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A B S T R A C T   

For a number of years, facial features removal techniques such as ‘defacing’, ‘skull stripping’ and ‘face masking/ 
blurring’, were considered adequate privacy preserving tools to openly share brain images. Scientifically, these 
measures were already a compromise between data protection requirements and research impact of such data. 
Now, recent advances in machine learning and deep learning that indicate an increased possibility of re- 
identifiability from defaced neuroimages, have increased the tension between open science and data protec
tion requirements. Researchers are left pondering how best to comply with the different jurisdictional re
quirements of anonymization, pseudonymisation or de-identification without compromising the scientific utility 
of neuroimages even further. In this paper, we present perspectives intended to clarify the meaning and scope of 
these concepts and highlight the privacy limitations of available pseudonymisation and de-identification tech
niques. We also discuss possible technical and organizational measures and safeguards that can facilitate sharing 
of pseudonymised neuroimages without causing further reductions to the utility of the data.   

1. Introduction 

Advances in imaging technology have led to significant changes in 
the nature, size and variety of neuroimages collected, processed, stored 
and shared. A range of largely open platforms are today available to 
facilitate international sharing of neuroimages. This growing movement 
of neuroscience towards open data sharing and the increasing collabo
rations between neuroscientists across geographic boundaries raises 
critical questions for the privacy and confidentiality of research subjects. 
The increasing prominence of data protection regulations, notably the 
European Union’s General Data Protection Regulation (GDPR) and the 
United States’ Health Insurance Portability and Accountability Act 

(HIPAA) (White et al., 2020) have increased attention to open data 
sharing initiatives and how data subject privacy issues are addressed. 

Brain images that include facial regions can be used to recognise the 
research subjects (Schwarz et al., 2021). Conventionally, researchers are 
encouraged to apply techniques involving removal or blurring of facial 
features from the images before sharing to address privacy concerns. The 
underlying rationale is to achieve anonymity which allows for open 
sharing according to data protection laws (Nichols et al., 2017). Recent 
studies demonstrate, however, that these techniques not only reduce the 
utility of the data (de Sitter et al., 2020) but also are insufficient in 
achieving anonymity (Ravindra and Grama, 2019; Schwarz et al., 2019). 
This raises ethical, legal and scientific challenges for sharing of 
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neuroimages. Therefore, this paper addresses the question: how can 
neuroimages be processed under available legal provisions to preserve 
data subjects’ privacy while retaining the scientific utility of the data? 
We intend to shed light on the tension between privacy and scientific 
utility. 

This paper starts with descriptions of what we mean by neuroimages 
and provides a much needed conceptual clarity on the concepts of 
anonymization, pseudonymisation and de-identification of neuro
images. A clear understanding of these concepts is pertinent given their 
different jurisdictional origins, interpretations and implementations 
which raise challenges for often internationally trained researchers who 
are expected to comply with practical regulations. We then explore the 
common approaches/techniques to remove direct and or indirect iden
tifiers in neuroimages, highlighting their impact on the scientific utility 
and their limitations in guaranteeing anonymity. We then identify 
measures and safeguards that can facilitate responsible processing of 
neuroimages in a way that will protect the privacy and confidentiality of 
data subjects without further emphasis on impairing the usefulness of 
the data used for analysis. This paper makes contributions to both 
research and practice: it improves legal and technical understanding of 
anonymization/pseudonymisation/de-identification of neuroimages 
and identifies legal positions on how neuroimages can be shared without 
overemphasizing the total removal of direct and indirect identifiers to 
preserve scientific utility. These insights are of interest to individual 
researchers, funding agencies, platform providers, local/(inter)national 
policy makers and members of institutional review boards. 

2. Neuroimages 

Neuroimaging refers to the use of various techniques (imaging 
technology) to create images of the structures, or function of the nervous 
system. These in vivo imaging techniques generate data that allow for a 
better understanding of the nature of healthy, as well as functionally 
impaired, human brains and the ‘‘underpinnings of mind and behav
iour’’ (Gorgolewski et al., 2016a). Neuroimaging comprises many 
different data modalities (such as MRI, fMRI, diffusion MRI, CT, SPECT, 
PET, CT/CAT, Cranial ultrasound, and Functional ultrasound imaging). 
Note that within this paper, we focus on neuroimaging techniques which 
always display anatomical structures, besides some of them also being 
able to capture functional data. Techniques, such as magnetoencepha
lography (MEG), electroencephalography (EEG), intracranial electro
encephalography (iEEG), or near-infrared spectroscopy (NIRS) that 
solely record the function of the brain and not its anatomy are therefore 
not considered here as neuroimaging techniques in the narrow sense. 
Nonetheless, the reader should keep in mind that functional brain data - 
just like behavioural and/or cognitive data - bears the risk of 
de-identification (see e.g., (Nishimoto et al., 2020). Otherwise known as 
brain imaging, neuroimaging has grown from its earliest con
ceptualisation as ‘neuroradiology’ (Fulham, 2004) to revolutionize the 
way the brain and its functions are understood in research and appli
cation (Poldrack, 2017). Images generated by neuroimaging techniques, 
particularly high resolution images of the anatomical characteristics or 
of the functional activation patterns, raise a number of concerns related 
to privacy and confidentiality of research participants. This is because of 
the availability of technologies that can generate recognizable images of 
the participant’s facial features from them (Kulynych, 2002) including: 
1) facial reconstruction and recognition technology, 2) technology that 
recognizes other patterns of indirect features that can be used for 
re-identification (such as ’brainprints’). Neuroimages can thus be 
described as personal data even when all direct information (e.g., the 
face) relating to the participant are removed. Such data are potentially 
identifiable given the presence of ‘brainprints’ which can be referred to 
as indirect identifiers and can lead to image-based re-identification. 
These concerns are further increased by efforts to share de-identified or 
pseudonymised neuroimages with ‘brainprints’ intact, for different 
research and non-clinical applications, including neuroprediction 

(Langenecker et al., 2018), neuroforecasting (Knutson and Genevsky, 
2018), neuromarketing (McClure et al., 2004) and other consumer 
technologies. The potential re-identifiability of neuroimages presents 
ethical, legal and technical challenges for researchers, but also high
lights the unique nature of such data. 

2.1. Uniqueness of neuroimages 

Article 4(1) of the EU General Data Protection Regulation (GDPR) 
specifies that ‘personal data’ means any information relating to an 
identified or identifiable natural person (‘data subject’); an identifiable 
natural person is one who can be identified, directly or indirectly.’ The 
European Court of Justice (ECJ) has confirmed that the possibility of 
identification is enough to consider some data personal (Borgesius, 
2017). 

In recent years, scientific studies have demonstrated that, like facial 
features and fingerprints, the brain anatomy is also highly individual 
and that it is possible to identify individuals based on specific neuro
anatomical features (Gage and Muotri, 2012; Miranda-Dominguez et al., 
2017; Valizadeh et al., 2018). These studies assert that the uniqueness of 
the brain anatomy is determined by the combination of genetic factors, 
individual life experiences, and stochastic processes (White et al., 2020). 
Neuroimages can be quantified to extract these individual brain differ
ences and, for scientific reasons, relate them to external factors of in
terest. The brain has individualized structures and patterns that have 
been referred to as ‘brainprint’ (Aloui et al., 2018; Wachinger et al., 
2014), ‘connectome fingerprint’ (Finn et al., 2015), ‘connectotype’ 
(Miranda-Dominguez et al., 2017). With the use of Linear Discriminant 
Analysis (LDA) and a modified version of the Weighted K-Nearest 
Neighbor (WKNN), Valizadeh et al. (2018) demonstrated that a combi
nation of a relatively small number of neuroanatomical features is 
enough to identify individuals through neuroimages. Using scans from 
the Human Connectome Project, Byrge and Kennedy (2019) found that a 
small ‘‘thin slice’’ or random sample of the connectome was sufficient as 
a unique individual identifier. 

This uniqueness underlines recent findings that individuals can be 
identified using neuroimages (Horien et al., 2018; Miranda-Dominguez 
et al., 2017; Schwarz et al., 2019; Waller et al., 2017). The implication of 
these findings is that neuroimages are inherently identifiable personal 
data and should be given the same privacy and confidentiality consid
erations as facial photographs (Schimke et al., 2011). They have also 
been characterized as novel forms of biometrics called ‘hidden bio
metrics’ which involve the use of specific medical or clinical data to 
identify individuals (Nait-Ali, 2011). In a study using MRI, Aloui et al. 
(2011) used brain characteristics as a biometric tool to identify in
dividuals. This research was given credence by Chen et al. (2014) who 
designed a verification system for identity authentication based on the 
uniqueness of the brain. Their system produced results with a high de
gree of accuracy via pattern recognition. As an emerging biometric 
modality, Aloui et al. (2018) posited that the discriminative signature of 
the brain captured by neuroimages can provide a recognition rate of 
99.6%. Neuroimages can thus be said to contain distinct structural and 
neural activity patterns that define each person and which may not be 
faked as fingerprints can (Geller et al., 1999). An individual’s whole 
brain image is therefore quintessentially highly identifiable. That said, 
unlike a photo of the face, we are unable to observe or record the 
characteristic features of an individual’s brain as they go about in their 
daily life. Thus, to be identified, individuals’ brain imaging data must be 
either accessible in another database that links to their identity, or 
personally post their brain imaging data on social media, as some chil
dren have done after receiving a photo of their brain following a 
research based MRI (White et al., 2020). 

As a hidden biometric, openly sharing neuroimages requires the 
consideration of the ethical principles of privacy and confidentiality. 
The EU General Data Protection Regulation (GDPR) (2018) amplifies 
this requirement and sets very high standards for ensuring the respect of 
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data subjects’ rights to privacy and confidentiality. Considering the 
recent concerns about the potential exploitations that can be achieved 
by third parties from sharing of such personal data, e.g. as summarized 
by Rocher et al. (2019), the GDPR aims to ensure a stronger degree of 
protection. The GDPR, in essence, provides much greater control to 
participants regarding how they want their data to be used. These 
principles are at the heart of research ethics and researchers should offer 
the participants the opportunity to allow their data to be shared, and for 
those participants who agree with sharing, the researchs must assure 
that data protection and appropriate ethical/legal requirements are 
followed. Under the GDPR, protecting personal data involves use of 
technical safeguards that consist of the removal of all direct and or in
direct identifiers in any personally identifiable data to enhance privacy 
and confidentiality. This is referred to as anonymization, pseudonym
isation or de-identification. 

2.2. Anonymization, pseudonymisation and de-identification 

In describing the concept of anonymization as it was contained in 
the EU Directive 95/46/EC, Article 29 Working Party referred to ano
nymization as a type of data processing that involves the removal of 
sufficient elements from the data in such a way that a natural person can 
no longer be identified by using ‘‘all the means likely reasonably to be 
used’’. A similar definition can also be found in international technology 
privacy standards such as ISO 29100:2011, where it is defined as the 
“process by which personally identifiable information (PII) is irrevers
ibly altered in such a way that a PII principal can no longer be identified 
directly or indirectly, either by the PII controller alone or in collabora
tion with any other party”. This is an irreversible process that should 
produce anonymous information which is defined in the GDPR as “in
formation which does not relate to an identified or identifiable natural 
person or to personal data rendered anonymous in such a manner that 
the data subject is not or no longer identifiable”. It should be noted that 
the GDPR does not use the word ‘anonymization’ but focuses rather on 
the outcome of the process. 

Most often in literature, anonymization is used synonymously with 
de-identification which is a concept used by the US Health Insurance 
Portability and Accountability Act (HIPPA) privacy rule for medical data 
(Freymann et al., 2012; Malin et al., 2011). HIPAA provides regulations 
describing when protected health information (PHI) can be used or 
disclosed for research purposes by covered entities (45 CFR § 164.501). 
One of the primary differences between the EU’s GDPR and the US’s 
HIPAA, is that whereas the GDPR is applicable to all personal data 
related to EU citizens and residents, the HIPAA applies only to the use of 
data within covered entities (45 C.F.R. § 160.103). Covered entities 
include insurance companies, health plans, health care providers, hos
pitals, and other institutions that relate to patient care. Covered entities 
are allowed to use and disclose PHI for research with the consent from 
the individual, or without individual consent under specific circum
stances. These ‘specific circumstances’ are defined by 45 C.F.R. §
164.512(i) as the following: (a), obtaining a waiver by an institutional 
review board or equivalent medical ethics committee; (b), obtaining 
confirmation by researchers that they will use the data only to design a 
research protocol or for similar preparatory purposes necessary prior to 
implementing a research protocol. In addition, the researcher will not 
remove PHI from the covered entity and must agree that the data is 
necessary to make important decisions regarding the implementation of 
the study (i.e., risk/benefit ratio); or (c), when the use or disclosure is 
solely for research on the PHI of deceased persons, the PHI is necessary 
for the research, and, at the request of the covered entity, documenta
tion of the death of the individuals about whom information is being 
sought 45 CFR 164.512(i)(1)(iii)); or (d) limited data sets coupled with a 
data transfer agreement [see 45 CFR § 164.514(e)]. The researcher 
ought to communicate that data will be used only for research on the PHI 
information of the deceased and the data is necessary for the study and 
documentation of the death of the individual. 

Non-covered entities do not fall under HIPAA. Examples of non- 
covered entities that may collect PHI include devices that digitally 
capture information via wearables (e.g., heart rate, activity level, sleep, 
etc.) and upload this data to a database, recreational genetic databases 
(e.g., 23 and me), registries that are not housed within covered entities. 
Research conducted by non-covered entities fall under the regulations 
defined by the ‘Common Rule’. However, some institutions consist of 
covered and non-covered entities under the same roof. In these cases, the 
situation may arise that only the covered entity must comply with the 
HIPAA requirements under the Privacy Rule. PHI not held by a covered 
entity can be used and disclosed without regard to the Privacy Rule. 
However, specific state regulations such as the “Federal Policy for the 
Protection of Human Subjects” or the Common Rule still apply. 

Section 164.514 of HIPAA provides two approaches (rule-based and 
probabilistic) to meet the required standards of de-identification that do 
not suggest irreversibility. The US law provides that a covered entity or 
what is referred to in the GDPR as the data controller may assign a 
unique code to de-identified data that can permit re-identification by the 
same entity (§ 164.514(c)). Unlike anonymization therefore, de- 
identification allows re-identification and this is the fundamental dif
ference between anonymization and de-identification. 

