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1 Introduction

Gravitational waves from a cosmological phase transition could provide a window to directly
observe the very early universe, preceding the birth of the cosmic microwave background as
well as Big Bang nucleosynthesis. This would offer a probe of the fundamental constituents
of matter and their interactions which is complementary to particle colliders.

In recent years, studies of the electroweak phase transition (EWPT) have sparked a
lot of interest, motivated by the possibility of explaining the baryon asymmetry of the
universe [1, 2], and also of generating a stochastic gravitational wave (GW) background [3]
observable by LISA-generation experiments [4–6]. In the Standard Model, electroweak
symmetry breaking occurs via a smooth crossover [7, 8], so a possible first-order elec-
troweak phase transition requires the existence of new physics beyond the Standard Model
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(BSM). The search for BSM physics that could alter the thermal history of electroweak
symmetry breaking provides a target and challenge for future collider experiments [9]. Of
particular interest are multi-step phase transitions in the presence of multiple Higgs-like
fields, where the transition to the EW phase can be preceded by another phase at a higher
temperature [10]. In this work, we discuss a two-step EWPT [11].

In determining the thermodynamic properties of a BSM theory, thermal enhancements
of infrared (IR) physics play an important role. In practice, this means that perturbative
computations require thermal resummations [12–15]. In the imaginary-time formalism of
high-temperature quantum field theory [16], the most elegant solution to organise these
resummations is by means of effective field theory [17–19]. In such a computation, a
dimensionally reduced effective theory is constructed for the IR sensitive zero Matsubara
modes, while all non-zero Matsubara modes are integrated out and their effects are captured
in the effective parameters of the EFT. Physically, this accounts for thermal screening,
whereby the hard thermal scale modifies the dynamics of the softer IR physics that drives
the EWPT.

The most infrared modes of the magnetic gauge bosons become strongly coupled at high
temperatures [20], leading to non-perturbative effects on the thermodynamics which require
use of Monte-Carlo lattice simulations [21–23]. For decades this non-perturbative physics
at the ultrasoft scale has caused worry, calling into question the applicability and validity of
perturbative determinations of thermodynamics. In the work at hand, we argue that these
worries have been somewhat misplaced and argue that in fact first-order phase transitions
take place above the ultrasoft scale. Indeed, it has long been known [15, 24] that there is
a scale in between the soft and ultrasoft scales, the latter of which have been the focus of
studies utilising high-temperature dimensional reduction. A proper treatment of physics at
this in-between supersoft scale requires a chain of EFTs that we construct in this work. In
this approach, these non-perturbative effects are typically subleading for first-order phase
transitions, so that both the leading order thermodynamics and several corrections can be
obtained by a purely perturbative expansion in powers of a small expansion parameter.
More recently, supersoft-scale EFTs have been studied in [25–30] (see also [31–34]).

By direct comparison to previous non-perturbative lattice simulations, we demonstrate
that EFTs at the supersoft scale describe thermodynamics with striking accuracy. Further
information on the validity of a perturbation approach can be extracted from the expan-
sion itself, by considering renormalisation group (RG) invariance, gauge invariance and the
convergence of successive terms. For the former, it has been shown in [35, 36] that perturba-
tive computations below two-loop order suffer from large intrinsic uncertainties in terms of
sensitivity to RG scales, which reflect the magnitude of missing perturbative corrections.
Throughout the paper, we denote RG scales as Λ4 and Λ3, in the full four-dimensional
parent theory and in the dimensionally reduced EFT respectively.

The remainder of this article is organised as follows. In section 1.1 we motivate our
analysis by reviewing previous lattice results for a two-step phase transition in the real-
triplet extended Standard Model, as well as shortcomings of previous perturbative analyses.
In section 2 we discuss thermal scale hierarchies for generic first-order transitions. Based
on these hierarchies, in section 3 we introduce corresponding effective field theories, paying
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particular attention to a scale in between the soft and ultrasoft scales, that we dub the
supersoft scale. In section 4 we present what we refer to as strict perturbative expansions for
the thermodynamics of phase transitions discussed in the preceding section. In section 5
we provide a concrete application to the real-triplet extended SM, presenting numerical
results while relegating a number of technical details throughout the article to appendices.
In section 6 we summarise and discuss our results.

1.1 Motivation

For a two-step electroweak phase transition, the current state-of-the-art determination of
the equilibrium thermodynamics is provided by the non-perturbative lattice simulations of
ref. [37], concretely performed for a real-triplet extended SM [38]. In this work, we keep our
discussion generic, and applicable to a wide variety of cosmological phase transitions, yet
for the numerical analysis turn to the real-triplet extended SM. In this model, the scalar
sector comprises the Higgs doublet ϕ and a real triplet scalar Σa, where a = 1, 2, 3 is an
SU(2) adjoint index. We follow the conventions of [37] and define the scalar part of the
Lagrangian in 4d Euclidean space as1

L(ϕ,Σ) = (Dµϕ)†(Dµϕ) + µ2
ϕϕ†ϕ + λ(ϕ†ϕ)2

+ 1
2(DµΣa)2 + 1

2µ2
ΣΣaΣa + b4

4 (ΣaΣa)2

+ a2
2 ϕ†ϕΣaΣa, (1.1)

where the definitions for covariant derivatives are standard, and can be found in [39]. This
model admits a two-step EW phase transition, where the system undergoes a first phase
transition to the triplet phase at some high temperature, after which the system undergoes
a second transition to the EW phase. Phase transitions in this model were first studied in
perturbation theory in ref. [38] and ref. [39] performed the dimensional reduction from the
hard to the soft scale 3d EFT for this model. Non-perturbative lattice simulations of the
3d EFT were presented in [37], together with the perturbative computation of the two-loop
thermal effective potential.

In our numerical analysis, we study the two benchmark points of [37]. These points
are defined as

BM1: (MΣ, a2, b4) = (160GeV, 1.1, 0.25), (1.2)
BM2: (MΣ, a2, b4) = (255GeV, 2.3, 0.25), (1.3)

where MΣ is the physical triplet pole mass, and a2 and b4 are MS parameters at the input
renormalisation scale Λ4 = MZ equal to the Z-boson pole mass. Both of these points
exhibit a two-step EW phase transition. According to the lattice study of [37], in BM1 the
first (higher temperature) transition to the triplet phase is a crossover, whereas in BM2
the first transition is first order. The second transition is of first order in both benchmark
points.

1We make an exception for the mass parameters µ2
ϕ and µ2

Σ for which we use the opposite sign compared
to [37, 39].
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Figure 1. Quadratic scalar condensates as functions of temperature T , in analogy to figure 2 of
ref. [37]. Circular and triangular markers depict lattice results, while solid lines show the two-loop
perturbative counterpart following the approach of ref. [37]. We have added coloured bands which
show the RG-scale dependence of the perturbative calculation, as the scale within the EFT is varied
over the set Λ3 ∈ {0.5T, T, 2T}. In this work at hand, we will fix the relatively poor agreement
between the perturbative and lattice results apparent here, including the spurious divergence in the
perturbative results for the triplet condensate.

In ref. [37] a comparison to a state-of-the-art perturbative calculation was provided,
utilising the two-loop order effective potential, computed within the dimensionally reduced
3d EFT. The computation utilised the ℏ-expansion of the effective potential [40] — where
the potential is perturbatively expanded around its leading order minima, order-by-order
— thereby ensuring order-by-order gauge invariance [40–42]. However, it suffered from IR
divergences related to the determination of the critical temperature of the first transition
to the triplet phase. Such divergences were reported already in ref. [42]: in the ℏ-expansion
of the effective potential, the leading order potential does not have a first, but a second-
order phase transition, and the critical temperature at leading order is identified with the
temperature where the effective mass parameter of the scalar undergoing the transition
vanishes. At two-loop order, i.e. O(ℏ2), such a vanishing mass parameter inflicts an IR
divergence on the scalar condensate (defined below). This is illustrated in figure 1, adapted
from figure 2 of ref. [37]. The condensates shown there are equal to derivatives of the free
energy density (or equivalently the effective potential) with respect to 3d EFT parameters,

⟨ϕ†ϕ⟩ ≡ ∂Veff
∂µ2

ϕ,3
, (1.4)

〈
TrΣ2

〉
≡ 2 ∂Veff

∂µ2
Σ,3

. (1.5)

These relations follow simply from the path integral definition of the free-energy density,
or effective potential [21]. A discontinuity in these condensates signals a first-order phase
transition. This is because the first temperature derivative of the pressure p = −TVeff, or
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free energy density, can be written in terms of the condensates,

∆p′(Tc) = −T
d

dT
∆Veff(κi) = −

∑
i

T
dκi

dT

∂∆Veff
∂κi

= η(µ2
ϕ,3)∆⟨ϕ†ϕ⟩+ η(λϕ,3)∆⟨(ϕ†ϕ)2⟩+ . . . , (1.6)

where ∆ denotes the difference between two phases, the prime denotes a temperature
derivative, the η-functions are defined as η(κi) ≡ Tdκi/dT , and κi runs over all 3d EFT
parameters. The η-functions depend only on the ultraviolet (UV) thermal scale, and hence
are smooth, continuous functions of temperature. It is the condensates that have discon-
tinuities at phase transitions (or kinks for higher-order transitions).

In perturbation theory, jumps in the condensates are related to jumps in the position
of the global minimum of the effective potential as a function of temperature.2 At leading
order, the square roots of the quadratic condensates, eqs. (1.4) and (1.5), agree with the
minima of the effective potential. However, this relationship breaks down beyond leading
order, and while the condensates are manifestly gauge invariant, this is not the case for
the minima of the effective potential [41, 43]. A further benefit of the condensates is that
they can be computed directly on the lattice as volume-averaged expectation values [21],
unlike the minima of the effective potential [44]. As defined above, based on derivatives
with respect to MS parameters, the condensates are RG dependent, inheriting their RG
dependence from that of the MS parameters themselves. However, this RG dependence
is simple and known exactly, due to the superrenormalisability of the 3d EFT. It can be
subtracted off to define the following RG invariant combination

⟨ϕ†ϕ⟩RG ≡ ⟨ϕ†ϕ⟩ − β⟨ϕ†ϕ⟩ ln
(Λ3

T

)
, (1.7)

where

β⟨ϕ†ϕ⟩ =
1

(4π)2 (3g2
3 + g

′2
3 ), (1.8)

and likewise for the triplet condensate with β⟨TrΣ2⟩ = 12g2
3/(4π)2. From now on we will

omit the RG subscript, but when we refer to condensates, we mean the above RG-invariant
condensates. Note that these beta functions are exact, and independent of the phase, due
to the superrenormalisability of the 3d EFT [21]. On the lattice, this combination is exactly
RG invariant, whereas in any finite order perturbative calculation some RG dependence
will remain, as a consequence of missing higher loop terms. By varying the RG scale, we
gain some estimate of the size of these missing higher loop terms.

In this work, we resolve the failures of perturbation theory visible in figure 1 by provid-
ing a consistent setup for the radiatively-generated first transition, as inspired by ref. [30].
In this setup, a physically correct picture of a radiatively-generated transition is provided
by consistent power counting, where the barrier separating symmetric and broken phases

2Note, that the minima depend on the values of EFT parameters, so one first evaluates the potential in
the corresponding minimum, and then differentiates with respect to the EFT parameters to determine the
condensates.
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exists already at leading order, due to integrating out heavy degrees of freedom that gener-
ate the barrier. For the second transition, the hierarchies of scale can change, necessitating
the construction of separate EFTs for the two transitions, occurring at distinctive thermal
scales. This novel construction can be used to avoid the spurious IR divergence of the triplet
condensate at symmetry breaking, and provide sound predictions for the critical temper-
ature and strength of the first transition. We find that a complete and gauge-invariant
resolution of the failures of perturbation theory also requires perturbatively expanding
the critical temperature, following ideas presented in refs. [33, 42]. In order to scrutinize
the accuracy of our purely perturbative computation, we compare our results to the non-
perturbative lattice simulations of ref. [37]. In addition, we provide a thorough comparison
to some alternative perturbative methods — such as direct, gauge-dependent minimisation
of the effective potential — and discuss their reliability and accuracy, despite their obvious
theoretical blemishes.

2 Thermal scale hierarchies

In weakly coupled quantum field theories, scale hierarchies are a necessary prerequisite for a
thermal phase transition. The argument goes as follows. Thermal effects arise through loop
diagrams, which are subleading in the vanilla loop expansion. Yet, for there to be a phase
transition, these thermal effects must change the effective dynamics of the transitioning field
at leading order (LO). This requires a breakdown of the vanilla loop expansion, because the
subleading order must match the leading order.3 Finally, for equilibrium physics, which is
time independent and hence absent a light cone, the only kinematic enhancements possible
are simple scale hierarchies. In fact, as we will see, at phase transitions in weakly coupled
theories there are typically multiple scale hierarchies.

Scale hierarchies wreak havoc with the loop expansion. Any large ratio of UV to IR
energy scales ΛUV/ΛIR can multiply loop corrections, enhancing them relative to their naive
loop counting. EFT provides a systematic means to account for such enhancements. To
construct a reliable perturbative expansion to describe a given energy scale Λ, one must first
integrate out all energy scales which are parametrically larger. In studying thermal phase
transitions, the first step therefore is to identify the energy scale of the transitioning field.

In constructing the EFT for the transitioning field, one integrates out heavy degrees
of freedom step by step. Each heavy degree of freedom that is integrated out modifies the
effective infrared dynamics, including the effective mass of the transitioning field. How
then do we know when to stop integrating modes out? After constructing the EFT for
energy scales Λ and below, if the mass of the transitioning field remains of order Λ through
the transition, then one can be sure that all contributions which are enhanced by a ratio
of scales have been captured. On the other hand, if there is an apparent second-order
phase transition, then the effective mass of the transitioning field goes to zero, and any

3A partial way out of this argument is if a model is close to a phase transition already at zero tem-
perature, then only small thermal corrections are needed to undergo the transition. However, this setup
requires a hierarchy of scales already at tree-level, whereby the potential difference between the minima is
parametrically small compared with the curvature of the potential.
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other massive degrees of freedom will become relatively heavier than the transitioning field.
Thus, new hierarchies of scale arise, and the fields which remain of mass Λ through the
transition must be integrated out.

The same conclusions can be reached from a rather different perspective. In general, a
successful perturbative expansion requires a LO approximation which is relatively close to
the complete result. If the LO approximation is qualitatively different from the complete
result, then perturbation theory will fail, and may exhibit all manner of weird and won-
derful pathologies. In the study of phase transitions, such pathologies arise when the LO
approximation fails to get the order of the phase transition right.

