
Physica D 460 (2024) 134055

A
0

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

A bulk-surface continuum theory for fluid flows and phase segregation with
finite surface thickness
Anne Boschman, Luis Espath ∗, Kristoffer G. van der Zee
School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

A R T I C L E I N F O

Communicated by Anna Mazzucato

Keywords:
Bulk-surface partial differential equations
Continuum mechanics
Fluid Mechanics

A B S T R A C T

In this continuum theory, we propose a mathematical framework to study the mechanical interplay of bulk-
surface materials undergoing deformation and phase segregation. To this end, we devise a principle of virtual
powers with a bulk-surface dynamics, which is postulated on a material body  where the boundary 𝜕 may
lose smoothness, that is, the normal field may be discontinuous on an edge 𝜕2 . The final set of equations
somewhat resemble the Navier–Stokes–Cahn–Hilliard equation for the bulk and the surface. Aside from the
systematical treatment based on a specialized version of the virtual power principle and free-energy imbalances
for bulk-surface theories, we consider two additional ingredients: an explicit dependency of the apparent
surface density on the surface thickness and mixed boundary conditions for the velocity, chemical potential,
and microstructure.
1. Introduction

Bulk-surface models have been used to describe a wide range of
phenomena, from emulsions, foams stabilized by surface-active agents,
to biological cell dynamics governed by proteins. Key to these models is
the idea that the dynamics are not solely restricted to a bulk material,
but that an active surface coating the bulk material, that is, a surface
with its own dynamics, also dictates the overall material behavior.
Typically, these systems involve the adsorption of species onto the
surface, giving rise to the particular dynamics found on the surface.
These interactions may result in motion of the surface, which in turn
may provoke bulk material deformation and the other way around. This
bulk-surface reciprocal interplay is the focus of this work.

From a historical standpoint, a sharp interface of two-phase flow
relates the surface traction at the interface with surface tension and
curvature via a jump condition. Boussinesq [1] stipulated that a surface
viscosity has to be incorporated in the interfacial constitutive law. As
acknowledged by Bothe and Prüss [2], Levich [3] also claimed that
interfacial stresses may be induced by surface tension gradients due to
the presence of surface-active particles, known as surfactants. The com-
bination of such phenomena along with the mechanics of these material
surfaces have been studied extensively. Adam [4], Adamson [5], and
Scriven [6] were the pioneers in the physics and thermochemistry of
material surfaces, as acknowledged by Gurtin & Murdoch [7]; who also
recast and systematically derived the underlying rational mechanics of
bulk-surfaces materials.

∗ Corresponding author.
E-mail address: luis.espath@nottingham.ac.uk (L. Espath).

Motivation for these bulk-surface continuum theories can for in-
stance be found in biological systems. Cells may mathematically be
described as a bulk material (cytoplasm) enclosed by a surface (cell
membrane). Their mechanobiology involves various complex processes,
as Ladoux & Mège [8, Figure 1a] illustrate, which in turn determine
the shape of these cells. In particular, during adhesion cells may take
saucer-shaped forms. To fully understand the underlying mechanical
behavior of these cells and such adhesive processes, the tractions devel-
oped on the edges need to be accounted for. Considering arbitrary ge-
ometries, including those with a boundary that may lose its smoothness,
requires certain modifications and further generalization of continuum
theories, as shown by Espath [9] for the Navier–Stokes equations. Fur-
thermore, Brangwynne [10] and Shin & Brangwynne [11] suggest that
membrane-less organelles are formed by regulated phase-segregation
processes within the cytoplasm. In these works, the authors capital-
ize on the physics of polymer phase separation. Current frameworks
that may capture the dynamics of these biological cells to some ex-
tent include the work by Madzvamuse et al. [12], who present a
reaction–diffusion for bulk-surface systems suitable to model cell polar-
ization but do not include phase segregation and motion. In a similar
fashion, Duda et al. [13] investigate bulk-surface systems for cell
adsorption/desorption and chemical reactions for classical diffusion.

