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A B S T R A C T   

With the growing concern for the health of ageing populations, much research continues to look at the impact of 
cognitive training, particularly in relation to cognitive decline. We sought to use novel techniques, including 
augmented reality and portable neurotechnology, to evaluate the impact of a dynamically adjusting cognitive 
training programme, in comparison to a statically challenging alternative. Before and after an 8-week training 
period, and at a 5-week follow-up, we used portable functional Near Infrared Spectroscopy to examine mental 
workload in a mixed battery of cognitive and transfer tasks. A recently developed tablet-based task was used to 
identify changes in cognitive misbinding. Augmented Reality was used to create a supermarket shopping 
experience, as a more ecologically valid and realistic transfer task relating to an everyday task relating to in-
dependence that quickly becomes difficult with cognitive decline. The analyses showed a decreased mental 
workload within the dorsolateral prefrontal cortex and that participants considerably increased their perfor-
mance in the trained task. Some results were maintained at the 5-week follow-up assessment. In terms of transfer, 
we observed reliable group differences immediately after training completion, which were mainly driven by 
distinct conditions. Some behavioural memory gains were maintained during the follow-up. The use of novel 
technologies brought new insights into the effects produced by the dynamic computerised cognitive training 
programme, which has potential future applications in cognitive decline screening and prevention.   

1. Introduction 

In the past decade cognitive training (CT) and assessment became 
very popular. It is estimated that the CT revenue market will be worth 
US$ 2.04 billion in 2022 and is forecasted to be worth US$ 9.4 Billion by 
20321. CT is a programme of structured, regular, repeated, guided, 
cognitive activities designed to maintain or improve cognitive func-
tioning, and many companies claim that their CT intervention might 
improve cognitive functions and therefore the overall quality of life. 
They are designed to train either a single cognitive domain, for example, 
working memory or attention (Flak et al., 2019; Gagnon and Belleville, 
2012), or as combined programmes to train multiple domains (Mahncke 
et al., 2019; Rizkalla, 2018; Sukontapol et al., 2018). However, despite 
its growing popularity, evidence regarding the effectiveness of cognitive 
training remains conflicting. In particular, there is a lack of objective 

evidence of CT’s success, and empirical methods that are able to eval-
uate its impact, particularly in settings that resemble real-world sce-
narios. Brain imaging technologies, however, offer a promising method 
to fill this knowledge gap, particularly more recent and portable neu-
roimaging techniquesuch as functional Near Infrared Spectroscopy 
(fNIRS), that can be applied in more natural, ecologically valid condi-
tions. The goal of this work was to assess CT using fNIRS as a more 
objective measure and use augmented reality to assess task success in 
safe but more ecologically valid conditions. We state these goals in more 
formal terms after the related work below. Our work makes three 
contributions:  

1. we demonstrate, using a recently validated novel memory precision 
task, that Computerised CT can have a sustained impact working 
memory after 8 weeks of training. 
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2. we demonstrate that fNIRS can detect significant differences in 
prefrontal cortex activity, including at the follow-up, at some me-
dium task-difficulty levels.  

3. we demonstrate the use of augmented reality to examine whether 
these effects transfer to a more ecologically valid task condition 
including follow-up. 

2. Related work 

Computerised cognitive training (CCT) is a more recent extension of 
the traditional pen and paper CT, using digital technologies to deliver 
cognitive interventions (Kueider et al., 2012). CCT often takes an 
approach to deliver treatment in the form of gamification. The advan-
tage of gamified brain training is that it implements more entertaining 
tasks that might enhance motivation and engagement. Difficulty and 
content can be scaled through algorithms that allow games to be chal-
lenging and interesting (Khaleghi et al., 2021). Moreover, it allows for 
more objective real-time data collection using electronic devices (Basak 
et al., 2008). 

CCT might potentially improve cognitive performance or delay the 
onset of cognitive decline, with companies and research typically 
focusing on cognitive reserve and neuroplasticity (Soldan et al., 2017). 
Cognitive reserve is defined as the brain’s resilience to neural damage 
and ability to compensate for the loss of neural function due to ageing or 
injury (Soldan et al., 2017; Stern, 2002, 2012). Neuroplasticity is closely 
related to cognitive reserve, and it refers to the ability of neurons and 
neural networks within the brain to grow, modify, and adapt in response 
to experience, training, or new information (Fuchs and Flügge, 2014). 
Therefore, the efficacy of cognitive training should be reflected in 
changes in brain activity (ten Brinke et al., 2017). Employing neuro-
imaging techniques could provide a better insight into how CCT affects 
brain function and therefore deliver scientific validation of its potential 
efficacy. Previous studies have used fMRI to assess the effects of CCT 
(Kim et al., 2017; Lampit et al., 2015; Li et al., 2019; Rosen et al., 2011), 
as well as EEG (Fabio et al., 2016; Gandelman-Marton et al., 2017; 
Olfers and Band, 2018). Comparatively, Functional Near-Infrared 
Spectroscopy (fNIRS) was previously used only once to assess the effi-
cacy of cognitive training in major depressive disorder (Payzieva and 
Maxmudova, 2014). fNIRS is a neuroimaging method which uses 
near-infrared light to measure changes in brain activity (Boas et al., 
2014) and the advantage of fNIRS over other neuroimaging abilities is 
that it allows more natural movement while tolerating more movement 
artefacts that would create signal noise (Nieuwhof et al., 2012; Piper 
et al., 2014). fNIRS is widely used in cognitive neuroscience to under-
stand neural substrates of human behaviour (Pinti et al., 2020) and in a 
clinical setting to measure brain activity in a range of mental disorders 
(Rahman et al., 2020). Recently fNIRS has become more popular also in 
neuroergonomics (Curtin and Ayaz, 2018) and human-computer inter-
action (HCI) to acquire better insight into users’ cognitive state during 
natural interactions with technology (Maior et al., 2015; Solovey et al., 
2009). Recent HCI studies employed fNIRS in research on usability 
testing for interfaces (Hill and Bohil, 2016; Hirshfield et al., 2009; L.M. 
2011), web layouts (Bhatt et al., 2018; Lukanov et al., 2016), to measure 
suspicion towards online misinformation (Hirshfield et al., 2019), while 
dealing with mobile advertising (Mancini et al., 2022), or in gaming 
performance (Aksoy et al., 2019; Andreu-Perez et al., 2021; Kanatschnig 
et al., 2021). Because fNIRS probes are designed to be placed directly 
upon a user’s scalp, often targeting the prefrontal cortex (PFC), it can be 
used to measure mental workload in more natural settings during 
interaction with technology (Causse et al., 2017). fNIRS has been pre-
viously used to measure mental workload in HCI studies in office 
workers in real working conditions (Midha et al., 2021), in digital 
manufacturing environments (Argyle et al., 2021) and in VR serious 
gaming for learning (Aksoy et al., 2019). 

Mental workload is described as the level of mental resources 
required to meet a task’s demands (van Acker et al., 2018; Wickens, 

2008). Mental workload has an impact on performance and therefore 
deteriorated performance can be caused by a suboptimal workload – 
either overload or underload (Young et al., 2015). Overload occurs when 
there are insufficient resources to perform a task and therefore leading 
to a decrease in performance, attentional lapses, and errors. On the other 
hand, underload might lead to disengagement and boredom, and 
therefore impact on performance as well (Young et al., 2015; Young and 
Stanton, 2002). Previous literature demonstrated that mental workload 
and performance are correlated with brain activity. This is because 
task-related brain activity requires a certain amount of allocated mental 
resources which are limited and proportional to task difficulty (Wick-
ens, 2008). In particular, activity within the PFC has been shown to be a 
function of mental workload (Fishburn and Norr, 2014) using fMRI 
(Causse et al., 2022; Lim et al., 2010 and EEG (Berka et al., 2007; 
Kutafina et al., 2021; Qu et al., 2020; So et al., 2017). Ayaz et al. (2012) 
demonstrated that fNIRS can measure mental workload changes in the 
dorsolateral prefrontal cortex (DLPFC) of operators in naturalistic set-
tings. The study employed the n-back task as a baseline condition to 
simulated activities of air traffic controllers. The result demonstrated 
that activity within the DLPFC increased as the difficulty of the task 
increased, correlated with behavioural performance and NASA TLX. 
Subsequently, the study denoted that with expertise, oxygenation within 
the PFC decreases. Decreased neural activity is linked to increased 
neural efficiency correlated with improvement in task performance 
(Kelly et al., 2006). 

The efficacy of CCT depends on improved neural efficiency, leading 
to either increased task performance, decreased workload or both. 
Therefore, a reduction in workload should entail more availability of 
cognitive resources, and subsequently, the ability to perform more 
complex tasks without error. The transfer effect occurs if skills and 
knowledge acquired during the training phase can be applied in 
different situations to different goals in real-life scenarios (Kelly et al., 
2014). There are inconsistent results regarding CCT efficacy and real-life 
transfer. While the majority of studies showed improved performance on 
the trained task (near-transfer)(Luis-Ruiz et al., 2020; Tetlow and 
Edwards, 2017; Zhang et al., 2019), meta-analyses on the efficacy of 
CCT demonstrated the absence of consistent evidence for general 
cognitive improvement and transfer to the real-life situation (Hu et al., 
2021; Kelly et al., 2014; Sala et al., 2019; Sala and Gobet, 2019; Vermeir 
et al., 2020). However, these results might be caused by the fact that 
many current studies often do not employ ecologically valid real-world 
transfer assessment methods. Therefore, developing better and more 
innovative approaches could improve measuring training-related 
transfer effects. Gonneaud et al. (2014) proposed that CT should also 
include ‘training for transfer’, delivered using immersive technologies 
that allow for practising trained skills in ecologically valid simulations of 
real-life situations. Immersive technologies offer to bridge a gap be-
tween experimental control and naturalness of the response providing 
an opportunity to assess the effects of CCT in ecologically valid 
situations. 

Employing brain imaging methods could provide a valuable more 
objective tool for assessing the efficacy and progress of CT. The advan-
tage of using portable neuroimaging methodsuch as fNIRS in CT studies 
is its ability to measure the cortical hemodynamics associated with brain 
activity non-invasively. fNIRS could provide insights into the func-
tioning of the brain before and after CT interventions, allowing re-
searchers to observe changes in brain activity patterns, which can be 
indicative of the effectiveness of the training. This could potentially 
benefit the field of CT, as it adds additional information beyond sub-
jective reports or behavioural assessments. Previous studies employed 
fNIRS to measure the effects of CT in healthy individuals (Acevedo et al., 
2022; Ge et al., 2021) or individuals with MCI (Vermeij et al., 2017). 
However, so far there are no studies that employed fNIRS to assess the 
efficacy of neurogames longitudinally using working memory training 
programmes and ecologically valid transfer tasks. 

The aim of the project was two-fold. First, we aimed to evaluate the 
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relative impact of a personalised CCT training programme, provided by 
our industry partner Brain+2, in comparison to a standardised set of 
brain training activities. Second, we aimed to use new technologies to 
provide deeper insights into the effects of brain training. In particular, 
using wireless fNIRS, this study examined the efficacy of the training 
programme by measuring mental workload in the prefrontal cortex 
(PFC). The portability of fNIRS, in comparison to other neuro-
technology, is that brain measurements can be taken both during seated 
test batteries, and more ecologically valid and immersive experiences. 
To achieve the goal of examining the effect of the CCT training in more 
ecologically valid everyday tasks, we created a memory-based shopping 
task in augmented reality, where the mental workload used during this 
task was also evaluated using fNIRS. 

3. Methods 

To meet our aims, we designed a longitudinal study, involving par-
ticipants using the provided brain training app for 8 weeks. We took 
performance and brain-activity measurements from participants before 
training, after training, and 5 weeks after training was stopped. The 
study had the following hypotheses: 

H1: There will be a significant change in brain activity within the 
PFC during the working memory task Starry Night after the ADDP 
training as measured by fNIRS 
H2: There will be a significant change in brain activity within the 
PFC during ecologically valid shopping task after the ADDP training 
as measured by fNIRS 
H3: Performance will increase for the cognitive working memory 
task after the ADDP training as measured via AD test battery Stary 
Night 
H4: Performance will increase for the transfer task after the ADDP 
training as measured via an ecologically valid shopping task 
H5: Participants will recognize the impact of ADDP training and have 
generally positive attitudes toward the technology after participating 
in the programme 

Within the study, participants were divided into two groups: 1) 
active experimental group and 2) passive/control experimental group. 
Both groups received one of the Brain+ intervention programmes. The 
difficulty parameters in the active experimental version were dynami-
cally adjusted to the individual’s performance over the 8 weeks of using 
CCT. The difficulty parameters in the passive version were set at one 
constant level for the same period. This group served as a placebo 
condition to contrast the effect of the ADDP intervention. They received 
exactly the same set of games, however, the difficulty level was capped 
at the low level. All participants were assessed before the intervention 
using The Montreal Cognitive Assessment (MoCa) (Nasreddine et al., 
2005) to determine baseline cognitive abilities. Repeated measures were 
conducted using a specially adapted version (for neuroscience block 
design studies) of the AD detection test battery Starry Night (Pertzov 
et al., 2012, 2013) and an ecologically valid augmented reality task in a 
3D environment (using Magic Leap), each described further below. 
Ethical approval CS–2019-R32 was granted by the University of Not-
tingham School of Computer Science Ethics Committee. Written 
informed consent was obtained from all participants included in this 
study. 

