) = t™ — Zmol a;t" € R in the form

f) =tm™— ZZBI t'a for some uniquely determined @) € D. To find the remainder after
left division of f(t) by (¢t —b), we recursively define a sequence of maps M; : D — D, i > 0,
by
Miy1(b) = bo ™ (M;(b)) — 6(a™H(M;(b))), Mo(b) = 1,
that is Mo(b) = 1, My(b) = b, Ma(b) = bo=(b) — 6(a=1(b)),...
Proposition 38. Suppose o is an automorphism of D. Then (t — b)|;f(t) is equivalent to
My (b) = >0 ' M;(b)al, = 0. In particular, (t — b)|,(t™ — a) if and only if My, (b) # a.

Proof. We first show t" — M,(b) € (t —b)R for all b € D and n > 0: If n = 0 then
— My(b) =1—1=0 € (t — b)R as required. Suppose inductively t" — M, (b) € (t —b)R
for some n > 0, then
" = M1 (b) = "1 = bo ™ (M (b)) + 6(0 ™" (M (D))
=" 4 (t = b)o ™ (M (b)) — to ™ (M (b)) + 6(0 ™" (Mn(D)))
=" 4 (t = 0)o ™ (M (b)) = M (D)t = 6(0 ™" (M (b)) + 6(0 ™" (M (D))
= (t = b)o " (My(b) + (t" — My (b))t € (t — b)R,
as t" — M, (b) € (t —b)R. Therefore t" — M, (b) € (t—b)R for all b € D, n > 0 by induction.
As a result, there exists ¢;(t) € R such that t* = (t—b)q;(t) + M;(b), for all i € {0,...,m}.
Multiplying on the right by a} and summing over i yields

£(t) = (¢~ at) Z M
for some ¢(t) € R. O

Theorem 39. (i) f(t) =t*> —ait —ag € D[t;0,6] is irreducible if and only if o(b)b+ §(b) —
a1b—ag #0 for allbe D.

(ii) Suppose o is an automorphism of D and f(t) = t3 — ast® — a1t — ag € D[t;0,0]. Write
f(t) =3 —t2al, — ta}, — af) for some unique a),ay,ay, € D. Then f(t) is irreducible if and

only if
2
(21) N3(b) = > a;iN;(b) # 0 and Ms(b) — > M;(b)a; # 0,
=0 ;
for allb e D.
Proof. (1) f(t) is irreducible if and only if it has no right linear factors, if and only if

No(b) — ay Ny (b) — agNo(b) = o (b)b + 6(b) — arb — ag # 0,

for all b € D by (20).
(ii) f(t) is irreducible if and only if it has no left or right linear factors, if and only if (21)
holds for all b € D by (20) and Proposition 38.

O
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We can thus generalize Theorem 28:

Theorem 40. Suppose m is prime, char(D) # m and F NFix(o) contains a primitive mth
root of unity w. Then f(t) = t™ — a € D[t;0,0] is irreducible if and only if N,,(b) # a for
allbe D.

Proof. Recall that §(b") = Z?;ol a(b)i5(b)b" 1= for all b € D, n > 1 by [16, Lemma 1.1]
and so

0= 8(1) = 3™ = 3 o) d@)™ 1= = 3 widw)w 1
i= i=0
= 3 s = g
1=0

where we have used w € F NFix(o). Therefore w € Const(d) because char(D) # m, hence
also w’ € Const(§) and so (wt)® = w't® for all i € {1,...,m}. Furthermore if b € D, then
(t —b) 1. f(t) is equivalent to N, (b) # a by (20). The proof now follows exactly as in
Theorem 24. O

Corollary 41. Suppose char(D) # 3, o = id and FNFix(o) contains a primitive third root
of unity. Then f(t) = t3 —a € D[t; 6] is irreducible if and only if

N3(b) = b° 4 25(b)b + b5 (b) + 52(b) # a,

for allb e D.
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