The robustness of the anonymization process on the other hand is 
dependent on consideration of “all” “likely” and “reasonable” means of 
re-identification of data subjects ‘‘either by the controller or by another 
person to identify the natural person directly or indirectly’’ (GDPR, 
Recital 26). This test of identifiability includes consideration of the cost, 
time and availability of technology required for re-identification (GDPR 
Recital 26). It is a test that should be made in accordance with sugges
tions made by the CJEU in Breyer, which clearly stated that information 
is personal data even if it requires legal and additional practical means 
to make a person ‘identifiable’ (Borgesius, 2017). This is a relevant test 
to ascertain what can be categorized as personal data and thus covered 
by the provisions of the GDPR. Therefore, when a dataset previously 
determined to be anonymized fails the test of ‘cost’, ‘time’ or ‘technol
ogy’, the data becomes personal data that has gone through a pseudo
nymisation process. In the GDPR, pseudonymisation is defined in 
article 4(5) as the processing of personal data in a way that it can no 
longer be attributed to a specific data subject without the use of addi
tional information. One can therefore argue that any processing that 
allows the use of additional, direct or indirect identifiers/attributes, to 
re-identify the data subject falls under the category of pseudonymisa
tion. That means, de-identification is closer in meaning to pseudonym
isation than anonymization. Even a low risk of re-identification as 
permitted by de-identification specifications would disqualify data from 
being classified as “anonymized data” under the GDPR. Both pseudo
nymised and de-identified data still contain some risk of re-identifying 
the corresponding natural person. From this understanding, what is 
considered by US HIPAA as de-identified data and no longer falling 
under ‘protected health information’ (https://www.hipaajournal.com/ 
de-identification-protected-health-information/) would be considered 
pseudonymised data which is still considered personal data according to 
the EU GDPR. 

Taking the GDPR-based definitions for anonymization and pseudo
nymisation into account, and considering the ongoing technological 
progress in the field of machine learning, nowadays nearly all processes 
performed on raw and derived data that are associated with a specific 
natural person can at most only be classified as “pseudonymised”. This 
fact changes the historical view on “anonymization” of neuroimages, 
where the removal of direct personal information (facial structures, real 
names or contact information, etc) was sufficient to fully anonymize the 
corresponding data. Today, even if a neuroimaging data is de-identified, 
the remaining data still contain information that can be used for re- 
identification. For this reason, the anonymization of data requires 
more than the typical de-identification of direct or indirect personal data 
and includes more drastic measures such as cross-subject aggregation 
and randomization procedures. Unfortunately such real anonymization 
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procedures typically have a high impact on the scientific value/potential 
of the data as will be discussed in the next section. 

3. Pseudonymisation of neuroimages: scientific utility and open 
sharing 

The pseudonymisation of neuroimages and specifically MRIs con
stitutes a challenge as, to protect the subject’s identity without limiting 
the scientific utility of the data, it should prevent re-identification whilst 
retaining as much information as possible. Several methodologies for 
achieving pseudonymisation exist which can be classified into four 
major groups which we will summarize focusing on their application to 
MRIs. The first group corresponds to skull-stripping techniques which 
extract the brain from the MRI volumes (see Fig. 1, left column), dis
carding everything else (for a review see (Kalavathi and Prasath, 2016). 
These methods preclude the possibility of using facial features, head 
geometries and subject-specific distinctive marks (scars, malformations, 
etc.) for identifying the subject, but are sensitive to several factors (e.g. 
population, MRI intensity, etc.) which make them relatively 
failure-prone (Fennema-Notestine et al., 2006). Another drawback is 
that they limit the possible analyses that can be performed on the data, 
especially for procedures that take advantage of head geometries (i.e. 
M/EEG source localization, sEEG coregistration, automatic segmenta
tion, etc). The second group is formed by face-removal methods (see 
Fig. 1, middle column), which retain parts of the skull and the skin but 
partially or completely remove the facial area (Bischoff-Grethe et al., 
2007; Schimke and Hale, 2011). These approaches are less error-prone 
and require less manual intervention than skull-stripping methods but 
still substantially modify the data due to the removal of the nose, eyes, 
cheeks and parts of the skull. The third group (see Fig. 1, right column) 
corresponds to face-blurring techniques, in which the whole head, skull 
and face geometries are retained but the face, ears and subject-specific 
marks are covered or blurred. For example, MaskFace (Milchenko and 
Marcus, 2013) works by identifying the voxels around the surface of the 
face and “flattening” them; and AnonyMI (Mikulan et al., In Press) by 
cropping the facial area (and any other area selected by the user) with a 
low-resolution 3D model of the head and filling the area between the 
skin and the inner skull with random numbers that follow the 

distribution of values of the subject’s skull. These techniques offer the 
highest degree of data preservation but might carry a higher 
re-identification risk due the increased amount of information they 
conserve. The fourth group is formed by a recently developed technique 
in which the face of the subject is replaced with a new face (Schwarz 
et al., 2021). It works by identifying the facial area, replacing it with the 
face obtained with a facial template (obtained by averaging several 
faces) and finally normalizing the intensity values to match the original 
image. This method avoids the issues of face-removal techniques which 
is unique but still modifies the original geometry of the subject’s head. 

3.1. Impact on scientific utility of neuroimages 

Neuroimaging datasets are information-rich resources whose uses 
can extend beyond the original publications that they accompany. For 
example, part of the data collected in the context of the Human Con
nectome Project (Glasser et al., 2016; Van Essen et al., 2013) have 
already been re-used in high impact publications (Deco et al., 2021). For 
this reason, the myriad of possible analyses makes it difficult to establish 
a pseudonymisation approach that, at the same time, is univocal and 
guarantees re-usability for each and every purpose. For example, a study 
focusing on the structural analysis of a specific brain structure and/or 
malformations could share an MRI dataset of skull-stripped brain im
ages, because it doesn’t need to consider bone, skin and soft tissue 
(Nalepa et al., 2020). On the other hand, when MRIs are shared as part of 
EEG studies, facial masking or removal techniques may induce 
geometrical distortions impeding accurate source modelling analyses 
that take advantage of head geometries (Hallez et al., 2007). In this 
respect, few studies have quantitatively tested the re-identification risk 
and the geometrical preservation offered by the state-of-the-art pseu
donymisation methods (Budin et al., 2008; de Sitter et al., 2020; Mazura 
et al., 2012; Prior et al., 2008) and only one study evaluated these two 
aspects simultaneously (Mikulan et al., n.d.). Treating these two aspects 
simultaneously is of paramount importance to find a balance between 
utility in neuroimages and compliance with current legislation 
regarding data protection. In a study that evaluated how removal of 
facial features affect MRI, de Sitter et al. (2020) concluded that methods 
commonly used for the removal of facial features lead to failures of 

Fig. 1. Examples of three of the four major groups of techniques to pseudonymize MRIs (cf. main text) (Omer Faruk Avants et al., 2011; Milchenko and Marcus, 
2013; Gulban et al., 2019; Mikulan et al., In Press). Group 1: Skull-stripping example; Group 2: Face-removal examples; Group 3: Face-blurring examples. Group 4: 
Face-replacement (not shown in this figure). For all groups: top row displays sagittal views of pseudonymised MRIs; bottom row displays 3D representations of the 
same pseudonymised MRIs. All images were created from the MRI of a subject who provided informed consent. 
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automated volumetric pipelines. 
Another important aspect to discuss when considering the scientific 

utility of common pseudonymisation methods is how user-friendly they 
are. Indeed, the less friction experienced by researchers when applying a 
tool, the more likely it is to be properly used. In this respect, the ideal 
method should be fast and customizable; it should allow creating tem
plates for particular datasets (possibly age specific); it should provide a 
user interface to mask specific areas of an individual subject that could 
lead to increased re-identification risk (e.g. scars); it should allow 
running analysis on multiple subjects automatically, making it easy to 
process large datasets, and have both a command-line and a graphical 
interface (essential for users with varying computer skills). 

3.2. Privacy concerns 

In addition to reducing the usefulness of these data, it has also been 
revealed in recent re-identification (de-anonymization) attack studies on 
such ‘anonymized neuroimages’, that the presumed anonymity provided 
by these techniques is compromised by both the uniqueness of the image 
and availability of advanced pattern recognition technologies (Ravindra 
and Grama, 2019; Schwarz et al., 2019). This means that datasets often 
referred to as ‘anonymized’ can mostly be reidentified (Knoppers et al., 
2012; Loukides et al., 2010; Rocher et al., 2019; Rothstein, 2010). In 
their study, Rocher et al. (2019) concluded that it is possible to correctly 
re-identify 99.98% of Americans in any dataset using 15 demographic 
attributes and irrespective of applying anonymization techniques. This 
puts into question the appropriateness of openly sharing such data 
believed to be anonymized. The implication is that many of the available 
privacy protection approaches that inform open sharing of biomedical 
data do not qualify as ‘anonymization techniques’. This is especially true 
with large-scale data sets, with considerable heterogeneity of data. 
These studies highlight the challenges of achieving complete anonymity 
which can most times depend on availability of technology and 
expertise. 

Using a novel CycleGan framework, Abramian and Eklund (2019) 
demonstrated that face blurring may not provide adequate protection 
against motivated attacks to de-anonymize de-identified neuroimages. 
Their experiment on a multi-site MRI dataset including T1, T2, PD, MRA 
and diffusion data from 581 subjects showed that it may be possible to 
reconstruct facial features from ‘anonymized’ images using generative 
adversarial networks (GANs), which is a technique that can be used to 
create new data from a training set through the competition between 
two neural networks. Schwarz et al. (2019) have also demonstrated the 
possibility of re-identifying research participants from de-identified MRI 
scans with the help of face-recognition software. After de-facing with 
popular and available techniques, Schwarz et al. (2021) discovered that 
face recognition was able to re-identify 28%–38% of research partici
pants. Furthermore, Venkatesh et al. (2020) demonstrated that a sub
ject’s functional connectivity matrix that is statistically derived from 
resting state fMRI data of the Human Connectome Project (HCP) can still 
be used to re-identify the subject with an accuracy of 95% using geodesic 
distance. 

These findings make one wonder what the privacy implications of a 
malicious attack on publicly available neuroimages will be considering 
that advanced deep learning technology can lead to facial recognition of 
participants from neuroimages (Parks and Monson, 2017; Prior et al., 
2008). A de-anonymization attack conducted by Ravindra and Grama 
(2019) which relied on novel techniques of analysis, revealed the 
theoretical possibility of not only re-identifying the individual subjects, 
but also the tasks they were performing during the scan and potentially 
other corresponding patient data like progression of disease, behavioral 
traits, sex, gender and contact details. This is of great concern to 
research infrastructures facilitating the sharing of multi-dimensional 
neuroimages especially with regard to balancing the necessity to share 
neurodata and the need to ensure privacy and confidentiality. 

3.3. Open sharing predicated on ‘anonymization’ 

The increasing tendency to openly share neuroimaging data (Pol
drack and Gorgolewski, 2014, 2017) is based on the assumption that 
techniques that obscure facial features guarantee anonymity of the data 
subjects (Nichols et al., 2017). As open neuroscience and collaborative 
research continue to gain traction within and across institutions and 
countries, large-scale research infrastructures, tools and platforms are 
facilitating the practice of open sharing of neuroimages and their asso
ciated metadata. A number of international and large-scale neuro
imaging databases are currently sharing pseudonymised (or 
de-identified) neuroimages based upon this assumption. These de
velopments are driven by research funders’ aim to provide open access 
to data, the need of the scientific community to make best use of data as 
a crucial resource, and importantly, to offer greater opportunities to 
address important scientific questions that will benefit society. 
Centralized and mostly open-access neuroimaging repositories/archives 
are being used to overcome significant technical and organizational 
challenges associated with data sharing and transfer. These de
velopments are further required by the demands of scientific rigor, 
reproducibility and the opportunity to reduce cost, given that there are 
considerable logistic and monetary expenses associated with collecting 
and processing of neuroimages (Eickhoff et al., 2016; Poline et al., 
2012), and are the driving force behind new requirements for sharing by 
funding agencies. Furthermore, advancements in data and metadata 
standardization schemes, such as BIDS (Gorgolewski et al., 2016a) have 
facilitated the necessary management and harmonization effort and 
increased sharing, access and reuse of neuroimaging data (Gorgolewski 
et al., 2017) in accordance with the FAIR (Findable, Accessible, Inter
operable, and Re-useable) data principles (Wilkinson et al., 2016). 

Processing and sharing human neuroimages within and across bor
ders comes with the demand to consider additional regulations per
taining to privacy and confidentiality owing to the uniqueness of the 
datasets. As we have identified in section 2, all data that originate from a 
single person are potentially identifiable and this can also include 
derived data (e.g. intra-subject statistics) as well (Venkatesh et al., 
2020). Sharing such data constitutes a form of processing that falls 
within the scope of data protection laws and often involves a variety of 
stakeholders and legal jurisdictions. 

Pseudonymisation or de-identification provides the grounds for open 
sharing for the majority of neuroscience databases. For example, 
OpenNeuro; 1 makes it clear that only de-identified data are shared, and 
data providers have to explicitly agree that datasets shared do not 
contain any identifiable personal health information as defined by 
HIPPA and are not subject to GDPR provisions. De-identification or 
Pseudonymisation can be argued to give a false sense of security that 
allows open sharing without considerations for technical and organi
zational measures that can provide additional security and privacy of the 
data. Other repositories openly sharing pseudonymised individual sub
ject neuroimages include: Brain-development.org,2 Brain/MINDS; 3 and 
the international neuroimaging data-sharing initiative (INDI).4 In the 
case of Brain-development.org, datasets include tabular files with date 
of birth and other personal information of participants (see Table 1). 
Many project specific, institutional and nationally funded databases also 
allow redistribution of shared pseudonymised datasets. This open 
sharing practice is based on previous understanding of the impact of 
available techniques on neuroimages and may not be an intentional 
breach of privacy. It is important, therefore, for researchers and platform 
providers to be aware of not only the scientific impact of these tech
niques and tools, but also their privacy limitations which should inspire 

1 See https://openneuro.org/.  
2 http://brain-development.org/.  
3 https://dataportal.brainminds.jp/.  
4 http://fcon_1000.projects.nitrc.org/. 
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alternative and responsible ways of sharing. 

4. Responsible sharing of neuroimages 

Having discussed the nature of neuroimages and the problem of 
anonymization, pseudonymisation and de-identification as well as their 
impact on the law and practice of data sharing, this section explores 
what needs to be done, in order to ensure that sharing of neuroimages is 
done responsibly, i.e. that it is legally compliant, socially acceptable as 
well as scientifically valuable. Both HIPAA and the GDPR provide legal 
guidance on the processing of health data. However, the focus of this 
section is the GDPR considered by some (Raab, 2020) as an example of a 
data protection law with both ethical and legal dimensions. Jwa and 
Poldrack (2021) focused on how the US regulatory landscape shapes 
sharing of neuroimages. However, there is a question to be asked of 
whether HIPAA is robust enough to address the emerging privacy con
cerns related to neuroimages, but that is a question for another research 
or paper. 

4.1. Neuroimages as health, sensitive and special category data 

The GDPR introduces a definition of health data as ‘‘personal data 
concerning health … of a data subject which reveals information 
relating to the past, current or future physical or mental health status of 
the data subject’’ (GDPR, 2018, Recital 35; Article 4(15)). Most 
importantly, they include ‘‘information derived from the testing or ex
amination of a body part or bodily substance … and any information on, 
for example, a disease, disability, disease risk, medical history, clinical 
treatment or the physiological or biomedical state of the data subject’’. 
It doesn’t matter who, where or what device is used to collect the data. 
As data that can reveal past, current and future health of a natural 
person, neuroimaging data qualifies as health data and consequently a 
special category of personal data or sensitive data according to Article 9 

of the GDPR. Although this definition brings some level of clarity as to 
the identification of certain types of research data as health data, it does 
not completely remove the uncertainties of how to process health data 
especially for individual researchers considering varied interpretations 
of existing exemptions. 

The understanding is that the processing of health data poses greater 
risk to the fundamental rights and freedoms of natural persons and 
therefore merits higher protection than other types of personal data. 
Indeed, processing of such data is prohibited unless one of ten listed 
lawful bases in Article 9 of the GDPR applies (such as explicit consent; 
employment; vital interests; made public by data subject; carried out by 
a not for profit organization; legal claims; preventive or occupational 
medicine; public interests in the area of public health; archiving pur
poses in public interest, scientific or historical research or statistical 
purposes; substantial public interest on the basis of union or state law). 
The complexity of identifying this lawful basis, the need to respect the 
purpose limitation principle, prohibitions on data transfers to third 
countries and the imperative to adopt stronger security measures for 
health data combine to create confusion over how to share health data 
(Eiss, 2020). In the following section we will discuss what possibilities 
are available for legitimate processing of neuroimaging data. 

4.2. Technical and organisational measures and safeguards for processing 
neuroimages 

So far, this paper has pointed out the difficulty of rendering neuro
images completely anonymous and the inadequacies of available tech
niques in providing a full guarantee of anonymity following accurate re- 
identification via facial reconstruction and recognition, as well as other 
pattern recognition techniques (e.g., machine learning). Although it 
may not be wholly accurate to state that neuroimages can never be 
anonymized, it should never be assumed that neuroimages are anony
mous and predicating open sharing on available approaches without any 

Table 1 
How some neuroscience databases currently implement technical and organisational measures.a.  

Name of database Data protection by design and by default DUAb 

Pseudonymisation Access control 

Account registration with strong 
authentication process 

Simple registration with no/weak 
authentication 

Unclear/inconsistent 
access control 

EBRAINS ✔ ✔   ✔ 

OpenNeuro ✔  ✔   

ADNI ✔ ✔   ✔ 

DABI ✔   ✔c ✔ 

Brain-Development.org d ✔     

BrainMaps ✔     

Brain/MINDS ✔  ✔   

Caltech Subcortical Atlas ✔     

International Neuroimaging Data- 
sharing Initiative 

✔   ✔e  

Open Access Series of Imaging 
Studies (OASIS) 

✔ ✔   ✔ 

SchizConnect ✔  ✔  ✔ 

The Donders Repository ✔ ✔   ✔ 

Human Connectome Project (HCP) ✔ ✔   ✔  
a How informed consent and encryption are applied in these databases was not reviewed for this paper because this will entail contacting individual data providers 

who originally collected the data from patients. Additionally, application of encryption at rest or on transit is not obvious from information on the websites. 
b DUA here does not include licence agreements that do not touch on privacy issues. 
c Access control solely managed by data providers but the process is unclear. 
d Also provides a spreadsheet with date of birth and other details of all participants. 
e Users need to log in on NITRC, but some of the data is also simply available from http://fcon_1000.projects.nitrc.org/indi and on Amazon S3 as well with no access 

control. 
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form of risk assessment is therefore not legally adequate (White et al., 
2020). Determination of what qualifies as anonymous data should be on 
a case-by-case basis. In addition, these approaches degrade the utility of 
the data and emphasis on further removal of features from the images 
may adversely affect the outcome of analyses. The responsible scientific 
goal should therefore be to identify how to process these images in a way 
that the rights of research participants are respected while scientific 
discovery is furthered. The first step in identifying relevant safeguards 
and measures for lawfully processing brain images is the acknowledg
ment of the inherent privacy risks and the limitations of available pri
vacy preserving techniques. Data sharing platforms are becoming aware 
of this and are developing additional measures to legitimize sharing. 

At the core of legitimate data processing of data are basic lawful 
bases detailed in the GDPR article 6 (1)(consent, performance of a 
contract, compliance with a legal obligation, protection of vital in
terests, in the public interest, legitimate interests) and at least one 
condition listed in article 9(2) when processing special categories of 
data. In addition to these, sharing of personal data (brain images) shall 
be subject to appropriate safeguards – organizational and technical 
measures-so as to protect the rights of the data subject and respect key 
principles of minimisation (article 89 GDPR). The following section will 
be dedicated to discussing some of these key legal bases for processing 
and legitimate measures which are shown in Fig. 2. 

4.2.1. Informed consent 
For most research data generated under a study protocol, an 

important lawful basis for data processing under article 6 is consent, 
which is also one of the exemptions for processing of health data under 
article 9. This is distinct from informed consent which is a core pre
requisite for enrolling research participants for any biomedical study as 
embedded in both the Oviedo Convention and the Declaration of Helsinki. 
Typically, obtained informed consent from research participants limits 
the use of data to a specific research project or does not indicate 
commitment to share or publish data beyond the project team (Spence 
et al., 2018). Where data sharing is acknowledged, researchers often 
guarantee that only ‘anonymized’ data will be shared which excludes 
pseudonymised data as explained in section 2. Obtaining informed 
consent for a research study may not meet the requirements of explicit 
consent required for lawful processing of personal data. Researchers 
need to be aware that while consent for processing can be integrated into 
the informed consent for research, the form ought to be designed in a 
way that meets the consent requirements necessary for sharing. The data 
subjects must clearly understand that their pseudonymised data may be 
shared within the international research community and the re
searchers’ role in mitigating the risk of re-identification through the 
consent form. Data subjects must be given the choice to explicitly con
sent to a specific processing (including sharing) of their brain images 
(pseudonymised or not). The Open Brain Consent (OBC) project (Open 
Brain Consent working group, 2021) provides neuroimaging researchers 
with template consent forms that explicitly consider privacy and the 
GDPR. But because ‘it is often not possible to fully identify the purpose of 
personal data processing for scientific research purposes at the time of 
data collection’, Recital 33 allows ‘consent to certain areas of scientific 
research when in keeping with recognised ethical standards for scientific 
research’. This is often interpreted as broad consent for scientific 
research which has been revealed to have flaws when applied to pro
cessing of sensitive data (Holm and Ploug, 2019). To avoid the complex 
issue of broad consent in health data, the OBC template makes it clear 
that data may be used for future research projects, including research in 
the field of medical and cognitive neuroscience. 

Consent is not the only – and may not always be the appropriate-legal 
basis or exemption for processing health data for scientific research 
purposes. Alternatively, lawful basis for processing may for instance be 
public interest (Article 6(1)(e)) or the legitimate interest of the data 
controller (Article 6(1)(f)), combined processing in the interest of public 
health (Article 9(2)(i)) or necessary for scientific research purposes 

(Article 9(2)(j)) which are conditions for processing special category 
data. But when processing is based on another lawful basis in article 6 
other than consent and one of the exemptions in article 9 (2) GDPR, the 
‘ethical’ requirement of informed consent for participation in biomed
ical research will still have to be met (EDPS, 2020). 

A number of reasons exist that can affect reliance on consent as the 
lawful basis for processing neuroimaging data, including member state 
laws as allowed in Article 9(4) which has consequences on how to 
respect data subjects’ rights. For instance, UK guidance on health 
research states that consent should not be the appropriate lawful basis 
for processing data for health and social care research. Opinion 3/2019 
of the European Data Protection Board (EDPB)5 has further observed 
that consent is not an appropriate lawful basis for processing in research 
activities where there is a clear imbalance of power between the data 
controller and the data subject. An example of such a situation is when 
obtaining consent may be difficult or impossible due to the health 
conditions of the data subject. In neuroimaging research, therefore, a 
robust evaluation of the specific research circumstances needs to be 
carried out to determine if consent is appropriate. When relying on 
consent as a lawful basis for processing brain images as health data, the 
EDPB has made it clear that Recital 33 does not take precedence over the 
conditions set out in articles 4(11), 6(1)(a), 7 and 9(2)(a) of the GDPR. 
Consent given for certain areas of scientific research still requires well- 
described purpose and greater transparency. A careful assessment of 
data subjects’ rights, the sensitivity of the data, the nature and purpose 
of the research and the considerations of relevant ethical standards are 
required (Ibid). In addition to the identification of adequate lawful basis 
for processing, article 89(1) of the GDPR also requires additional safe
guards to be established for personal data processed for scientific 
research purposes. 

4.2.2. Data protection by design and by default 
The data protection protocols, ‘‘privacy by default’’ and ‘privacy by 

design’ can also provide legitimate safeguards that allow the sharing of 
brain images. These are legal requirements by the GDPR that imply data 
protection through technology design; integrating necessary safeguards 
into the processing stream that can protect data subjects’ rights (see 
article 25 GDPR). They include the implementation of technical mea
sures that can address privacy issues, bordering on collection, process
ing, accessibility and storage, by default. As GDPR pointed out, these 
measures should be ‘‘designed to implement data protection principles, 
such as data minimisation, in an effective manner and to integrate the 
safeguards … to meet the requirements’’ of the regulation (see article 25 
(1)). Important to this is the consideration of the cost of implementation, 
nature, type, scope, circumstances, purpose and potential risks of the 
data processing which is best done via a Data Protection impact 
assessment (DPIA). The GDPR places the responsibility of identifying the 
exact protective measures required in the hands of the data controllers 
which often are individual researchers. Persons or entities (organisa
tions) as controllers will need to remain accountable in respect of their 
processing activities; what data are collected, how they are processed 
and stored and who gets access to them. One way to identify and 
implement these measures is by conducting a Data Protection Impact 
Assessment (DPIA). A DPIA is particularly necessary where processing 
involves the use of new technologies, in this case, imaging technologies 
and is likely to result in high risks to the rights and freedoms of data 
subjects (see article 35, GDPR). The DPIA is therefore used to assess data 
processing workflows, identifying privacy risks and developing ap
proaches to mitigate these risks. For brain images that are sensitive 
health data, several protective measures are required to satisfy the GDPR 
requirements of ‘privacy by design’ and ‘privacy by default’ in addition 
to cybersecurity. These include: pseudonymisation, encryption and 

5 https://edpb.europa.eu/our-work-tools/our-documents/opinion-art-70/opi 
nion-32019-concerning-questions-and-answers_en. 
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access control.  

1. Pseudonymisation: Article 89(1) GDPR particularly singled out 
pseudonymisation and where possible anonymization as part of the 
appropriate technical safeguards for the data processing ‘‘for 
archiving purposes in the public interest, scientific or historical 
research purposes or statistical purposes’’. As the possibility of fully 
anonymizing brain images is up for debate, pseudonymisation be
comes a viable option that can serve two purposes; preserve signif
icant utility of the data and ensure respect for the principle of data 
minimisation thereby contributing to data protection by design.  

2. Encryption: In addition to pseudonymisation, encryption was 
mentioned severally in the GDPR (see articles 32; 6 Par. (4e), recital 
83) as an appropriate technical and organizational measure to ensure 
the security of processing. The sensitive nature of brain images 
means that sharing over networks requires additional security to 
prevent data modification and reduce the risks when transferring the 
data to authorized entities. Encryption and decryption approaches 
such as Data Encryption Standard (DES), Advanced Encryption 
Standard (AES), the Hash Function and encryption based on chaotic 
systems that can be applied to medical images have been identified in 
literature (Guo et al., 2016; Preishuber et al., 2018; Yun-Peng et al., 
2009). In addition, an approach (encryption and decryption network 
DLEDNet) that leverages deep learning techniques for 
image-to-image translation and image denoising has also been pro
posed (Ding et al., 2021). On transit and at rest, encryption ap
proaches that meet current standards contribute to meeting GDPR 
privacy requirements and reduce the liability of a data controller in 
cases of breaches. For some data sharing e-infrastructures where 
encryption on transit may be challenging, infrastructure level 
encryption may suffice if pseudonymisation and technical access 
control are implemented. Indeed, the loss of encrypted data storage 
platforms is not considered a data breach as per article 83(2) (c) of 
the GDPR.  

3. Access control: Article 25(2) makes it clear that privacy by design 
measures shall ensure that by default, personal data are not made 
accessible to an indefinite number of natural persons or to bad actors. 
One way of achieving this is via technical access control mechanisms. 
Brain images, like genomic data, ought to be shared through 
controlled access models that involve authentication or authoriza
tion. Access to individually identifiable, albeit pseudonymous, neu
roimages can be granted by project-specific or infrastructure-level 
data access review committees (ARC). The controlled-access plat
forms use ARCs to vet the researchers requesting access and ensure 
that the data are used only for identifiable legitimate purposes that 

align with a lawful basis. ARCs are no panacea and their use may 
introduce a conflict of interest that mirrors the overall tension this 
paper describes. ARCs are typically instituted by the organisations 
running the data processing infrastructure. They therefore have a 
fundamental interest in broadening their reach making data avail
able, so they are not neutral arbiters of the public good. They 
therefore should be seen as one component of the mix of organisa
tional and technical measures. At this point there is little empirical 
evidence to assess whether such conflicts of interest do arise in 
practice and how severe they are. If they are shown to be problem
atic, then other solutions might need to be considered, such as in
dependent third-party ARCs. 

4.2.3. Data use agreements 
Besides the aforementioned strategy to implement privacy-by- 

design, another organizational and legal measure to consider is the 
use of data use agreements (DUAs) or data use terms. In large neuro
imaging projects and consortia it is common that data is shared under an 
explicit agreement with the data user that imposes restrictions regarding 
potential re-identification (Jwa and Poldrack, 2021). For example in the 
Human Connectome Project data is organized at different levels of 
sensitivity; the least sensitive data (the neuroimages) are shared under a 
relatively liberal agreement which forbids attempts to re-identify or 
contact participants. The second level of data that is more sensitive and 
that includes the family structure and twin relations, is shared under a 
DUA that is more restrictive: it also forbids publishing examples of 
neuroimages of individual participants in papers, in case that might 
disclose information about the family structure and participant identi
fiers to readers of the paper that have themselves not agreed to the data 
use terms. Other large consortia and projects in which neuroimages are 
collected and shared, such as ABCD, UK BioBank, and ABIDE also 
implement restrictions on the reuse of data by means of data use 
agreements. 

Most neuroimaging studies are, however, executed by individual 
researchers working in smaller labs. Upon publication of the research 
findings and trying to also make the research data available under FAIR 
data principles, these researchers often face the limitation that they do 
not have the legal expertise, nor support, to set up data use agreements. 
Academic institutions such as universities are understandably hesitant 
in individual employees engaging in legal contracts with external 
parties; as a consequence DUAs need to be agreed upon not only by the 
researcher and her/his PI, but also by the research director, legal 
department and eventually the board of the institution. 

A notable exception for institutional DUAs has been implemented by 
the Donders Institute at the Radboud University, who make data, 

Fig. 2. Technical and Organizational measures and safeguards for processing neuroimages.  
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including neuroimages, available through the Donders Repository. In 
collaboration with the RU legal department and security officer, a DUA 
was created that explicitly deals with potentially identifiable neuro
images, and imposes restrictions on re-identification and linkage at
tacks. Individual researchers at the Donders Institute who want to share 
the data for their study can do so through the Donders Repository using 
this RU-DI-HD data use agreement. The DUA imposes restrictions on re- 
identifying participants and on redistribution of data, and requires 
people that wish to reuse the data to be identified. Another reason why a 
DUA is important is the necessity to incorporate relevant GDPR speci
ficities of EU member states. 

4.3. How neuroscience databases apply these measures/safeguards 

In order to understand how de-identified or pseudonymised neuro
images are shared globally, we reviewed some neuroscience databases. 
The following were our criteria for inclusion of databases: a. platforms 
sharing living human neuroimages particularly MRI and fMRI b. sharing 
individual subject’s data c. open for external users to download data. 
Applying these criteria ensured that databases with similar elements 
were reviewed. Neuroscience databases that share only aggregated data 
or animal data were not included in this review. Private repositories 
hosted by authors only for the purposes of publication were also 
excluded. The process of identifying these databases started with 
internet searches using the search terms: neuroscience databases sharing 
neuroimages and platforms sharing neuroimages. The initial search 
revealed 51 platforms sharing neuroimages of which only 31 are sharing 
human neuroimages. This was subsequently reduced to 13 databases 
sharing data from individual subjects as shown in Table 1. Information 
from the websites of these databases including access policies and pro
cedures were then read in detail to understand specific platform ap
proaches to sharing. We did not aim and do not claim, in any form, that 
this list is exhaustive. We are only interested in demonstrating how high- 
profile neuroscience databases are applying the above technical and 
organizational measures for sharing neuroimages as of August 3, 2021. 
The aim here was to provide an overview of what measures and safe
guards available in some global repositories/databases. 

Each of the above measures (pictured in Fig. 2) on its own is not 
sufficient justification for open sharing of brain images. A combination 
of all these measures is necessary to provide adequate levels of privacy 
for identifiable neuroimages. A number of databases have established at 
least one of these measures such as Donders,6 EBRAINS,7 ADNI; 8 and 
OASIS.9 Some of these databases have levels of access control that are 
not sufficient to guarantee security. Among these include OpenNeuro, Br 
ain/MINDS and SchizConnect where a simple registration without 
adequate confirmation of the user’s ID provides access to data. None has, 
however, implemented all the above measures (informed consent, data 
protection by design and by default and DUA). But it is important to note 
that effective implementation of these measures is often hindered by the 
absence of internationally standardized and understandable framework 
for consent, DUAs, access control and pseudonymisation for neuro
imaging researchers. This is partly because of the different regulatory 
requirements and conditions but most often due to the varied in
terpretations of these requirements. Individual researchers, institutions 
and data archives/repositories require clear ideas of what conditions/ 
requirements are supposed to be met for data collection, curation and 
storage that affects sharing of neuroimages. 

4.4. Proposed computational solutions 

Beyond the above legal mechanisms for sharing neuroimages, there 
have also been computational solutions proposed for information 
sharing, some of them also summarized in White et al. (2020). These 
methodologies do not share raw image data, but aggregated data of 
previously collected or published information, or as result of distributed 
(remotely executed) computations. In any case, to coin such techniques 
and frameworks as privacy-preserving, formal privacy guarantees have 
to be provided which we will discuss briefly in the following paragraphs. 

The de-facto mechanism for providing formal privacy guarantees is 
Differential Privacy (Dwork, 2006), which bounds the probability of 
identifying the presence of a particular record in an aggregate dataset 
through noise utilization. Nevertheless, the amount of noise to be used 
should be carefully calibrated so that the utility is maintained in a 
dataset, while the privacy guarantees are also acceptable. This, however, 
is not a trivial task, as induced noise may significantly undermine data 
quality, leading to false results (Scheibner et al., 2021). Additionally, 
enforcing Differential Privacy may further complicate data publishing, 
as a sufficient amount of data should be curated and integrated to form a 
substantial corpus upon which noise may be applied. 

Approaches discussed below may not have been initially designed to 
preserve privacy, but they share information through sharing compu
tation results rather than raw data. In their majority, however, they do 
not provide formal privacy guarantees, which is a later advancement. In 
Li et al. (2020), federated analysis of neuroimages is performed using 
differential privacy. However, further research is expected, due to 
imposed noise/utility incurred trade-offs. 

To begin with, there are methodologies based on sharing statistical 
information for specific areas of the brain and, in some cases, the cor
relation structure between these. Such an approach can be based on 
sharing peak coordinates extracted from published tables in previous 
studies (Fox and Lancaster, 2002). They propose an indexing system for 
mapping brain data in a multidimensional feature space. As this 
approach was proposed relatively early in the development of neuro
imaging, no particular measures had been considered to enhance pri
vacy, other than relying on aggregate statistics from other sources. 
Similarly, unthresholded statistical maps associated with scholarly ar
ticles are being shared by Neurovault (Gorgolewski et al., 2016b). Brain 
network maps are created in (Muetzel et al., 2016) which may allow for 
connectivity analyses. However, in these cases privacy is not strictly 
guaranteed since, as reported by White et al. (2020), even group aver
ages can reveal unanticipated information about the individual. 

Other proposed privacy-centric computational approaches include 
the Datashield (Gaye et al., 2014), ViPAR (Carter et al., 2016) and 
ENIGMA (Thompson et al., 2014). Datashield uses computation over 
summaries and does not quantify privacy or provide any guarantees 
against re-identification (Sarwate et al., 2014). ViPAR temporarily pools 
subsets of the data via encrypted transfer to a trusted server on which the 
automated analysis takes place (Carter et al., 2016). However, as indi
cated in Plis et al. (2016), this approach is bandwidth-demanding and 
does not address privacy issues deriving from direct data transfers, even 
when connections are encrypted. In ENIGMA, summary statistics over 
locally computed data are shared. ENIGMA performs meta and mega 
analyses on manually curated data, which requires both training and 
resources. This method for privacy preservation is mainly based on the 
fact that summaries are shared in cases of meta-analyses. However, as 
discussed earlier, this does not offer formal privacy guarantees. 

One recent computational method is described in Baker et al. (2019) 
where authors propose decentralized joint independent component 
analysis (djICA) for fMRI images, in order to address privacy issues by 
offering decentralized computation, without the need to transfer data 
between data-holding parties. However, formal privacy guarantees are 
not provided in this case either. While the authors claim their methods 
to be easily extendable to accommodate formal privacy mechanisms, 
such as differential privacy, no empirical evidence is provided toward 

6 https://data.donders.ru.nl/.  
7 https://ebrains.eu/.  
8 http://adni.loni.usc.edu/.  
9 https://www.oasis-brains.org/. 
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this direction. As differential privacy utilizes noise injection, assessing 
the impact of such a mechanism is necessary as data quality may be 
reduced. 

It is evident that there is a tendency toward performing decentralized 
computations in order to preserve privacy. COINSTAC (Plis et al., 2016) 
moves toward performing federated analysis, in terms of stochastic 
gradient descent and in specific sparse regression, and parametric sta
tistical testing. However, there is no indication of formal privacy gua
rantees employed in COINSTAC, although it is stated that this 
framework is suitable for its application. 

It is evident that most of the aforementioned methods lack formal 
privacy guarantees considered suitable under GDPR guidelines. 
Furthermore, computation-based approaches exhibit additional draw
backs, as these techniques are mostly based on summary statistics over a 
number of raw data items. To perform these types of remote computa
tions, they need to be predefined, implemented in appropriate scripts, 
shared and installed. This prevents establishment of hypotheses through 
data observation. Computational approaches also need to consider how 
to respect data subjects’ rights as mentioned in section 4.2. 

Finally, it is important to mention that in order to deploy and 
maintain such analysis frameworks, centralized or decentralized 
Research Data Management (RDM) systems are deployed. The imple
mentation of a decentralized RDM is beneficial to commonly shared data 
that have to be stored in a decentralized manner (e.g., because of 
institutional or ethical policies; cf. Hanke et al., 2021). Available 
remotely executable analysis frameworks (e.g., OpenMined10 or MIP 
(Redolfi et al., 2020)) often assume that a matching RDM on the data 
storage side is already in place. Moreover, for matching the remotely 
executable analysis framework with the used RDM, tools with built-in 
support for data versioning with metadata extraction and 
metadata-based search, such as DataLad (Halchenko et al., 2021), have 
to be implemented (cf. Hanke et al., 2021). Nevertheless, an RDM sys
tem does not typically take care of privacy guarantees in general, or the 
implementation of remotely executable analysis frameworks with 
proven privacy guarantees. Both aspects have to be deployed and 
maintained on top. In addition, setting up and maintaining a RDM sys
tem takes time and effort. To conclude, RDM systems play the role of a 
building block for data sharing and remotely executable analysis 
frameworks. Yet, additional measures and resources are required for 
achieving privacy preservation. 

5. Conclusion 

This paper touches on a pressing problem that many neuroscience 
researchers face when processing neuroimages, namely the question 
whether and how they can share these neuroimaging data. It is moti
vated by the recognition that there is a potential trade-off between 
openness that would promote the interests of science and data protec
tion in the interest of data subjects. In order to shed light on how this 
trade-off is to be conceptualised and addressed, we asked the research 
question: how can neuroimages be processed under available legal 
provisions to preserve data subjects’ privacy while retaining the scien
tific utility of the data? 

The discussion of technical measures that have traditionally been 
used to protect the identity of data subjects and their interpretation in 
the light of current legislation has shown that what used to be accepted 
as sufficient levels of protection is unlikely to be enough. The formerly 
predominant assumption that defacing and similar techniques make it 
practically impossible to identify the data subject has been disproven, 
rendering these approaches insufficient in light of recent legislation, 
notably the GDPR. 

Looking at the technical and legal discussion in this paper one can 
thus conclude that the currently dominant reliance on technical 

measures to ensure data subjects’ privacy is scientifically dubious and 
therefore unlikely to be legally compliant. Publicly sharing data that 
contains enough information about the brain to be scientifically inter
esting is likely to lead to and facilitate data protection breaches. If this 
conclusion is correct, then it raises significant challenges to the neuro
imaging community. The prevalent practice of making neurodata pub
licly available is no longer tenable and will need to be reconsidered. This 
may come as a surprise to some in the neuroimaging community but 
probably not as a surprise to many, as the topic is already widely dis
cussed. The unrestricted sharing of neuroimaging data of individuals 
who are subject to the GDPR may well be illegal and already published 
data may have to be withdrawn from unrestricted public access. 

The good news is that this does not mean that sharing of neuro
imaging data for scientific purposes is impossible. Instead, it implies that 
the way in which neuroimages are shared will need to be reconsidered. 
We have discussed several mechanisms that will allow neuroimage 
sharing, calling for a suitable legal basis, data protection by design and 
default and other organisational measures such as the implementation of 
data use agreements. While making use of these measures will require 
important changes to the way in which the neuroinformatics community 
works, these changes are already visible in many data sharing in
frastructures and can be made to work relatively easily. 

While these changes are technically feasible, they will require a 
change of culture of the neuroimaging community. Culture change is 
rarely easy and quick, but in this case the law seems to have been faster 
than technology development which will require a quick response from 
neuroimage researchers. It is important to see that this requires re
sponses at all levels of the research ecosystem. Neuroscience education 
will need to highlight these issues to new entrants to the field and 
established researchers and PIs will need to be trained in them. It is 
crucial, however, to ensure that individual researchers are not left alone 
to deal with them, as they will mostly lack the requisite legal knowledge 
and practical means to address them successfully. This means that there 
is an important role for research organisations such as universities to 
provide support structures, for research funders to require attention to 
data sharing in grant applications and for research policy makers to 
promote suitable ways of dealing with these questions. A crucial role 
will be played by the research infrastructures that are used for the 
sharing of neuroimages, who will need to agree on shared practices and 
standards. 

Change is rarely welcome and one can expect resistance to such a 
fundamental change that is even accompanied by the threat of legal 
sanctions. We believe, however, that the neuroimaging community 
should see the analysis developed in this paper as an opportunity and 
embrace this change as a way of improving the way neuroimages are 
shared. It holds the opportunity to improve the quality of data and the 
scope for the scientific community to make use of it. Ensuring that 
neuroimaging data can be shared in a way that retains its scientific value 
and safeguards the privacy of data subjects thus opens the possibility of 
increasing the societal value derived from the data, encouraging the 
participation of data subjects. This, in turn, can increase and protect the 
overall societal acceptability and esteem that neuroscience as one of the 
most visible and crucial scientific disciplines enjoys. 
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