At nonzero temperature, infrared modes (with energy E ≪ T ) of bosonic fields become
highly occupied, and their collective effective coupling is enhanced. For strong first-order
phase transitions, the transitioning field remains gapped, and weak-coupling (i.e. mean-
field) expansions can work rather well, as long as the effective coupling is small. For
weaker transitions, the bosonic field undergoing the transition is relatively lighter, so the
convergence of the expansion is slower, until for transitions of second order or higher, the
effective coupling is large, and there is therefore no weak-coupling expansion. One must
then resort to other approaches, such as bootstrapping [45], lattice Monte-Carlo [21, 46],
weak-strong dualities [47], or the ϵ expansion [48, 49].

Combining the observations of the previous two paragraphs, we reach the following
conclusion: when studying phase transitions using a weak-coupling expansion, one should
always start with a LO approximation in which the transition is of first order. This is the
best that one can do with perturbation theory. If the transition is indeed of first order,
then the perturbative expansion will converge well. On the other hand, if the transition is
really of second order or higher, then perturbation theory will fail, but there is anyway no
way around it.

In this section, we present a generic setup for the perturbative analysis of thermal
phase transitions. We will use EFT to construct LO approximations in which a given
phase transition is of first order. This will provide us with the best possible starting
position for perturbation theory and gives results which are gauge invariant, real and free
from spurious infrared divergences. It also improves agreement with the lattice, even when
the transition is not of first order.

Thermal scale hierarchies. The starting point of our computation is the EFT picture
for thermal phase transitions [17, 18, 50, 51]. This starts from the assumption that we
are at high temperatures compared to relevant mass scales, T ≫ m, and is based on the
following chain of scale hierarchies

πT︸︷︷︸
hard scale

≫
(

g

4π

) 1
2

πT︸ ︷︷ ︸
semisoft scale

≫
(

g

4π

)1
πT︸ ︷︷ ︸

soft scale

≫
(

g

4π

) 3
2

πT︸ ︷︷ ︸
supersoft scale

≫
(

g

4π

)2
πT︸ ︷︷ ︸

ultrasoft scale

, (2.1)

in terms of a weak coupling g ≪ 1, and the temperature T . The factors of π arise from
Matsubara modes (πT ) and loop integrals ( g

4π ). However, from here on we shall omit
the factors of 4 related to loop integrals, as they are often compensated by group theory
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factors in Feynman diagrams multiplying the loop integral. The hard, semisoft, soft and
supersoft scales are perturbative; for these scales the effective expansion parameters are
small, εeff ≪ 1. Indeed, there are separate expansion parameters for each energy scale,
with εhard ∼ (g/π)2, and the expansion parameters for softer scales are larger, indicating
slower convergence. We dedicate the next section to discuss how EFT expansions arise
for the semisoft, soft and supersoft scales. Energy scales higher than the hard scale are
exponentially (Boltzmann) suppressed. At the other extreme, energy scales at or below
the ultrasoft scale are non-perturbative, as the effective expansion parameter therein is of
order unity [20]. However, as we argue below, the dynamics of strong first-order thermal
phase transitions generally takes place at either the soft or supersoft scales. Only for
very weak transitions can the dynamics take place at the ultrasoft scale. In principle,
other energy scales between the hard and ultrasoft scales may arise, though we have not
encountered them.

In applying the above power counting to a given model, the parameter g should be
chosen such that εhard ∼ g2/(π)2 determines the convergence of the loop expansion for the
hard scale. Thus, for models with a single dimensionless coupling, g can be identified with
a 3-point coupling, or g2 with a 4-point coupling. For models with multiple couplings g

should be identified with the largest relevant coupling, as this is what limits the convergence
of the loop expansion.

Hard scale. The temperature sets the most UV scale for thermal fluctuations, as energies
above this are Boltzmann suppressed. At high temperatures, these hard scale fluctuations
dominate the free energy density. For equilibrium physics, Matsubara’s imaginary time
formalism reveals that nπT sets the energy scale of thermal-scale fluctuations, where n

is an even integer for bosonic fields, or an odd integer for fermionic fields. All modes
except the (bosonic) zero Matsubara mode n = 0 therefore have energies of at least the
hard scale. Fields with masses above the hard scale can be integrated out as at zero
temperature [52–54]. For the hard scale fluctuations, each successive loop is suppressed by
εhard ∼ g2/(π)2 compared to previous one.

Soft scale. The effective dynamics of softer modes is screened by hard scale fluctuations.
At one-loop order this screening induces an effective mass of order gT . Bosonic zero Mat-
subara modes are therefore generically of the soft scale, unless there is some mechanism
for the partial or full cancellation of one-loop screening. The EFT construction between
the hard scale and the soft scale is the well-known high-temperature dimensional reduc-
tion [17, 18]. Technically, this amounts to integrating out nonzero Matsubara modes with
masses of order πT , and constructing the EFT for the three-dimensional zero Matsubara
modes of all lighter bosonic fields. The temporal components of gauge fields acquire a
thermal Debye mass due to the heat bath breaking Lorentz invariance [55, 56]. These
modes always live at the soft scale. Their squared Debye masses are solely generated by
screening of the hard scale, so are a sum of positive definite terms each of order (gT )2.
Heavy bosonic zero-modes, with masses comparable to the hard scale πT , are integrated
out along with the nonzero Matsubara modes [31, 34, 39, 52, 53]. Within the soft scale
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EFT, each successive loop is suppressed by εsoft ∼ g/π compared to previous one, at least
when the interaction corresponding to g is present at the soft scale.

Supersoft scale. The thermal effective masses of Lorentz scalar fields can be paramet-
rically smaller than the soft scale. If the quadratic mass parameter of a scalar field is
negative at zero temperature µ2 < 0, then there can be cancellations between this and the
positive hard thermal contributions to the effective mass,

µ2
3 ≈ µ2 + cg2T 2 ≪ g2T 2, (2.2)

where the subscript 3 is used to denote the effective mass of the field in the 3d EFT and c >

0 is an O(1) numerical coefficient.4 For broad classes of transitions, the transitioning field
becomes lighter than the soft scale at the critical temperature. The dominant subleading
corrections to its effective squared mass come from integrating out soft-scale fields, and are
of order O(g3T 2/π). Thus, barring additional parametric cancellations, the mass of the
transitioning field lives at the supersoft scale g3/2T/

√
π. This is the case for symmetry-

breaking first-order phase transitions [15, 25]. The supersoft scale is in fact even more
widely applicable to thermal first-order phase transitions, as we find below.

The construction of an EFT for the supersoft scale was introduced in ref. [26]. The
transition of a supersoft field can modify the masses of soft-scale fields at leading order. In
this case, the effective Lagrangian at the supersoft-scale will have non-polynomial depen-
dence on the transitioning field. It is nevertheless local, as the hierarchy of scales ensures
the derivative expansion holds. This is akin to the EFT of inflation [58]. Within the super-
soft scale EFTs we consider, the supersoft scale fields have parametrically small couplings
at zero temperature, and each successive loop is suppressed by εsuper ∼ (g/π)3/2 compared
to previous one.

Semisoft scale. This scale lies between the hard and soft scales. It can arise naturally for
very strong first-order phase transitions: if the jump in a scalar background field becomes
as large as

√
πT/

√
g, then it can impart a mass of order √

πgT on other fields through
the Higgs mechanism. Below we find that this situation occurs in Z2-symmetric multi-field
models where there are two successive first-order phase transitions, and where there is
sufficient supercooling between them. For such setups, when integrating out the semisoft
scale fluctuations, each new perturbative order is suppressed by εsemi ∼

√
g/π compared to

previous one, though multiple orders in this expansion appear at each loop order (suitably
resummed).

Ultrasoft scale. This scale and below are nonperturbative. In gauge theories, the space-
like Ward identities ensure that the spatial components of gauge bosons do not receive a
thermal mass correction within perturbation theory. In the absence of a Higgs mechanism,
they therefore remain massless until the ultrasoft scale, where they receive a nonperturba-
tive thermal mass [20]. Lorentz scalar fields can also become ultrasoft in the near vicinity

4In fact, it is possible to have c < 0 in multi-scalar theories with negative cross-couplings, in which case
there can be inverse symmetry breaking [10, 57]. In that case there is a phase transition for µ2 > 0, and it
can also take place at the supersoft scale.
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of a second-order phase transition. However, unlike for gauge fields, fine tuning is typically
required for a scalar to be this light. The contribution of the ultrasoft scale to the free
energy density is of order T (g2T/π)3, and hence subdominant to the contributions of the
higher energy scales.

3 Effective field theory expansions

We begin by discussing the thermal effective potential, or the background-field-dependent
free energy density of the plasma. From this the phase transitions of a model can be
determined. We discuss the computation of the effective potential for a transition taking
place at the soft or supersoft scale. The scale inducing such a transition must be heavier
than the transitioning field, hence it can be the hard, soft or semisoft scale.

A starting point of our discussion is the tree-level potential for the soft scale 3d EFT,
in terms of real background fields v,5

V soft
tree ∼ g2T 2v2(1 + εhard +O(ε2

hard)). (3.1)

By tree-level we mean that no loop diagrams from within the soft scale EFT are included.
However loop diagrams from the hard scale are included in V soft

tree , and are captured in the
parameters of the EFT. This is reflected in the expansion in εhard on the right hand side,
where we will assume that the first two orders have been calculated. The calculation of the
NLO term was pioneered in refs. [17–19] and is a mainstay of high-temperature dimensional
reduction. It has now been automated for generic models [59].

Based on the scale hierarchy between inducing and transitioning scales, we present
EFT expansions of the effective potential. In such expansions, perturbation theory is
organised in terms of power counting with respect to dimensionless quantities within the
3d description. In section 4, we then discuss the computation of thermodynamics using
these EFT expansions.

The validity of our perturbative EFT expansions will depend on the magnitude of the
background field v2. For very weak transitions, a field with effective coupling g2

3 ∼ g2T

and mass ∼ g3|v| will become nonperturbative unless v2 ≫ g2T/π2. On the other hand,
for very strong transitions, the thermal scale hierarchy will break down altogether unless
v2 ≪ π2T/g2. These conditions ensure that a particle of mass g3|v| is much heavier than
the ultrasoft scale, and much lighter than the thermal scale πT . Together they determine
the relatively wide range of transition strengths which we can describe perturbatively,

g2

π2 ≪ v2

T
≪ π2

g2 . (3.2)

In the context of electroweak baryogenesis, the geometric midpoint v2 ∼ T is favoured in
simple BSM models which produce the observed baryon asymmetry [1, 60]. The midpoint

5Here, we indicate the size of the potential in terms of the mass term, quadratic in v. In the vicinity of
a phase transition, terms with other powers of v are of comparable size. Note that the mass dimension of v

is 1/2, following from the canonical normalisation of a scalar field in 3d. The relation to the corresponding
4d field is v2 ∼ v2

4d/T .
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also often makes a convenient choice for power counting, but in what follows we will discuss
both weaker and stronger transitions.

3.1 Transition for a soft field

As argued above, we wish to construct a perturbative expansion which predicts a first-
order phase transition at leading order, which in this case means at tree-level within the
soft-scale EFT. This implies a certain structure for the tree-level soft-scale potential: there
should be at least two coexisting local minima, separated by a potential barrier. In the
absence of such a tree-level barrier, we argue that there are no soft-scale phase transitions
that can be described reliably within perturbation theory. Assuming the theory is weakly
coupled at zero temperature, we can then conclude that either there are no transitions at
all, or the transition takes place further into the IR.

The perturbative expansion of the soft scale effective potential can be expressed in
terms of a formal expansion in εsoft which is a dimensionless ratio of EFT parameters.
Such an expansion parameter inherits its scaling εsoft ∼ g/π from the original theory, but
can be treated as an independent expansion parameter in the following sense. Within the
EFT, perturbation theory can be organised as an expansion in εsoft, and such a computation
can be used to find critical values for 3d parameters, and the condensates as functions of
the 3d parameters. Then, one wants to relate these to the temperature and the original
parameters of the parent 4d theory, and this is done in an expansion in εhard ∼ g2/π2

in dimensional reduction. Indeed, there are two different expansions, one related to UV
physics at the hard scale, and another to IR physics at the soft scale. The effective potential
at the soft-scale admits the formal expansion

V soft
eff = V soft

0︸ ︷︷ ︸
∼g2T 3

+ V soft
1︸ ︷︷ ︸

∼εsoftV soft
0

+ V soft
2︸ ︷︷ ︸

∼ε2
softV soft

0

+ O(ε3
softV

soft
0 ), (3.3)

where we have introduced V soft
0 ≡ V soft

LO to simplify notation, and denote higher order
corrections with increasing numeral in the subscript. Here the scaling of the LO potential
is indicated in terms of the original weak expansion parameter of the parent theory, and we
have assumed v ∼ T for simplicity. The magnitudes of higher order corrections are given
with respect to LO in terms of εsoft ∼ g/π.

Diagrammatically, the expansion in εsoft aligns with the loop expansion within the
EFT. The computation of the effective potential up to two loops is straightforward, and
has recently been automated for general models [59]. It is illustrated in figure 2. Here
dashed lines represent all scalars, wiggly lines gauge fields and dotted lines ghosts. The
next term, of order O(ε3

softV
soft

0 ), arises at three-loops. This is the last order which is
computable in perturbation theory in theories with non-Abelian gauge fields [20]. For later
convenience, we denote next-to-next-to leading order as N2LO and higher orders with
increasing numeral.

Possible realisations of a soft-scale EFT showing a first-order phase transition at tree-
level include a real scalar with cubic and quartic interactions [61], a real scalar with quartic
and sextic interactions [35], and multi-scalar models where there is a transition between
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Figure 2. Schematic diagrammatic expansion of the soft scale effective potential up to N2LO.
Expansion in εsoft ∼ g

π aligns with the loop expansion within the EFT, each new loop order
introducing one power of εsoft.

different broken phases [36]. The tree-level potential of the cubic-quartic model, here
written in terms of a real background v, reads

V soft
tree,cubic =

1
2m2

3v2 + 1
3κ3v3 + 1

4λ3v4, (3.4)

where the linear term has been removed by a shift v → v + const.6 For κ2
3 > 4λ3m2

3, this
potential admits two minima separated by a maximum, and these two minima have the
same height when κ2

3 = (9/2)λ3m2
3.

Starting with the potential of eq. (3.4) as our LO approximation, let us consider loop
corrections. These arise both from the soft scale (within the EFT) and from the hard
scale (the construction of the EFT). The loop expansion parameters within the soft scale
EFT are

εsoft ∼
λ3

(4π)m3
,

κ2
3

(4π)m3
3
. (3.5)

The powers of κ3 and λ3 follow from standard graph-theoretic identities [62], the inverse
powers of mass arise from loop integrals and can be determined from dimensional analysis,
and the factors of (4π) follow from the angular integrals arising in 3d loop integrals. These
should be compared with the loop expansion parameters arising within the corresponding
4d theory (with analogous parameters dropping subscripts 3),

εhard ∼ λ

(4π)2 ,
κ2

(4π)2m2 , (3.6)

which determine corrections arising from the hard scale.
6Note that because a scalar field in 3d has mass dimension 1/2, the cubic κ3 and quartic λ3 couplings

have mass dimension 3/2 and 1 respectively.
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In the vicinity of the critical temperature, the joint requirements that there are two
coexisting minima, and that their potential energies are approximately equal, imply that
all three terms in the potential are of the same order, so that κ2

3 ∼ λ3m2
3, and hence that

the convergence of the loop expansion within the EFT is determined by a single expansion
parameter εsoft ∼ λ3/(4πm3) ∼ κ2

3/(4πm3
3) [61]. Using λ3 ∼ g2T and m3 ∼ gT together

implies εsoft ∼ g/(4π). The loop expansion within the EFT therefore converges more slowly
than the loop expansion used in constructing the EFT. In addition, the expansion within
the EFT diverges for a second order phase transition m3 → 0, though in the approach to
this point the field becomes lighter than the soft scale.

For the Z2-symmetric model with quartic and sextic interactions, the potential reads

V soft
tree,sextic =

1
2m2

3v2 + 1
4λ3v4 + 1

8c6,3v6, (3.7)

where λ3 < 0. The general conclusions about the perturbative expansion in the cubic-
quartic model carry over to this case. In the vicinity of the critical temperature the loop
expansion parameter within this EFT is εsoft ∼ λ3/(4πm3) ∼

√
c6,3/(4π) [28, 35, 63]. For

λ3 ∼ g2T , the soft expansion parameter is again of order εsoft ∼ g/(4π).
Our third example is provided by a phase transition with two scalar fields participating

in the transition, such that the transition happens between the different broken minima
of the potential. For simplicity, we assume here a Z2-symmetric model where scalars are
charged under a gauge group with a gauge coupling g. Concretely we discuss the following
tree-level potential with two background fields x and y

V soft
tree,x,y = 1

2µ2
x,3x2 + 1

2µ2
y,3y2 + 1

4λx,3x4 + 1
4λy,3y4 + 1

4λxy,3x2y2. (3.8)

For power counting, we assume that the scalar masses lie at the soft scale, µ2
x,3, µ2

y,3 ∼ (gT )2,
as well as possible gauge field and Debye masses mW , mD ∼ gT , and that the couplings
are all equally perturbative λx,3, λy,3, λxy,3 ∼ g2T . The loop expansion parameter within
the EFT is then εsoft ∼ λx,3/(4π|µx,3|) ∼ g/(4π).

Depending on the signs of the mass terms, there is a symmetric minimum where both
background fields vanish (x, y) = (0, 0), and broken minima at (x0, 0) and (0, y0), where

x0 =

√√√√−µ2
x,3

λx,3
, y0 =

√√√√−µ2
y,3

λy,3
. (3.9)

For certain choices of parameters, the symmetry breaking pattern (0, 0) → (x0, 0) → (0, y0)
is possible. The second step can be described reliably by this soft-scale EFT as, in field
space, the two broken minima are separated by a barrier, so the transition is of first-order
within the EFT.

3.2 Transition for a supersoft field

We continue by discussing the generic setup for a supersoft scale EFT of a single scalar
field with a tree-level potential barrier. By tree-level we mean that the potential does
not include any loop corrections from the supersoft scale, yet note that it can still be
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non-polynomial due to contributions from the soft scale fields that have been integrated
out. Indeed, the barrier is typically generated by the soft scale. Our following discussion
is inspired by [15, 25–27, 64–67] that discuss one-step phase transitions with radiative
barriers. For a two-step EWPT, this setup describes the first transition to an intermediate
phase before the transition to the EW phase.

Our discussion here is schematic: we assume a single supersoft scalar field ϕ, with real
background field v, that couples to a gauge field, with 3d gauge coupling g3. The one-loop
effective potential at the soft scale reads [68]

V soft
1-loop ≃ 1

2µ2
3v2 + 1

4λ3v4 − 1
12π

(
6m3

V + M3
)
. (3.10)

The first two terms are tree-level terms in the soft scale EFT, and the last term is a one-loop
contribution where m2

V ≃ g2
3v2/4 is the gauge boson mass eigenvalue and M represents the

scalar mass eigenvalues M2 ≃ µ2
3 + 3λ3v2 or M2 ≃ m2

D + h3v2.7 Here mD is the Debye
mass for the temporal component of a gauge field, and h3 its coupling to ϕ.

For there to be a first-order transition, the potential should have more than one mini-
mum separated by a barrier. At tree-level in the soft scale EFT this is not possible, since
there is only one minimum at any given temperature: when the mass parameter µ2

3 is
positive, the only minimum is at vsym = 0, and when it is negative the minimum is instead
at vbroken =

√
−µ2

3/λ3. At µ2
3 = 0 there is a second-order transition. However, the one-

loop gauge boson contribution is cubic ∝ |v|3 and can provide a barrier between minima.
Similarly, contributions from the temporal components of gauge fields contribute to the
barrier — as well as other soft scalar fields in the case of multiple scalars — but in order to
simplify the presentation we do not discuss their contribution further in this section, but
assume that the 3d gauge field is the only soft field. For a transition to be of first order,
the one-loop gauge boson term should be of the same parametric order as the tree-level
terms of the potential, i.e.

µ2
3v2 ∼ λ3v4 ∼ g3

3v3

π
. (3.11)

Additional loop corrections from gauge bosons are suppressed relatively by g2
3/(πg3|v|),

and those from the scalar undergoing the transition are suppressed by λ3/(πM3). To
keep track of perturbative corrections, we introduce the dimensionless power counting
parameter εsoft ∼ g3/(π|v|), which counts soft-scale loops and satisfies 0 < εsoft ≪ 1 when
perturbative corrections are small. Expressing all three parameters in units of v, eq. (3.11)
then implies that

g2
3

π2 ∼ ε2
softv

2,
µ2

3
π2 ∼ ε3

softv
4,

λ3
π2 ∼ ε3

softv
2. (3.12)

Here, and in what follows, we use ∼ to denote that two quantities have the asymptotic
scaling as εsoft → 0+. Note that this power counting is equivalent to that of refs. [15, 30]

7We have used numerical coefficients here which correspond to an SU(2) gauge theory with fundamental
Higgs, and for simplicity have dropped Goldstone contributions. However, barring the precise values of
these numerical coefficients, the discussion here applies to more general gauge groups.
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when εsoft ∼ g/(4π), and often the ratio εsoft ≡ λ3/g2
3 is used as an expansion parameter and

denoted by x in previous literature, e.g. [23]. Note in particular that with this counting,
the one-loop scalar terms are of order ≃ M3/π ∼ µ3

3/π ∼ π2ε
9/2
softv

3 and hence do not
contribute at leading order to the potential

V supersoft
EFT,LO = 1

2µ2
3v2 + 1

4λ3v4 − 1
16π

g3
3|v|3 (3.13)

Here we have indicated that this is the LO, or tree-level, potential of the supersoft scale
EFT. The mass of the transitioning field is

M̃2 ≡ d2

dv2 V supersoft
EFT,LO = µ2

3 + 3λ3v2 +Π ∼
(

g
3
2

√
π

T

)2

, (3.14)

i.e. at the supersoft scale. Here Π ≡ − 3
8π g3

3|v| is the resummed contribution from the soft
gauge field with mass m2

W ≃ g2
3v2/4 ∼ (gT )2. The resummation arises from integrating

out the soft fields, and it decorates the supersoft scalar propagator with one-loop insertions
of the soft field. The broken minimum of the LO potential reads

vbroken = 3g3
3

32πλ3

(
1 +

√
1− 1024π2µ2

3λ3
9g6

3

)
. (3.15)

This minimum is separated from the symmetric minimum at vsym = 0 by a barrier for
temperatures such that the effective mass term lies in the range 0 < µ2

3 < 9g6
3/(1024π2λ3).

We comment that should we include contributions of other soft fields, the expression for
the broken minimum becomes readily much more complicated analytically. In addition,
we point out that the supersoft EFT is constructed in the broken phase, or for sufficiently
large background fields, where the gauge field is indeed soft and can be integrated out.

Next, we consider higher orders in εsoft. The NLO corrections to the effective po-
tential, suppressed by one power of εsoft, are given by two-loop digrams of purely soft
modes. This can be formally performed by matching the effective potentials of the soft
and supersoft EFTs, treating supersoft masses and momenta in strict perturbation theory,
cf. [26, 27, 54, 58]. In this approach, the propagator of the supersoft field is treated as
massless for the matching computation [18], so that pure supersoft diagrams vanish iden-
tically, and only soft-scale contributions from mixed scalar/gauge diagrams are included.
The outcome of this formal procedure is the potential for the supersoft EFT, and the pro-
cedure is illustrated in figure 3. In appendix A.1, we present explicit computations up to
N2LO for some relevant example models.

In the construction of the effective potential for the supersoft scale, there are multiple
expansions. First, there is the expansion related to integrating out the hard scale, which
we will here take for granted. Second, there is the expansion related to integrating out
the soft scale, and finally there is the loop expansion within the supersoft scale EFT. The
parameters for these latter two expansions are related as εsuper ∼ ε

3/2
soft, so that εsuper ∼

(g/π)3/2. One-loop diagrams within the supersoft theory contribute at O(εsuper) relative
to LO and have the simple form

V supersoft
N2LO = − M̃3

12π
, (3.16)
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Figure 3. Schematic diagrammatic expansion of the supersoft scale effective potential. Computa-
tionally, this splits into two: EFT matching between soft and supersoft scales, and loop corrections
within the supersoft theory. The perturbative expansion is misaligned with the loop expansion, as
one-loop contributions of soft fields contribute at LO and lead to resummation of the supersoft field
(denoted by the solid double line).

in terms of the resummed mass M̃ depicted with the double line in figure 3. Note that
at the order we work, and because we are only interested in observables for homogeneous
background fields, we do not need to include the effect of the momentum dependent field
normalisation in matching, cf. e.g. [27].

The N3LO contributions to the potential, or O(ε2
soft) relative to LO, are given by three-

loop soft-scale diagrams. This is followed by terms of order εsoftεsupersoft ∼ ε
5/2
soft relative to

LO, which are given by the resummation of the NLO corrections to the mass within the
supersoft one-loop diagram [54]. We do not compute either of these contributions, leaving
them for future work. N4LO is the highest order that can be computed perturbatively, since
at the next order one encounters Linde’s Infrared Problem [20], where all loop topologies of
the ultrasoft scale contribute at the same order in powers of couplings. These contributions
are suppressed relative to the LO potential by ε3

soft ∼ (g/π)3, in terms of the weak coupling
of the original theory.

3.3 A two step phase transition

Let us return to the example model with two background fields (x, y), and the potential
of eq. (3.8). We consider the interesting case where there is a two step transition with the
first step (0, 0) → (x0, 0) taking place at the critical temperature Tc,1 followed by a second
step (x0, 0) → (0, y0) at a lower temperature Tc,2. Here x0 and y0 are generic nonzero
background expectation values for x and y.

The thermodynamics of such two-step phase transitions depends on the relative mag-
nitudes of the couplings and masses. As argued above, for perturbation theory to work, we
need to find EFTs for the transitioning fields in which these transitions appear first order.

– 16 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
8

We find there are (at least) two natural options for the power counting relations, which we
outline below.

3.3.1 The first step
The first transition appears to be of second order within the soft-scale EFT. So, the tran-
sitioning field x becomes parametrically lighter than the soft scale.

Let us start by assuming that all couplings are equally perturbative λx,3 ∼ λy,3 ∼
λxy,3 ∼ g2T , following the discussion after eq. (3.8). Then, integrating out the soft scale
fields around this transition, one finds that the largest possible discontinuity in the back-
ground field is x2

0 ∼ g2T/(4π). At this point the effective mass of the transitioning field is
at the non-perturbative ultrasoft scale, and the transition is either very weak or a crossover
and perturbation theory is not viable. This conclusion crucially relies on the absence of
hierarchies between the couplings.

The first step (0, 0) → (x0, 0) can be strongly first order if λx,3 is parametrically smaller
than some other couplings to the x field. For example, if the power counting for the portal
coupling is unchanged λxy,3 ∼ g2T but the self coupling scales as λx,3 ∼ g3T/π, then the
x field is supersoft at the first transition, and the analysis of section 3.2 applies directly.
For the first transition, the leading order potential then reads

V supersoft
LO (x, 0) ≃ 1

2µ2
x,3x2 + 1

4λx,3x4 − 1
12π

(
6(m2

V )
3
2 + (m2

y)
3
2
)
, (3.17)

where m2
y ≃ µ2

y,3 + 1
2λxy,3x2, and we have included contributions from a vector boson with

mass m2
V = g2

3x2/4.
We assume that only the x field becomes supersoft as it transitions, with other fields

remaining soft. The balance of the three terms in the potential then implies that x2 ∼ T .
In the supersoft scale EFT, the mass of the transitioning field is resummed

m̃2
x = d2V supersoft

LO
dx2 = µ2

x,3 + 3λx,3x2 − 3 g3
3

8π
|x| − λxy,3

2π

µ2
y,3 + λxy,3x2√

µ2
y,3 + 1

2λxy,3x2
. (3.18)

We emphasize that the effective couplings of the soft scale EFT do not vary much with
respect to temperature, apart from their dimensional scaling, i.e. ratios λx,3/T , λy,3/T and
g2

3/T are approximately constant, whereas scalar mass parameters, µ2
x,3 and µ2

y,3, can vary
non-trivially with temperature, in particular they can go through zero.

Figure 4 shows a schematic plot of the temperature dependence of the effective masses
in the vicinity of the first transition. The left panel shows a generic scalar mass parameter,
which grows with temperature. Shown in the right panel, however, when contributions
from the background field x are included, the scalar masses become decreasing functions
of temperature below T < T R

0 for which the x-minimum exists. The right panel depicts
a generic soft mass M and the resummed x-field mass in the x-phase of the supersoft
EFT. Additionally in the left panel the Debye mass is shown, together with contributions
from the background field. The Debye mass is typically significantly heavier than scalar
masses. If the transition is weak, so that the correction to the Debye mass due to the back-
ground field is relatively small, it should be possible to integrate out the corresponding
field following ref. [17].
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π
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π

g

√
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m
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Tc,1 TR0

M(x)

m̃x

Figure 4. Schematic evolution of masses as a function of temperature for a transition (0, 0) →
(x0, 0) in our example model of eq. (3.8). A local minimum in the x-direction exists for temperatures
T < T R

0 , and for T < Tc,1 it is the global minimum. Left: mass parameters in the soft scale 3d EFT.
For the Debye mass, the contribution from the background field x is included, leading to a small
increase for T < T R

0 . Right: mass eigenvalues in the x-phase, where m̃x denotes the resummed mass
for the x-field, while M(x) depicts the scaling of soft scale masses in the x-phase (for the y-field and
the vector boson). The key features are: (i) scalar mass parameters are small near the transition
(depicted by µ2

3 for both x- and y-fields), whereas the Debye mass is noticeably larger (note that
the Debye mass is enhanced by group theoretic factors); (ii) for the final mass eigenvalues, there is
a clear hierarchy between the light transitioning field and other fields. Note that such hierarchies
might not be so clearly manifest at any given parameter point, yet this plot is inspired by our
numerical application in section 5.

3.3.2 Two consecutive supersoft scale transitions

Since 3d effective couplings do not vary significantly with temperature, we can assume they
satisfy the same formal power counting relations for the second step (x0, 0) → (0, y0), as
for the first. Furthermore, we also assume that λy,3 ∼ λx,3.8 Given this, what is the scale
for the second transition?

The first possibility is that there is no significant supercooling between the critical
temperatures, and while the masses of both x- and y-fields increase with increasing back-
ground field, they are still supersoft at Tc,2, in the x- and y-phases respectively (note that
the x-field is soft in the y-phase, and vice versa). Alternatively, given enough supercooling
down from Tc,1, the masses of transitioning fields could grow to become soft ∼ (gT )2.

First, let us assume that the second transition to the y-phase occurs without much
supercooling. Then the x-phase free-energy should still be computed in the supersoft scale
EFT which described the first step, eq. (3.17). What about the y-phase free energy?

Given the assumptions that λy,3 ∼ λx,3 ≪ λxy,3 ∼ g2
3, the mass hierarchies in the

y-phase are mirror those in the x-phase. The y-field is supersoft in the y-phase, and all

8In practice — for strong electroweak phase transitions in models with relatively heavy BSM fields,
and with a generic gauge coupling g4– the portal coupling λxy is often the largest coupling, and there is a
hierarchy λy ∼ λx < g2

4 < λxy [37, 69–71]. This suggests to organise all power countings with respect to
λxy instead of the gauge coupling.
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Figure 5. Left (right): schematic visualisation of x-phase (y-phase) masses in the range between
the critical temperatures of the two transitions. Given enough supercooling between the transitions,
the mass of the x-field can grow from supersoft to soft, and masses of other fields can grow from
soft to semisoft. In this case a separate soft EFT should be constructed with the inducing scale
being semisoft. Alternatively, should Tc,2 be sufficiently close to Tc,1, the transitioning x-field mass
is still parametrically light and the supersoft EFT should be used. In this case also the mass of
the transitioning y-field would be supersoft in the y-phase and a separate supersoft EFT can be
constructed, in the y-phase.

else is soft. At leading order, in the vicinity of Tc,2 the y-phase potential therefore reads

V supersoft
LO (0, y) ≃ 1

2µ2
y,3y2 + 1

4λy,3y4 − 1
12
(
6(m2

V )
3
2 + (m2

x)
3
2
)
, (3.19)

where m2
V = g2

3y2/4 ∼ (gT )2 and m2
x ≃ µ2

x,3 + 1
2λxy,3y2 ∼ (gT )2, i.e. the gauge field

and x-field are soft in the y-phase. The critical temperature Tc,2 is determined from the
condition that the free-energies of the phases are equal, with each being computed in
separate a supersoft scale EFT, eqs. (3.17) and (3.19).

3.3.3 Transition for a soft field, induced by semisoft scale
On the other hand, if there is enough supercooling between Tc,1 and Tc,2, the masses of the
transitioning fields can grow to the soft scale at the second transition. This is illustrated
schematically in figure 5. In this case, background fields at minima are parametrically
larger, and the leading order potential agrees with the standard tree-level potential. In the
x phase, this is

V soft
LO (x, 0) ≃ 1

2µ2
x,3x2 + 1

4λx,3x4, (3.20)

which implies that at the broken minimum x2 ∼ µ2
x,3

λx,3
∼ π

g T . Similarly, for the y-phase the

background field satisfies y2 ∼ µ2
y,3

λy,3
∼ π

g T . This is schematically illustrated in figure 6. In
the x-phase, the large background field of x enhances and dominates the mass of y, and
vice versa for the mass of x in the y-phase,

m2
y(x, 0) ≃ µ2

y,3 +
1
2λxy,3x2 ∼ λxy,3x2 ∼ (√gπT )2, (3.21)

m2
x(0, y) ≃ µ2

x,3 +
1
2λxy,3y2 ∼ λxy,3y2 ∼ (√gπT )2. (3.22)
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Figure 6. Schematic evolution of background fields for a two step transition. Dotted lines indicate
metastable local minima, and solid lines stable global minima. Left: the second transition occurs
without much supercooling after the first transition. For both transitions ∆v2

Tc
∼ 1 and supersoft

EFTs are constructed. Right: there is significant supercooling between the transitions, and the
second transition is parametrically stronger ∆v2

Tc,2
∼ π

g ≫ 1. In this case, soft scale EFTs are
constructed for the second transition by integrating out semisoft fields.

These masses are semisoft; the semisoft scale is the geometric mean between the soft and
hard scales. Large background fields push the masses of other fields to the semisoft scale,
e.g. the gauge field has mass m2

V ∼ (g3x)2 ∼ (√gπT )2 in the x-phase and similarly in the
y-phase.

This new scale hierarchy allows us to construct a soft scale EFT, where we integrate
out the semisoft scale. The minima in the broken phase of these EFTs scale as x2

T ∼ π
g ≫ 1

(and likewise for the y-field) and describe an extremely strong transition. The critical
temperature Tc,2 is determined from the condition that the free-energies of both phases are
equal, where each is computed within a separate soft-scale EFT, with fields at the semisoft
scale integrated out. Note, that in the field space of two fields, there is a barrier at leading
order that separates the phases.

At leading order the size of the field-dependent effective potential can be read off from
eq. (3.1) with v2 ∼ πT/g, leading to V soft

eff ∼ gπT 3. Counting powers of couplings, and
ratios of scales, the perturbative expansion in each phase takes the form

V soft
eff = gπT 3

5∑
n=0

Vnεn
semi +O(ε6

semiV0), (3.23)

where εsemi ∼
√

g/π and we have used the shorthand notation V0 ≡ V soft
LO and truncated the

series to fifth order, i.e. N5LO. A diagrammatic rundown of these corrections is depicted in
figure 7. Computation beyond that requires soft mass insertions at two-loop order, which
would provide the result at N6LO, and 3-loop semi-soft scale diagrams [72] are required
for N7LO.

The computation of the effective potential splits into two: first, matching from the
semisoft to soft scale, and then soft scale contributions. In the matching, all loop mo-
menta are formally semisoft [54], and one expands propagators in soft mass parameters,
before integration. For example, in the y-phase the one-loop x-field bubble diagram is
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Figure 7. Schematic diagrammatic expansion of semisoft to soft scale matching and soft scale
effective potential with εsemi ∼

√
g/π. Dashed line is soft scalar, solid line semisoft scalar. Soft mass

insertions are denoted by two-point vertices depicted by a dot. Consequently, dashed propagator
is massless, while solid line has semisoft mass M2 ∼ a2,3v2. In particular, note that O(ε2

semi) with
respect to LO does not appear.

expanded as9

1
2

∫
p
ln(p2 + µ2

x︸︷︷︸
∼g2T 2

+M2(y)︸ ︷︷ ︸
∼gπT 2

) = 1
2

∫
p
ln(p2 + M2(y)) + 1

2µ2
x,3

∫
p

1
p2 + M2(y)

− 1
4µ4

x,3

∫
p

1
(p2 + M2(y))2 +O(ε7

semiV0) (3.24)

where M2(y) ≡ 1
2λxy,3y2 is the semisoft contribution to the mass. Utilising such expansion

in the soft mass, in figure 7 soft scalar propagators (dashed lines) are treated as massless,
and solid lines have a semisoft-scale mass M2. Soft mass insertions are depicted as two-
point vertices (dots).

To compute the full N6LO piece would require performing similar expansions at two-
loop level. For example, the pure scalar sunset integral is

S(mx, mx, my) ≡
∫

p,k

1
(p + m2

x)(k2 + m2
x)[(p + k)2 + m2

y]
, (3.25)

where m2
y is soft and m2

x = µ2
x,3 + M2(y) includes both soft and semisoft contributions.

Again, for the matching one first expands the integrand in the soft-scale quantities m2
y and

9We define the integral measure in the standard way for MS regularisation, as
∫

p
≡
(

eγ µ2
3

4π

)ϵ ∫
ddp

(2π)d in
d = 3 − 2ϵ dimensions, where γ is the Euler-Macheroni constant.
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µ2
x,3, and then evaluates the integrals with semisoft momenta in the loops. For this, we

can make use of the generic two-loop result given in eq. (C.81) of ref. [73] (cf. also [74] and
references therein) and define

Sαβδ(M) ≡
∫

p,k

1
(p + M2)α(k2 + M2)β [(p⃗ + k⃗)2]δ

=
(

eγΛ2
3

4π

)2ϵ (M2)d−α−β−δ

(4π)d

Γ
(

d
2 − δ

)
Γ
(
α+ δ − d

2

)
Γ
(
β + δ − d

2

)
Γ(α+ β + δ − d)

Γ
(

d
2

)
Γ(α)Γ(β)Γ(α + β + 2δ − d)

.

(3.26)

Expanding the integrand of eq. (3.25) in soft masses m2
y and µ2

x,3, and expressing the result
in terms of Sαβδ, we obtain

S(my, mx, mx) ≈ S(0, M, M)− m2
yS112(M)− µ2

x,3

(
S211(M) + S121(M)

)
= 1

(4π)2

( 1
4ϵ

+ 1
2 + ln

(Λ3
M

))
+

m2
y − 4µ2

x,3
(4π)28M2 + . . . . (3.27)

Here the last term shown describes soft mass insertions, that contribute at N6LO. Other
two-loop diagrams could be treated in an analogous manner, first expanding the integrand
with respect to soft masses and only then computing the resulting integrals. However,
a similar treatment with integrals involving gauge field propagators is somewhat more
laborious, and we have decided to truncate our computation to N5LO in this work at
hand, and leave higher orders for future. We give a more detailed description of the
computation depicted in figure 7 in appendix A.2, working through a concrete example for
the SM augmented with a real triplet.

Finally, in the computation of the one-loop correction to the effective potential in the
soft scale EFT, the mass of the soft field needs to be resummed as

m̃2
y = d2

dy2 V soft
EFT = d2

dy2

(
V0 + V1 + . . .

)
. (3.28)

Resummation by the V1 contribution (but not V2 or higher) is needed at N5LO. The effect
of matching the momentum-dependent field normalisation will contribute first at N7LO for
observables depending only on homogeneous backgrounds fields.

4 Strict perturbative expansions

In the previous section, we have discussed the construction of EFTs to describe first-order
phase transitions, and the calculation of their effective potentials. With this in hand, there
are a number of different calculational approaches which one could adopt to analyse the
phase structure and thermodynamics.

The equilibrium thermodynamics of a model can be derived from the pressure — de-
termined by the effective potential evaluated at its minima — as a function of temperature,
and its derivatives with respect to temperature. The pressure can be written as [75]

p(T ) = p0(T )− T Veff, (4.1)
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where p0 is the coefficient of the unit operator in the construction of the 3d EFT [18] and
Veff is the effective potential within the 3d EFT [68]. This coefficient of the unit operator
is linked to the symmetric phase pressure as psym(T ) = p0 − T Veff(0), where the effective
potential is evaluated at the origin [75, 76]. The critical temperature Tc is defined as the
temperature where the pressure difference between two phases vanishes ∆p(Tc) = 0 and this
translates to a condition that the effective potentials at different minima are degenerate.
Gauge invariant condensates were already discussed in section 1, and they can be computed
as derivatives of Veff with respect to the parameters of the 3d EFT. The strength of the
phase transition can be characterised in terms of released latent heat, which is related to the
pressure as L = T∆p′, where prime denotes a derivative with respect to temperature. All
these quantities depend on differences between phases, and hence we do not need to com-
pute p0. However, note that the speed of sound in each phase depends directly on p0, and
this is relevant for the determination of the gravitational wave power spectrum, see [75, 77].

Next, we turn to different calculational approaches. The most direct approach would be
to just numerically minimise the effective potential. There are however a number of issues
with this approach. First, the effective potential is generically complex, with imaginary
parts arising away from the minima of the leading-order potential where squared masses
can become negative [78]. Typically this issue is simply ignored by working only with
the real part, or by replacing squared masses by their absolute magnitude.10 Second, the
effective potential is gauge dependent, and so are its minima, when computed directly.

An alternative approach is to adhere strictly to the confines of the perturbative ex-
pansion, and to perform a strict expansion in powers of εeff. This approach is sometimes
called the ℏ expansion, though in general the expansion parameter need not have anything
to do with Planck’s constant. Rather than directly minimising the full effective potential,
one first minimises the leading-order effective potential, and then includes the corrections
from higher orders perturbatively. This approach has the benefit of being exactly gauge
invariant order-by-order [40, 41]. It is also manifestly real. The difference between this
approach and direct minimisation is due to a subset of higher order terms in the expansion
of the minima (the tadpole expansion), which are resummed by direct minimisation.

Further possibilities arise for quantities which require additional intermediate steps in
their computation from the effective potential, such as the critical temperature. In these
cases, one can choose to make an additional strict expansion, or to mix the strict expansion
of the potential with a direct approach at solving ∆p(T ) = 0 for the critical temperature.
Unlike for the minima of the effective potential, in this case both possibilities are real and
gauge invariant. For the critical temperature, there is however an important difference
between these two approaches: if the critical temperature at some higher order is not
within the range in which there is metastability at leading order, then the direct approach
fails, while the strict perturbative approach continues to work. This issue is discussed
further below.

Table 1 summarises the theoretical properties of the different perturbative expansion
schemes we have considered. In section 5, we will further describe and test all these different

10Note that these two options for avoiding imaginary parts differ numerically.
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Method Gauge invariant Real
direct ✗ ✗

mixed ✓ for sufficiently small εeff
strict ✓ ✓

Table 1. Basic theoretical properties of different perturbative methods described in the text.
The column headings here refer to the properties of real physical quantities computed using these
methods, such as the free energy or critical temperature. Note that, while one can always get a real
result from a complex quantity simply by discarding the imaginary part by hand, we do not consider
such a result to be a genuinely real prediction of a given method. As Goldstone squared masses go
through zero at the LO broken phase, the direct method can yield spurious imaginary parts even
when perturbative corrections are arbitrarily small. The mixed method yields real physical results
when the expansion parameter εeff is sufficiently small, but as we argue around eq. (4.19) below, it
can yield spurious imaginary parts when higher-order corrections exceed some finite bound.

approaches for a numerical example, comparing them to lattice Monte-Carlo data. For the
remainder of this section, we formulate strict expansions for the effective potentials of
the previous sections, as well as expansions for thermodynamic quantities of interest. In
addition, we describe mixed approaches that combine direct and strict methods.

Strict expansions for a soft field. In the case of a soft-scale field undergoing a phase
transition, the effective potential has an expansion in the effective expansion parame-
ter εsoft,

Veff(v) = V0(v) + εsoftV1(v) + ε2
softV2(v) +O(ε3

softV0(v)). (4.2)

The minima of the potential can also be expanded as

vmin = v0 + εsoftv1 + ε2
softv2 +O(ε3

softv0), (4.3)

where the coefficients vi are determined by solving for the minima of the potential as an
expansion in εsoft. For a single field, this results in [40]

Veff(vmin) = V0 + εsoftV1 + ε2
soft

{
V2 −

1
2v1 · ∂2

vV0 · v1

}
+O(ε3

softV0), (4.4)

v1 = − 1
∂2

vV0
· ∂vV1. (4.5)

where we have introduced ∂v ≡ ∂
∂v , and all terms on the right-hand side of the equalities are

evaluated at v0. This last point is crucial for the desirable properties of this expansion, such
as order-by-order reality and gauge invariance. In analogy, we can write the pressure as

p = −TVeff(vmin) = p0 + εsoftp1 + ε2
softp2 +O(ε3

softT
4), (4.6)

where the coefficients incorporate corrections from the expansion of minima p0 = −TV0,
p1 = −TV1 and p2 = −T (V2 + 1

2v1 · ∂2
vV0 · v1).

The generalisation to multiple scalar fields follows by upgrading the multiplications in
eqs. (4.4) and (4.5) to matrix multiplications. The background field becomes a vector va
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with index a, and ∂a ≡ ∂
∂va

is the corresponding gradient operator. The second derivative
of the potential then becomes a matrix, and we find

Veff(vmin) = V0 + εsoftV1 + ε2
soft

{
V2 −

1
2va

1 · ∂a∂bV0 · vb
1

}
+O(ε3

softV0), (4.7)

va
1 = −(∂a∂bV0)−1 · ∂bV1, (4.8)

where (∂a∂bV0)−1 is the matrix inverse of the Hessian matrix ∂a∂bV0, and we have used
Einstein summation convention. As above, all terms on the right-hand sides of these
equations are evaluated at the LO minimum va

0 .
For a 2-field model, with v = (x, y), one can invert the Hessian matrix explicitly,

resulting in [37]

Veff(vmin) = V0 + εsoftV1 + ε2
soft

{
V2

+ 1
2

((
∂2V0
∂x∂y

)2
−
(

∂2V0
∂x2

)(
∂2V0
∂y2

))−1((∂V1
∂x

)2(∂2V0
∂y2

)
+
(

∂V1
∂y

)2(∂2V0
∂x

)
− 2

(
∂V1
∂x

)(
∂V1
∂y

)(
∂2V0
∂x∂y

))}
+O(ε3

softV0), (4.9)

where again the right-hand side is evaluated at the LO minima va
0 = (x0, y0).

The LO minima v0 describe different phases of the system, and the most likely
phase in thermal equilibrium corresponds to the global minimum. Later on, we refer to
eqs. (4.4), (4.7) and (4.9) as the soft EFT expansion for the effective potential. Technically,
this is a strict expansion of the effective potential around its LO minima, in a 3d EFT at
the soft scale. Notably, this expansion is gauge invariant order by order [40, 42], since it
satisfies the Nielsen-Fukuda-Kugo identities within the EFT [40, 41], and the construction
of the EFT through dimensional reduction is gauge invariant [27, 35].

The strict expansion strategy can be extended to determining the critical tempera-
ture [42], by writing

Tc = T0 + εsoftT1 + ε2
softT2 +O(ε3

softT0), (4.10)

where T0 is solved from

∆p0(T0) = 0, (4.11)

or equivalently −∆V0(T0) = 0. The next two orders in the expansion are11

T1 = −∆p1(T0)/∆p′0(T0), (4.12)

T2 =
(
−∆p2(T0)− T1∆p′1(T0)−

1
2T 2

1 ∆p′′0(T0)
)

/∆p′0(T0). (4.13)

Similarly, expanding the latent heat

L = L0 + εsoftL1 + ε2
softL2 +O(ε3

softT
4), (4.14)

11We remind the reader that prime is used to denote the temperature derivative, V ′
0 ≡ dV0

dT
.
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where

L0 = T0∆p′0(T0), (4.15)

L1 = T1∆p′0(T0) + T0
(
∆p′1(T0) + T1∆p′′0(T0)

)
, (4.16)

L2 = T2∆p′0(T0) + T0∆p′2(T0) + T1∆p′1(T0)

+
(
T 2

1 + T0T2
)
∆p′′0(T0) + T0T1

(
∆p′′1(T0) +

1
2T1∆p′′′0 (T0)

)
. (4.17)

We emphasize that in consistent EFT expansions we do not encounter the problem reported
in [42], whereby the condition ∆p0(T0) = 0 leads to a vanishing mass parameter µ2

3(T0) = 0
which then results in spurious IR divergences at two-loop order for T2. This problem has
its roots in the fact that the leading order potential used in [42] is the one at tree-level
at the soft scale, and does not have a barrier, but describes instead a second order phase
transition. In the approach we have advocated, the assumption of a barrier in the LO
potential is build-in to the EFT construction. In the case of an apparently second-order
transition at the soft scale, the correct description for the transition is the supersoft scale
EFT, cf. sections 3.2 and the discussion below in this section. Furthermore, EFT expansions
are manifestly real: since all expressions are evaluated at LO minima, all squared mass
eigenvalues are non-negative and hence no imaginary parts arise from the computation of
higher order corrections.

The combination of the soft EFT expansion for the effective potential and strict ex-
pansions for Tc and L is the strict method of table 1. This method is computationally
very efficient on an algorithm level, since once T0 is solved numerically from the condition
∆p0(T0) = 0, all corrections are simply evaluated at T0 from expressions that are known
analytically.12

Expansions in εsoft for the condensates follow naturally from the EFT expansion for
the effective potential. Concretely, for the scalar quadratic condensate

⟨ϕ†ϕ⟩ = ⟨ϕ†ϕ⟩0 + εsoft⟨ϕ†ϕ⟩1 + ε2
soft⟨ϕ†ϕ⟩2 +O(ε3

soft⟨ϕ†ϕ⟩0), (4.18)

where ⟨ϕ†ϕ⟩i = ∂Vi(v0)
∂µ2

3
and where for simplicity we assumed that the scalar is a Higgs

doublet. Note that since v0 often depends on the 3d mass parameter µ2
3, one first evaluates

the effective potential in each phase, and only then differentiates.
Alternatively, following a strategy of [37, 79, 80], one could determine the critical

temperature by computing ∆p(T ) using the soft EFT expansion, and then numerically
solving for its root ∆p(Tc) = 0. Such a direct determination of Tc is indeed computationally
efficient, as it does not require numerical minimisation of a complicated effective potential.
This is the mixed method of table 1: the effective potential is evaluated in a strict expansion
around the leading order minima, while thermodynamic quantities are determined directly
as functions of temperature. Indeed, the same method can be applied to the determination
of the latent heat [37, 80].

12Of course, expressions such as eq. (4.13) for T2 can have very long expressions in practice, but nev-
ertheless this can be handled analytically by symbolic calculation tools. This is much more efficient than
numerical minimisation of complicated potentials.
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With the mixed method, or more generally if we consider evaluating quantities at
temperatures other than T0, we come across the following problem: (here we denote the
expansion parameter again by εeff for generality)

The LO minima v0 exist in some range of temperatures T ∈ [T L
0 , T R

0 ]. The LO
critical temperature lies in this range T0 ∈ [T L

0 , T R
0 ]. In a power counting sense the

width of the range is T R
0 − T L

0 = O(T0), so for εeff → 0 the full critical temperature
Tc = T0 + εeffT1 + ε2

effT2 + . . . must also lie in this range. However, for a finite
expansion parameter εeff it is possible that Tc = T0 + εeffT1 + ε2

effT2 + . . . is outside
the range. This leads to the problem that for any temperature dependent function
F (Tc) an expansion F (Tc) = F0(Tc) + εeffF1(Tc) + . . . does not exist. Furthermore,
even if the LO minima exist at Tc, in the mixed method the range of existence of a
given phase is fixed at LO, and does not change at higher orders.

The proposed solution is to consider physical quantities as functions of

∆T = T − Tc, (4.19)

to treat the difference as of leading order ∆T = O(T0), and then to power expand everything
in εeff. The origin of the independent variable ∆T is fixed to the critical temperature order-
by-order, so that the expansion cannot cause T − Tc to change sign, or to grow too large
in magnitude. This helps to extend the principles of the strict method to temperatures
other than the critical temperature. Note that for a fixed T , the corresponding value of
∆T depends on the order to which we compute Tc. It is the difference from the critical
temperature in a given approximation.

Now consider the expansion of some generic quantity F :

F (T ) = F (∆T + Tc), (4.20)
= F0(∆T + T0) + εeff(F1(∆T + T0) + F ′

0(∆T + T0)T1) + . . . (4.21)

Evaluating this at ∆T = 0 gives

F (Tc) = F0(T0) + εeff(F1(T0) + F ′
0(T0)T1) + . . . , (4.22)

which reproduces the strict expansion at Tc. Note also that everything on the r.h.s. is
evaluated at T0 and hence within the range [T L

0 , T R
0 ], so it always exists. Next consider the

range of existence of the phases beyond LO. The r.h.s. of eq. (4.21) exists for ∆T + T0 ∈
[T L

0 , T R
0 ] and hence for

T ∈ Tc + [T L
0 − T0, T R

0 − T0] (4.23)

or, equivalently,

T ∈ [T L
0 , T R

0 ] + εeffT1 + ε2
effT2 + . . . (4.24)

So, the range of existence of phases is shifted at each order, by the amount that Tc changes
at that order. This essentially solves the problem of the static range. Note however that
the width of the range does not change from order to order; a feature which still seems
undesirable.
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Strict expansions for a supersoft field. In the case of a supersoft field, EFT ex-
pansions follow essentially the same logic. However, due to the different structure of the
effective expansion, the resulting expressions are slightly simpler. The effective potential
consists of two expansions

V supersoft
eff ≃ V supersoft

EFT,LO

(
1 + εsoft +O(ε2

soft)
)
+ εsuperV

supersoft
EFT,LO + . . . (4.25)

Since εsuper ∼ ε
3
2
soft, following ref. [30] we can write formally

V supersoft
eff = V0 + εV1 + ε2V2 + ε3V3 +O(ε4V0), (4.26)

where ε ∼ √
εsoft and V1 = 0 identically. In this expansion, the soft and supersoft ex-

pansions are mixed together. In principle one could do everything in a fully EFT way,
essentially resumming V supersoft

eff = ε0
super(V0+V2)+εsuperV3, i.e. both V0 and V2 are treated

as LO within the supersoft EFT. This is in analogy to not mixing the hard and soft expan-
sions in dimensional reduction. However, here we choose the former option and mix the
expansions together, so the supersoft scale EFT should be understood in the sense of this
mixed expansion. We note, that these two alternatives agree up to the order computed [34],
yet resum different sets of formally higher order corrections.

We emphasize that the order ε1 is not present in the effective potential, and this leads
to multiple simplifications in formulae below. We formally expand the minima as

vmin = v0 + εv1 + ε2v2 + ε3v3 +O(ε4v0), (4.27)

where v1 = 0 since V1 = 0. The expansion for the potential evaluated at the minimum
reads

V supersoft
eff (vmin) = V0(v0) + ε2V2(v0) + ε3V3(v0) +O(ε4V0(v0)). (4.28)

This expression is particularly simple up to and including O(ε3), since subleading correc-
tions to the minimum start at v2 = O(ε2v0), and the condition ∂vV0 = 0 at v0 ensures that
this does not contribute to the potential until O(ε4V0(v0)).

Later on, we refer to eq. (4.28) as the supersoft EFT expansion for the effective poten-
tial. Technically, this is a strict expansion of the effective potential around its LO minima,
in a 3d EFT at the supersoft scale. In analogy to case of the soft field in the previous
section, this expansion is gauge invariant [27, 30, 32], and eq. (4.28) can be utilised in the
mixed or strict methods of table 1.

For the strict method, we expand

Tc = T0 + εT1 + ε2T2 + ε3T3 +O(ε4T0). (4.29)

In analogy to the expansion of the minimum in eq. (4.27), here T1 = 0. The leading
order T0 is solved from ∆p0(T0) = 0 or −∆V0(T0) = 0. Higher order corrections are then
obtained iteratively

T1 = 0, (4.30)
T2 = −∆V2(T0)/∆V ′

0(T0), (4.31)
T3 = −∆V3(T0)/∆V ′

0(T0). (4.32)
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Again, we emphasize, that these EFT expansions are free from spurious IR divergencies
reported in [37, 42]. In the EFT expansion, a radiative barrier provided by the soft fields
is included to the LO effective potential, and the condition for T0 does not lead to a
vanishing mass parameter. Hence, the spurious singularities at higher orders are avoided,
and concretely T2 and T3 are finite.

Similarly, the latent heat has an expansion

L = L0 + εL1 + ε2L2 + ε3L3 +O(ε4L0). (4.33)

By writing the pressure as

p = p0 + εp1 + ε2p2 + ε3p3 +O(ε4p0), (4.34)

where p0 ≡ −TV0(v0), p1 = 0, p2 ≡ −TV2(v0) and p3 ≡ −TV3(v0), we obtain

L0 = T0∆p′0(T0), (4.35)
L1 = 0, (4.36)

L2 = T2∆p′0(T0) + T0
(
∆p′2(T0) + T2∆p′′0(T0)

)
, (4.37)

L3 = T3∆p′0(T0) + T0
(
∆p′3(T0) + T3∆p′′0(T0)

)
. (4.38)

Finally, the quadratic condensate has an expansion

⟨ϕ†ϕ⟩ = ⟨ϕ†ϕ⟩0 + ε2⟨ϕ†ϕ⟩2 + ε3⟨ϕ†ϕ⟩3 +O(ε4⟨ϕ†ϕ⟩0), (4.39)

where ⟨ϕ†ϕ⟩n = ∂Vn(v0)
∂µ2

3
.

Strict expansions for a soft field, induced by semisoft scale. At this point, after
the previous discussions, the methodology of strict expansions should be clear. However, for
the sake of completeness we repeat the corresponding discussion here. The only difference
is the form of the expansion of the potential, which in the case of the semisoft-induced
soft-scale EFT reads

V soft
eff = V0 + εsemiV1 + ε3

semiV3 + ε4
semiV4 + ε5

semiV5 +O(ε6
semiV0). (4.40)

Compared to the previous sections, we have many more orders available, and this time it
is the N2LO term that is missing (i.e. V2 = 0) due to the nature of the matching between
semisoft and soft scales. From this expansion all else follows by Taylor expansion. The
minima, pressure, latent heat, field condensates and other thermodynamic quantities can
all be expanded as

F = F0 + εsemiF1 + ε2
semiF2 + ε3

semiF3 + ε4
semiF4 + ε5

semiF5 +O(ε6
semiF0). (4.41)

First, one solves ∂vV = 0 for the minima, with each successive order determined by a linear
algebraic equation, avn + b = 0 where a and b are given in terms of lower orders. From
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this one can construct the pressure, the first few orders of which are

p0 = −T (V0) , p1 = −T (V1) , p2 = −T

(
−1
2
(∂vV1)2

∂2
vV0

)
, (4.42)

p3 = −T

(
V3 −

1
6
(∂vV1)2

(∂2
vV0)3

(
− 3∂2

vV0∂2
vV1 + ∂vV1∂3

vV0
))

, (4.43)

where as always the expressions on the right hand sides are evaluated at v0 and higher
orders can be generated iteratively. Notably, unlike in the supersoft EFT case, where p1
was zero due to V1 being zero, in this case all orders for the pressure are nonzero despite V2
being zero. Hence, solving ∆p(Tc) = 0, and computing L = Tc∆p′(Tc), the order-by-order
results reproduce the same expressions at the first few orders that were already encountered
in eqs. (4.12) and (4.13), as well as eqs. (4.16) and (4.17). Finally, the expansion coefficients
for quadratic scalar condensates follow from that of the pressure by their defining relations,
⟨ϕ†ϕ⟩n = ∂

∂µ2
3

(
−T−1pn

)
; see eqs. (1.4) and (1.5).

This completes the formal outline of our setup, and next we turn to applications.

5 Cosmological phase transitions

In this section, we will test the EFTs and perturbative expansions presented above, as
applied to possible cosmological thermal histories. As introduced in section 1 we use the
real-triplet extended SM as our concrete playground, in order to compare our perturbative
EFT methods to the lattice results of ref. [37]. We will also use the renormalisation scale
dependence of our perturbative results to provide an intrinsic measure of their uncertainty.
However, for the thermodynamics of this model, the lattice results are expected to be
correct up to very small statistical uncertainties, so they are the ultimate arbiter.

We would like to comment on a subtlety in comparing to ref. [37]. The lattice sim-
ulations of [37] were performed for a 3d EFT without the temporal components of gauge
fields, their effects being captured by the parameters of the EFT. Such EFTs are commonly
referred as “ultrasoft” scale EFTs, and have been studied using non-perturbative lattice
simulations e.g. in [21, 22, 70, 81, 82]. However, the derivation of such theories does not re-
quire scalar masses to be ultrasoft. Indeed, the only necessary assumptions therein are that
(i) m2

3 ≪ m2
D, i.e. scalar masses are much lighter than Debye masses, and (ii) h3v2 ≪ m2

D,
where h3 is a generic portal coupling between scalars and temporal gauge field compo-
nents, and v is the Higgs background field. Based on the power counting arguments of the
previous sections, the Higgs and triplet scalar fields are not expected to become ultrasoft,
except in the near vicinity of a second-order phase transition. For a reasonably strong first-
order phase transition, they are either of the soft or supersoft scales. As a consequence,
the temporal components of the gauge fields should be treated as described in section 2
in the construction of the EFT for the transitioning fields. In particular, assumption (ii)
can break down when the background field v2 becomes large. In this case, one should not
integrate out temporal gauge field components as described in [17].

Nevertheless, in order to provide an apples-to-apples comparison with the lattice re-
sults of [37], in all the numerical computations of this work, we incorporate contributions
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inducing→ transitioning direct mixed strict
hard→ soft e.g. [71] [35, 36, 80] [42]

soft→ supersoft — [80] [33]

Table 2. Table of perturbative approaches to the study of a symmetry-breaking phase transi-
tion. The column labels, direct, mixed and strict, refer to different approaches to carrying out the
perturbative computation. The row labels, hard→soft and soft→supersoft refer to different EFTs.
Here inducing refers to the lowest energy scale of fields which are integrated out, and which induce
the temperature-dependent barrier between phases; transitioning refers to the energy scale of the
transitioning fields. Each element in the table lists references where these approached have been
used in the literature.

from the temporal components of gauge fields as in [37, 39]. Furthermore, in the lattice
simulations of [37], dynamical effects of the U(1) subgroup in the 3d EFT were not in-
cluded, hence we set g′3 = 0 in perturbation theory as well, but note that we still keep
effects of g′ in the dimensional reduction matching relations, as in [37].

The effective potential for the soft-scale EFT of the real-triplet extended SM can be
found in [37], up to N2LO, or two-loops. Explicit results for the corresponding supersoft-
scale effective potential are given in appendix A.1, and results for soft scale effective po-
tentials including effects from the semisoft scale are collected in appendix A.2.

5.1 One-step symmetry-breaking transition

The two benchmark points studied non-perturbatively in ref. [37] both showed a succession
of two phase transitions, with the pattern: symmetric to triplet to Higgs phase.13 For now,
we will focus on the transition from the symmetric phase to the triplet phase.

As with other symmetry-breaking transitions, the symmetric to triplet transition ap-
pears to be of second order at tree level in the soft-scale EFT. Following the arguments of
section 2, this implies that in fact the transition takes place at lower energies, so the soft
scale should be integrated out. Barring further cancellations, we thus expect the transition
to take place at the supersoft scale. However, for completeness, and for comparison to the
previous literature, we also consider the possibility that the transition takes place at the
soft scale (though this will lead to IR divergences). For each EFT we consider each of the
perturbative methods introduced in the previous section. The matrix of possibilities are
summarised in table 2.

We have computed the triplet condensates according to each of the matrix of possibil-
ities shown in table 2. Our results, together with the lattice results of ref. [37] are shown
in figure 8 for BM1, and in figure 9 for BM2. Exceptions are made for the strict method in
the hard→soft EFT as well as the direct method in the soft→supersoft EFT, for which we
do not show the results in figures 8 and 9. For the former approach, strict expansions fail
as originally realised in [42]. At leading order in the soft theory the transition is of second

13Here we use the phase phase transition somewhat loosely. Depending on the mass and couplings of the
triplet scalar, the symmetry-breaking transition may be a smooth crossover, like the liquid-gas transition
of water above a pressure of 22 MPa.
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(b) Hard→soft EFT, mixed method
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(d) Soft→supersoft EFT, strict method

Figure 8. The triplet scalar condensate as a function of temperature, in different perturbative
approaches for the triplet transition in BM1, in the presence of a soft Higgs field that is not
dynamical for this transition. Bands depict variation due to RG scale, as explained in the main
text. Note that in panel (a) there are a number of data points missing in the N2LO result, due to
numerical difficulties.

order, and strict loop corrections do not modify the position of this transition, so that the
mixed and strict methods in the hard→soft EFT are equivalent. While the use of direct
minimisation in the soft→supersoft EFT has not appeared before in the literature, due to
its gauge dependence there is no clear reason to prefer it to the other methods applied to
the supersoft EFT, and we relegate the results to appendix B.

In the following, we discuss in turn the panels of figures 8 and 9, focusing on the
successes and failures of the different perturbative approaches. In all figures shaded bands
correspond to the range of predictions from varying the 3d RG scale over the set Λ3 ∈
{0.5T, T, 2T}, and therefore give an intrinsic measure of the theoretical uncertainty.

(a) Hard→ soft EFT, direct method. At LO there is a 2nd order transition at Tc ≈
134.5GeV, which is the temperature where the triplet 3d mass vanishes, and is below
the lattice transition temperature. The NLO result shifts the critical temperature
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(b) Hard→soft EFT, mixed method
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Figure 9. As figure 8, but for BM2. Note that the substantially larger portal coupling in
this case leads to larger uncertainties at lower orders, and slower convergence. Nevertheless, the
soft→supersoft strict method shows good agreement with the lattice at N2LO.

significantly above the lattice result, and the transition is of first order. Extending to
N2LO yields much closer agreement with the lattice results for both Tc and the values
of the condensates, yet note that there are a number of data points missing, appearing
as cuts in the otherwise continuous result. This is due to the possibility of our
direct minimisation algorithm14 failing. While this feature could be ameliorated by
improving the minimisation algorithm, we have stuck to the aforementioned algorithm
for the following reasons: the failure of direct minimisation at N2LO is a fairly
common occurrence compared to using the same algorithm for the potential at lower
orders. This is due to IR-sensitive logarithmic terms at two loops, that can result in
spuriously large contributions to the potential at field values where the corresponding
mass eigenvalues in the logarithm vanish, possibly preventing convergence to the
actual minimum. Such an issue may be mitigated with a cost in performance time,

14We used Mathematica’s NMinimize function, adopting the differential evolution method and choosing
tolerance parameters so that producing the N2LO data for one benchmark point took around one hour on
a laptop, with temperature steps ∆T = 0.25 GeV.
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thought this would be a limiting issue for model parameter space scans. To emphasize
this aspect, we have used the same minimisation algorithm at all orders, despite the
algorithm occasionally failing at N2LO, causing gaps in the corresponding plots in
figures 8 and 9. Note that RG improvement kicks in for the first time at N2LO, due
to the structure of running in these 3d EFTs [36, 68]. The width of the error bands
at LO and NLO are comparable, and in both cases significantly underestimates the
theoretical error.

(b) Hard→ soft EFT, mixed method. This method is known to fail when the LO
potential does not have a barrier between the minima [37, 42]. From figures 8b and 9b
one can see two clear failures of this approach: Tc is unchanged by higher orders, and
at N2LO there is a spurious divergence at Tc. The broken minimum exists only
after the triplet 3d mass parameter (µ2

Σ,3) becomes negative (when it is positive the
value of the effective potential in the triplet phase is imaginary), at which point the
triplet minimum immediately becomes the global one: the critical temperature is
therefore erroneously identified — at all orders — with the condition that the triplet
3d mass parameter vanishes. The divergence at the critical temperature arises from
a logarithm of the triplet mass parameter as it goes through zero. At higher orders
in this expansion it is expected that stronger IR diverges will occur.

(c) Soft→ supersoft EFT, mixed method. While this method is gauge-independent,
one can see from figures 8c and 9c that it yields spurious divergences at NLO and
N2LO for some RG scales. This problem arises at the edge of the range of temper-
atures where the LO result ceases to exist, resulting in ill-defined behaviour for the
condensate. This problem was further discussed around eq. (4.19) in section 4, where
the strict method was proposed as a general solution.

(d) Soft→ supersoft EFT, strict method. Finally, this approach resolves all the
theoretical problems encountered by the other approaches, and seemingly converges
towards the lattice results with impressive accuracy. For the more weakly coupled
BM1, the LO result in the supersoft EFT already agrees well with the lattice, and
higher orders lead to small improvements, especially noticeable in the broken phase.
However, it is for the more strongly coupled BM2 where this method clearly outshines
the others, especially in the vicinity of the phase transition, where this method con-
verges towards the lattice without spurious artefacts.

We highlight that despite the respective successes of different EFT expansions in pre-
dicting Tc and the value of the triplet condensate as a function of temperature, in all
approximations perturbation theory incorrectly predicts the character of the transition for
BM1. The transition is a smooth crossover, as measured on the lattice, whereas perturba-
tion theory predicts a weak first-order transition. In BM2 the transition is actually first
order, and perturbation theory predicts it correctly.
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Figure 10. Behaviour of the semisoft to soft expansion for the triplet to Higgs transition. In
the plots of the critical temperature, the horizontal band is the lattice result together with its
statistical uncertainty, and the bars show perturbative results at each order in the EFT expansion
with uncertainty due to varying the RG scale.

5.2 Two-step transition

Finally, we turn to a two-step phase transition, for which we suggest a novel prescription
in terms of two separate EFTs for consequent transitions. From the previous section, we
know that for the first transition to the triplet phase we need to use the supersoft EFT.
For the second transition, we have multiple options.

First, there is a possibility that the second transition happens at the soft scale. As
discussed in section 3.3.3, such a transition can be induced by the semisoft scale in addition
to the hard scale. We depict the results based on this approach in figure 10.15 This
figure depicts both condensates as well as the critical temperature for the triplet to Higgs

15For comparison, in appendix B we discuss results assuming that there is no enhancement from the
semisoft scale, and the transition at the soft scale is solely induced by the hard scale.
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Figure 11. Convergence of supersoft strict approximations, where in both cases ∆T has been
defined relative to the higher temperature transition. Note that the higher temperature transition
for BM1 is a crossover, so Tc here corresponds to a pseudo-critical temperature, defined as the peak
in the susceptibility for the scalar condensates.

transition, at each order in the expansion. The plots indicate some degree of convergence,
yet even at the highest orders we have computed they do not provide striking agreement
with the lattice results. This signals either that still higher order contributions should
be included (especially since several RG improvements kick in only at N6LO) or that
the assumption that the transitioning fields live at the soft scale is not correct, for the
benchmark points in question.

Hence, we next test the possibility that the transitioning fields of the second transition
live at the supersoft scale. This requires two separate EFTs for each of the triplet and Higgs
phases. Comparison of the N2LO result to lower orders and convergence of the expansion
is depicted side-by-side in the triptychs of figure 11. These triptychs of plots indicate
reasonably good convergence, from LO results which only rough accord with the lattice
data, each additional order yields closer agreement. We observe that at N2LO our novel
perturbative computation of the scalar condensates using EFT expansions at the supersoft
scale provides a striking correspondence with lattice results. While the convergence is
clearer in BM1, it is also the case in BM2 which has a portal coupling more than twice
as large, albeit the critical temperature for the second transition is further away from the
lattice result. In analogy to figure 1 in section 1.1 we summarise our analysis in figure 12
which recollects the N2LO result of figure 11. This plot indeed demonstrates the key
result of this article: EFT expansions resolve all theoretical blemishes that have haunted
perturbative predictions of the past, and while doing so, provide results that are not far
away from those obtained on the lattice.
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6 Discussion

In the past few decades, a rich patchwork of perspectives and insights have been developed
regarding the reliability of perturbation theory to describe cosmological phase transitions.
In one thread of the inquiry, a range of thermal hierarchies of scale were identified, and
corresponding resummation schemes to correctly account for them. The early development
of high-temperature dimensional reduction was based around the hard, soft and ultrasoft
scales [17, 19], yet another scale, the supersoft scale, was identified as central to first-order
phase transitions [15]. In a separate thread of inquiry, a range of different perturbative
methods were developed for the study of equilibrium thermodynamics, from direct min-
imisation of the thermal effective potential to strict ℏ-expansions. Concerns were raised
that the direct minimisation method led to gauge-dependent results [42], while strict ℏ-
expansions appeared to lead to IR divergences [42]. Concern about gauge dependence was
then later revived in [79], further inspiring [25]. In recent years, significant progress towards
resolving the aforementioned problems was made in refs. [26–30, 32, 35, 36, 54, 61, 80, 83].
In this work at hand, we have unified, generalised and expanded most of this progress to a
revised EFT framework for equilibrium thermodynamics that builds from the dimension-
ally reduced 3d EFTs [17, 18, 21–23, 68], but also consistently applies strict power-counting
expansions in perturbation theory [30].

Concretely, we have simultaneously tested both these threads of inquiry, and have
found a consistent resolution to all the concerns in terms of self-consistent perturbative
EFT expansions. The results of recent lattice Monte-Carlo simulations at two benchmark
points in the real-triplet extended SM [37] have formed the bedrock of these tests. This
has allowed us to obtain an unambiguous measure of the error in different perturbative
approaches.

Our results, summarised in figure 12, attest to the correctness of a particular per-
turbative approach, which is both theoretically consistent and numerically reliable. This
approach is rather simple, and in hindsight obvious. It is the following:

1. Successively integrate out UV modes, starting from the hard scale, and working
towards the IR, and stopping when one meets the mass scale of the transitioning
fields.

2. The mass scale for the transitioning fields can be identified by power counting, applied
to the tree-level potential of the EFT. If there is an apparent second-order phase
transition at tree-level within this EFT, then more modes must be integrated out.

3. Carry out strict perturbative expansions within the EFT for the transitioning field,
ensuring to remain within the region of validity of the EFT.

Point 1 ensures that all the necessary resummations are carried out. Consideration of
point 2 has revealed that the transitioning fields often live at the supersoft scale. Finally,
point 3 ensures that the final results are order-by-order gauge invariant, renormalisation
scale invariant and real. Together this perturbative approach has demonstrated quanti-
tative agreement with lattice Monte-Carlo simulations. We emphasize that in our strict

– 37 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
8

100 110 120 130 140 150 160

T (GeV)

0

1

2

3

4 2〈Φ2〉/T
〈Σ2〉/T

(a) BM1

90 100 110 120 130

T (GeV)

0

2

4

6

(b) BM2

Figure 12. Comparison of the thermal evolution of scalar condensates in the real-triplet extended
Standard Model. Solid lines show the N2LO results of strict perturbation theory within supersoft-
scale EFTs, with corresponding bands giving the renormalisation scale dependence. Scatter points
show the lattice results of ref. [37]. The supersoft EFTs are constructed separately in each broken
phase, with the triplet field treated as supersoft within the triplet phase and the Higgs field treated
as supersoft within the Higgs phase. This approach yields gauge-invariant results, in good agreement
with the lattice, and a significant improvement over previous perturbative approaches (see figure 1).

EFT expansions, the underlying expressions for effective potentials and for thermodynamic
quantities are astonishingly simple — excepting complicated, yet closed form, expressions
for LO broken mimima in cases of radiatively generated barriers — and the striking agree-
ment with lattice results highlights that the underlying physics is well captured in pertur-
bation theory.16

The good agreement of perturbation theory with the lattice shown in figure 12 should
be contrasted with that of figure 1. The crucial difference is that in figure 12 the supersoft
scale has been correctly identified as the energy scale of the transitioning fields. Our
results align with [30, 61], which also compared perturbation theory to the lattice, and
came to similar conclusions. Yet, in this work at hand we have for the first time applied
these developments to a BSM theory, where the studied phase transition pattern is more
complicated and leads to a rich chain of EFT setups. Indeed, in the course of this study, a
number of further technical manoeuvres have been identified. We have shown how, when
one is interested in thermodynamic observables away from the critical temperature, it is
advantageous to re-express quantities in terms of deviations from the critical temperature
∆T = T −Tc. This resolves a problem of the existence of the LO result required by a strict
expansion, and underlies the difference between our mixed and strict approaches. We have
also discovered that a new scale between the hard and soft scales, here dubbed the semisoft
scale, arises naturally in strong two-step first-order phase transitions.

16Yet we emphasize again that perturbation theory cannot separate weak first-order transitions from
crossovers, or describe purely non-perturbative phenomena related to phase transitions, such as condensa-
tion of monopoles [84].
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The strict perturbative EFT expansions presented in this work can still be extended by
computing the final perturbative orders that are available before crashing against the Linde
problem of non-Abelian gauge theories at four-loop order. Computing these final orders
requires three-loop vacuum diagrams, and provides an intriguing future challenge analogous
to that achieved in hot QCD [19, 85, 86]. Yet another, different kind of challenge will be to
incorporate the presented EFT expansions to parameter space scans of phenomenologically
interesting models. Herein the challenge lies in the implementation: different EFTs may
be required to study different parameter points, and even in a single parameter point there
can be several EFTs in different temperature regimes. This issue has also been raised in
the recent ref. [34] and is further discussed in appendix B. This reference indeed discusses
many of the same ideas as detailed in our work at hand, yet our computation includes
concrete applications to a BSM model, as well as comparison to lattice data.

Finally, while we have limited ourselves to the study of equilibrium thermodynamics,
EFT expansions are expected to carry over to the perturbative study of other properties of
first-order phase transitions, such as the bubble nucleation rate and the bubble wall speed,
as well as the sphaleron rate. For the bubble nucleation rate, refs. [26, 27, 29, 33] have
in fact already used the approach proposed here. On the other hand, transferring what
we have learnt here in this article to tunnelling will be challenging. While it is possible
to utilise different EFTs in different phases for computing the free-energy of homogeneous
phases, for bubble nucleation this must be generalised to non-trivial paths in field space.
The formulation of the EFT description of bubble nucleation for such a two-step transition,
warrants dedicated future studies.
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A EFT expansions with doublet and triplet fields

In this appendix we present explicit expressions for EFT expansions of the effective poten-
tial for the real-triplet extended Standard Model. We can immediately read the effective
potential for the soft scale EFT from [37]. Therein, the presented “ℏ-expansion” matches
the soft-scale strict expansion of section 4. Our task is then to compute the effective
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potentials at the supersoft scale EFT, as well as the soft scale EFT in the presence of fields
at the semi-soft scale.

For this computation, we can read from [37] all the two-loop diagrams we need, which
we reorganise into EFT expansions. In this section, all masses mi are mass eigenvalues in
the 3d EFT, and are not to be confused with physical pole masses. We use Landau gauge
throughout.

A.1 Supersoft EFT

In this section, we use the following notation for the supersoft scale effective potentials in
the EFT expansion

V supersoft
eff = V0 + V1 + V2 + V3 +O(ε4V0), (A.1)

where each order beyond V0 at LO is suppressed by ε ∼ √
εsoft relative to the previous

order; see the discussion around eq. (4.26). Notably, V1 is identically zero.

Supersoft Higgs doublet. For simplicity, we start with the 3d EFT of the Standard
Model with SU(2) and U(1) gauge fields. We parametrise the Higgs doublet in the 3d
EFT as

ϕ =
(

G+

1√
2(v + h + iz)

)
, (A.2)

i.e. we compute the effective potential in terms of real background field v > 0. The leading
order contribution reads

V doublet
0 = 1

2µ2
3v2 + 1

4λ3v4 − 1
6π

(
2m3

W + m3
Z

)
, (A.3)

where mW = 1
2g3v and mZ = 1

2

√
g2

3 + g′3
2v. The two-loop contribution from gauge fields

and ghosts reads

V doublet
2 = 1

(4π)2
1

8(g2
3 + g′3

2)

(
− 1

8v2
(
9g6

3 + 21g4
3g′3

2 + 13g2
3g′3

4 + 3g′3
6 + 4g2

3g′3
4 m2

W + m2
Z

mW mZ

)

+ g2
3g′3

2
m2

W − g′3
4
m2

Z + g4
3

(
2m3

W

mZ
+ 14mW mZ + 14m2

Z − 10 m3
Z

mW
+ m4

Z

m2
W

)
+
(
− 32g2

3g′3
2
m2

W + (3g6
3 + 5g4

3g′3
2 + 3g2

3g′3
4 + g′3

6)v2
)
ln(2)

+ 1
2g2

3g′3
4
v2 m2

Z

m2
W

ln
(

mW + mZ

mZ

)
+ 3

2g4
3(g2

3 + 3g′3
2)v2 ln

(
mW m

1
2
Z

Λ
3
2
3

)

+ 21
4 g2

3g′3
4
v2 ln

(
m

3
7
Z(mW + mZ)

4
7

Λ3

)
+ 40g2

3g′3
2
m2

W ln
( Λ3

mW

)
(A.4)

+ 1
4g′3

4(8m2
Z + 3g′3

2
v2) ln

(
mZ

Λ3

)
+ g4

3
m6

Z

m4
W

ln
(

mZ(2mW + mZ)
(mW + mZ)2

)

+ 8g4
3

m4
Z

m2
W

ln
(2mW + mZ

mW + mZ

)
+ 4g4

3m4
W − g2

3g′3
4m2

W v2

2m2
Z

ln
(

mW

mW + mZ

)
+ 20g4

3m2
Z ln

((mW + mZ)Λ3
(2mW + mZ)2

)
+ 8g4

3m2
W ln

( Λ5
3

(mW + mZ)(2mW + mZ)4

))
.
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This can be obtained from the result of ref. [37] by dropping triplet contributions and by
setting scalar masses to zero inside two-loop diagrams. The resummed mass eigenvalues
for the scalar fields — Higgs (h) and Goldstone bosons (G±, z) — read

m̃2
h = d2

dv2 V doublet
0 = µ2

h,3 + 3λ3v2 − v

8π

(
2g3

3 + (g2
3 + g′3

2)
3
2
)
, (A.5)

m̃2
G = 1

v

d

dv
V doublet

0 = µ2
h,3 + λ3v2 − v

16π

(
2g3

3 + (g2
3 + g′3

2)
3
2
)
, (A.6)

where the Goldstone square mass eigenvalue is triply degenerate. These expressions can be
derived starting from a general potential written in terms of the gauge-invariant bilinear
ϕ†ϕ, and expanding to quadratic order in fluctuations,

V (
√
2ϕ†ϕ) = V (v) + 1

2h2V ′′(v) + 1
2z2 1

v
V ′(v) + . . . (A.7)

where prime denotes a derivative with respect to v, and we have shown only the relevant
bilinear terms. In terms of resummed masses, the one-loop supersoft contribution reads

V doublet
3 = − 1

12π

(
(m̃2

h)
3
2 + 3(m̃2

G)
3
2
)
. (A.8)

SU(2)+Higgs. The above expressions for the supersoft effective potential becomes much
more compact when the U(1) gauge sector is decoupled, i.e. in the limit g′3 → 0, mZ → mW ,

V
SU(2)+Higgs

eff =
(1
2µ2

3v2 + 1
4λ3v4 − 1

16π
g3

3v3
)

V0

+ 1
(4π)2

(
− 3

64g4
3v2
(
− 11 + 42 ln

(3
2

)
+ 34 ln

(
g3v

Λ3

)))
V2

− 1
12π

(
3
(

µ2
3 + λ3v2 − 3

16π
g3

3v

) 3
2
+
(

µ2
3 + 3λ3v2 − 3

8π
g3

3v

) 3
2
)

V3

, (A.9)

where we have substituted mW = 1
2g3v. This result has been previously obtained in ref. [30].

Supersoft doublet with a soft triplet. Next, we include the effect of a soft triplet,
i.e. the triplet remains at zero background field, and is integrated out together with the
gauge fields. One-loop triplet contributions arise at leading order, so that

V0 = V douplet
0 + V soft triplet

0 , (A.10)

where

V soft triplet
0 = − 1

12π
3
(
m2

Σ

) 3
2
, (A.11)

and m2
Σ = µ2

Σ,3 + 1
2a2,3v2. Lagrangian parameters are defined in eq. (1.1). The triplet

squared mass is triply degenerate, since the neutral and charged triplet have equal masses
for vanishing triplet background field. Note, that here we have assumed that also µ2

Σ,3 is
soft: this is relevant for one-step transitions directly to the Higgs phase in the presence of a
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soft triplet that can enhance the transition strength, but also for the second step of a two-
step phase transition. In practice this requires that there is enough supercooling between
the two transitions, and the magnitude of µ2

Σ,3 (which can and often will be negative) can
increase parametrically from the supersoft to the soft scale after the first transition. In this
case, the expression for the minimum of the LO potential of eq. (A.10) becomes utterly
complicated, yet it can still be found analytically. Below we comment on the case where
µ2

Σ,3 is still at the supersoft scale, albeit m2
Σ is soft.

Resummed scalar masses related to the supersoft doublet read

m̃2
h = d2

dv2 V0 = µ2
h,3 + 3λ3v2 − v

8π

(
2g3

3 + (g2
3 + g′3

2)
3
2
)
− 3

8π
a2,3

µ2
Σ,3 + a2,3v2

mΣ
, (A.12)

m̃2
G = 1

v

d

dv
V0 = µ2

h,3 + λ3v2 − v

16π

(
2g3

3 + (g2
3 + g′3

2)
3
2
)
− 3

8π
a2,3mΣ. (A.13)

V3 is of same form as before in eq. (A.8), but with the above modified supersoft masses.
Next we have

V2 = V doublet
2 + V soft triplet

2 , (A.14)

where the triplet contributions read

V soft triplet
2 = 1

(4π)2

(
15
4 b4,3m2

Σ − 3
8a2

2,3v2 − 1
2g2

3(m2
W − 4mW mΣ − 6m2

Σ)

+ 6g2
3g′3

2m2
Σ + g4

3(−m2
Z + 4mZmΣ + 6m2

Σ)
4(g2

3 + g′3
2)

+
(
2g2

3g′3
2m2

Σ
g2

3 + g′3
2 − 3

4a2
2,3v2

)
ln
( Λ3
2mΣ

)

− g2
3(m2

W − 4m2
Σ) ln

( Λ3
mW + 2mΣ

)
− g4

3(m2
Z − 4m2

Σ)
2(g2

3 + g′3
2)

ln
( Λ3

mZ + 2mΣ

))
.

(A.15)

If µ2
Σ,3 is supersoft despite m2

Σ being soft, we can account for the effect of the triplet
3d mass parameter as a perturbative mass insertion in the matching. In this case, the LO
potential has a simple expression

V0 = 1
2µ2

3v2 + 1
4λ3v4 + C|v|3, (A.16)

where C ≡ − 1
48π

(
2g3

3 +(g2
3 + g′3

2)
3
2 +3

√
2a

3
2
2,3

)
. The broken minimum of this potential has

the simple expression

vbroken =
−3C +

√
9C2 − 4λh,3µ2

h,3

2λh,3
. (A.17)

Evaluating expressions in this LO minimum in strict expansions, results in relatively sim-
ple, closed-form expressions for many quantities. The resummed Higgs and Goldstone
masses read

m̃2
h = d2

dv2 V0 = µ2
h,3 + 3λ3v2 − v

8π

(
2g3

3 + (g2
3 + g′3

2)
3
2 + 3

√
2a

3
2
2,3

)
, (A.18)

m̃2
G = 1

v

d

dv
V0 = µ2

h,3 + λ3v2 − v

16π

(
2g3

3 + (g2
3 + g′3

2)
3
2 + 3

√
2a

3
2
2,3

)
. (A.19)
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Triplet NLO contributions are obtained by replacing eq. (A.15) as

V soft triplet
2 → V soft triplet

2 |m2
Σ→M2

Σ
−

3µ2
Σ,3MΣ

8π
, (A.20)

where M2
Σ ≡ 1

2a2,3v2, and we have added the triplet one-loop diagram with a single IR
mass insertion, which contributes at O(εsoftV0) to the soft-to-supersoft matching.

Supersoft triplet. In this section, we assume that the triplet is supersoft, whereas the
Higgs is soft. For simplicity, we start with the case of a sole triplet, and only after add
contributions from the Higgs. Note that the triplet is not charged under the U(1) gauge
group. We parametrise the triplet field as

Σ⃗ =

 Σ1

Σ2

x +Σ3

 , (A.21)

where the triplet background field is denoted by x > 0. The leading order effective potential
reads

V triplet
0 = 1

2µ2
Σ,3x2 + 1

4b4,3x4 − 1
6π

(
2m3

W

)
, (A.22)

where mW = g3x, i.e. the W-boson contribution is resummed together with a tree-level
potential. The Z boson is massless in the triplet phase. Two-loop diagrams with W bosons
and ghosts yield an extremely simple result

V triplet
2 = − 1

(4π)2 2g4
3x2, (A.23)

in which we have used mW = g3x. Note that no logarithmic terms arise: in the sole triplet
case the triplet mass parameter does not run at this order.17 In the supersoft scale EFT
triplet masses are those resummed by the soft gauge-field contributions. For neutral and
charged triplets in the broken triplet phase we have

m̃2
Σ0 = d2

dx2 V triplet
0 = µ2

Σ,3 + 3b4,3x2 − 2x

π
g3

3, (A.24)

m̃2
Σ± = 1

x

d

dx
V triplet

0 = µ2
Σ,3 + b4,3x2 − x

π
g3

3. (A.25)

Consequently, the one-loop triplet diagrams yield

V triplet
3 = − 1

12π

(
(m̃2

Σ0)
3
2 + 2(m̃2

Σ±)
3
2
)
. (A.26)

17In the 3d counterterm δµ2
Σ,3 presented in [37], the g4

3 contribution comes solely from the Higgs doublet
loops.
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Supersoft triplet with soft Higgs doublet. Finally, we include the soft Higgs doublet
contributions. At leading order, the resummed supersoft scale effective potential reads

V0 = V triplet
0 + V soft doublet

0 , (A.27)

where

V soft doublet
0 = − 1

12π
4
(
m2

ϕ

) 3
2
, (A.28)

where m2
ϕ = µ2

h,3 + 1
2a2,3x2 is the quadruply degenerate mass squared eigenvalue for the

Higgs field. Again, we have first assumed here that µ2
h,3 is soft. Resummed masses for

neutral and charged triplets get new contributions accordingly,

m̃2
Σ0 = d2

dx2 V0 = µ2
Σ,3 + 3b4,3x2 − 2x

π
g3

3 − 1
2π

a2,3
µ2

h,3 + a2,3x2

mϕ
, (A.29)

m̃2
Σ± = 1

x

d

dx
V0 = µ2

Σ,3 + b4,3x2 − x

π
g3

3 − 1
2π

a2,3mϕ. (A.30)

The form of V3 is the same as before (eq. (A.26)), with the above mass squared eigenvalues.
At two-loop, contributions involving doublet scalar diagrams result in

V2 = V triplet
2 + V soft doublet

2 , (A.31)

where

V soft doublet
2 = 1

(4π)2

(1
8g2

3(−3m2
W + 8mW mϕ + 18m2

ϕ)

− 1
2a2

2,3x2 + 1
8g4

3x2 + 3
4m2

ϕ(g′3
2 + 8λh,3)

+
(
(g2

3 + g′3
2)m2

ϕ − a2
2,3x2

)
ln
( Λ3
2mϕ

)
− 1

2g2
3(m2

W − 4m2
ϕ) ln

( Λ3
mW + 2mϕ

)
+ 1

2g2
3(g2

3x2 − m2
W )
[
8 ln(2)− ln

( Λ3
mW

)])
, (A.32)

in which the last term in fact vanishes since mW = g3x.
Finally, if we assume µ2

h,3 to be supersoft, so that in eqs. (A.28), (A.29) and (A.30)
one can set µ2

h,3 to zero, and replace eq. (A.32) by

V soft doublet
2 → V soft doublet

2 |m2
ϕ
→M2

ϕ
−

µ2
h,3Mϕ

2π
, (A.33)

where M2
ϕ ≡ 1

2a2,3x2, and the last term is the one-loop Higgs diagram with one mass
insertion, i.e. the first correction in an expansion in the supersoft mass µ2

h,3. As above in
the case of the supersoft doublet, in this case the LO potential leads to a simple analytic
formula for the minimum at LO, and corresponding strict expansions have relatively simple
analytical expressions.

These expressions complete our derivation of effective potentials at the supersoft scale.
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A.2 Semisoft scale induced soft EFT

In this section, we set g′3 = 0 from the get go. Then mZ = mW in the Higgs phase. The
diagrammatic power counting for this section is outlined in figure 7.

Higgs phase. The effective potential in the Higgs phase has an expansion

V soft
eff (v) = V0 + V1 + V2 + V3 + V4 + V5 +O(ε6V0), (A.34)

where ε ∼
√

g/π. Mass eigenvalues read m2
W = 1

4g2
3v2 ∼ (√gπ)T 2, and a triple-degenerate

m2
Σ = µ2

Σ,3 + M2
Σ. Here the semisoft piece is M2

Σ ≡ 1
2a2,3v2 ∼ (√gπ)T 2, while µ2

Σ,3 ∼ g2T 2

is soft. The soft masses read m2
h = µ2

h,3+3λ3v2 and m2
G = µ2

h,3+λ3v2. The LO contribution
is just the tree-level potential (for vanishing triplet background field)

V0(v) =
1
2µ2

h,3v2 + 1
4λ3v4. (A.35)

The NLO potential is the one-loop contribution with semisoft masses

V1(v) = − 1
12π

(
6m3

W + 3M2
Σ

)
. (A.36)

N2LO vanishes, V2 = 0, and the result at N3LO is given by one soft-mass insertion of the
triplet to the one-loop bubble diagram

V3(v) = −
3MΣµ2

Σ,3
8π

. (A.37)

All higher order terms include contributions from the soft EFT, and we highlight these
contributions separately below, in addition to matching contributions from the semisoft
scale. At N4LO we get

V4(v)=
1

(4π)2
3
64

(
64g2

3mW MΣ + g4
3v2
(
− 3 + 8 ln(2)− 6 ln

( Λ3
mW

))

+ 8g2
3

(
12M2

Σ+m2
W (5−21 ln(3))+20m2

W ln
( Λ3

mW

)
− 4(m2

W −4M2
Σ) ln

( Λ3
mW +2MΣ

))

+ 8a2
2,3v2

(
− 1− 2 ln

( Λ3
2MΣ

)))
+
(
− 1

12π

(
m3

h + 3m3
G

))
soft EFT

, (A.38)

Here the soft EFT contribution results simply from one-loop bubble diagrams with unre-
summed masses. The matching contribution comprises of two-loop diagrams without soft
mass insertions. At N5LO there are contributions from the triplet one-loop bubble with
two soft mass insertions, as well as a contribution from within the soft EFT,

V5(v) =
1

(4π)2

(
−

3πµ2
Σ,3

2MΣ

)
+ 1

(4π)2

(3
8(
√
2a

3
2
2,3 + g

3
2
3 )(3mG + 2mh)v

)
soft EFT

. (A.39)

The soft EFT pieces at N5LO result from resummations of V1. That is using these re-
summed masses,

m̃2
h = d2

dv2

(
V0 + V1

)
, (A.40)

m̃2
G = 1

v

d

dv

(
V0 + V1

)
, (A.41)
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inside one-loop bubble diagrams, and then re-expanding in ε. We higlight that our result for
the soft EFT expansion of the effective potential is RG invariant at the order we truncate
our computation.

Triplet phase. The effective potential in the triplet phase has an expansion

V soft
eff (x) = V0 + V1 + V2 + V3 + V4 + V5 +O(ε6V0), (A.42)

where ϵ ∼
√

g/π. Mass eigenvalues read m2
W = g2

3x2 ∼ (√gπ)T 2, and a quadruply
degenerate m2

ϕ = µ2
h,3 + M2

ϕ, where the semisoft piece is M2
ϕ ≡ 1

2a2,3x2 ∼ (√gπ)T 2 and
µ2

h,3 ∼ g2T 2 is soft. Soft masses are m2
Σ0

= µ2
Σ,3 + 3b4,3x2 and m2

Σ± = µ2
Σ,3 + b4,3x2. In

analogy to the computation for the Higgs phase result, we get the following expressions,

V0(x) =
1
2µ2

Σ,3x2 + 1
4b4,3x4, (A.43)

and

V1(x) = − 1
12π

(
4m3

W + 4M2
ϕ

)
, (A.44)

at LO and NLO, respectively. Again, the N2LO contribution vanishes V2(x) = 0, and at
N3LO we have

V3(x) = −
Mϕµ2

h,3
2π

. (A.45)

At higher orders, in analogy to the computation in the Higgs phase, we get

V4(x) =
1

(4π)2
1
8

(
g2

3

(
8mW Mϕ + 18M2

ϕ − 3m2
W

)
− 4g2

3(m2
W − 4M2

ϕ) ln
( Λ3

mW + 2Mϕ

)

− (4a2
2,3 + 15g4

3)x2 + 8(g2
3M2

ϕ − a2
2,3x2) ln

( Λ3
2Mϕ

)

+ 1
2g2

3(g2
3x2 − m2

W )
(
8 ln(2)− 9 ln

( Λ3
mW

)))

+
(
− 1

12π

(
m3

Σ0 + 2m3
Σ±

))
soft EFT

, (A.46)

(note that the penultimate line in fact vanishes identically) and

V5(x) =
1

(4π)2

(
−

2πµ2
h,3

Mϕ

)
+ 1

(4π)2

(
(
√
2a

3
2
2,3 + 4g

3
2
3 )(mΣ0 + mΣ±)x

)
soft EFT

, (A.47)

at N4LO and N5LO respectively. In particular, the soft EFT pieces at N5LO result from
resummations of V1 using

m̃2
Σ0 = d2

dx2

(
V0 + V1

)
, (A.48)

m̃2
Σ± = 1

x

d

dx

(
V0 + V1

)
. (A.49)

Again, our result is RG invariant at the order we truncate.
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Figure 13. Convergence of the direct minimisation method within the supersoft EFT for both
transitions. Already lower order results are fairly close to lattice results, and convergence is clear.
Notably in BM2, the first transition is seemingly weaker at higher orders compared to LO, as
indicated by the size of the discontinuity in the triplet condensate.

B Direct minimisation

In the past few decades, direct minimisation of the real part of the thermal effective po-
tential in Landau gauge has solidified itself as the standard meta in studies of cosmological
phase transitions. Most studies resort to a one-loop approximation, as for generic models
this has an explicit and relatively simple formula, however the downside is that it suf-
fers from rather large theoretical uncertainties. When going beyond one-loop accuracy,
the functional form of the effective potential becomes much more complicated and direct
minimisation becomes numerically expensive. On the other hand, strict EFT expansions
are numerically cheap to evaluate, once higher order corrections to the effective potential
are known, as they can be obtained by straightforward Taylor expansions around leading
order results. All higher order corrections are obtained simply by evaluating these expres-
sions numerically. In order to provide a comparison of these approaches, in this appendix
we present results obtained by direct minimisation of the real part of the Landau-gauge
effective potential, both for the supersoft and soft scale EFTs.

First, figure 13 showcases the supersoft EFT and the direct method for both transitions
at both benchmark points. Despite residual gauge dependence and the need to discard the
imaginary part of the potential in minimisation, the result for the value of the condensate
in the broken phase and for the critical temperature align with the lattice data fairly
reliably. Notably, already the leading order result is reasonably good, yet N2LO is even
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Figure 14. Convergence of the direct minimisation method for the hard→soft EFT. Results at
lower orders are seemingly far off, while at N2LO, or two-loops, the perturbative result agrees
fairly well with the lattice data despite its theoretical hiccups related to imaginary parts and gauge
dependence. However, note that around the higher critical temperatures there are a number of
perturbative data points missing. This is due to the numerical minimisation algorithm failing with
default tolerance and method arguments, and is a common issue arising when directly minimising
the real part of effective potentials at higher loop orders.

better, indicating convergence. On the other hand, given the computational cost of direct
minimisation, there should be no practical reason why not to upgrade this computation by
a strict expansion, the results of which are shown in figure 11.

Finally, we present triptychs of the convergence of direct minimisation for the
hard→soft EFT in figure 14 for both BM1 and BM2 and for both transitions. We ob-
serve that while LO (tree-level) and NLO (one-loop) leave much to hope for, the result
at N2LO (two-loop) agrees fairly well with the lattice results for both benchmark points,
for both the value of the condensates and the critical temperatures. This observation pro-
vides some support for using the direct minimisation method within the hard→soft EFT
in parameter-space scans of BSM theories, as long as the computation is performed at two-
loop order. Despite the lack of theoretical robustness, this method allows one to scan wide
regions of BSM theory parameter space in a single EFT, in contrast to EFT expansions
which require delicate usage of chains of EFTs, potentially even in a single parameter point.
Yet in practice, one major downside of the direct approach at two-loop order is the com-
putational cost of minimising complicated multivariate functions. This motivates pursuing
the automation of EFT expansions, which are numerically significantly less expensive and
furthermore theoretically sound.
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