3.1. Participants 

This study recruited older adults (aged 45+) who were concerned 
that their memory might be declining. For ethical reasons, we did not 
involve participants with a clinical diagnosis of dementia or Alzheimer’s 

disease, as the research team did not include medical or care pro-
fessionals, the study required an untested level of technical and practical 
competence, and the study context could provide false hope on a tech-
nology that was not yet proven. Further, recruitment for our participants 
was clear that we did not have the expertise to diagnose such conditions; 
during the study, if any participant described memory concerns to the 
researchers, we reiterated that we did not have the clinical expertise to 
diagnose participants and recommended that they speak to their doctor 
if they were concerned. Moreover, the inclusions of dementia patients 
might not be appropriate because the study was looking at preventative 
measures and due to the heterogeneous nature of dementia-related 
cognitive decline it would be difficult to compare groups. We discuss 
this further in future work. 

One hundred and five (N = 105) participants (53 females and 52 
males (zero declared an alternative gender or declined to say), mean age 
M = 54.54, SD = 8.13) were recruited via Join Dementia Research, a 
community of members of the public interested in supporting research 
relating to Dementia, and via a recruitment firm Patricia Turner. Nine-
teen participants dropped out from the study due to low training 
adherence or personal reasons, one was excluded because of poor data 
quality, and eighty-five participants completed the study. 

3.2. Experimental design 

The experiment employed a between-subject design. Participants 
were assigned to two groups – experimental or control. The assignment 
was not random and it wasingle-blinded only due to COVID-19 re-
strictions. The experimental group was recruited and took part first, and 
then when finished, recruitment began for the control group. Both 
groups received the ADDP app during their training phase, however, the 
apps differed in training parameters:  

1. Active experimental group (N = 42) – received the adaptative 
version of the training program  

2. Active control group (N = 43) – received the non-adaptive version of 
the training program with constant difficulty 

Both groups participated in 3 data collections with the researcher, 
with CCT taking place between the pre- and post-training sessions:  

1. Pre-training baseline assessments using several instruments and 
measures:  
• The Montreal Cognitive Assessment (MoCa)  
• Cognitive assessment: Stroop Test, digit span  
• the fNIRS-adapted AD detection test battery Starry Night  
• an ecologically valid augmented reality task in 3D environment 

(using Magic Leap)  
• Augmented Reality Immersion Questionnaire (ARI)  
• Cybersickness Questionnaire 

Training phase:   

• Both groups received one of the Brain+ training programmes to 
play at home on their own mobile device. Participants were asked 
to play 4 neurogames (5 min each), 20 min a day, 5 days a week for 
8 weeks.  

1. Post-training assessment session:  
• Cognitive assessment: Stroop Test, digit span  
• the fNIRS-adapted AD detection test battery Starry Night  
• an ecologically valid augmented reality task in a 3D environment 

(using Magic Leap)  
• Short feedback on the user’s perception of the ADDP solution  

2. 1-month follow-up  
• Cognitive assessment: Stroop Test, digit span  
• the fNIRS-adapted AD detection test battery Starry Night 2 https://www.brain-plus.com/ 
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• an ecologically valid augmented reality task in 3D environment 
(using Magic Leap) 

Participants’ other normal daily activities were not controlled during 
the study, where e.g. we did not ask people to start or stop playing 
Sudoku. Participants were asked, however, to use the CCT training 
consistently during the training phase, and then stop using the CCT 
training app between post-training and follow-up sessions. Correct 
participation and minimum required training levels were checked using 
server logs created by participants using the app. Participants were 
remunerated with £30 for participating in the first session, £20 for the 
post-training session, and £50 if reaching and participating in the final 
follow-up session. Participants were given free access to the commercial 
version of the CCT app if they wished to restart using it. 

3.3. CCT training app (used between pre- and post-training sessions) 

The training phase used the ADDP multi-modal cognitive training 
application developed by Brain+ to exercise concentration, memory, 
attention and planning. The training consisted of 4 different games:  

1. Memory lane (Fig. 1a) to train attention and working memory. 
Participants moved a ball from side to side, whilst it rolled at speed 
down a tunnel, using their finger on a mobile device. The user was 
instructed to memorise sequences of between 1 – 4 symbols that 
appeared on the screen. The task involved moving the ball to collect 
the correct symbols, one by one, as they appeared in the tunnel, 
while also avoiding gaps in the tunnel. The interaction involved 
maintaining continuous finger contact with the screen, and moving 
the finger left and right to move the ball left and right as desired. This 
involved developing reaction times to avoid obstacles (aspeed 
increased), whilst remembering an increasing number of symbols. 
For the control group, the number of objects to remember and then 
collect was capped at a maximum of 2 objects.  

2. Ocean of attention (Fig. 1b) to train attention and working memory. 
Participants were presented with a number of different objects 
(flowers, shells, insects) at different locations. The task involved 
memorising and recalling the objects after a short delay. The user 
then had to guide the character to the target location, either col-
lecting or avoiding those objects. The interaction involved tapping 
on which square the user wanted the character to go to next, from 
their current square. The control group received a fixed high- 
exposure duration of items to memorise at 1.5 s, whereas a 

staircase algorithm adapted to the individual level for the experi-
mental group.  

3. Cocktail party (Fig. 1c) to train working memory. Participants were 
presented with information (name, age, occupation, country of birth) 
about characters on a virtual party. The task involved memorising 
and recalling the information about the characters when prompted 
with options. The control group had a cap on the number of associ-
ations to a person that should be remembered, and the time it was 
required before recall. 

4. Path finder (Fig. 1d) to train planning skills. Participants were pre-
sented with the target location on the board, and a set of obstacles 
that would affect their position, such as turn them around or shift 
them to a different square. The task involved planning a sequence of 
moves to reach the target destination while on the board. Partici-
pants had to plan their moves using a limited number of moves 
(move forward, move backward, turn left, turn right), and predict 
where they would end up given the impact of the obstacles. In the 
control version of the game, participants only had to plan their 
moves one step at a time, whereas, in the experimental group, the 
complexity and size of the path increased according to a staircase 
routine. 

In summary, the control group had what would be colloquially 
described as “easy” versions of the tasks, whilst the experimental group 
had versions that dynamically adjusted to challenge the capability of the 
user. The custom builds of this training app (adaptive and non-adaptive) 
were kept consistent from the beginning of the data collection so that the 
commercially available app’s normal updates and other features did not 
change during data collection. 

3.4. Assessment stimuli (using during sessions) 

3.4.1. Starry night 
The Starry Night AD detection test battery is a working memory 

game developed by Brain+, based upon the continuous working mem-
ory test- “What was where”, which was proposed by Pertzov et al. (2012, 
2013). The test builds on an extensive body of literature on 
continuous-report measures of working memory performance (Bays 
et al., 2009; Bays and Husain, 2008; Fougnie et al., 2010; Ma et al., 2014; 
Rose et al., 2016; Wolff et al., 2017; Zokaei and Husain, 2019). 
Continuous measures of working memory, unlike binary measures, 
examine the resolution in which items are retained in memory. Addi-
tionally, unlike many traditional memory tasks commonly used, these 

Fig. 1. Brain+ cognitive training app used during the training phase. The training consisted of 4 different games to train attention, memory and planning. Par-
ticipants were asked to play 20 min a day, 5 days a week for 8 weeks. 
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tasks provide a means to dissect the different sources of error that can 
contribute to deficits in performance. Error can be separately attributed 
to the degradation of memory precision, failures in encoding or retain-
ing an item (guesses), and incorrect binding of different features 
memoranda (e.g. swapping the identity and location of items). There-
fore, the output of the task is far richer than simply indexing whether a 
participant remembered an item or not. Critically, precision measures of 
the recall have been shown to be more sensitive than binary measures of 
performance (Zokaei et al., 2015) and have proven successful in quan-
tifying the reliability and quality of working memory in healthy ageing, 
neurodegenerative disorders and even in at-risk populations (Grogan 
et al., 2016; Liang et al., 2016; Pavisic et al., 2021; Peich et al., 2013; 
Rolinski et al., 2015; Zokaei et al., 2014, 2015; N. 2021; Zokaei and 
Husain, 2019). The paradigm aims to assess the ability to bind item 
features (for example the identity of the object and its location) in 
working memory, where prior work has demonstrated that miss-binding 
these pieces of information is an early and reliable indicator of cognitive 
decline. 

In the Starry Night game (Fig. 2), participants are presented with 
either 1 or 3 different abstract star constellations at different random 
locations. The task is to maintain the constellations and their locations in 
working memory. Then, a blank screen is displayed for 1- or 4-second 
duration, and then the test array appears, containing 1 correct constel-
lation from the original set and 1 non-target item (foil). The task is based 
on the previous research (Pertzov et al., 2012; Tabi et al., 2019, 2020; 
Tabi et al., 2021; Zokaei et al., 2014, 2015; 2019). The interference task 
was added as a novel approach to manipulate both difficulties and 
examine the impact of attentional load on memory performance. This 
was done specifically to make sure the challenge levels were suitable for 
healthy participants and to avoid ceiling effects, specifically following 
cognitive training. Participants were asked to drag the target constel-
lation into its original location. Two of the conditions involved an 
additional distraction task (interference task), which requires partici-
pants to track 1 to 3 stellar objects on the screen by pointing a ‘telescope’ 
at them with their finger. The difficulty of the task is determined by the 
number of items held in working memory, delay duration, and inter-
ference task. The custom version of this game, designed for block-design 

fNIRS user studies, consisted of 6 blocks (conditions) with 40 -seconds 
“on” and 10-second “off” periods alternating in pseudo-random order:   

• One Target Short Delay (1TSD): Involving 1 target constellation 
with a 1-second exposure followed by a 1-second delay. 

• Three Targets Short Delay (3TSD): Involving 3 target constella-
tions with a 3-second exposure followed by a 1-second delay.  

• One Target Long Delay (1TLD): Involving 1 target constellation 
with a 1-second exposure followed by a 4-second delay. 

• One Target with Interference (1TI): Involving 1 target constella-
tion with a 1-second exposure during a 4-second interference task.  

• Three Targets Long Delay (3TLD): Involving 3 target constellations 
with a 3-second exposure followed by a 4-second delay. 

• Three Targets with Interference (3TI): Involving 3 target constel-
lations with a 3-second exposure during a 4-second interference 
task. 

The working memory precision was measured as: a) working mem-
ory accuracy in identifying the proportion of correct targets, b) working 
memory localisation performance in remembering the distance of where 
the user drags it to from its actual original location (localization errors in 
pixels) measured only on trails when the target was correctly identified, 
and c) misbinding (the distance to the nearest wrong target in pixels) 
(Tabi et al., 2020; Tabi et al., 2021, 2022). The test was optimized for 
and delivered through the Samsung Galaxy S3 Tablet, rather than using 
different sized devices, in order to maintain consistency of formal 
measurements for scientific rigour. This task took approximately 15 min 
to complete (including practice and tutorial). 