The objective of this work is to devise a continuum theory for bulk-
surface materials undergoing deformation and phase segregation. In
particular, we consider an immiscible binary bulk fluid enclosed by a
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thin immiscible binary fluid film that both deform in an incompress-
ible manner. We treat this thin film as a material surface with finite
thickness. Moreover, we assume that the material surface may lose
smoothness, which gives rise to additional geometric contributions in
the mathematical formulation. We depart by considering the motion of
the bulk-surface material. Both bulk fluid and enclosing film of fluid
undergo isochoric motions, that is, both flows are incompressible. Iso-
choric motion within the bulk implies no change in volume. However,
isochoric motion within the thin film does not imply no change in
surface area since the thickness of the surface may change. Based on
these hypotheses, we derive the mass balance equations for the bulk
and surface. This bulk-surface mass balance formalism is discussed
in Section 2. Next, we extend the work by Espath [14] and present
the coupled bulk-surface principle of virtual powers in Section 3. In
Section 4, we present the partwise balance laws of forces, microforces,
torques, and microtorques for the bulk-surface system, and in Section 5
we account for the transport of species. Then, in Sections 6 and 7, we
present the thermodynamics of the system and its implications in terms
of constitutive equations. Section 8 presents the specialized equations
for a bulk-surface system undergoing phase segregation based on a
particular choice for the free-energy densities. Lastly, in Section 9, we
present a set of boundary conditions that allow slip between the surface
and the bulk with a dissipative nature, and employ these to derive the
Lyapunov decay relation, which characterizes the dissipative nature of
our bulk-surface system and its interaction with the environment.

1.1. Differential tools

Consider a smooth surface  oriented by the outward unit normal
at 𝒙 ∈ . Next, consider the smooth scalar, vector, and tensor fields

defined on , which we denote by 𝜅, 𝜿, and 𝐊, respectively. In what
ollows, we define the differential operators. Bear in mind that we allow
he fields 𝜅, 𝜿, and 𝐊 to have smooth normal extensions, enabling us to
efine the relevant differential operators in a neighborhood of  along
ll directions.

Bulk gradients may be written in the form
{

grad 𝜅 = 𝜕𝑛𝜅 𝒏 + 𝜕𝑝𝜅 𝒆𝑝, and
grad 𝜿 = 𝜕𝑛𝜿 ⊗ 𝒏 + 𝜕𝑝𝜿 ⊗ 𝒆𝑝, with 𝑝 = 1, 2,

(1)

here the contravariant bases 𝒆𝑝 are tangential to  and defined by the
ovariant bases 𝒆𝑝 = 𝜕𝑝𝒙 for all 𝒙 ∈  along with 𝒆𝑝 ⋅ 𝒆𝑞 = 𝛿𝑞𝑝 , where 𝛿𝑞𝑝
s the Kronecker delta. Next, let 𝐏𝒏 ∶= 𝐏𝒏(𝒏) denote the projector onto
he plane defined by 𝒏 at 𝒙 ∈ , which reads

𝒏 ∶= 𝟏 − 𝒏⊗ 𝒏 = 𝐏⊤𝒏 , (2)

here (⋅)⊤ represents the transposition. Then, in view of the expression
1) along with (2), surface gradients are given by
{

grad𝜅 ∶= 𝜕𝑝𝜅 𝒆𝑝 = 𝐏𝒏grad 𝜅, and
grad𝜿 ∶= 𝜕𝑝𝜿 ⊗ 𝒆𝑝 = (grad 𝜿)𝐏𝒏, with 𝑝 = 1, 2,

(3)

nd surface divergences by
{

div𝜿 ∶= 𝜕𝑝𝜿 ⋅ 𝒆𝑝 = grad 𝜿 ∶𝐏𝒏, and
div𝐊 ∶= 𝜕𝑝𝐊 ⋅ 𝒆𝑝 = grad𝐊 ∶𝐏𝒏 with 𝑝 = 1, 2.

(4)

lso, Laplace–Beltrami operators may be written as
{

▵𝜅 ∶= divgrad𝜅 = grad (𝐏𝒏grad 𝜅) ∶𝐏𝒏, and
▵𝜿 ∶= divgrad𝜿 = grad ((grad 𝜿)𝐏𝒏) ∶𝐏𝒏.

(5)

ext, on a smooth closed oriented surface  for the smooth vector and
ensor fields 𝜿 and 𝐊, the surface divergence theorem states that

div (𝐏𝒏𝜿) d𝑎 = 0, and div (𝐊𝐏𝒏) d𝑎 = 𝟎, (6)
2

∫ ∫ d
hereas, for any smooth vector and tensor fields 𝜿 and 𝐊 on a smooth
open oriented surface , the surface divergence theorem reads

⎧

⎪

⎨

⎪

⎩

∫
div (𝐏𝒏𝜿) d𝑎 = ∫𝜕

𝜿 ⋅ 𝝂 d𝜎, and

∫
div (𝐊𝐏𝒏) d𝑎 = ∫𝜕

𝐊𝝂 d𝜎,
(7)

ith 𝝂 being the outward unit tangent–normal at boundary 𝜕.
Lastly, consider a nonsmooth oriented surface  for which smooth-

ess of the normal vector field is lost on an edge . The edge  is
efined by the limiting outward unit tangent–normals 𝝂+ and 𝝂−, yet
e only consider smooth . The surface  has to be understood as the
nion of open sets  ∶= +∪− or in general,  ∶=

⋃

𝛼 𝛼 . Additionally,
e abandon the smooth hypotheses of 𝜿 and 𝐊 and allow these fields

o be discontinuous across , and denote by 𝜿± and 𝐊±, respectively,
he limiting values of 𝜿 and 𝐊 when approaching  from ±. Owing to
he lack of smoothness on the edge , the surface divergence theorem
xhibits a surplus, that is,

⎧

⎪

⎨

⎪

⎩

∫
div (𝐏𝒏𝜿) d𝑎 = ∫

{{𝜿 ⋅ 𝝂}} d𝜎, and

∫
div (𝐊𝐏𝒏) d𝑎 = ∫

{{𝐊𝝂}} d𝜎,
(8)

here {{𝜿 ⋅ 𝝂}} ∶= 𝜿+ ⋅ 𝝂+ + 𝜿− ⋅ 𝝂− and {{𝐊𝝂}} ∶= 𝐊+𝝂+ + 𝐊−𝝂−. Con-
ersely, for open nonsmooth surfaces, the surface divergence theorem
8) reads

⎧

⎪

⎨

⎪

⎩

∫
div (𝐏𝒏𝜿) d𝑎 = ∫𝜕

𝜿 ⋅ 𝝂 d𝜎 + ∫
{{𝜿 ⋅ 𝝂}} d𝜎, and

∫
div (𝐊𝐏𝒏) d𝑎 = ∫𝜕

𝐊𝝂 d𝜎 + ∫
{{𝐊𝝂}} d𝜎.

(9)

. Isochoric motion & mass balance

In the reference configuration, we consider a material body  occu-
ying a three-dimensional point space  . Here, geometry is arbitrary in
he following sense. The closed surface boundary of the part  , denoted
y 𝜕 , may lose smoothness along a curve, namely an edge 𝜕2 , see
ig. 1. In a neighborhood of an edge 𝜕2 , two smooth surfaces 𝜕±

re defined. The limiting unit normals of 𝜕± on 𝜕2 are denoted by
he pair {𝒏+,𝒏−}. The pair of unit normals characterizes the edge 𝜕2 .
imilarly, the limiting outward unit tangent–normal of 𝜕± on 𝜕2 are
𝝂+, 𝝂−}. Additionally, 𝜕2 is oriented by the unit tangent 𝝈 ∶= 𝝈+ such
hat 𝝈+ ∶= 𝒏+ × 𝝂+. As notational agreement, we use the subscript 𝜏 to
efer to spatial entities in the current configuration. More specifically,
e let 𝜏 denote a spatial part, we write 𝜕𝜏 for the boundary of 𝜏 and
se 𝜕2𝜏 for the boundary of 𝜕𝜏 . Note that  , 𝜕 and 𝜕2 are reserved
or their counterparts in the reference configuration, respectively.

In this continuum theory, the bulk and surface material are endowed
ith two distinct kinematic descriptors, namely, the fluid velocities 𝝊

n the bulk and 𝝊𝜕 on the surface. Furthermore, we let 𝜚 be the density
f the bulk material and 𝜚𝜕 the apparent surface density of the surface
aterial endowed with a finite thickness 𝓁𝜏 .

In what follows, we assume that

(A.1) The ‘bulk-surface motion’ is isochoric. For the bulk material,
this means that motion preserves its volumes. For the surface
material, we assume that isochoric motion implies volume con-
servation on a microscopic scale.

(A.2) The normal components of the velocities are continuous, that is,

𝝊 ⋅ 𝒏||
|𝜕

= 𝝊𝜕 ⋅ 𝒏. (10)

owever, note that we do not require continuity of the tangential
elocities 𝐏𝒏𝝊

|

|

|𝜕
and 𝐏𝒏𝝊𝜕 .

The kinematic constraint (10) is imposed to guarantee that the
urface and the bulk material’s boundary coincide at all times and never

etach from one another. Conversely, we do not endow edges with their
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Fig. 1. Part  with nonsmooth boundary surface 𝜕± oriented by the unit normal 𝒏 with the outward unit tangent–normal 𝝂± on the smooth boundary-edge 𝜕2 oriented by the
unit tangent 𝝈 ∶= 𝒏 × 𝝂. The surface 𝜕 lacks smoothness on an edge 𝜕2 .
Source: Adapted from [14], licensed under CC-BY 4.0.
own kinematic descriptors. Thus, it is not required to define additional
kinematic constraints. