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ð1þ 1Þ-dimensional locally de Sitter–Friedmann-Robertson-Walker cosmologies with compact spatial
sections allow cosh, sinh, and exponential evolution laws, each with a freely specifiable spatial
circumference parameter, and the value of this parameter has an invariant geometric meaning for the
cosh and sinh evolution laws. We identify geometrically preferred states for a quantized massive scalar field
on these cosmologies, some singled out by adiabatic criteria in the distant past, with an ambiguity
remaining due to a massive zero mode, and others induced from the Euclidean vacuum on standard (1þ 1)-
dimensional de Sitter space by a quotient construction. We show that a comoving quantum observer,
modelled as an Unruh-DeWitt detector, can distinguish these states from the Euclidean vacuum on standard
de Sitter space. Numerical plots are given in selected parameter regimes. We also evaluate the field’s stress-
energy tensor expectation value for those states that are induced from the Euclidean vacuum by a quotient
construction.
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I. INTRODUCTION

ðdþ 1Þ-dimensional de Sitter spacetime, dSdþ1, admits
for all d ≥ 1 foliations as a spatially homogeneous
Friedmann-Robertson-Walker (FRW) cosmology where
the scale factor as a function of the cosmological time is
a hyperbolic cosine, a hyperbolic sine, or an exponential.
The case of four spacetimedimensions,d ¼ 3, is described in
[1], and the generalization to any d ≥ 1 is straightforward.
For the cosh scale factor the foliation is global on dSdþ1,
whereas for the sinh and exponential (exp) scale factors the
foliation covers only part of dSdþ1. Hence, for a quantized
massive scalar field, the Euclidean vacuum in dSdþ1 [2–6]
induces on each of these cosmologies a quantum state, and to
any local quantum observer this state is indistinguishable
from the Euclidean vacuum on dSdþ1.
In this paper we address how the situation changes when

these FRW foliations of de Sitter are generalized to FRW
cosmologies that are still locally de Sitter but have a
compact spatial topology, even for the sinh and exp scale
factors. Are there geometrically distinguished quantum
states, and can a local quantum observer, modeled as an

Unruh-DeWitt (UDW) detector [5,7,8], operationally dis-
tinguish them from the Euclidean vacuum on de Sitter? In
3þ 1 dimensions, spatial quotients of this type have
sometimes been explored as a possible description of
our own Universe [9,10].
We specialize to 1þ 1 spacetime dimensions, for two

reasons. First, from the absence of spatial intrinsic curva-
ture in 1þ 1 dimensions it follows that the spatially
compact locally de Sitter FRW spacetimes can be classified
by a spatial circumference parameter that can take arbitrary
positive values, for each of the cosh, sinh, and exp scale
factors; for the exp scale factor the spatial circumference
parameter has no geometrically invariant magnitude, but
for the cosh and sinh scale factors it does, as we shall
review in Sec. III. We emphasize that the only one of these
spacetimes that is a subset of dS1þ1 is the global foliation of
dS1þ1, given by the cosh scale factor with the standard
spatial circumference: none of the others is globally
isometric to dS1þ1 or to any of its subsets.
The second reason to specialize to 1þ 1 dimensions is

that a pointlike UDW detector operating for a finite time at
constant coupling encounters then no singularities in its
response, to leading order in perturbation theory, as we
shall review in Sec. V. This will simplify the technical input
needed to localize the detector in time.
Our main outcome is to present a selection of geomet-

rically distinguished sets of quantum states for these locally
de Sitter cosmologies, and to show that a comoving
observer can use their local quantum equipment to establish
that these states differ from the Euclidean vacuum in dS1þ1.
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For the sinh and exp scale factor spacetimes, we consider
the vacuum that is adiabatic in the past, which is a criterion
often adopted in the (3þ 1) context for describing our own
Universe [11]; for the exp scale factor spacetime without
spatial periodicity, this criterion would in fact give the
standard Euclidean vacuum [4,5]. The distant past adiabatic
criterion is however inapplicable to the spatially constant
field mode that appears due to the spatial compactness,
because of a phenomenon known as a massive zero mode
[12,13]. We describe a possible alternative way to choose
the quantum state of the spatially constant field mode by
appealing to the late-time behavior.
For the cosh scale factor spacetimes, we consider

the adiabatic large momentum vacuum that mimics the
Euclidean vacuum, and is in fact induced from the
Euclidean vacuum by a quotient construction when spatial
circumference parameter takes those special values for
which the spacetime is a Zp quotient of standard de Sitter,
with p ¼ 2; 3….
For the sinh scale factor spacetimes, we also consider, in

addition to the adiabatic vacuum, a state induced from the
Euclidean vacuum by a quotient construction, allowing a
straightforward method-of-images construction of the
Wightman function. When described in the Fock space
formalism adapted to the cosmological evolution, this state
is however not pure but mixed, much like the Minkowski
vacuum in a single Rindler wedge appears as a thermal state
with respect to the Rindler time evolution [5,7].
In all of these situations, we find the response of a

comoving UDW detector, either as a mode sum or as a
double integral involving a hypergeometric function. We
present selected numerical results.
For comparison, we also evaluate the scalar field’s stress-

energy tensor in those states that come from the Euclidean
vacuum by a quotient construction, in terms of image sums
involving a hypergeometric function. These image sums
provide a starting point for surveying the parameter space
for the stress-energy tensor by analytic asymptotic methods
and by numerical methods.
The structure of the paper is as follows. We start in

Sec. II with a brief review of a quantized real massive scalar
field in (1þ 1)-dimensional spatially compact FRW space-
times, establishing the notation and the conventions.
Section III describes the geometry of the three distinct
types of locally de Sitter 1þ 1 spacetimes that are FRW
cosmologies with compact spatial sections. Section IV
presents our choices for the state of the quantum field, and
the formulas for the response of a comoving UDW detector
are given in Sec. V. The image sum formulas for the stress-
energy tensor are given in Sec. VI. Section VII describes
the outcomes of selected numerical simulations, delegating
the associated plots to an Appendix. Section VIII gives a
brief summary and concluding remarks.
We use units in which ℏ ¼ c ¼ 1. The geometry con-

ventions follow those in [5], having ds2 > 0 for timelike

separations. Complex conjugation is denoted by an aster-
isk, except in selected long expressions where it is denoted
by an overline.

II. MASSIVE SCALAR FIELD IN SPATIALLY
COMPACT (1 + 1) FRW SPACETIMES

In this section we briefly review the quantization of a real
massive scalar field in (1þ 1)-dimensional spatially com-
pact FRW spacetimes, setting out the notation and the
conventions, which follow those in [13].

A. Spacetime and the field equation

We consider spacetimes with the line element

ds2 ¼ dt2 − a2ðtÞdx2 ¼ CðηÞðdη2 − dx2Þ; ð2:1Þ

where the scale factor aðtÞ is assumed positive, the cos-
mological time t and the conformal time η are related by
dη=dt ¼ 1=aðtÞ, and CðηÞ ¼ a2ðtðηÞÞ. C is by assumption
positive, and we assume it to be smooth in η. We further
assume x to be periodic with period L > 0, so that
ðt; xÞ ∼ ðt; xþ LÞ, or ðη; xÞ ∼ ðη; xþ LÞ. The constant η
surfaces are hence topologically circles, and the spacetime
has topology R × S1.
We take t and a to have the physical dimension of length.

It follows that η and x are dimensionless and C has the
physical dimension of length squared. This convention will
be useful with the locally de Sitter metrics introduced in
Sec. III.
On these spacetimes, we consider a real scalar field ϕ

with mass m > 0 and the action

S ¼ 1

2

Z
½ð∂ηϕÞ2 − ð∂xϕÞ2 − μ̃2ðηÞϕ2�dηdx; ð2:2Þ

where

μ̃ðηÞ ≔ ðCðηÞðm2 þ ξRÞÞ1=2; ð2:3Þ

R is the Ricci scalar, ξ is the curvature coupling constant,
and we assume the parameters to be such that μ̃ is positive.
The field equation is the Klein-Gordon equation,

�
∂
2

∂η2
−

∂
2

∂x2
þ μ̃2ðηÞ

�
ϕðη; xÞ ¼ 0; ð2:4Þ

where μ̃ acts as an η-dependent effective mass.
We assume ϕ to be a single-valued field on the

spacetime, periodic in the local coordinate x with period
L. (A generalization to a Z2-twisted field is considered in
[13].) We may hence separate the field equation (2.4) with
the normal mode ansatz

Unðη; xÞ ¼ L−1=2χnðηÞ expðiknxÞ; ð2:5Þ
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where

kn ≔ 2πn=L; n∈Z; ð2:6Þ

finding that mode function χn satisfies the differential
equation

χ00nðηÞ þ ω2
nðηÞχnðηÞ ¼ 0; ð2:7Þ

where the prime denotes derivative with respect to η and

ωnðηÞ ≔ ðk2n þ μ̃2ðηÞÞ1=2: ð2:8Þ

We require the mode functions to satisfy the Wronskian
condition

W½χn; χ�n� ≔ χnχ
0�
n − χ�nχ0n ¼ i; ð2:9Þ

which implies that the normal modesUn (2.5) are a positive
norm orthonormal set in the Klein-Gordon inner product,

ðUn;Un0 Þ ≔ i
Z

L

0

dxðU�
n∂ηUn0 − Un0∂ηU�

nÞ ¼ δnn0 : ð2:10Þ

B. Field quantization

Given a choice of the mode functions χn, we quantize
the field in a standard manner, expanding the field operator
ϕ̂ as

ϕ̂ðη; xÞ ¼
X
n

ðUnðη; xÞân þ H:c:Þ; ð2:11Þ

where the nonvanishing commutators of the annihilation
and creation operators are

½ân; â†m� ¼ δn;m1: ð2:12Þ

ϕ̂ðη; xÞ and its conjugate momentum π̂ðη; xÞ ¼ ∂

∂η ϕ̂ðη; xÞ
then satisfy the canonical commutation relations,

½ϕ̂ðη; xÞ; π̂ðη; x0Þ� ¼ iδx;x01; ð2:13Þ

where δx;x0 is the periodic Dirac delta function.
The Hilbert space is a Fock space built on the Fock

vacuum j0i, satisfying anj0i ¼ 0 for all n. The Wightman
function, Gðη; x; η0; x0Þ ¼ h0jϕ̂ðη; xÞϕ̂ðη0; x0Þj0i, decom-
poses as

Gðη; x; η0; x0Þ ¼ G0ðη; η0Þ þ Goscðη; x; η0; x0Þ; ð2:14aÞ

G0ðη; η0Þ ¼
1

L
χ0ðηÞχ�0ðη0Þ; ð2:14bÞ

Goscðη; x; η0; x0Þ ¼
1

L

X
n≠0

χnðηÞχ�nðη0Þeiknðx−x0Þ: ð2:14cÞ

The mode functions χn can often be chosen by requiring
them to have the adiabatic asymptotic form [5,11,14,15],

χnðηÞ →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωnðηÞ
p exp

�
−i

Z
η
ωnðη0Þdη0

�
; ð2:15Þ

where ωnðηÞ is slowly varying in a suitable technical sense.
The sense of asymptotic may refer to a future/past region,
η → �∞, or to large momenta, jnj → ∞. The vacuum state
that ensues is interpreted physically as a no-particle state
for a local observer, respectively in the asymptotic region,
or for the asymptotically large momenta.
We shall encounter spacetimes with an asymptotic past

region, η → −∞, in which CðηÞ → 0 in such a way that
mode functions with the adiabatic form (2.15) exist for
n ≠ 0 but not for n ¼ 0. An n ¼ 0 mode with this property
is known as a massive zero mode [12].

III. LOCALLY DE SITTER FRW SPACETIMES

In this section we review the geometry of (1þ 1)-
dimensional de Sitter spacetime, adapting the (3þ 1)-
dimensional discussion of [1], and introducing coordinate
charts whose generalization will then lead to three distinct
families of spatially compact locally but not globally de
Sitter FRW spacetimes.

A. de Sitter spacetime

(1þ 1)-dimensional de Sitter spacetime dS2 can be
defined as the hyperboloid

−H−2 ¼ T2 − X2 − Y2; ð3:1Þ

embedded in (2þ 1)-dimensional Minkowski spacetime
with global coordinates ðT; X; YÞ and the metric

ds2 ¼ dT2 − dX2 − dY2; ð3:2Þ

where H is a positive parameter of dimension inverse
length. dS2 is a maximally symmetric spacetime, with
the isometry group Oð2; 1Þ inherited from the ambient
Minkowski space, and with the positive Ricci scalar
R ¼ 2H2, showing that H is the inverse of the Gaussian
curvature radius. dS2 is globally hyperbolic, with spatial
topology S1, and a global R × S1 foliation is provided by
the spacelike circles of constant T.
For later convenience, we define [6,16]

Zðx; x0Þ ≔ −H2ηabXaðxÞXbðx0Þ; ð3:3Þ

where x and x0 denote points in dS2, XaðxÞ, and Xbðx0Þ
are the corresponding three-dimensional Minkowski
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coordinates, and ηab is the ambient Minkowski metric (3.2).
This real quadratic form is clearly invariant under the
de Sitter group Oð2; 1Þ, and it has the properties that
Zðx; x0Þ > 1 if ðx; x0Þ are timelike separated, Zðx; x0Þ ¼ 1
if ðx; x0Þ are null separated and Zðx; x0Þ < 1 if ðx; x0Þ are
spacelike separated. Further discussion is given in [6,16].
We now consider three different coordinate charts,

adapted to different subgroups of the Oð2; 1Þ isometry
group, and use them to construct three distinct families of
spatially compact locally but not globally de Sitter FRW
spacetimes.

B. Cosh scale factor spacetime

The first chart of interest on dS2 is ðt; χÞ, in which

T ¼ H−1 sinhðHtÞ; X ¼ H−1 coshðHtÞ cos χ;
Y ¼ H−1 coshðHtÞ sin χ; ð3:4Þ

where −∞ < t < ∞ and ðt; χÞ ∼ ðt; χ þ 2πÞ. This chart
covers all of dS2, and is often called the global chart. The
metric reads

ds2 ¼ dt2 −H−2cosh2ðHtÞdχ2: ð3:5Þ

Introducing the conformal time η as in (2.1), we have

η ≔ 2 arctanðeHtÞ; ð3:6Þ

where 0 < η < π, and

ds2 ¼ ðH sin ηÞ−2ðdη2 − dχ2Þ: ð3:7Þ

The spacelike circles of constant η are the circles of
constant T in (3.1).
We shall consider the metric (3.7) where χ is periodic

with period λ∈ ð0;∞Þ, not necessarily equal to 2π.
Geometrically, this means first passing to the universal
covering space of dS2 and then taking the quotient by the
discrete group generated by the spatial translation
ðη; χÞ ↦ ðη; χ þ λÞ, coming from the rotational Killing
vector X∂Y − Y∂X of the embedding spacetime. We refer
to this spacetime as the cosh scale factor spacetime.
We shall be especially interested in the cases where

λ ¼ 2π=p, p ¼ 1; 2;…, where p ¼ 1 is normal dS2 and
p ¼ 2; 3;… are its Zp quotients; the quotient with p ¼ 2

was preferred by de Sitter in the (3þ 1)-dimensional
context [17,18]. For the case λ ¼ 4π, which is the
double cover of normal dS2, a real scalar field has been
considered in [19], by the techniques developed for normal
dS2 in [20–22], and a complex automorphic field has been
considered in [23].

C. Sinh scale factor spacetime

A second chart of interest on dS2 is ðt1; χ1Þ, in which

T ¼ H−1 sinhðHt1Þ cosh χ1; X ¼ H−1 sinhðHt1Þ sinh χ1;
Y ¼ H−1 coshðHt1Þ; ð3:8Þ

where 0 < t1 < ∞ and χ1 ∈R. This chart covers the part of
dS2 where Y > 1=H and T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ ðY2 −H−2Þ

p
, so that

in particular T > jXj. The metric reads

ds2 ¼ dt21 −H−2sinh2ðHt1Þdχ21: ð3:9Þ

Introducing the conformal time η1 as in (2.1), we have

η1 ≔ lnðtanhðHt1=2ÞÞ; ð3:10Þ

where −∞ < η1 < 0, and

ds2 ¼ ðH sinh η1Þ−2ðdη21 − dχ21Þ: ð3:11Þ

The spacelike curves of constant η1 are the hyperbolas
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ ðY2 −H−2Þ

p
in the timelike planes of con-

stant Y > 1=H.
The coordinates ðt1; χ1Þ are similar to the Milne coor-

dinates in the future quadrant of (1þ 1) Minkowski
spacetime, and the coordinate singularity at t1 → 0þ, or
η1 → −∞, is similar to the singularity of the Milne
coordinates on the Minkowski light cone [5,13].
We shall consider the metric (3.11) where χ1 is periodic

with period λ1 ∈ ð0;∞Þ. Geometrically, this means taking
the quotient by the group generated by the translation
ðη1; χ1Þ ↦ ðη1; χ1 þ λ1Þ, coming from the boost Killing
vector X∂T þ T∂X of the embedding spacetime. We refer to
this spacetime as the sinh scale factor spacetime.

D. Exponential scale factor spacetime

A third chart of interest on dS2 is ðt0; χ0Þ, in which

T ¼ H−1 sinhðHt0Þ þ
1

2
H−1χ20 expðHt0Þ; ð3:12aÞ

X ¼ H−1χ0 expðHt0Þ; ð3:12bÞ

Y ¼ H−1 coshðHt0Þ −
1

2
H−1χ20 expðHt0Þ; ð3:12cÞ

where −∞ < t0 < ∞ and χ0 ∈R. This chart covers the part
of dS2 where T þ Y > 0. The metric reads

ds2 ¼ dt20 −H−2e2Ht0dχ20: ð3:13Þ

Introducing the conformal time η0 as in (2.1), we have

η0 ≔ −e−Ht0 ; ð3:14Þ
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where −∞ < η0 < 0, and

ds2 ¼ ðHη0Þ−2ðdη20 − dχ20Þ: ð3:15Þ

The spacelike curves of constant η0 are the parabolas
T − Y ¼ ðX2 −H−2Þ=ðT þ YÞ in the null planes of con-
stant T þ Y > 0.
The coordinates ðt0; χ0Þ have a coordinate singularity

at t0 → −∞, or η0 → −∞, at T þ Y ¼ 0. The higher-
dimensional version of these coordinates are known as
the spatially flat coordinates in de Sitter [1], much
employed in cosmology [11].
We shall consider the metric (3.15) where χ0 is periodic

with period λ0 ∈ ð0;∞Þ. Geometrically, this means taking
the quotient by the group generated by the translation
ðη0; χ0Þ ↦ ðη0; χ0 þ λ0Þ, coming from the null rotation
Killing vector ðX∂T þ T∂XÞ − ðX∂Y − Y∂XÞ of the embed-
ding spacetime. We refer to this spacetime as the exp scale
factor spacetime.
The value of the parameter λ0 ∈ ð0;∞Þ has no geomet-

rically invariant meaning; any other value λ̃0 ∈ ð0;∞Þ gives
an isometric spacetime, as can be seen from (3.15) by the
coordinate transformation

ðη0; χ0Þ ¼ ðkη̃0; kχ̃0Þ; ð3:16Þ

where k ¼ λ0=λ̃0. This redundancy comes about because a
null rotation in the embedding Minkowski spacetime has
no Lorentz-invariant magnitude, in contrast to the rotation
angle of a rotation and the rapidity parameter of a boost. In
particular, we could set λ0 ¼ 1 without loss of generality.
We shall however keep λ0 general as this will give insight
in the choice of the spatially constant mode state in
Secs. IV C and V D.

IV. QUANTUM FIELD IN LOCALLY DE SITTER
FRW SPACETIMES

In this section we consider the quantized scalar field in
our three families of spatially compact locally de Sitter
FRW spacetimes. The key aim is to identify distinguished
vacuum states and to write down their Wightman functions.
We assume throughout m2 þ 2ξH2 > 0, which makes

the effective mass squared in the Klein-Gordon equation
strictly positive, and will in particular avoid the special
issues that arise with a massless minimally coupled scalar
field [6,16,24]. We write

ν ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
−m2=H2 − 2ξ

r
; ð4:1Þ

where we take the square root to be non-negative for
0 < m2=H2 þ 2ξ ≤ 1

4
, in which case 0 ≤ ν < 1

2
, and pos-

itive imaginary for 1
4
< m2=H2 þ 2ξ, in which case we

write ν ¼ iα with α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=H2 þ 2ξ − 1

4

q
> 0.

A. Cosh scale factor FRW

For the cosh scale factor spacetime (3.7), with χ periodic
with period λ∈ ð0;∞Þ, the formalism of Sec. II applies
with L ¼ λ and CðηÞ ¼ ðH sin ηÞ−2.
A pair of linearly independent solutions to the

mode function differential equation (2.7) areffiffiffiffiffiffiffiffiffi
sinη

p
Pν
−1
2
þjknjð−cosηÞ and ffiffiffiffiffiffiffiffiffi

sin η
p

Qν
−1
2
þjknjð− cos ηÞ, where

Pν
−1
2
þjknj and Qν

−1
2
þjknj are the associated Legendre functions

on the cut, known in [25] as Ferrers functions. We choose
the linear combinations

χnðηÞ ¼
ffiffiffiffiffiffiffiffiffi
sin η

p
e−iπν=2

�
πΓð1

2
− νþ jknjÞ

4Γð1
2
þ νþ jknjÞ

�1
2

×

�
Pν
−1
2
þjknjð− cos ηÞ − 2i

π
Qν

−1
2
þjknjð− cos ηÞ

�
;

ð4:2Þ

which satisfy the Wronskian condition (2.9) by the
Wronskian properties of the Ferrers functions [25]. The
phase convention in (4.2) covers the full range of ν by
one formula; when 0 < ν < 1

2
, the factor e−iπν=2 could be

replaced by unity, and when ν ¼ iα with α > 0, the ratio of
the gamma-functions could be replaced by unity, as this
would only affect the overall phase. We note in passing that
the corresponding formula (5.74) in [5] appears to contain a
typographic error in the exponential factor.
An alternative expression for χn (4.2), found via the

connection formulas on page 168 of [26], is

χnðηÞ

¼ e−iπ=4þijknjπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1

2
þ νþ jknjÞΓð12 − νþ jknjÞ

q
ffiffiffi
2

p
Γð1þ jknjÞ

× e−ijknjη2F1

�
1

2
þ ν;

1

2
− ν; 1þ jknj;

1

2
ð1þ i cot ηÞ

�
;

ð4:3Þ

where 2F1 is the hypergeometric function [25]. At large jnj,
(4.3) shows that χnðηÞ reduce to the standard plane waves,
expð−ijknjηÞð2jknjÞ−1=2, and the state defined by these
modes is in this sense an adiabatic vacuum at all times [5].
For λ ¼ 2π, in standard dS2, these modes define the state
j0Ei, known as the Euclidean, Chernikov-Tagirov, or
Bunch-Davies vacuum [2–6].
The spacetime is not slowly expanding at early or late

times, in the terminology of Sec. II B, and there is no
adiabatic in region or out region. For later use, we record
here that at late times, η → π−, the asymptotic behavior of
the modes (4.2) can be found using the hypergeometric
representations in Sec. 14.3 in [25]; with a convenient
phase choice, the leading two terms for ν ≠ 0 are

VACUA IN LOCALLY DE SITTER COSMOLOGIES, AND HOW … PHYS. REV. D 109, 025007 (2024)

025007-5



χnðηÞ ∼
ffiffiffi
π

p ðπ − ηÞ1=2
2 sinðπνÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1

2
þ νþ jknjÞΓð12 − νþ jknjÞ

q

×

�
eiπν=22νΓð1

2
− νþ jknjÞ

Γð1 − νÞ ðπ − ηÞ−ν

−
e−iπν=22−νΓð1

2
þ νþ jknjÞ

Γð1þ νÞ ðπ − ηÞν
�
; ð4:4Þ

and the expression for ν ¼ 0 is

χnðηÞ ∼
ðπ − ηÞ1=2ffiffiffi

π
p

�
1

2
πiþ ln 2 − γ − ψ

�
1

2
þ jknj

�

− lnðπ − ηÞ
�
; ð4:5Þ

where ψ is the digamma function and γ is the Euler-
Mascheroni constant [25].
From now on we consider only standard dS2 and its Zp

quotientsMp in which λ ¼ 2π=p, p ¼ 2; 3;…. OnMp, the
Wightman function in the vacuum j0pi defined by the
modes (4.2) can then be obtained from the Euclidean
vacuum j0Ei on dS2 by the method of images [27,28], as
follows.
Recall first that the Euclidean vacuum Wightman func-

tion on dS2 reads [4]

GdS2ðx;x0Þ ¼
1

4
secðπνÞ2F1

×

�
1

2
− ν;

1

2
þ ν; 1;

1

2
ð1þZϵðx;x0ÞÞ

�
; ð4:6Þ

where

Zϵðx; x0Þ ¼ Zðx; x0Þ − iϵHðT̃ðxÞ − T̃ðx0ÞÞ − ϵ2; ð4:7Þ

T̃ is any global time function on dS2, and the limit ϵ → 0þ
is understood. The ϵ-prescription specifies the analytic
continuation of the hypergeometric function from Z < 1 to
Z > 1 across the logarithmic branch point at Z ¼ 1, as
follows from the Hadamard property of j0Ei, reviewed
in [19,23].
Let now ðη; χÞ be the coordinates in the metric (3.7) on

standard dS2, with ðη; χÞ ∼ ðη; χ þ 2πÞ. On Mp, we may
use the same coordinates but with the identification
ðη; χÞ ∼ ðη; χ þ 2π=pÞ. It then follows that

GMp
ðη; χ; η0; χ0Þ ¼ GdS2ðxðη; χÞ; xðη0; χ0ÞÞ

þ ΔGMp
ðη; χ; η0; χ0Þ; ð4:8aÞ

ΔGMp
ðη; χ; η0; χ0Þ ¼

Xp−1
r¼1

GdS2ðxðη; χÞ; xðη0; χ0 þ 2πr=pÞÞ:

ð4:8bÞ

B. Sinh scale factor FRW

For the sinh scale factor spacetime (3.11), with χ1 periodic
with period λ1 ∈ ð0;∞Þ, the formalism of Sec. II applies with
L ¼ λ1 and Cðη1Þ ¼ ðH sinh η1Þ−2.
A pair of linearly independent solutions to the mode

function differential equation (2.7) are a suitable choice of
two from

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð−η1Þ

p
P�ν
−1
2
þijknjðcosh η1Þ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð−η1Þ

p
×

Q�ν
−1
2
þijknjðcosh η1Þ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð−η1Þ

p
Q�ν

−1
2
þijknjðcosh η1Þ,

where P�ν
−1
2
þijknj and Q�ν

−1
2
þijknj are the associated Legendre

functions at real argument greater than 1, in the notation
of [25], and the overline denotes the complex conjugate.

1. n ≠ 0 modes

At η1 → −∞, the n ≠ 0 modes have an adiabatic “in”
vacuum satisfying (2.15). The mode functions are

χinn ðη1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð−η1Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπjknjÞ

p Qν
−1
2
þijknjðcosh η1Þ; ð4:9Þ

as can be verified using Secs. 14.3.7 and 14.3.10 in [25].
An alternative expression, found via the connection for-
mula 13 on page 158 of [26], is

χinn ðη1Þ ¼
eiφne−ijknjη1ffiffiffiffiffiffiffiffiffiffi

2jknj
p 2F1

×

�
1

2
þ ν;

1

2
− ν; 1 − ijknj;

−1
e−2η1 − 1

�
; ð4:10Þ

where φn is a real-valued n-dependent phase constant,
expressible in terms of Euler’s gamma function. At large
jnj, (4.10) shows that the mode functions χinn ðη1Þ reduce to
the standard plane waves, expð−ijknjη1Þð2jknjÞ−1=2, and the
state defined by these modes is in this sense an adiabatic
vacuum at all times.
The n ≠ 0 “in” vacuum contribution to the Wightman

function is given by (2.14c) with (4.10) and L ¼ λ1.

2. Zero-momentum mode

The zero-momentum mode is a massive zero mode at
η1 → −∞, and the early-time behavior does not single out a
distinguished mode function. We choose a distinguished
mode function by matching to the late-time behavior of the
Euclidean vacuum modes (4.15) and (4.16) with n ¼ 0,
while continuing to label these modes by the superscript
“in”; the outcome for ν ≠ 0 is
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χin0 ðη1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðπνÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhð−η1Þ
p

2 sinðπνÞ

×

�
eiπν=2Γ

�
1

2
− ν

�
P−ν
−1
2

ðcosh η1Þ

− e−iπν=2Γ
�
1

2
þ ν

�
Pν
−1
2

ðcosh η1Þ
�
; ð4:11Þ

and the corresponding expression for ν ¼ 0 is

χin0 ðη1Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð−η1Þ

p �
1

2

ffiffiffi
π

p
iP−1

2
ðcoshη1ÞþQ−1

2
ðcoshη1Þ

�
;

ð4:12Þ

as can be verified using 14.2.9 and 14.8.9 in [25]. The zero-
momentum mode contribution to the Wightman function is
given by (2.14b) with L ¼ λ1.

3. Euclidean quotient state

We shall not attempt to define an “out” vacuum on the
sinh scale factor FRW spacetime. We shall however
consider on the sinh scale factor FRW spacetime a state
that can be regarded as a minimal modification of the
Euclidean vacuum on dS2; the state whose Wightman
function comes from that of the Euclidean vacuum by
the periodic image sum in χ1. We call this state the
Euclidean quotient state.
Proceeding as with the finite quotients in Sec. IVA, the

Wightman function GEQ in the Euclidean quotient state
reads

GEQðη1; χ1; η01; χ01Þ ¼ GdS2ðxðη1; χ1Þ; xðη01; χ01ÞÞ
þ ΔGEQðxðη1; χ1Þ; xðη01; χ01ÞÞ;

ð4:13aÞ

ΔGEQðxðη1; χ1Þ; xðη01; χ01ÞÞ
¼

X
r∈Znf0g

GdS2ðxðη1; χ1Þ; xðη01; χ01 þ rλ1ÞÞ; ð4:13bÞ

where GdS2 is given by (4.6) and (4.7). It follows from
the embedding equations (3.8), the definition (3.3) and
the asymptotics of the hypergeometric function in
(4.6) that the sum in (4.13b) converges exponentially,
making GEQ well-defined. The coincidence limit singu-
larity of GEQ is Hadamard because this singularity comes
from GdS2 .
The Euclidean quotient state is however not a pure state

in the Fock space description of Sec. II B. This is because
dS2 contains two opposing future sinh chart patches before
the periodic identification; the induced state on the union of
the two patches contains correlations between the two
patches, much like the more familiar correlations between

the two opposing static coordinate patches [29], as can be
analyzed by extending the future sinh chart techniques of
[30] from their dS4=Z2 context to the present context
on dS2.
We shall employ the image sum expression (4.13) in

Secs. V and VI below.

C. Exponential scale factor FRW

For the exp scale factor spacetime (3.15), with χ0
periodic with period λ0 ∈ ð0;∞Þ, the formalism of
Sec. II applies with L ¼ λ0 and Cðη0Þ ¼ ðHη0Þ−2.
For kn ≠ 0, a linearly independent pair of solutions

to the mode function differential equation (2.7) areffiffiffiffiffiffiffiffi−η0
p

Hð1Þ
ν ð−jknjη0Þ and ffiffiffiffiffiffiffiffi−η0

p
Hð2Þ

ν ð−jknjη0Þ, where Hð1;2Þ
ν

are the Hankel functions [25]. For kn ¼ 0, a linearly
independent pair is ð−η0Þ12�ν when ν ≠ 0, and ð−η0Þ12
and ð−η0Þ12 lnð−η0Þ when ν ¼ 0.

1. n ≠ 0 modes

At η0 → −∞, the n ≠ 0 modes admit an adiabatic “in”
form satisfying (2.15), with the mode functions

χinn ðη0Þ ¼
1

2

ffiffiffi
π

p
eiπν=2

ffiffiffiffiffiffiffiffi
−η0

p
Hð1Þ

ν ð−jknjη0Þ: ð4:14Þ

These mode functions reduce to the standard plane waves,
expð−ijknjη0Þð2jknjÞ−1=2, also in the limit of large jnj with
fixed η0, and the “in” vacuum defined by these modes is in
this sense an adiabatic vacuum at all times [5]. Were χ0 not
periodic, the “in” vacuum defined by the corresponding
modes, with kn replaced by a continuous momentum,
would coincide with the restriction of the Euclidean
vacuum to the exp chart on dS2 [4].
The n ≠ 0 “in” vacuum contribution to the Wightman

function is given by (2.14c) with (4.14) and L ¼ λ0. Note
that this contribution is invariant under redefinitions of λ0
by the coordinate rescalings (3.16).
While we shall not attempt to define distinguished

late-time modes, we note that at late times, η0 → 0−, the
leading two terms in the asymptotic behavior of χinn (4.14)
for ν ≠ 0 are

χinn ðη0Þ ∼
−i

ffiffiffi
π

p ð−η0Þ1=2
2 sinðπνÞ

�
eiπν=22νjknj−ν
Γð1 − νÞ ð−η0Þ−ν

−
e−iπν=22−νjknjν

Γð1þ νÞ ð−η0Þν
�
; ð4:15Þ

and the expression for ν ¼ 0 is

χinn ðη0Þ∼
−ið−η0Þ1=2ffiffiffi

π
p

�
1

2
πiþ ln2− γ− lnðjknjÞ− lnð−η0Þ

�
:

ð4:16Þ
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The η0 dependence in (4.15) and (4.16) is similar to the
(π − η)-dependence in (4.4) and (4.5), but the jknj depend-
ence in the coefficients is not directly comparable, due to
the differing foliations in the dS2 embedding spacetime.

2. Zero-momentum mode

The zero-momentum mode is a massive zero mode at
η0 → −∞, and the early-time behavior does not single out a
distinguished mode function. We choose a distinguished
mode function by the late-time behavior, matching the
η0 → 0− asymptotics with λ0 ¼ 2π to the η → π− asymp-
totics of the Euclidean vacuum n ¼ 0 mode function (4.2),
using (4.4) and (4.5), and including a λ0-dependent scaling
of η0 to make the contribution to the Wightman function
invariant under redefinitions of λ0 by the coordinate
rescalings (3.16). For ν ≠ 0, we obtain

χin0 ðη0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðνπÞp ð−η0Þ1=2
2 sinðνπÞ

×
�
eiπν=22νΓð1

2
− νÞð2π=λ0Þ−ν

Γð1 − νÞ ð−η0Þ−ν

−
e−iπν=22−νΓð1

2
þ νÞð2π=λ0Þν

Γð1þ νÞ ð−η0Þν
�
; ð4:17Þ

and the expression for ν ¼ 0 is

χin0 ðη0Þ ¼
ð−η0Þ1=2ffiffiffi

π
p

�
1

2
πiþ lnð4λ0=πÞ − lnð−η0Þ

�
: ð4:18Þ

The zero-momentum mode contribution to the Wightman
function is given by (2.14b) with L ¼ λ0, and is invariant
under redefinitions of λ0 by (3.16).

3. Euclidean quotient state?

On the exp scale factor FRW spacetime, an attempt to
define the Wightman function of an Euclidean quotient
state by adapting the image sum in (4.13) to the periodic
identification in χ0 produces an image sum that is not
convergent in absolute value, due to the weak falloff of the
hypergeometric function. We shall see in Sec. VI D that a
similar weak convergence appears also in the image sum
expression for the stress-energy tensor. We shall return to
this phenomenon in the concluding remarks in Sec. VIII.

V. COMOVING DETECTOR

In this section we address the response of a comoving
UDW detector in the cosh, sinh, and exp scale factor FRW
spacetimes.

A. Detector and its response function

We consider a spatially pointlike two-level system
known as the Unruh-DeWitt dectector [7,8], on a trajectory
xðτÞ, parametrized by the proper time τ, and coupled
linearly to the scalar field at the detector’s posi-
tion, ϕðxðτÞÞ.
As reviewed in [13], the detector’s transition probability

in first-order perturbation theory is a multiple of the
response function F ðωÞ, given by

F ðωÞ ≔
Z

dτ dτ0χðτÞχðτ0Þe−iωðτ−τ0ÞGðτ; τ0Þ; ð5:1Þ

where ω is the detector’s energy gap, χ is a switching
function that specifies how the interaction is turned on and
off, and Gðτ; τ0Þ is the pull-back of the field’s Wightman
function to the detector’s wordline,

Gðτ; τ0Þ ≔ hΨjϕ̂ðxðτÞÞϕ̂ðxðτ0ÞÞjΨi; ð5:2Þ

with jΨi being the state in which the field was prepared
before the interaction starts. Positive values of ω give the
probability of excitation and negative values of ω give the
probability of deexcitation.
When jΨi is a Hadamard state, Gðτ; τ0Þ is a well-defined

distribution [31,32], and F ðωÞ is well defined whenever χ
is smooth and has compact support. In our present case of
1þ 1 spacetime dimensions, the coincidence limit singu-
larity of Gðτ; τ0Þ is only logarithmic, and hence integrable,
and F ðωÞ remains well defined even for less regular χ. We
use this freedom to adopt a χ that has minimal structure of
its own, having a constant value between a sharp switch-on
moment and a sharp switch-off moment; we choose

χðτÞ ¼ Θðτ − τ0ÞΘðτ1 − τÞ; ð5:3Þ

where τ0 and τ1 denote the switch-on and switch-off
moments, respectively, and we assume τ0 < τ1. The
response function (5.1) then becomes

F ðω; τ1; τ0Þ ≔
Z

τ1

τ0

dτ
Z

τ1

τ0

dτ0 e−iωðτ−τ0ÞGðτ; τ0Þ: ð5:4Þ

We specialize to a comoving detector, at a constant value
of x in the FRW coordinates ðt; xÞ of (2.1). As all the
quantum states that we consider are invariant under shifts in
the compactified spatial coordinate x, we may without loss
of generality take the trajectory to be ðtðτÞ; xðτÞÞ ¼ ðτ; 0Þ.

B. Cosh scale factor FRW

In the cosh scale factor FRW spacetime, for general λ, a
mode sum expression for the response function is obtained
from (2.14), (4.3), and (5.4), with the outcome
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F ðω; τ1; τ0Þ ¼
1

2λ

X∞
n¼−∞

Γð1
2
þ νþ jknjÞΓð12 − νþ jknjÞ

ðΓð1þ jknjÞÞ2

×

����
Z

τ1

τ0

dτ e−iωτ−2ijknj arctanðeHτÞ
2F1

�
1

2
þ ν;

1

2
− ν; 1þ jknj;

1

2
ð1 − i sinhðHτÞÞ

�����
2

; ð5:5Þ

where we recall that kn ¼ 2πn=λ. We have used (4.3) in preference to (4.2) as this is likely to be more suitable for numerical
evaluation of the large jnj terms. The contributions from n > 0 and n < 0 are equal and can be combined to a single sum
over n from 1 to ∞.
On standard dS2, in which λ ¼ 2π, and on itsMp quotients, in which λ ¼ 2π=p, p ¼ 2; 3;…, an alternative is to use the

Wightman function as given in (4.6) and (4.8). Setting M1 ¼ dS2, a formula covering Mp for all p ¼ 1; 2;… is

Fpðω; τ1; τ0Þ ¼
1

4
secðπνÞ

Xp−1
r¼0

Z
τ1

τ0

dτ
Z

τ1

τ0

dτ0 e−iωðτ−τ0Þ2F1

�
1

2
− ν;

1

2
þ ν; 1; gp;rðτ; τ0Þ

�
; ð5:6Þ

where

gp;rðτ; τ0Þ ≔ cosh2
�
1

2
Hðτ − τ0Þ − iϵ

�
− coshðHτ − iϵÞ coshðHτ0 þ iϵÞsin2ðrπ=pÞ ð5:7Þ

and the limit ϵ → 0þ is understood; as in (4.6) and (4.7), the iϵ prescription specifies the analytic continuation of 2F1 from
gp;r < 1 to gp;r > 1 across the logarithmic singularity at gp;r ¼ 1. Note that for the pure dS2 term, r ¼ 0, only the first term
in (5.7) is present.

C. Sinh scale factor FRW

1. “In” vacuum

In the sinh scale factor FRW spacetime, the contribution to the response function from n ≠ 0modes in the “in” vacuum is
obtained from (2.14c), (4.10), and (5.4), with the outcome

F in
oscðω; τ1; τ0Þ ¼

1

2λ1

X∞
n¼−∞

1

jknj
����
Z

τ1

τ0

dτ e−iωτ−ijknj ln tanhðeHτ=2Þ
2F1

�
1

2
þ ν;

1

2
− ν; 1 − ijknj;−sinh2ðHτ=2Þ

�����
2

; ð5:8Þ

where we recall that now kn ¼ 2πn=λ1. The contributions from n > 0 and n < 0 are again equal and can be combined to a
single sum over n from 1 to ∞.
The contribution from the n ¼ 0 mode in the “in” vacuum is obtained from (2.14b), (4.11), (4.12), and (5.4). For ν ≠ 0,

the outcome is

F in
0 ðω; τ1; τ0Þ ¼

1

λ1
ðjNþj2 þ jN−j2 þ 2ReðNþN�

−ÞÞ; ð5:9Þ

where

N� ¼ � e�iπν=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðπνÞp

Γð1
2
∓ νÞ

2 sinðπνÞ
Z

τ1

τ0

dτe−iωτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðHτÞp P∓ν

−1
2

ðcothðHτÞÞ; ð5:10Þ

and for ν ¼ 0 the corresponding expression is

F in
0 ðω; τ1; τ0Þ ¼

1

λ1

����
Z

τ1

τ0

dτe−iωτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðHτÞp

�
1

2

ffiffiffi
π

p
iP−1

2
ðcothðHτÞÞ þ Q−1

2
ðcothðHτÞÞ

�����
2

: ð5:11Þ

2. Euclidean quotient state

In the Euclidean quotient state, proceeding as with (5.6) gives the response function

FEQðω; τ1; τ0Þ ¼
1

4
secðπνÞ

X
r∈Z

Z
τ1

τ0

dτ
Z

τ1

τ0

dτ0 e−iωðτ−τ0Þ2F1

�
1

2
− ν;

1

2
þ ν; 1; grðτ; τ0Þ

�
; ð5:12Þ
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where

grðτ; τ0Þ ≔ cosh2
�
1

2
Hðτ − τ0Þ − iϵ

�
− sinhðHτ − iϵÞ sinhðHτ0 þ iϵÞsinh2ðrλ1=2Þ ð5:13Þ

and the limit ϵ → 0þ is again understood. The r ¼ 0 term is the pure dS2 contribution.

D. Exponential scale factor FRW

In the exp scale factor FRW spacetime, the contribution to the response function from the n ≠ 0 modes in the “in”
vacuum is obtained from from (2.14c), (4.14), and (5.4), with the outcome

F in
oscðω; τ1; τ0Þ ¼

πeiπðν−ν�Þ=2

2λ0

X∞
n¼1

����
Z

τ1

τ0

dτe−ðH2þiωÞτHð1Þ
ν

�
2πn
λ0

e−Hτ

�����
2

¼ πeiπðν−ν�Þ=2

2λ0eHτ0

X∞
n¼1

����
Z

τ1−τ0

0

dse−ðH2þiωÞsHð1Þ
ν

�
2πn
λ0eHτ0

e−Hs

�����
2

; ð5:14Þ

where the last expression is obtained by the substitution τ ¼ τ0 þ s. The last expression in (5.14) shows that F in
osc depends

on τ0, τ1 and λ0, none of which has a geometrically invariant meaning, only through the combinations λ0eHτ0 and τ1 − τ0,
which do; λ0eHτ0=H is the spatial circumference at the moment of cosmological time when the detector is turned on, and
τ1 − τ0 is the proper time that the detector operates.
The contribution from the n ¼ 0 mode in the “in” vacuum is obtained from (2.14b), (4.17), (4.18), and (5.4). For ν ≠ 0,

the outcome is

F in
0 ðω; τ1; τ0Þ ¼

1

λ0
ðjMþj2 þ jM−j2 þ 2ReðMþM�

−ÞÞ; ð5:15Þ

where

M� ≔ � e�iπν=22�ν−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðνπÞp

Γð1
2
∓ νÞð2π=λ0Þ∓ν

sinðνπÞΓð1 ∓ νÞ
Z

τ1

τ0

dτe−ð12∓νÞHτ−iωτ

¼ � e�iπν=22�ν−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðνπÞp

Γð1
2
∓ νÞð2π=ðλ0eHτ0ÞÞ∓νe−iωτ0

sinðνπÞΓð1 ∓ νÞeHτ0=2

Z
τ1−τ0

0

dse−ð12∓νÞHs−iωs; ð5:16Þ

and for ν ¼ 0 the corresponding expression is

F in
0 ðω; τ1; τ0Þ ¼

1

πλ0

����
Z

τ1

τ0

dτe−ðH2þiωÞτ
�
1

2
πiþ lnð4λ0=πÞ þHτ

�����
2

¼ 1

πλ0eHτ0

����
Z

τ1−τ0

0

dse−ðH2þiωÞs
�
1

2
πiþ lnð4λ0eHτ0=πÞ þHs

�����
2

: ð5:17Þ

From the last expressions in (5.16) and (5.17) it is clear that
F in

0 depends on τ0, τ1, and λ0 only through the geomet-
rically invariant combinations λ0eHτ0 and τ1 − τ0.

VI. STRESS-ENERGY TENSOR

In this section we evaluate the renormalized stress-energy
tensor in the states whose Wightman function comes from
that in j0Ei on dS2 by an image sum construction.

A. Point splitting and image sum

Recall that the classical stress-energy tensor for a
massive scalar field in 1þ 1 dimensions reads [5]

Tμν ¼ ð1 − 2ξÞϕ;μϕ;ν þ
�
2ξ −

1

2

�
gμνgρσϕ;ρϕ;σ − 2ξϕϕ;μν

þ ξgμνϕ□ϕþ
��

1

2
− ξ

�
m2 − ξ2R

�
gμνϕ2: ð6:1Þ

The point-splitting definition of the renormalized expect-
ation value of Tμν in a quantum state jΨi is

hΨjTμνðxÞjΨi ≔ lim
x→x0

Dμνðx; x0ÞGð1Þ
renðx; x0Þ; ð6:2Þ

where Dμνðx; x0Þ is a two-point differential operator
obtained by promoting the differential operators acting at
a single spacetime point in (6.1) into suitably point-split
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versions, and Gð1Þ
renðx; x0Þ is obtained from the Hadamard

function, Gð1Þðx;x0Þ≔Gðx;x0ÞþGðx0;xÞ, where Gðx; x0Þ ¼
hΨjϕðxÞϕðx0ÞjΨi, by subtracting purely geometric state-
independent counterterms [5,33].
We shall consider states induced by a quotient con-

struction from j0Ei on dS2. In these states, renormalization
is required only in the j0Ei contribution on dS2, with the
well-known outcome [4]

h0EjTμνj0Ei ¼ −
1

8π

�
m2 ln

�
H2

m2

�
þm2

�
ψ

�
1

2
þ ν

�

þ ψ

�
1

2
− ν

��
þ
�
1

3
− 2ξ

�
H2

	
gμν; ð6:3Þ

where ψ is the digamma function [25]. The additional
contributions from the image terms require no renormal-
ization, and can be evaluated with minimal technology, as
follows.
First, observe that in a locally de Sitter spacetime, where

R ¼ 2H2, and using the field equation, ð□þm2 þ
2ξH2Þϕ ¼ 0, the classical expression (6.1) forTμν reduces to

Tμν ¼ ð1 − 2ξÞϕ;μϕ;ν þ
�
2ξ −

1

2

�
gμνgρσϕ;ρϕ;σ − 2ξϕϕ;μν

þ
��

1

2
− 2ξ

�
m2 − 4ξ2H2

�
gμνϕ2: ð6:4Þ

For the two-point differential operator in (6.2), for the image
terms we may therefore replace Dμν by

D̃μνðx; x0Þ ¼
1

4
ð1 − 2ξÞð∇μ∇ν0 þ∇μ0∇νÞ

þ 1

4

�
2ξ −

1

2

�
gμνðgρσ0∇ρ∇σ0 þ gρ

0σ∇ρ0∇σÞ

−
1

2
ξð∇μ∇ν þ∇μ0∇ν0 Þ

þ
��

1

4
− ξ

�
m2 − 2ξ2H2

�
gμν; ð6:5Þ

and, again for the image terms, we need not specify at which
point the metric tensors in (6.5) are evaluated.
Second, recall from Secs. IVA and IV B that we now

consider the cosh scale factor FRW spacetimes with λ ¼
2π=p with p ¼ 2; 3;…, denoted by Mp, and on them the
induced vacuum j0pi, and the sinh scale factor FRW

spacetimes with arbitrary λ1, and on them the Euclidean
quotient state. In these states, we have

Gðx; x0Þ ¼ GdS2ðx; x0Þ þ ΔGðx; x0Þ; ð6:6aÞ
ΔGðx; x0Þ ¼ 1

4
secðπνÞ

X
r∈ I

F

�
1

2
ð1þ Zrðx; x0ÞÞ

�
; ð6:6bÞ

where

FðqÞ ≔ 2F1

�
1

2
− ν;

1

2
þ ν; 1; q

�
; ð6:7Þ

and Zr and the index set I depend on the quotient: in the
Mp spacetime, with p ¼ 2; 3;…, working in the chart ðt; χÞ
(3.5), we have

Zrðxðt; χÞ; xðt0; χ0ÞÞ ¼ coshðHtÞ coshðHt0Þ
× cosðχ − χ0 þ 2πr=pÞ
− sinhðHtÞ sinhðHt0Þ;

r∈ I ¼ f1;…; p − 1g; ð6:8Þ
while in the sinh scale factor FRW spacetime, working in
the chart ðt1; χ1Þ (3.9), we have

Zrðxðt1; χ1Þ; xðt01; χ01ÞÞ ¼ coshðHtÞ coshðHt01Þ
− sinhðHt1Þ sinhðHt01Þ
× coshðχ1 − χ01 þ rλ1Þ;

r∈ I ¼ Znf0g: ð6:9Þ
We have dropped the iϵ from Zr because for these image
termsZrðx; x0Þ < 1whenever x and x0 are sufficiently close,
which is the case on taking the coincidence limit in (6.2).
For each of these quotients, we hence have

hTμνi ¼ h0EjTμνj0Ei þ ΔhTμνi; ð6:10Þ
where

ΔhTμνi ¼ lim
x→x0

D̃μνðx; x0ÞðΔGðx; x0Þ þ ΔGðx0; xÞÞ; ð6:11Þ

where ΔG is as given in (6.6b).
We shall now give the expressions for ΔhTμνi.

B. Mp spacetime

In theMp spacetime, working in the chart ðt; χÞ (3.5), we
find that ΔhTμνi is diagonal, with

ΔhTt
ti ¼ 1

4
H2 secðπνÞ

Xp−1
r¼1

�
−ξFðqrÞ þ

��
2ξ −

1

2

�
qr − ξð1þ cosð2πr=pÞÞ

�
F0ðqrÞ

	
; ð6:12aÞ

−ΔhTχ
χi ¼ 1

4
H2 secðπνÞ

Xp−1
r¼1

��
ð4ξ − 1Þ

�
m2

H2
þ 2ξ

�
þ ξ

�
FðqrÞ

þ
��

4ξ −
1

2

�
qr − ξð1 − cosð2πr=pÞÞ

�
F0ðqrÞ − 2ξð1 − qrÞð1þ cosð2πr=pÞÞF00ðqrÞ

	
; ð6:12bÞ
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where

qr ≔ 1 −
1

2
cosh2ðHtÞð1 − cosð2πr=pÞÞ: ð6:13Þ

In the special case p ¼ 2, the image sum has only one term, r ¼ 1, and the expressions in (6.12) are similar to those for a
similar Z2 quotient of dS4 considered in [30].

C. Sinh scale factor FRW spacetime

In the sinh scale factor FRW spacetime, working in the chart ðt1; χ1Þ (3.9), we find that ΔhTμνi is diagonal, with

ΔhTt
ti ¼ 1

2
H2 secðπνÞ

X∞
r¼1

�
−ξFðq̃rÞ þ

��
2ξ −

1

2

�
q̃r − ξðcoshðrλ1Þ þ 1Þ

�
F0ðq̃rÞ

	
; ð6:14aÞ

−ΔhTχ
χi ¼ 1

2
H2 secðπνÞ

X∞
r¼1

��
ð4ξ − 1Þ

�
m2

H2
þ 2ξ

�
þ ξ

�
Fðq̃rÞ

þ
��

4ξ −
1

2

�
q̃r þ ξðcoshðrλ1Þ − 1Þ

�
F0ðq̃rÞ − 2ξð1 − q̃rÞðcoshðrλ1Þ þ 1ÞF00ðq̃rÞ

	
; ð6:14bÞ

where

q̃r ≔ 1 −
1

2
sinh2ðHtÞðcoshðrλ1Þ − 1Þ: ð6:15Þ

The sums in (6.14) are exponentially convergent, due to the falloff of F at large negative argument. Note that the overall
numerical factors 1

2
in (6.14) have come from combining the r < 0 image terms with the r > 0 image terms, whereas in

(6.12) each summand comes from exactly one image term and the overall numerical factor is 1
4
.

D. Exponential scale factor FRW spacetime

In the exp scale factor FRW spacetime, an attempt to induce a state from the Euclidean vacuum on dS2 by an image sum
gives for the Wightman function a sum that is not convergent in absolute value, as we noted in Sec. IV C 3. If we set issues
of convergence aside for the moment, and proceed with the stress-energy tensor as above, working in the chart ðt0; χ0Þ
(3.13), we find that

Zrðxðt0; χ0Þ; xðt00; χ00ÞÞ ¼ coshðHðt0 − t00ÞÞ −
1

2
eHðt0þt0

0
Þðχ0 − χ00 þ rλ0Þ2; ð6:16Þ

where r∈Znf0g, and the image contributions to the stress-energy tensor are given by

ΔhTt
ti ¼ 1

2
H2 secðπνÞ

X∞
r¼1

�
−ξFð ˜̃qrÞ þ

��
2ξ −

1

2

�
˜̃qr − 2ξ

�
F0ð ˜̃qrÞ

	
; ð6:17aÞ

−ΔhTχ
χi ¼ 1

2
H2 secðπνÞ

X∞
r¼1

��
ð4ξ − 1Þ

�
m2

H2
þ 2ξ

�
þ ξ

�
Fð ˜̃qrÞ

þ
�
4ξ −

1

2

�
˜̃qrF0ð ˜̃qrÞ − 4ξð1 − ˜̃qrÞF00ð ˜̃qrÞ

	
; ð6:17bÞ

where

˜̃qr ≔ 1 −
1

4
e2Htðrλ0Þ2: ð6:18Þ

The sums in (6.17) are however not convergent in absolute
value. While we leave the potential significance of these
sums subject to future work, we note that the sums depend
on t and λ0, neither of which has an invariant geometric

meaning, only through the combination λ0eHt, which does,
as we discussed in the detector context in Sec. V D.

VII. NUMERICAL RESULTS

In this section we give selected numerical results for
the detector’s response in cosh and exp scale factor
FRW spacetimes. The associated plots are collected in
the Appendix.
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A. Cosh scale factor FRW

Figure 1 shows plots of the detector’s response in the cosh
scale factor FRW spacetime as a function of the energy
gap, for the Euclidean vacuum on dS2, and for the induced
vacuum on the Z3 quotient M3, for selected values of the
parameters as shown. The plots were evaluated numerically
from (5.5).
The high degree of symmetry between excitations and

deexcitations indicates that the response in this parameter
range is dominated by the switch-on and switch-off effects,
being significantly different from the long time limit in
which the response in the Euclidean vacuum satisfies the
detailed balance condition in the de Sitter temperature
H=ð2πÞ [34].
The ν-dependence in the graphs shows that the overall

magnitude of the response decreases as the effective mass
squared m2 þ 2ξH2 increases, as one would expect. The
peak structure in the graphs comes mainly from the spatially
constant mode. Similar features were found in [13] for a
detector in the spatially compact Milne spacetime.

B. Exponential scale factor FRW

Figures (2a) and (2b) show plots of the detector’s
response in the exp scale factor FRW spacetime as a
function for the energy gap, for the “in” vacuum, including
only the spatially nonconstant modes, setting ν ¼ 0, and
using two different values of the duration, for selected
values of the circumference parameter λ0. The plots show
that reducing the value of the circumference parameter
shifts the deexcitation peaks towards higher (that is, more
negative) deexcitation gaps, and this shift is stronger when
the interaction duration is shorter. An alternative way to say
this, given that the circumference parameter does not have
an invariant magnitude, is that a detector operating at earlier
times has de-excitation peaks at higher (that is, more
negative) values of the deexcitation gaps, and this effect
is stronger when the interaction duration is shorter.
Figures 2(c) and 2(d) show a similar shift of the deexci-
tation peaks for selected positive values of ν.
Figures 3(a) and 3(b) show plots of the contribution to

the detector’s response from the spatially constant mode
only, for fixed circumference parameter but varying ν, in
the “in” state. The response shows peaks at both excitations
and deexcitations, nonsymmetrically for low effective mass
squared but more symmetrically for high effective mass
squared. This indicates that our choice for the spatially
constant mode “in” state is not close to a no-particle as seen
by a local detector. We have also verified that this structure
seems not to depend strongly on the size parameter.
Figures 3(c) and 3(d) show plots of the total response,

combining the contributions from the spatially constant and
nonconstant modes, for selected values of the parameters.
The spatially constant mode contribution dominates, with
minor modulations from the spatially nonconstant modes.
This is further indication that our choice for the spatially
constant mode “in” state contains significant structure.

VIII. CONCLUSIONS

We have addressed the choice of a quantum state of a real
massive scalar field in locally de Sitter (1þ 1)-dimensional
FRW cosmologies with compact spatial sections, with both
hyperbolic cosine, hyperbolic sine and exponential depend-
ence of the scale factor on the cosmological time. We
employed adiabatic criteria at early times, adiabatic criteria
at large momenta, and induction from the Euclidean vacuum
on standard global de Sitter, each of these where applicable.
In particular, we found that the early-time adiabatic criterion
fails for the spatially constant field mode with the sinh and
exp scale factors, due to the phenomenon known as a
massive-zero mode, and we discussed a possible alternative
criterion for this mode using the late-time dependence.
We found the response function of a cosmologically

comoving UDW detector, showing that local quantum
observations do establish that the detector is not in the
standard Euclidean vacuum in standard de Sitter space, and
we presented selected numerical results. For states induced
from the Euclidean vacuum by a quotient construction, we
also evaluated the field’s stress-energy tensor in terms of
image sums, amenable to future analyses by both analytic
asymptotic methods and by numerical methods.
Inducing a state on the FRW spacetime from the

Euclidean vacuum on standard de Sitter spacetime was
trivially successful for the cosh scale factor spacetimes that
are finite Zp quotients of de Sitter, with p ¼ 2; 3;…, and
less trivially for the sinh scale factor spacetimes, where the
quotienting group is Z and operates on only a subset of de
Sitter; in the latter case, the infinite image sums for the
Wightman function and for the stress-energy were mani-
festly convergent. A similar induction attempt for the exp
scale factor spacetimes, where the quotienting group is Z
and operates on a different subset of de Sitter, however
produced for the Wightman function and for the stress-
energy tensor image sums that are not convergent in
absolute value. Is this lack of convergence due to some
minor technical ambiguity that can be sidestepped by, e.g.,
considering derivatives of the field rather than the field
itself [35–40], or perhaps a technical artifact that can be
cured by an appropriate resummation [41], or might it
signify some deeper pathology in the sought-for state?
Our choice to work in 1þ 1 dimensions brought in two

simplifications. First, a geometric simplification was that as
the spatial sections are one-dimensional, they have no
intrinsic curvature, and the compact spatial sections have
topology S1 for each of the three expansion laws; further, the
cosh and sinh scale factor spacetimes are uniquely classified
by a spatial circumference parameter that takes arbitrary
positive values, whereas the spatial circumference in the exp
scale factor spacetime is not associated with an invariant
magnitude. Second, a simplification in the detector’s
response was that we could choose the coupling strength
to be constant over the duration of the interaction, with a
sudden switch-on and switch-off, without encountering
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infinities in the detector’s transition probabilities, in our first-
order perturbation theory treatment.
A generalization to spacetime dimension dþ 1 with

d ≥ 2, and in particular to our home spacetime dimension
d ¼ 3, would need to address a more complicated structure
with both of these features.
First, for d ≥ 2, the spatial sections in the cosh scale

factor, sinh scale factor, and exp scale factor foliations of
standard de Sitter have now respectively positive, negative,
and zero curvature, with the respective spatial geometries of
Sd with the round metric, Rd with the hyperbolic metric,
and Rd with the Euclidean metric. For the sinh and exp
scale factors, making the spatial sections compact involves
again quotients with continuous parameters, but with a
larger choice of spatial topologies; in contrast, for the cosh
scale factor, nonstandard spatially compact sections come
from quotients of Sd, and these quotients have no continu-
ous parameters. Also, while the quotients are by construc-
tion locally spatially homogeneous, not all of them are
globally spatially homogeneous. A comprehensive discus-
sion of the d ¼ 3 case is given in [42].
Second, in the detector’s response, a coupling strength that

remains constant over the interaction duration produces a
finite response function for d ¼ 1 and d ¼ 2 but a divergent
response function for d ≥ 3, due to the interplay of the sharp
switch-on and switch-off against the Wightman function’s
short distance singularity; see [43] for a detailed discussion
in the Minkowski vacuum. For d ≥ 3, one would hence
need to consider a less abrupt switching, such as the smooth

finite-duration switchings considered in [44,45], or a Cn

switching with some non-negative n [46,47]. Such switch-
ings however create a new interpretational challenge; how to
separate in the detector’s response the effects due to the
switching profile, which is freely adjustable, from the effects
due to the state of the quantum field and the detector’s
motion, which is the issue of interest. An alternative option
for d ≥ 3, at least for d ≤ 5 [43], may be to consider not the
transition probability but a transition rate, from which the
(divergently) large contribution due to the abrupt switching
drops out in a controlled way [43,48–52].
A generalization to spacetime dimension dþ 1 with

d ≥ 2, and in particular to d ¼ 3, appears hence feasible,
butwill facemore choices in the spacetimes to be considered,
and more choices in how the detector’s coupling depends on
time. We leave this generalization a subject for future work.

ACKNOWLEDGMENTS

We thank University of Nottingham Ningbo China col-
leagues Daniele Garrisi and Richard Rankin for interesting
discussions and the anonymous referees for help with the
presentational focus. The work of J. L. was supported by
United Kingdom Research and Innovation Science and
Technology Facilities Council [Grant No. ST/S002227/1].

APPENDIX: FIGURES FOR SEC. VII

In this appendix we collect the figures that are discussed
in Sec. VII.

FIG. 1. Detector’s response in the cosh scale factor FRW spacetime as a function of the energy gap, in dimensionless variables, writing
F ðω; τ1; τ0Þ ¼ H−2Πðω=H;Hτ1; Hτ0Þ, and writing μ ¼ ω=H. In part (a) for λ ¼ 2π, which is the Euclidean vacuum on dS2, and in part
(b) for λ ¼ 2π=3, which is the induced vacuum on the Z3 quotient M3, for selected values of ν as shown. Evaluated from (5.5).
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FIG. 2. Spatially nonconstant mode contribution to the detector’s response in the exp scale factor FRW spacetime in the “in” vacuum,
as a function of the energy gap, in the dimensionless variables explained in Fig. 1 caption, with parameter values as shown. The legends
denote λ0 by λ.
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FIG. 3. As in Fig. 2, but in parts (a) and (b) for the spatially constant mode contribution, and in parts (c) and (d) for the sum of the
spatially constant and nonconstant mode contributions.
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