3.4.2. Augmented reality shopping task 
The shopping task (Fig. 3), developed using Unity 2020.2.2 game 

engine, consisted of a three-aisled virtual store with various items placed 
on shelves. The shop was located within a 5Mx3M space in the Mixed 
Reality Lab at the University of Nottingham. There were three different 
sections in the shop – food, fruits and vegetables, and household. Par-
ticipants were presented with different shopping lists for 10 s to 

Fig. 2. Starry Night game. In sample memory array (A) one or three constellations are presented to memorise, following a 1- or 4-second delay (B). Next in a test 
array two constellations are presented (target and foil) (D). In two conditions participants also received a distraction task (a telescope to follow celestial objects) (E). 
The task was to drag the target constellation to the remembered original location (D). There were 6 40-second blocks and a 10-second rest between each block (F). 
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memorise and then had to retrieve as many of these items as possible by 
physically exploring the shop and selecting the items using the trigger 
button of the hand-held controller. Participants were informed that they 
had as much time as needed to complete the task; however, on average, 
participants completed the task within 30 to 70 s. The difficulty of the 
task was determined by the number of items on the list:   

• 3 items shopping list  
• 4 items shopping list  
• 5 items shopping list  
• 6 items shopping list  
• 7 items shopping list 

The selection of item quantities on the shopping lists was informed 
by established cognitive psychology literature on working memory ca-
pacity. Miller’s working memory model suggested a capacity limit of 7 
± 2 items (Miller, 1956). However, other subsequent studies suggested a 
limit of 4 ± 1 chunks of information (Cowan, 2001; Oberauer et al., 
2018) or 3 to 4 chunks of information (Mathy and Feldman, 2012). 
Consistent with these findings, our preliminary pilot study conducted 
using a 2D version of the task revealed that participants were able to 
recall an average of 5 items for both pre- and post-training sessions 
(Fig. 13 in supplementary materials). Therefore, the number of items 
chosen for the task in this study reflects both the theoretical un-
derpinnings of working memory capacity and empirical evidence from 
initial investigations, ensuring that the task parameters are appropri-
ately scaled to capacities of working memory. 

The shopping performance was measured as a proportion of correctly 
recalled items from the list (measured as%) and a proportion of incor-
rectly recalled items (measured as%). The task was delivered through 
the AR headset Magic Leap. Magic Leap One (Fig. 4) is an augmented/ 
mixed reality system that blends the virtual and real-world to produce 
content where digital and real-world objects co-exist. The system con-
sists of three pieces:  

1. Lightwear – a see-through head-mounted display, with tracking 
cameras to map the environment and track the user’s motion, and 
eye-tracking cameras  

2. Lightpack – a small, wearable, wireless computer with Nvidia Tegra 
X2 chipset, 8GB RAM, 128GB storage, and a battery  

3. Controller – an input device, tracked within a simulation to interact 
with a digital content 

3.5. Data collection instruments 

Further to the performance data gathered from the Starry Night and 
shopping tasks, activity in the PFC was measured by fNIRS, and three 
questionnaires were used to assess working memory, immersion in 
augmented reality, and their experience of motion sickness. 

3.5.1. fNIRS 
Changes in brain activity were measured using the Brite23 wireless 

fNIRS system (Artinis Medical Systems, Elst). The probe covering the 
frontal cortex consists of eleven sources and seven detectors arranged in 
twenty-three channels, including two short-separation channels (See 
Fig 4). Data were recorded using the Oxysoft software (3.3.70 - x64 

Fig. 3. Shopping task. A) Participants were presented with 10- a second fixation point following a 10-second shopping list (5 levels of difficulty) to memorise. Then 
after 10 s of rest, they were asked to recall items from the list and find them in the shop. B) view in different shop sections: food, fruits and vegetables and household. 
C) participantselected products using a controller by pointing at them. 

Fig. 4. User wearing Artinins Brite23 fNIRS device together with Magic Leap 
AR Glasses. 
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Artinis Medical Systems, Elst, The Netherlands). 

3.5.2. Questionnaires  

1. The Montreal Cognitive Assessment (MoCA) (alternative) – is a 30- 
question test to measure executive functions and multiple cognitive 
domains (takes approximately 10 min).  

2. Augmented Reality Immersion (ARI) Questionnaire – is the 42-item 
scale used for measuring the subjective sense of presence and im-
mersion in AR. Participants are asked to rate their presence on a 5- 
point Likert scale. The three subscales which assess different com-
ponents of immersion: engagement, engrossment, and total immer-
sion (Georgiou and Kyza, 2017).  

3. Simulator Sickness Questionnaire (SSQ) – is the 16-item tool that 
assesses possible side effects of VR exposure on a 4-point Likert scale 
Simulator measureside effects of the VR simulation in the scale from 
0 to 3, where 0 is coded as “none”, 1 – “slight”, 2 – “moderate” and 3 
– “severe”. A total score on the questionnaire is 48 which indicate-
severe symptoms and 0 indicates no symptoms (Kennedy et al., 
1993).  

4. Stroop Test – is a psychology test designed to measure a processing 
speed (reaction time). There were two conditions in the Stroop test: 
congruent – when names of colours are printed in the same ink 
colour as the name of the colour; incongruent – when the name of the 
colour is printed in a different ink colour as the name of the colour. In 
total, there were 30 trials (15 congruent and 15 incongruent), and 
the experiment took approximately 5 min to complete including 
practice.  

5. Digit Span – is a psychology test designed to measure working 
memory span. In the digit span, participants were presented with a 
sequence of digits to memorise. The digits were presented on the 
screen one digit at a time, starting from easy (one digit to memorise) 
and building up to difficult (10 digits to memorise). The test took 
approximately 5 min to complete. 

The MoCa, Stroop test and digit span were used to assess the 
cognitive abilities of participants at the baseline. Thiscreening approach 
was to ensure that participants did not exhibit symptoms indicative of 
MCI, Alzheimer’s disease or dementia, inclusion criteria essential for the 
demographic of this study. Therefore, we did not administer the MoCA, 
Stroop or digit span in subsequent sessions, including the post-training 
and follow-up phases. This approach allowed us to concentrate on the 
primary objectives of our study to test the ADDP solution while ensuring 
the cognitive suitability of our participants. The ARI and SSQ were used 
to assess the quality of the simulation and the participant’s comfort 
during the shopping task. 

3.6. Procedure and data acquisition 

Each participant received the Participant Information Sheet at least 
24 h before their first pre-training session. When participants arrived at 
the laboratory, they were asked to read and sign the consent form. Then 
each participant was assessed with MoCa to determine baseline cogni-
tive abilities. Afterwards, each participant was sat ~50 cm in front to the 
computer (Windows 10 machine, Intel Core i7-4790 CPU @ 3.60 GHz, 
16.0 GB RAM) and they were asked to complete short versions of Stroop 
test and Digit Span available on https://pavlovia.org/. Afterwards, 
participants were fitted with fNIRS device and sat approximately 50 cm 
in front of the tablet touch screen. The tablet was placed on the plastic 
stand such that the screen was facing directly towards the participant 
(rather than flat on a table), to prevent participants from leaning for-
ward, which could cause noise contamination in the fNIRS data. Par-
ticipants were then introduced to Starry Night. The test was delivered 
through the Samsung Galaxy S3 Tablet and took approximately 15 min 
to complete (including practice and tutorial).  Afterwards, Magic Leap 
was placed over the fNIRS device and participants were introduced to 

the shopping task. For the majority of participants, it was their first 
experience of head-mounted augmented reality, and so participants 
were allowed to explore and familiarize themselves with the technology 
before beginning the shopping task. As the study employed wireless AR 
and fNIRS devices, participants were allowed to move and navigate the 
lab space freely and untethered. The shopping task took approximately 
20 min to complete (including 5 min of familiarization and 5 min of 
practice). After completion, the researcher removed the Magic Leap and 
fNIRS devices from participants and they were asked to fill in two 
questionnaires – ARI and SSQ to evaluate participant’s general experi-
ence and feasibility of combining AR and fNIRS. 

The first session took approximately 2 h in total. Participants were 
invited to the post-training assessment only if they had finished at least 
90 % of their training program. The procedure during the post-training 
assessment was the same, however, MoCa, ARI and SSQ were not 
administered. The second session lasted 90 min. The follow-up session 
was the same as the post-training session, however, there was a short 
debrief with the researcher at the end and participants were asked to 
provide very short (1 or 2 sentences) feedback on their experience and 
perception of the CCT app. 

4. Data analysis 

Throughout the analysis, we compare across three variables:  

- Group – between participants analyses depending on which version 
of the CCT they used.  

- Session – within participants analyses comparing pre-training, post- 
training, and follow-up 

- Condition – typically repeated measures within-participants condi-
tion, depending on the task (e.g., difficulty of shopping task, level in 
Starry Night). 

4.1. fNIRS data analysis 

The fNIRS data analysis was conducted using NIRS Toolbox (Santosa 
et al., 2018). The data was down-sampled to 4 Hz. Raw signals were 
converted to optical density changes and then to oxyhaemoglobin (HbO) 
and deoxyhaemoglobin (HbR) estimates using Beer-Lambert law with a 
partial path length correction of 0.1 for both wavelengths (Strangman 
et al., 2003). Motion artifacts were corrected using the Temporal De-
rivative Distribution Repair (TDDR) (Fishburn et al., 2019). On the first 
level analysis, beta coefficients for task activations were estimated using 
the autoregressive iteratively-reweighted least squares approach 
(Barker et al., 2013). To correct for physiological noise, we included a 
short-separation channel as a nuisance regressor in GLM (Gagnon et al., 
2011). The BoxCar function was used to model hemodynamic response 
for the shopping task. This approach was taken because the tasks varied 
in duration (the 3-items list condition lasted approximately 30 s and 
7-items condition would last approximately 60–70 s) and we trimmed 
longer tasks to 30 s, therefore resultant hemodynamic responses could 
deviate from the typical assumed shape and timing captured by a ca-
nonical HRF. This approach was more suitable for our situation focusing 
on the presence of the stimulus rather than its temporal dynamics. The 
canonical HRF was used to model hemodynamic response for the 
working memory task Starry Night. For group analysis, a mixed-effects 
model was used to determine the effects of each group, session and 
each condition as fixed effects and subject as a random effect. The false 
discovery rate (FDR) correction was used with the significance level set 
at 0.05 (q ≤ 0.05) (Benjamini and Hochberg, 1995) to control for mul-
tiple comparisons. Contrast analyses were used to assess differences 
between groups, sessions, and conditions on the PFC, and conditions on 
the PFC. 
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4.2. Behavioural and questionnaire data analysis 

All analyses on behavioural and questionnaire data were performed 
with R statistical computing environment, version 4.1.3 (RCoreTeam, 
2021). The difference between groups reflected in MoCa scores at the 
baseline were assessed using the Wilcoxon signed-rank test. A general-
ised Linear Mixed Model (GLMM) was fitted to investigate the effects of 
training using packages ‘lme4’ for continuous variables (Bates et al., 
2012) and ‘glmmTMB’ for skewed and zero-inflated variables (Brooks 
et al., 2017). Post-hock contrasts were calculated using the ‘emmeans’ 
package (Lenth, 2022). Plots were produced using ‘ggplot2’ package 
(Wickham et al., 2016). 

Group waspecified as a grouping factor and condition and session 
were specified and fixed factors modelled with random intercepts and 
where possible also random slopes were set. Additionally, models with 
participant ID as random factors were tested when no group effects were 
found. We tested models with MoCA, time played, and immersion - set as 
both random and fixed effects models. Appropriate families were 
selected based on the distribution of the residuals. Numerous families 
and link functions were evaluated where necessary. When models failed 
to converge, they were gradually simplified by removing random slopes 
and then fixed factors and interactions. Then, the best-fit models that 
converged, were selected based on the Akaike information criterion 
(AIC). Parameter estimates (β), standard errors, t- or z-values and p- 
values are reported for each best-fit model that converged. 

5. Results 

The summary (mean, SD and median) of MoCa, Stroop test, digit 
span, ARI, and SQQ scores for both groups are presented in Table 1. The 
median MoCa score between groups was not statistically significant (U 
= 1009.0, p = 0.34) which indicates that both groups demonstrated 
similar levels of cognitive abilities at the baseline. There was no effect of 
group (beta = 0.01, 95 % CI [− 0.48, 0.51], p = 0.958; Std. beta = − 0.02, 
95 % CI [− 0.12, 0.07]) and no effect of session (beta = 0.09, 95 % CI 
[− 0.27, 0.46], p = 0.61; Std. beta = 0.04, 95 % CI [− 0.05, 0.14]) for the 
accuracy in the Stroop task. Also, there was no effect of group (beta =
0.03, 95 % CI [− 0.23, 0.30], t(434) = 0.24, p = 0.81; Std. beta = 0.18, 95 
% CI [0.02, 0.34]), and no effect of the session (beta = 4.58e-03, 95 % CI 
[− 0.18, 0.19], t(434) = 0.05, p = 0.96; Std. beta = − 0.09, 95 % CI 
[− 0.15, − 0.03]) for the reaction time during the Stroop test. However, 
there was the effect of condition (beta = 0.17, 95 % CI [0.14, 0.20], t 
(440) = 10.85, p < 0 0.001; Std. beta = 0.61, 95 % CI [0.50, 0.72]) which 
demonstrated that, as would be expected, participants performed 
significantly faster during the congruent Stroop condition. 

Additionally, there was no effect of group (beta = 0.02, 95 % CI 
[− 0.25, 0.29], p = 0.86; Std. beta = 0.02, 95 % CI [− 0.25, 0.29]) and no 
effect of session (beta = 0.14, 95 % CI [− 0.12, 0.40], p = 0.288; Std. beta 
= 0.14, 95 % CI [− 0.12, 0.40]) in the digit span test. Although the 
Stroop test and Digit Span did not demonstrate an improvement after the 
training, they also served as a method to characterise the cognitive 
abilities of participants and determine a difference between both groups 
at the baseline. 

There was a significant difference between groups in how much time 
they played neurogames at home (p = 0 0.001). The median time played 
for the experimental group was 786 min and the median time for the 
control group was 859  min. 

Below we present the results of the experiment for fNIRS and 
behavioural data. In line with the hypotheses, we first present results for 
fNIRS data (changes in mental workload) and then behavioural data 
(accuracy, localisation performance and misbinding) results from the 
Starry Night experiment. Then we present results for fNIRS (changes in 
mental workload) and behavioural (accuracy and errors) results for the 
shopping task. We present results only of the best-fit models that 
converged. 

5.1. Starry night 

5.1.1. fNIRS results 
All significantly activated channels with beta values, SE, t-stat 

values, p-values, q-values and relative power are presented in Table 2 
and Fig. 5. Only channels with a negatively correlated haemoglobin 
species (an increased HbO and decreased HbR at q < 0.05) were 
considered asignificant (Cui et al., 2010). A mixed effect model was fit to 
predict beta (brain activity) with group, session and condition as fixed 
effects and id as random effect: 

Beta ∼ Group : Session : Condition + (1 | id)

The result revealed a significant effect of group, session, and condi-
tion. A contrast analysis demonstrated lower PFC activation (indicative 
of lower mental workload) in the experimental group relative to the 
control group after the training indicated by significantly lower HbO 
and higher HbR during condition 3TI in channels S4-D2, S5-D3, S5-D3 
and S6-D4. At the follow-up, the experimental group demonstrated a 
significantly lower activity in the channel S6-D4 relative to the control 
group. 

5.1.2. Behavioural data results 
For the accuracy analysis, we fitted a generalised mixed model (Beta 

family with a logit link) to predict Accuracy with Condition and Session 
with ID as random effect: 

Accuracy ∼ Session ∗ Conition + (1 |id)

The model’s explanatory power related to the fixed effects alone 
(marginal R2) is − 0.56. The analysis revealed that there was no signif-
icant effect of group and session for accuracy. However, we found a 
significant effect of the condition. Post-hoc analysis revealed that the 
accuracy was higher in condition 1TSD than 3TSD (β = 0.02, SE = 0.01, 
t-ratio = 4.07, p = 0.001), 1TLD than 3TLD (β = 0.026, SE = 0.01, t-ratio 
=4.07, p = 0.001), and 1TI than 3TI (β = 0.09, SE = 0.01, t-ratio = 8.72, 
p = 0.001) (Fig. 6). This finding essentially confirms that easier levels 
led to higher accuracy. All values for (beta estimates, SE, CI, Statistic and 
p-values are presented in the supplementary materials. 

We fitted a general linear mixed model (Gamma family with an 
identity link) to predict Localisation performance with Condition and 
Session with ID as a random effect: 

Localisation Performance ∼ Condition ∗ Session + (1 |id)

The model’s total explanatory power is substantial (conditional R2 
= 1.00), and the part related to the fixed effects alone (marginal R2) is of 

Table 1 
The summary (mean, SD and median) of MoCa, Stroop test, digit span, ARI, and 
SQQ scores for both groups.   

Experimental Control  

Mean SD Median Mean SD Median 

MoCa 28.34 2.16 29.00 27.65 2.68 28.00 
Stroop       
Accuracy 

Congruent 
0.99 0.01 1.00 0.99 0.02 1.00 

Accuracy 
Incongruent 

0.96 0.10 1.00 0.95 0.07 1.00 

RT Congruent 0.82 0.21 0.96 1.04 0.22 1.01 
RT Incongruent 1.13 0.30 1.08 1.22 0.24 1.16 
Digit Span 2.92 1.60 4.00 2.85 1.52 4.00 
Time Played 802.23 73.34 786.5 895.93 142.40 859 
Cybersickness 

(SSQ) 
0.23 0.19 0.22 0.40 0.35 0.36 

Presence (ARI)       
Engagement 4.21 0.41 4.22 4.12 0.39 4.44 
Engrossment 4.10 0.43 4.00 3.99 0.47 4.16 
Immersion 3.55 0.59 3.58 3.79 0.70 3.66  
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Table 2 
Results of contrast analysis for all significantly activated channels (source-detector pairs) during Starry Night game.  

Source Detector Chromophore Condition Beta SE tstat p q Power 

4 2 HbO Experimental-Control (Post-Pre) − 4.63 1.76 − 2.62 0.01 0.04 0.34 
4 2 HbR Experimental-Control (Post-Pre) 2.87 0.90 3.18 0.00 0.01 0.67 
5 2 HbR Experimental-Control (Post-Pre) 2.57 0.92 2.81 0.01 0.02 0.66 
5 3 HbO Experimental-Control (Post-Pre) − 6.46 1.90 − 3.40 0.00 0.00 0.32 
6 4 HbO Experimental-Control (Post-Pre) − 7.77 1.77 − 4.38 0.00 0.00 0.34 
6 4 HbR Experimental-Control (Post-Pre) 2.89 0.77 3.76 0.00 0.00 0.79 
6 4 HbO Experimental-Control (Follow-up-Pre) − 7.23 1.71 − 4.23 0.00 0.00 0.38 
6 4 HbR Experimental-Control (Follow-up-Pre) 2.22 0.81 2.74 0.01 0.03 0.80  

Fig. 5. - Results of contrast analysis from fNIRS data, showing significant channels (source–detector pairs) where differences in oxyhaemoglobin (HbO) and 
deoxyhaemoglobin (HbR) levels were observed between the experimental and control groups during a 3-target with interference condition (3TI). The differences are 
shown at two time points: after training (top) and at a follow-up session (bottom). The significance of the contrasts is indicated by a colour scale representing t- 
statistics, where the intensity of red and blue colours corresponds to the magnitude of HbO and HbR differences, respectively. All reported findings are statistically 
significant with q < 0.05, adjusted for multiple comparisons using FDR correction. 

Fig. 6. Differences in accuracy from Starry Night test battery for the control and experimental group. Differences were found between conditions, but not groups 
and sessions. 
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0.98. The model demonstrated a significant effect of session and a sig-
nificant effect of condition. Post-hoc analysis revealed that the overall 
localisation performance has increased from pre-training to follow-up in 
both groups (β = − 21.50, SE = 8.52, t-ratio = − 2.52., p = 0.03). 
Moreover, the localisation performance was better in condition 1TSD 
than 3TSD (β = − 249.47, SE = 12.66, t-ratio = − 19.71, p = 0.001), in 
condition 1TLD than 3TLD (β = − 179.02, SE = 10.23, t-ratio = − 17.49, 
p = 0.001), and in condition 1TI than 3TI (β = − 200.59, SE = 12.65, t- 
ratio = − 15.85., p = 0.001). Additionally, participants performed better 
in condition 1TSD than 1TI (β = − 40.66, SE = 4.99, t-ratio = 4.26, p =
0.001), 3TSD than 3TLD (1TI β= 67.11, SE = 15.73, t-ratio = − 8.14, p =
0.001) and condition 3TLD than 3TI (β = − 58.89, SE = 15.39, t-ratio =
− 3.82, p = 0.001) (Fig. 7). These results mean that partic-
ipantsignificantly improved their localisation performance in easier 
conditions. Moreover, the result lasted at the follow-up. All values for 
the model (beta estimates, SE, CI, Statistic and p-values are presented in 
the supplementary materials. 

For the misbinding analysis, we fitted a zero-inflated generalised 
linear mixed model (Gamma family with an identity link) to predict 
Misbinding with Condition and Session and ID as a random effect: 

Misbinding ∼ Condition ∗ Session + (1 | id)

The model included participant ID as a random effect. The model’s 
total explanatory power is weak (conditional R2 = 0.04) and the part 
related to the fixed effects alone (marginal R2) is of 0.02. The result 
revealed that there was no significant effect of group and session. 
However, there was an effect of the condition. Post-hoc analysishowed 
that the chance of misbinding was higher in condition 3TI than in 
condition 3TSD (β = 0.07, SE = 0.01, t-ratio = 3.90, p = 0.001), and 
higher than in 3TLD (β = 0.07, SE = 0.02, t-ratio = 3.53, p = 0.001). 
(Figure 17 in the supplementary materials). All values for the model 

(beta estimates, SE, CI, statistics and p-values are presented in the sup-
plementary materials. 

5.2. Shopping task 

Regarding the quality of the simulation and comfort of the equip-
ment, both groups reported a high level of engagement, engrossment, 
and a moderate effect of immersion. Also, the overall cybersicknesscore 
for both groups was low, which indicates that combining fNIRS with 
augmented reality did not cause significant discomfort of adverse effects 
(Table 1). 

5.2.1. fNIRS data results 
All significantly activated channels with beta values, SE, t-stat 

values, p-values, q-values and relative power are presented in Table 3 
and Fig. 8. Only channels with a negatively correlated haemoglobin 
species (an increased HbO and decreased HbR at q < 0.5) were 
considered asignificant (Cui et al., 2010) . We fitted a mixed effect model 
to predict beta (brain response) with group, session, condition as fixed 
effects and ID as random effects: 

Beta ∼ Group : Session : Condition + (1 | id)

We found no significant effects of groups (See Fig. 15 in the sup-
plementary materials), therefore, we then tested less complex models 
with fewer variables. Next, we fit a mixed effect model with Session and 
Condition as fixed effects and subject ID as a random effect: 

Beta ∼ Session : Condition (1 | id)

The analysis revealed a significant effect session and condition. A 
contrast analysis demonstrated a decrease within the PFC (indicative of 
lower mental workload) after the training indicated by significantly 

Fig. 7. Differences in localization performance from Starry Night test battery for the control and experimental group. Differences were found between conditions and 
sessions, but not between groups. 
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lower HbO and higher HbR for 5-item shopping list condition in chan-
nels S8-D6. These results show that participants performed better after 
training, but the effect was not maintained at the follow-up (See Fig. 16 
in the supplementary materials). 

5.2.2. Behavioural data results 
We fitted a general linear mixed model (Beta family with a logit link) 

to predict Accuracy with Session, Condition and MOCA_standarised with 

ID as random effect: 

Accuracy ∼ Session ∗ Condition + MOCA standarised(1\id)

The model’s total explanatory power is substantial (conditional R2 
= 1.26) and the part related to the fixed effects alone (marginal R2) is of 
1.15. The result revealed that there was no significant effect of the 
group. However, there was an effect of session, condition, MOCA, and 
the interaction between session and condition was also significant. The 

Table 3 
Results of contrast analysis (Pre-training – Post-training) for all significantly activated channels (source-detector pairs) during the shopping task in augmented reality.  

Source Detector Type Condition Beta SE tstat p q Power 

8 6 HbO 5-items-Pre - Post − 4.95 1.44 − 3.42 0.001 0.005 0.34 
8 6 HbR 5-items-Pre - Post 2.23 0.61 3.68 0.001 0.005 0.82  

Fig. 8. Results of contrast analysis and the fNIRS probe with significant channelshowing oxyhaemoglobin (HbO) and deoxyhaemoglobin (HbR) difference between 
the pre- and post-training for 5-item shopping list condition) (source-detector pairs) (q < 05; FDR-corrected). The colour bar shows t-statistics for the differences 
between the pre- and post-training. 

Fig. 9. The differences in task accuracy between control and experimental groups across various conditions (number of items on the shopping lists) and sessions (Pre, 
Post, Follow-up) of the shopping task. Statistical analysis revealed significant differences between conditions and sessions, suggesting a variation in performance over 
time and with task complexity. However, no significant group differences were found indicating that the experimental intervention did not significantly alter ac-
curacy compared to the control. 
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accuracy increased significantly after the training (versus pre-training) 
in condition 3-items shopping list (β = 0.08, SE = 0.01, t-ratio = 5.63, 
p = 0.001), 5-items shopping list (β = 0.13, SE = 0.02, t-ratio = 6.36, p 
= 0.001), and 7-items shopping list (β = 0.15, SE = 0.03, t-ratio = 4.22, 
p  < 0.001). The effects were also maintained at the follow-up for 3- 
items shopping list  (β = 0.09, SE = 0.01, t-ratio = 6.39, p = .01), 5- 
items shopping list (β = 0.12, SE = 0.02, t-ratio = 5.80, p = 0.001), 
and 7-items shopping list (β = 0.23, SE = 0.03, t-ratio = 6.67, p = 0.001). 
This means that the behavioural improvements, where found, were 
maintained after the follow-up. The effect of MOCA_standarised was-
tatistically significant (β = 0.11, SE = 0.05, t-ratio = 2.46, p = 0.014), 
implying that participants with better MoCa scores generally performed 
better across conditions, as perhaps would be expected (Fig. 9). All 
values for (beta estimates, SE, CI, Statistic and p-values are presented in 
the supplementary materials. 

For error analysis, we fitted a zero-inflated generalised linear mixed 
model (Gamma family with an inverse link) to predict Errors with 
Condition and Session as fixed effects and ID as random effect: 

Errors ∼ Condition ∗ Session + (1 | id)

The model’s total explanatory power is substantial (conditional R2 
= 0.98), and the part related to the fixed effects alone (marginal R2) is of 
0.57. Results revealed no significant effect of group and session. How-
ever, there was a significant effect of the condition. Post-hoc analysis 
revealed that there was a significant difference between the condition 4- 
items shopping list and the 5-items shopping list (β = 0.06, SE = 0.01, t- 
ratio =3.40, p = 0001), condition 4-items shopping list and 7-items 
shopping list (β = 0.08, SE = 0.01, t-ratio = 4.80, p  < 0.001), condi-
tion 5-items shopping list and 7-items shopping list (β = 0.02, SE = 0.00, 
t-ratio = 3.65, p = 0001) and 6-items shopping list and 3-items shopping 

list (β = − 0.04, SE = 0.00, t-ratio = − 4.25. p = 0.001) (Fig. 10). This 
highlights that participants made fewer errors in the easier tasks, as 
would be expected. All values for (beta estimates, SE, CI, Statistic and p- 
values are presented in the supplementary materials. 

5.3. Feedback analysis 

5.3.1. Experimental group 
Feedback was analysed using natural language processing (NLP) 

based on sentiment analysis. The overall sentiment score of the experi-
mental version of the CCT was positive. Reviews were mostly positive 
indicating that the majority of people enjoyed the app. Positive emotions 
(such as joy, trust, and anticipation) were higher in frequency than 
negative. The most frequent words used by participants describing the 
app were “easy”, “enjoyed” and “good”.  The results are presented in 
Fig. 11. 

5.3.2. Control group 
The overall sentiment score of the non-adaptive version of the CCT 

was positive. Reviews were mostly positive indicating that the majority 
of people enjoyed the app. Positive emotions (such as joy, trust and 
anticipation) were higher in frequency than negative. The most frequent 
words used by participants describing the app were “easy” and “good”, 
however, there were also some negative emotionsuch as “repetitive” and 
“boring”. The results are presented in Fig. 12. 

6. Discussion 

The main aim of this study was to evaluate the efficacy of a 
dynamically adapting CCT intervention programme by measuring 

Fig. 10. The differences in task errors between control and experimental groups across various conditions (number of items on the shopping lists) and sessions (Pre, 
Post, Follow-up) of the shopping task. Statistical analysis revealed significant differences between conditions and sessions, suggesting a variation in performance over 
time and with task complexity. However, no significant group differences were found indicating that the experimental intervention did not significantly alter errors 
compared to the control. 
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changes in hemodynamic indicatives of mental workload at three 
different time points: prior to the CCT, following an 8-week interven-
tion, and at a 1-month follow-up. The objective was to measure changes 
in brain activity using fNIRS and cognitive abilities following the ADDP 
programme using a detection test battery (Starry Night) and an 
ecologically valid transfer task (UoN shopping game in AR). Participants 
were divided into two groups: 1) the active experimental group (the 
difficulty in the active experimental version was adjusted to the indi-
vidual performance) 2) the control active placebo group (the difficulty 
in the experimental passive version was set at a constant level). Below 
we discuss the evidence relating to each of the hypotheses. 

H1: There will be a significant change in brain activity within the PFC 
during the working memory task Starry Night after the ADDP training as 
measured by fNIRS 

The results of the study demonstrated decreased prefrontal activity 
as measured by fNIRS during the Starry Night test after the AD inter-
vention in the experimental group that used the dynamic training. In 
particular, we found decreased activity in the bilateral DLPFC (channels 
S4-D2, S5-D3, S5-D3 and S6-D4) during the condition when participants 
were presented with 3 targets with the interference task. The result was 
also maintained at the follow-up (channel S6-D4). These results are in 
line with previous fMRI studies which demonstrated decreased activity 
within the PFC regions following cognitive training (Brehmer et al., 
2011; Chang et al., 2017; Clark et al., 2017; Heinzel et al., 2016; 
Miró-Padilla et al., 2019). This result might represent reduced demand 
for metabolic and mental resources and therefore increased neural 

efficiency to perform a task following cognitive training. This increased 
neural efficiency could also translate to enhanced working memory 
performance, which was detected using a working memory precision 
task – Starry Night. Moreover, the effect was maintained at the 
follow-up, which potentially demonstrates the efficacy of the adaptive 
version of the ADDP training over the static version. 

We did not find any significant results for the other high workload 
conditions (3 targets with 4-second delay) and the low workload con-
ditions (1 target with 1-second delay). This might be for three reasons. 
First, it is possible that fNIRS is not sensitive enough to detect such 
subtle variations in task difficulty. Previous studies showed that fNIRS 
can differentiate between large task difficulties (easy vs difficult), but 
smaller differences could not be distinguished (Ayaz et al., 2012). The 
second reason may be related to the signal variability which might result 
from individual differences in resource allocation. Perhaps, some in-
dividuals require fewer mental resources than others to complete a task, 
depending on their expertise or cognitive abilities and therefore show 
different levels of activity (di Domenico et al., 2015; Grabner et al., 
2006). Thirdly, there are some study design limitations created by the 
longitudinal study design, which are not ideal for fNIRS data collection. 
Because fNIRS signals are often contaminated by physiological noise or 
motion artefacts (despite being more tolerant of movement than e.g. 
EEG), ideal data collection for fNIRS data should mean that each con-
dition is repeated multiple times to resolve task-evoked response (Kir-
ilina et al., 2012; Yücel et al., 2021) typically called block design. In our 
longitudinal study design, we needed to minimise participants’ 
discomfort related to repeated sessions and wearing fNIRS for too long 
across both tasks. This meant that the duration of each Stary Night 

Fig. 11. Results of sentiment analysis for the experimental version of AD intervention. Most frequent words (left) and participant’sentiment towards the app (right).  

Fig. 12. Results of sentiment analysis for the placebo version of AD intervention. Most frequent words (left) and participant’sentiment towards the app (right).  
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condition was 40 s and there was only one repetition of each unique 
configuration. Future studies could build in a block design in order to 
focus more specifically on this aspect of the results. 

H2: There will be a significant change in brain activity within the PFC 
during ecologically valid shopping task after the ADDP training as 
measured by fNIRS 

There was no difference between the groups in brain activity during 
the shopping task. However, the analysis demonstrated a decreased 
mental workload in the bilateral dorsolateral prefrontal cortex after the 
training phase during the 5-items condition regardless of the group. This 
result could potentially indicate that both versions of ADDP intervention 
were effective in enhancing cognitive efficiency in improving everyday 
functioning, which wasimulated in the ecologically valid shopping task. 
Importantly, the specific observation of changes during the 5-items 
condition aligns with existing models of working memory. According 
to these models, an average of 4–5 items represents the typical capacity 
that individuals can maintain in their working memory (Cowan, 2001; 
Oberauer et al., 2018). This capacity is crucial as it underpins a range of 
cognitive tasks in everyday life. The improvement in the 5-items con-
dition suggests that cognitive training may be particularly effective in 
optimizing brain function up to this average capacity. 

The absence of similar improvements in other conditions might be 
related to two potential reasons. Firstly, participants may already be 
operating at peak efficiency during tasks that exceed the average 
working memory capacity, leaving limited room for further improve-
ment through cognitive training. Secondly, tasks involving more than 5 
items might constitute an overload for the working memory capacity 
and therefore could lead to a plateau in performance improvement. 
Moreover, the lack of similar significant results for the other conditions 
might again result from the fact that fNIRS is not the optimal method to 
distinguish between subtle differences in the workload as discussed 
above. On the other hand, McKendrick et al. (2017) demonstrated that 
walking itself, and an increase in environmental complexity, might lead 
to the reduction of total haemoglobin in the PFC as a result of the dis-
tribution of mental resources to other brain areas. The results were not 
maintained at the follow-up. 

Previous fMRI literature shows mixed results regarding long-lasting 
neuronal changes following cognitive training. Some studies demon-
strated that cerebral changes were maintained 5 weeks (Miró-Padilla 
et al., 2019) or 6 months (Subramaniam et al., 2014) after the training, 
while other studies found no effect of the training at follow-up after 
10-weeks (Kable et al., 2017) or 12 months (Li et al., 2019). As for now, 
there are no studies that have employed fNIRS to assess the long-term 
impact of cognitive training on brain function, therefore more studies 
are needed. 

H3: Performance will increase for the cognitive working memory task 
after the ADDP training as measured via AD test battery Stary Night 

We did not find an improved accuracy for working memory task after 
the AD intervention as measured via Starry Night. There was no effect of 
the group and no effect of the session. However, we did find a significant 
difference between conditions regardless of the session and group, 
confirming that the conditions did vary in difficulty. The participants 
were more accurate in conditions when there was one target to memo-
rise versus three targets. However, the duration of the delay (1 vs 4 s) 
and interference task did not impact significantly on the accuracy. These 
results imply that memorising fewer items requires less mental work-
load, therefore the accuracy is higher. When mental workload increases, 
then the accuracy decreases (Pagnotta et al., 2021). The results are in 
line with the previous “What was where” study which demonstrated a 
significant effect of a number of items, but no effect of delay on the 
identification performance (Pertzov et al., 2012). 

The results revealed overall improved localisation performance after 

the training in both groups from pre-training to follow-up regardless of 
the condition. There was also a significant effect of the condition. The 
post-hoc analysis also revealed that the localisation performance was 
determined by the number of targets to memorise (one versus three 
targets), the duration of the delay (1 versus 4 s) and also by the inter-
ference task. Again, this result is consistent with the study conducted by 
Pertzov et al. (2012, 2013) which demonstrated that localisation per-
formance is correlated with a number of objects to be remembered and 
the longer retention interval. This means that having more items in 
working memory for longer delays leads decrease in localisation 
performance. 

Localization tasks might respond better to cognitive training because 
they use different brain networks than just remembering or recognizing 
things (Manohar et al., 2019). These tasks involve spatial memory 
(remembering where things are, understanding space and planning) and 
are linked to brain areasuch as the hippocampus or the parietal lobe. 
Training these brain networks might be more susceptible to neuro-
plasticity and cognitive improvement but more detailed research is 
needed. 

For misbinding, we found no significant effects of the group and 
session. However, the chances of misbinding were higher when partic-
ipants were distracted by the interference task versushort or long delay. 
In general, the results of this study might indicate that localisation 
performance could be more sensitive measure of performance than ac-
curacy and misbinding and could be more susceptible to CT. 

H4: Performance will improve for the transfer task after the ADDP 
training as measured via an ecologically valid shopping task 

The shopping test accuracy demonstrated no significant effect of the 
group, however, there was a significant effect of the session and con-
dition. The accuracy increased after the AD intervention in 3-, 5- and 7- 
items shopping list conditions. The effect was maintained at the follow- 
up which means that the intervention leads to the lasting behavioural 
improvements in the transfer task. Participants however did not improve 
on 4- and 6-item shopping list conditions. There could be many reasons 
for that outcome. Firstly, for the easy and difficult conditions, we found 
a ceiling effect therefore participants have no more room for improve-
ment. The ceiling effect could be due to the food categories, asome 
participants have reported that items from the category “fruits & vege-
tables” were easier to recognise and remember. Therefore, future studies 
could focus on using only “fruits and vegetables” category as its iden-
tification can be more culture-independent. Secondly, it is also possible 
that our shopping task design did not have enough sensitivity to detect a 
discrete difference between task difficulties. Future studies could 
therefore investigate the validation sensitivity of the task in detecting 
lessubtle differences – easy, medium, and hard. 

We also found that the overall accuracy could be predicted by the 
MoCa, demonstrating that those participants that had higher initial 
MoCa scores were more accurate during the shopping game, regardless 
of the session and condition. Just like for Starry Night, there was no 
difference between groups, which could mean that engaging in any 
cognitive training improves accuracy. The analysis revealed no differ-
ence in errors between groups and conditions, however, there was a 
difference in errors between conditions. Participants committed signif-
icantly fewer errors when the workload was low (4-items vs 5-items, 5- 
items vs 7-items), confirming the difficulty of the task varied. 

The lack of significant results in the shopping task might indicate 
high between-subject variation, therefore individualized approach to 
cognitive training could provide better results. Previous studies indi-
cated that individual differences in cognitive skill measures taken at the 
baseline may predict variations in training outcomes although the di-
rection of that relationship remains inconclusive. The results of this 
study demonstrated that a high MoCa score measured at the baseline can 
predict only a higher accuracy score in the transfer task but no other 
measures. This result might be due to the ceiling effect as there was not 
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much variation in the scores given that this study recruited only healthy 
participants. The reliability and sensitivity of MoCa applies rather to a 
clinical sample, where MoCa can predict post-training far transfer of the 
skill rather than the near transfer (Weng et al., 2019). The follow-up 
assessment one month after the training revealed that effects were 
maintained for the shopping task. However other training gains did not 
persist. This might suggest that in order to maintain training benefits, it 
is important to engage in cognitive training continuously. 

Our shopping task contributes to the understanding of application of 
immersive technologies in CCT transfer assessment. Although our 
shopping task does not capture transfer to the non-trained domains, it 
measures how the effects of CCT generalize to real-life scenarios. 
Employing immersive technologies allows for the creation of more 
ecologically valid scenarios that bridge the gap between the naturalness 
of the response and the controllability of the measure. Previous CCT 
studies yielded improvement in the trained tasks, however showed 
limited evidence of transfer to other untrained domains or outside of the 
training paradigm (Ball et al., 2002; Boot et al., 2010; Green and 
Bavelier, 2008; Lee et al., 2012; Luis-Ruiz et al., 2020; Owen et al., 2010; 
Willis et al., 2006). Therefore, although behavioural and neural changes 
can be observed from training, these changes have not been shown to 
consistently translate to meaningful improvements outside of the 
training paradigm. However previous research has been criticised for 
not implementing ecologically valid outcome measures and transfer 
tasks (Zhang et al., 2019). Although there are some studies that 
employed immersive technologies to deliver cognitive training (Liao 
et al., 2019; Mrakic-Sposta et al., 2018; Optale et al., 2010; Park et al., 
2019; Schreiber, 1999), they did not use it to measure real-life transfer 
effects. The advantage of using AR for this task, over VR, is that it can be 
potentially more beneficial in clinical settings too. Thanks to 
AR’see-through nature, it allowsafe navigation without the risk of 
bumping into walls or objects. AR allows better interaction with other 
users (Xiong et al., 2021) and observers, therefore a patient can maintain 
a visual contact with a therapist what providesafety cues during a ses-
sion (Roberts et al., 2016). AR also offers a potential to minimise the risk 
of cybersickness during simulation (Hughes et al., 2020). The Magic 
Leap headset was also easily combined with fNIRS thanks to its portable 
and small and lightweight design, which is an important practical 
concern when considering the involvement of mixed reality and on-head 
physiological measurements. In particular, the lightweight design min-
imises the risk or the probe displacement and therefore noise in the 
recorded brain data. 

H5: Participants will recognize the impact of ADDP training and have 
generally positive attitudes toward the technology after participating in 
the programme 

Participants were mostly positive for both groups indicating that the 
majority of people enjoyed both apps. Participants expressed positive 
emotions (joy, trust and anticipation), which were higher in frequency 
than negative emotions. The most frequent words used by both groups 
describing the app were “easy” and “good”, however, while the exper-
imental group reported that they mostly enjoyed the app, the control 
group described the placebo app as boring and repetitive. In our related 
work using public and patient involvement methods, we report further 
on the perspectives that members of our studied demographic had about 
cognitive training technologies for managing cognitive decline (Har-
rington et al., 2022). 

7. Limitations and future research 

We observe four main unavoidable limitations, from our study 
design, that could be investigated by future work. Firstly the recruitment 
was affected by COVID-19, and so the sample was not random and only 
single-blinded. Future work could employ a double-blinded randomized 
controlled trial design to minimise the risk of bias. Our data showed that 

participants who were assigned to the control group spent significantly 
more time on their daily training than the experimental group, even 
though they reported it was more repetitive and boring. This could be 
because both groups were recruited separately and during different 
times of the year. While the experimental group was recruited during 
summer (June-September), the control group was recruited in winter 
(October-February). The seasons, including the amount of daylight, 
could have played a role in this factor, as could have the changing re-
strictions in place due to COVID in those different time periods. Further, 
it’s possible that the recruitment team emphasised the importance of 
sustained engagement after observing the engagement levels in the first 
phase (experimental group). However, even though the control groups 
played more than the experimental group, in general, the experimental 
group performed better at their post-training assessment, which might 
indicate that the time played in the control group may have yielded less 
benefit for participants. 

Secondly, the chosen longitudinal design of our study are not optimal 
to gather a some kinds of data (e.g. fNIRS). In particular, the number of 
repetitions and duration of trails may not have been sufficient to detect 
effect sizes. This approach was taken to reduce the length of the session 
and therefore discomfort for participants. Future work could introduce 
additional sessions dedicated to technology training and familiarisation 
to shorten the session duration and minimise participant fatigue. 
Alternatively, this could be done by reducing the number of outcome 
measures and focusing only on those which showed promise of 
demonstrating statistically significant difference. Further, due to the 
ethics-related decisions in our non-clinical department, the study 
involved only healthy participants that are concerned about their 
memory decline, however do not have an official diagnosis of Alz-
heimer’s disease or a cognitive impairment. This could explain why we 
did not find significant effects of some conditions, and the ceiling effects 
observed. Future work should ideally also involve a clinical population 
to test the efficacy of the cognitive training. 

Thirdly, the design of our experiment was not optimal in relation to 
fNIRS analysis, particularly during the shopping task. In our protocol, a 
BoxCar function was employed to model the hemodynamic response. 
This approach was motivated by the variable duration of tasks within 
our experimental conditions which could last between 60 and 70 s. To 
maintain consistency, we trimmed the longer tasks to a 30-second 
window. Consequently, the hemodynamic responses observed could 
deviate from the canonical HRF often assumed in fNIRS research, both in 
shape and timing. Our approach focused on the detection of hemody-
namic changes associated with the presence of the stimulus, rather than 
the detailed temporal dynamics of the task, which may not be sensitive 
enough to detect small effect sizes. This methodological choice in-
troduces the possibility that our analysis might not have been sensitive 
enough to detect significant effects and therefore we saw some dis-
crepancies between neurological and behavioural results. Future 
investigation should aim to improve the experimental design to better 
control for task duration. 

Lastly, it is worth noting that our transfer task was measuring 
memory performance, therefore capturing only an applied version of 
near-transfer, where far transfer is typically considered to test alterna-
tive cognitive function to the ones being trained. Although one of our 
aims in this approach was to test the feasibility and usability of the 
method of combining fNIRS and AR technologies, future studies could 
use this technique to create further far-transfer tasks to capture perfor-
mance within an untrained cognitive domain. 

8. Conclusion 

The key challenges for evaluating the success of Computerised 
Cognitive Training are 1) the lack of objective measures of it sustained 
success, and 2) the lack of empirical evaluation methods that can be 
applied in more ecologically valid conditions. We sought to overcome 
these key challenges using portable neuroimaging techniques, and in 
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more ecologically valid conditions created using virtual reality. The aim 
of this work was to conduct a substantial study that collected pre- 
training, post-training, and follow-on data, from participants con-
cerned about their cognitive decline having used CCT for a given period. 
The results were intended to provide evidence that might enable a 
clinical trial, with an increased number participants (including those 
living with cognitive decline), for an extended period of time. 

Overall, the novel methods used in this study (portable fNIRS to 
observe mental workload, and augmented reality to study example 
transfer tasks) did allow us to identify some changes in task performance 
and working memory activity in participants with subjective memory 
decline, validating the structure of the study. These results were espe-
cially evident for those using dynamically adjusted computerized 
cognitive training, in comparison to a baseline control condition that did 
not adapt to challenge the user’s actual cognitive capabilities. We found 
that dynamic-CCT group had decreased mental workload within the 
prefrontal cortex during the working memory precision task. Notably, 
this effect was also maintained at the follow-up, where lack of sustained 
impact is a common criticism of CCTs. Behavioural results demonstrated 
that localisation performance (remembering where an object was pre-
viously) increased after the training and was also maintained at the 
follow up for both groups that received CCT. These results indicate that 
CCTs can have a sustained impact on cognitive activity, as observed by 
fNIRS in our case, especially if they continue to adapt to challenge the 
user as they get more experienced with a game. 

A common concern for evaluating CCTs is whether the impact, and 
sustained impact, transfer to more real-world tasks, for which we 
simulated a shopping task in augmented reality but in safe lab condi-
tions. For the shopping task we found decreased mental workload after 
the training within the PFC, but the result was not maintained at the 
follow-up. However, the behavioural results again showed that effects 
were maintained at the follow-up. For both Starry Night and the shop-
ping task, however, we found that participants improved significantly 
only in some distinct conditions. For shopping, for example, brand fa-
miliarity anecdotally played a role, which may relate to longer-term 
memory or further factors that need considering. Overall, our results 
are promising both for this combination of technologies to evaluate 
CCTs and their lasting impact. We hope that future work will be able to 
consider these approaches in clinical-scale studies with more partici-
pants and for more sustained periods of training. 
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Bates, D., Mächler, M., Zurich, E., Bolker, B.M., Walker, S.C., 2012. Fitting linear mixed- 
effects models using lme4. J Stat Softw 67, 1–48. 

Bays, P.M., Husain, M., 2008. Dynamic shifts of limited working memory resources in 
human vision. Science 321 (5890). https://doi.org/10.1126/science.1158023. 

A. Landowska et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.ijhcs.2023.103206
https://doi.org/10.3390/ijerph19095531
https://doi.org/10.3389/fnins.2019.01336
https://doi.org/10.3389/fnins.2019.01336
https://doi.org/10.1007/978-3-030-22419-6_26
https://doi.org/10.1007/978-3-030-22419-6_26
https://doi.org/10.3390/brainsci11010106
https://doi.org/10.3390/brainsci11010106
https://doi.org/10.1016/j.ijhcs.2020.102522
https://doi.org/10.1016/j.ijhcs.2020.102522
https://doi.org/10.1016/j.neuroimage.2011.06.023
http://refhub.elsevier.com/S1071-5819(23)00215-X/optotR9Vh5V9u
http://refhub.elsevier.com/S1071-5819(23)00215-X/optotR9Vh5V9u
http://refhub.elsevier.com/S1071-5819(23)00215-X/optotR9Vh5V9u
http://refhub.elsevier.com/S1071-5819(23)00215-X/optotR9Vh5V9u
https://doi.org/10.1364/boe.4.001366
https://doi.org/10.1364/boe.4.001366
https://doi.org/10.1037/a0013494
http://refhub.elsevier.com/S1071-5819(23)00215-X/sbref0009
http://refhub.elsevier.com/S1071-5819(23)00215-X/sbref0009
https://doi.org/10.1126/science.1158023


International Journal of Human - Computer Studies 184 (2024) 103206

17

Bays, P.M., Catalao, R.F.G., Husain, M., 2009. The precision of visual working memory 
iset by allocation of a shared resource. J Vis 9 (10). https://doi.org/10.1167/9.10.7. 

Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate: a Practical and 
Powerful Approach to Multiple Testing. J. R. Stat. Soc. Series B Stat. Methodol. 
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x. 

Berka, C., Levendowski, D.J., Lumicao, M.N., Yau, A., Davis, G., Zivkovic, V.T., 
Olmstead, R.E., Tremoulet, P.D., Craven, P.L., 2007. EEG correlates of task 
engagement and mental workload in vigilance, learning, and memory tasks. Aviat. 
Space Environ. Med. 78 (5 II). 

Bhatt, S., Agrali, A., McCarthy, K., Suri, R., Ayaz, H., 2018. Web usability testing with 
concurrent fnirs and eye tracking. In Neuroergonomics: The Brain at Work and in 
Everyday Life. https://doi.org/10.1016/B978-0-12-811926-6.00030-0. 

Boas, D.A., Elwell, C.E., Ferrari, M., Taga, G., 2014. Twenty years of functional near- 
infrared spectroscopy: introduction for the special issue. Neuroimage 85 Pt 1, 1–5. 
https://doi.org/10.1016/j.neuroimage.2013.11.033. 

Boot, W.R., Basak, C., Erickson, K.I., Neider, M., Simons, D.J., Fabiani, M., Gratton, G., 
Voss, M.W., Prakash, R., Lee, H., Low, K.A., 2010. Transfer of skill engendered by 
complex task training under conditions of variable priority. Acta Psychol. 135 (3), 
349–357. 

Brehmer, Y., Rieckmann, A., Bellander, M., Westerberg, H., Fischer, H., Bäckman, L., 
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2021. Task difficulty and physiological measures of mental workload in air traffic 

control: a scoping review. Ergonomics. https://doi.org/10.1080/ 
00140139.2021.2016998. 

Park, E., Yun, B.J., Min, Y.S., Lee, Y.S., Moon, S.J., Huh, J.W., Cha, H., Chang, Y., 
Jung, T.D., 2019. Effects of a mixed reality-based cognitive training system 
compared to a conventional computer-assisted cognitive training system on mild 
cognitive impairment: a pilot study. Cogn. Behav. Neurol. 32 (3), 172–178. 

Pavisic, I.M., Nicholas, J.M., Pertzov, Y., O’Connor, A., Liang, Y., Collins, J.D., Lu, K., 
Weston, P.S.J., Ryan, N.S., Husain, M., Fox, N.C., Crutch, S.J., 2021. Visual short- 
term memory impairments in presymptomatic familial Alzheimer’s disease: a 
longitudinal observational study. Neuropsychologia 162. https://doi.org/10.1016/j. 
neuropsychologia.2021.108028. 

Payzieva, S., Maxmudova, D., 2014. NIRS study of the effects of computerized brain 
training games for cognitive rehabilitation of major depressive disorder patients in 
remission: a pilot study. Annu. Rev. Cyber Therapy Telemed. 12. 

Peich, M.C., Husain, M., Bays, P.M., 2013. Age-related decline of precision and binding 
in visual working memory. Psychol. Aging 28 (3). https://doi.org/10.1037/ 
a0033236. 

Pertzov, Y., Dong, M.Y., Peich, M.C., Husain, M., 2012. Forgetting what was where: the 
fragility of object-location bnding. PLoS ONE 7 (10). https://doi.org/10.1371/ 
journal.pone.0048214. 

Pertzov, Y., Miller, T.D., Gorgoraptis, N., Caine, D., Schott, J.M., Butler, C., Husain, M., 
2013. Binding deficits in memory following medial temporal lobe damage in patients 
with voltage-gated potassium channel complex antibody-associated limbic 
encephalitis. Brain 136 (8). https://doi.org/10.1093/brain/awt129. 

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., Burgess, P.W., 
2020. The present and future use of functional near-infrared spectroscopy (fnirs) for 
cognitive neuroscience. Ann. N. Y. Acad. Sci. 1464 (1) https://doi.org/10.1111/ 
nyas.13948. 

Piper, S.K., Krueger, A., Koch, S.P., Mehnert, J., Habermehl, C., Steinbrink, J., Obrig, H., 
Schmitz, C.H., 2014. A wearable multi-channel fNIRS system for brain imaging in 
freely moving subjects. Neuroimage 85, 64–71. https://doi.org/10.1016/j. 
neuroimage.2013.06.062. 

Qu, H., Shan, Y., Liu, Y., Pang, L., Fan, Z., Zhang, J., Wanyan, X., 2020. Mental workload 
classification method based on EEG independent component features. Appl. Sci. 10 
(9) https://doi.org/10.3390/app10093036. 

Rahman, M.A., Siddik, A.B., Ghosh, T.K., Khanam, F., Ahmad, M., 2020. A Narrative 
review on clinical applications of fNIRS. J. Digit. Imaging 33 (5). https://doi.org/ 
10.1007/s10278-020-00387-1. 

RCoreTeam. (2021). A language and environment for statistical computing. R Foundation for 
Statistical Computing. 2013. https://www.r-project.org/. 

Rizkalla, M.N., 2018. Cognitive training in the elderly: a randomized trial to evaluate the 
efficacy of a self-administered cognitive training program. Aging Ment. Health 22 
(10). https://doi.org/10.1080/13607863.2015.1118679. 

Roberts, D.J., Fairchild, A.J., Campion, S.P., Garcia Jimenez, Wolff, R., 2016. Bringing 
the client and therapist together in virtual reality telepresence exposure therapy. 

Rolinski, M., Zokaei, N., Mackay, C.E., Husain, M., Hu, M.T.M., 2015. Pattern of working 
memory deficit in REM sleep behaviour disorder is the same as in Parkinson’s 
disease. Mov. Disord. 30. 

Rose, N.S., LaRocque, J.J., Riggall, A.C., Gosseries, O., Starrett, M.J., Meyering, E.E., 
Postle, B.R., 2016. Reactivation of latent working memories with transcranial 
magnetic stimulation. Science 354 (6316). https://doi.org/10.1126/science. 
aah7011. 

Rosen, A.C., Sugiura, L., Kramer, J.H., Whitfield-Gabrieli, S., Gabrieli, J.D., 2011. 
Cognitive training changes hippocampal function in mild cognitive impairment: a 
pilot study. J. Alzheimers Dis. 26 (SUPPL. 3) https://doi.org/10.3233/JAD-2011- 
0009. 

Sala, G., Gobet, F., 2019. Cognitive training does not enhance general cognition. Trends 
Cogn. Sci. (Regul. Ed.) 23 (1). https://doi.org/10.1016/j.tics.2018.10.004. 

Sala, G., Deniz Aksayli, N., Semir Tatlidil, K., Tatsumi, T., Gondo, Y., Gobet, F., 2019. 
Near and far transfer in cognitive training: a second-order meta-analysis. Collabra 
Psychol. 5 (1) https://doi.org/10.1525/collabra.203. 

Santosa, H., Zhai, X., Fishburn, F., Huppert, T., 2018. The NIRS brain analyzIR toolbox. 
Algorithms. https://doi.org/10.3390/A11050073. 

Schreiber, M., 1999. Potential of an interactive computer-based training in the 
rehabilitation of dementia: An initial study. Neuropsychol. Rehabil. 9 (2), 155–167. 

So, W.K.Y., Wong, S.W.H., Mak, J.N., Chan, R.H.M, 2017. An evaluation of mental 
workload with frontal EEG. PLoS ONE 12 (4). https://doi.org/10.1371/journal. 
pone.0174949. 

Soldan, A., Pettigrew, C., Cai, Q., Wang, J., Wang, M.C., Moghekar, A., Miller, M.I., 
Albert, M., 2017. Cognitive reserve and long-term change in cognition in aging and 
preclinical Alzheimer’s disease. Neurobiol. Aging 60, 164–172. https://doi.org/ 
10.1016/j.neurobiolaging.2017.09.002. 

Solovey, E.T., Girouard, A., Chauncey, K., Hirshfield, L.M., Sassaroli, A., Zheng, F., 
Fantini, S., Jacob, R.J.K., 2009. Using fNIRS brain sensing in realistic HCI settings. 
In: Proceedings of the 22nd Annual ACM Symposium on User Interface Software and 
Technology - UIST ’09, 157. https://doi.org/10.1145/1622176.1622207. 

Stern, Y., 2002. What is cognitive reserve? theory and research application of the reserve 
concept. J. Int. Neuropsychol. Soc. 8 (3) https://doi.org/10.1017/ 
S1355617702813248. 

Stern, Y., 2012. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 
https://doi.org/10.1016/S1474-4422(12)70191-6. 

Strangman, G., Franceschini, M.A., Boas, D.A., 2003. Factors affecting the accuracy of 
near-infrared spectroscopy concentration calculations for focal changes in 
oxygenation parameters. Neuroimage. https://doi.org/10.1016/S1053-8119(03) 
00021-1. 

A. Landowska et al.                                                                                                                                                                                                                            

https://cran.r-project.org/package=emmeans
https://cran.r-project.org/package=emmeans
https://doi.org/10.1016/j.nicl.2019.101691
https://doi.org/10.1016/j.cortex.2016.01.015
http://refhub.elsevier.com/S1071-5819(23)00215-X/optzY6HGHhhTj
http://refhub.elsevier.com/S1071-5819(23)00215-X/optzY6HGHhhTj
http://refhub.elsevier.com/S1071-5819(23)00215-X/optzY6HGHhhTj
http://refhub.elsevier.com/S1071-5819(23)00215-X/optzY6HGHhhTj
https://doi.org/10.1016/j.neuroimage.2009.11.020
https://doi.org/10.1016/j.neubiorev.2020.06.019
https://doi.org/10.1145/2858036.2858236
https://doi.org/10.1145/2858036.2858236
https://doi.org/10.1038/nn.3655
https://doi.org/10.1016/j.schres.2019.03.006
https://doi.org/10.1145/2702123.2702315
https://doi.org/10.1145/2702123.2702315
https://doi.org/10.3389/fnrgo.2022.835648
http://refhub.elsevier.com/S1071-5819(23)00215-X/sbref0065
http://refhub.elsevier.com/S1071-5819(23)00215-X/sbref0065
http://refhub.elsevier.com/S1071-5819(23)00215-X/sbref0065
https://doi.org/10.1016/j.cognition.2011.11.003
https://doi.org/10.1177/0018720816675053
https://doi.org/10.1016/j.ijhcs.2020.102580
https://doi.org/10.1016/j.ijhcs.2020.102580
https://doi.org/10.1037/h0043158
https://doi.org/10.1037/h0043158
https://doi.org/10.1007/s11682-018-9925-x
http://refhub.elsevier.com/S1071-5819(23)00215-X/optNjRBED92z4
http://refhub.elsevier.com/S1071-5819(23)00215-X/optNjRBED92z4
http://refhub.elsevier.com/S1071-5819(23)00215-X/optNjRBED92z4
http://refhub.elsevier.com/S1071-5819(23)00215-X/optNjRBED92z4
http://refhub.elsevier.com/S1071-5819(23)00215-X/optNjRBED92z4
http://refhub.elsevier.com/S1071-5819(23)00215-X/optf3kuzAIum9
http://refhub.elsevier.com/S1071-5819(23)00215-X/optf3kuzAIum9
http://refhub.elsevier.com/S1071-5819(23)00215-X/optf3kuzAIum9
http://refhub.elsevier.com/S1071-5819(23)00215-X/optf3kuzAIum9
https://doi.org/10.1016/j.eurger.2012.07.071
https://doi.org/10.1016/j.eurger.2012.07.071
https://doi.org/10.1037/bul0000153
https://doi.org/10.1007/s00426-017-0933-z
http://refhub.elsevier.com/S1071-5819(23)00215-X/opto3nz1lr4QQ
http://refhub.elsevier.com/S1071-5819(23)00215-X/opto3nz1lr4QQ
http://refhub.elsevier.com/S1071-5819(23)00215-X/opto3nz1lr4QQ
http://refhub.elsevier.com/S1071-5819(23)00215-X/opto3nz1lr4QQ
http://refhub.elsevier.com/S1071-5819(23)00215-X/optzb9FoO5H01
http://refhub.elsevier.com/S1071-5819(23)00215-X/optzb9FoO5H01
http://refhub.elsevier.com/S1071-5819(23)00215-X/optzb9FoO5H01
https://doi.org/10.1080/00140139.2021.2016998
https://doi.org/10.1080/00140139.2021.2016998
http://refhub.elsevier.com/S1071-5819(23)00215-X/optMr4kXtNn9Y
http://refhub.elsevier.com/S1071-5819(23)00215-X/optMr4kXtNn9Y
http://refhub.elsevier.com/S1071-5819(23)00215-X/optMr4kXtNn9Y
http://refhub.elsevier.com/S1071-5819(23)00215-X/optMr4kXtNn9Y
https://doi.org/10.1016/j.neuropsychologia.2021.108028
https://doi.org/10.1016/j.neuropsychologia.2021.108028
http://refhub.elsevier.com/S1071-5819(23)00215-X/sbref0076
http://refhub.elsevier.com/S1071-5819(23)00215-X/sbref0076
http://refhub.elsevier.com/S1071-5819(23)00215-X/sbref0076
https://doi.org/10.1037/a0033236
https://doi.org/10.1037/a0033236
https://doi.org/10.1371/journal.pone.0048214
https://doi.org/10.1371/journal.pone.0048214
https://doi.org/10.1093/brain/awt129
https://doi.org/10.1111/nyas.13948
https://doi.org/10.1111/nyas.13948
https://doi.org/10.1016/j.neuroimage.2013.06.062
https://doi.org/10.1016/j.neuroimage.2013.06.062
https://doi.org/10.3390/app10093036
https://doi.org/10.1007/s10278-020-00387-1
https://doi.org/10.1007/s10278-020-00387-1
https://www.r-project.org/
https://doi.org/10.1080/13607863.2015.1118679
http://refhub.elsevier.com/S1071-5819(23)00215-X/opt7HYGMLSvWV
http://refhub.elsevier.com/S1071-5819(23)00215-X/opt7HYGMLSvWV
http://refhub.elsevier.com/S1071-5819(23)00215-X/sbref0086
http://refhub.elsevier.com/S1071-5819(23)00215-X/sbref0086
http://refhub.elsevier.com/S1071-5819(23)00215-X/sbref0086
https://doi.org/10.1126/science.aah7011
https://doi.org/10.1126/science.aah7011
https://doi.org/10.3233/JAD-2011-0009
https://doi.org/10.3233/JAD-2011-0009
https://doi.org/10.1016/j.tics.2018.10.004
https://doi.org/10.1525/collabra.203
https://doi.org/10.3390/A11050073
http://refhub.elsevier.com/S1071-5819(23)00215-X/opt6h681DJx56
http://refhub.elsevier.com/S1071-5819(23)00215-X/opt6h681DJx56
https://doi.org/10.1371/journal.pone.0174949
https://doi.org/10.1371/journal.pone.0174949
https://doi.org/10.1016/j.neurobiolaging.2017.09.002
https://doi.org/10.1016/j.neurobiolaging.2017.09.002
https://doi.org/10.1145/1622176.1622207
https://doi.org/10.1017/S1355617702813248
https://doi.org/10.1017/S1355617702813248
https://doi.org/10.1016/S1474-4422(12)70191-6
https://doi.org/10.1016/S1053-8119(03)00021-1
https://doi.org/10.1016/S1053-8119(03)00021-1


International Journal of Human - Computer Studies 184 (2024) 103206

19

Subramaniam, K., Luks, T.L., Garrett, C., Chung, C., Fisher, M., Nagarajan, S., 
Vinogradov, S., 2014. Intensive cognitive training in schizophrenia enhances 
working memory and associated prefrontal cortical efficiency in a manner that 
drives long-term functional gains. Neuroimage 99. https://doi.org/10.1016/j. 
neuroimage.2014.05.057. 

Sukontapol, C., Kemsen, S., Chansirikarn, S., Nakawiro, D., Kuha, O., 
Taemeeyapradit, U., 2018. The effectiveness of a cognitive training program in 
people with mild cognitive impairment: a study in urban community. Asian J. 
Psychiatr. 35 https://doi.org/10.1016/j.ajp.2018.04.028. 

Tabi, Y.A., Eriksen, U.D., Sørensen, N., Semság, P., Manohar, S., Husain, M., 2019. 
A portable tablet task for assessment of short-term memory. IBRO Rep. https://doi. 
org/10.1016/j.ibror.2019.07.776. 

Tabi, Y.A., Manohar, S., Husain, M., 2020. Assessment of short-term memory using a 
gamified tablet-based task (91). Neurology 94 (15 Supplement), 91. http://n.neurolo 
gy.org/content/94/15_Supplement/91.abstract. 

Tabi, Y.A., Maio, M.R., Fallon, S.J., Udale, R., Dickson, S., Idris, M.I., Nobis, L., 
Manohar, S.G., Husain, M., 2021. Impact of processing demands at encoding, 
maintenance and retrieval in visual working memory. Cognition 214. https://doi. 
org/10.1016/j.cognition.2021.104758. 

Tabi, Y.A., Maio, M.R., Attaallah, B., Dickson, S., Drew, D., Idris, M.I., Kienast, A., 
Klar, V., Nobis, L., Plant, O., Saleh, Y., Sandhu, T.R., Slavkova, E., Toniolo, S., 
Zokaei, N., Manohar, S.G., Husain, M., 2022. Vividness of visual imagery 
questionnaire scores and their relationship to visual short-term memory 
performance. Cortex 146. https://doi.org/10.1016/j.cortex.2021.10.011. 

ten Brinke, L.F., Davis, J.C., Barha, C.K., Liu-Ambrose, T., 2017. Effects of computerized 
cognitive training on neuroimaging outcomes in older adults: a systematic review. 
BMC Geriatr. 17 (1) https://doi.org/10.1186/s12877-017-0529-x. 

Tetlow, A.M., Edwards, J.D., 2017. Systematic literature review and meta-analysis of 
commercially available computerized cognitive training among older adults. 
J. Cogn. Enhanc. 1 (4) https://doi.org/10.1007/s41465-017-0051-2. 

van Acker, B.B., Parmentier, D.D., Vlerick, P., Saldien, J., 2018. Understanding mental 
workload: from a clarifying concept analysis toward an implementable framework. 
Cogn. Technol. Work 20 (3). https://doi.org/10.1007/s10111-018-0481-3. 

Vermeij, A., Kessels, R.P.C., Heskamp, L., Simons, E.M.F., Dautzenberg, P.L.J., 
Claassen, J.A.H.R., 2017. Prefrontal activation may predict working-memory 
training gain in normal aging and mild cognitive impairment. Brain Imaging Behav. 
11 (1) https://doi.org/10.1007/s11682-016-9508-7. 

Vermeir, J.F., White, M.J., Johnson, D., Crombez, G., van Ryckeghem, D.M.L., 2020. The 
effects of gamification on computerized cognitive training: systematic review and 
meta-analysis. J. Med. Internet Res. 8 (3) https://doi.org/10.2196/18644. 

Weng, W., Liang, J., Xue, J., Zhu, T., Jiang, Y., Wang, J., Chen, S., 2019. The transfer 
effects of cognitive training on working memory among Chinese older adults with 

mild cognitive impairment: a randomized controlled trial. Front. Aging 10 (JUL). 
https://doi.org/10.3389/fnagi.2019.00212. 

Wickens, C.D., 2008. Multiple resources and mental workload. Hum. Factors 50 (3). 
https://doi.org/10.1518/001872008×288394. 

Wickham, H., Chang, W., Wickham, M.H., 2016. Package ‘ggplot2’. Create elegant data 
visualisations using the grammar of graphics. Version 2 (1), 1–189. 

Willis, S.L., Tennstedt, S.L., Marsiske, M., Ball, K., Elias, J., Koepke, K.M., Morris, J.N., 
Rebok, G.W., Unverzagt, F.W., Stoddard, A.M., Wright, E., 2006. Long-term effects of 
cognitive training on everyday functional outcomes in older adults. Jama 296 (23), 
2805–2814. 

Wolff, M.J., Jochim, J., Akyürek, E.G., Stokes, M.G., 2017. Dynamic hidden states 
underlying working-memory-guided behavior. Nat. Neurosci. 20 (6) https://doi.org/ 
10.1038/nn.4546. 

Xiong, J., Hsiang, E.L., He, Z., Zhan, T., Wu, S.T., 2021. Augmented reality and virtual 
reality displays: emerging technologies and future perspectives. Light Sci. Appl. 10 
(1), 216. 

Yücel, M.A., Lühmann, A.v., Scholkmann, F., Gervain, J., Dan, I., Ayaz, H., Boas, D., 
Cooper, R.J., Culver, J., Elwell, C.E., Eggebrecht, A., Franceschini, M.A., Grova, C., 
Homae, F., Lesage, F., Obrig, H., Tachtsidis, I., Tak, S., Tong, Y., Wolf, M., 2021. Best 
practices for fNIRS publications. Neurophotonics 8 (01). https://doi.org/10.1117/1. 
nph.8.1.012101. 

Young, M.S., Stanton, N.A., 2002. Malleable attentional resources theory: a new 
explanation for the effects of mental underload on performance. Hum. Factors 44 
(3). https://doi.org/10.1518/0018720024497709. 

Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A., 2015. State of science: 
mental workload in ergonomics. Ergonomics 58 (1). https://doi.org/10.1080/ 
00140139.2014.956151. 

Zhang, H., Huntley, J., Bhome, R., Holmes, B., Cahill, J., Gould, R.L., Wang, H., Yu, X., 
Howard, R., 2019. Effect of computerised cognitive training on cognitive outcomes 
in mild cognitive impairment: a systematic review and meta-analysis. BMJ 9 (8). 
https://doi.org/10.1136/bmjopen-2018-027062. 

Zokaei, N., Husain, M., 2019. Working memory in alzheimer’s disease and Parkinson’s 
disease. Curr. Top. Behav. Neurosci. 41 https://doi.org/10.1007/7854_2019_103. 

Zokaei, N., Ning, S., Manohar, S., Feredoes, E., Husain, M., 2014. Flexibility of 
representational states in working memory. Front. Hum. Neurosci. 8 https://doi.org/ 
10.3389/fnhum.2014.00853. November.  

Zokaei, N., Burnett Heyes, S., Gorgoraptis, N., Budhdeo, S., Husain, M., 2015. Working 
memory recall precision is a more sensitive index than span. J. Neuropsychol. 9 (2) 
https://doi.org/10.1111/jnp.12052. 

Zokaei, N., Gillebert, C.R., Chauvin, J.J., Gresch, D., Board, A.G., Rolinski, M., Hu, M.T., 
Nobre, A.C., 2021. Temporal orienting in Parkinson’s disease. Eur. J. Neurosci. 53 
(8) https://doi.org/10.1111/ejn.15114. 

A. Landowska et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.neuroimage.2014.05.057
https://doi.org/10.1016/j.neuroimage.2014.05.057
https://doi.org/10.1016/j.ajp.2018.04.028
https://doi.org/10.1016/j.ibror.2019.07.776
https://doi.org/10.1016/j.ibror.2019.07.776
http://n.neurology.org/content/94/15_Supplement/91.abstract
http://n.neurology.org/content/94/15_Supplement/91.abstract
https://doi.org/10.1016/j.cognition.2021.104758
https://doi.org/10.1016/j.cognition.2021.104758
https://doi.org/10.1016/j.cortex.2021.10.011
https://doi.org/10.1186/s12877-017-0529-x
https://doi.org/10.1007/s41465-017-0051-2
https://doi.org/10.1007/s10111-018-0481-3
https://doi.org/10.1007/s11682-016-9508-7
https://doi.org/10.2196/18644
https://doi.org/10.3389/fnagi.2019.00212
https://doi.org/10.1518/001872008&times;288394
http://refhub.elsevier.com/S1071-5819(23)00215-X/optClhCWKnocN
http://refhub.elsevier.com/S1071-5819(23)00215-X/optClhCWKnocN
http://refhub.elsevier.com/S1071-5819(23)00215-X/optjo5RHtXszm
http://refhub.elsevier.com/S1071-5819(23)00215-X/optjo5RHtXszm
http://refhub.elsevier.com/S1071-5819(23)00215-X/optjo5RHtXszm
http://refhub.elsevier.com/S1071-5819(23)00215-X/optjo5RHtXszm
https://doi.org/10.1038/nn.4546
https://doi.org/10.1038/nn.4546
http://refhub.elsevier.com/S1071-5819(23)00215-X/optJcUmb0NcPN
http://refhub.elsevier.com/S1071-5819(23)00215-X/optJcUmb0NcPN
http://refhub.elsevier.com/S1071-5819(23)00215-X/optJcUmb0NcPN
https://doi.org/10.1117/1.nph.8.1.012101
https://doi.org/10.1117/1.nph.8.1.012101
https://doi.org/10.1518/0018720024497709
https://doi.org/10.1080/00140139.2014.956151
https://doi.org/10.1080/00140139.2014.956151
https://doi.org/10.1136/bmjopen-2018-027062
https://doi.org/10.1007/7854_2019_103
https://doi.org/10.3389/fnhum.2014.00853
https://doi.org/10.3389/fnhum.2014.00853
https://doi.org/10.1111/jnp.12052
https://doi.org/10.1111/ejn.15114

	Adaptative computerized cognitive training decreases mental workload during working memory precision task - A preliminary f ...
	1 Introduction
	2 Related work
	3 Methods
	3.1 Participants
	3.2 Experimental design
	3.3 CCT training app (used between pre- and post-training sessions)
	3.4 Assessment stimuli (using during sessions)
	3.4.1 Starry night
	3.4.2 Augmented reality shopping task

	3.5 Data collection instruments
	3.5.1 fNIRS
	3.5.2 Questionnaires

	3.6 Procedure and data acquisition

	4 Data analysis
	4.1 fNIRS data analysis
	4.2 Behavioural and questionnaire data analysis

	5 Results
	5.1 Starry night
	5.1.1 fNIRS results
	5.1.2 Behavioural data results

	5.2 Shopping task
	5.2.1 fNIRS data results
	5.2.2 Behavioural data results

	5.3 Feedback analysis
	5.3.1 Experimental group
	5.3.2 Control group


	6 Discussion
	7 Limitations and future research
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Supplementary materials
	References


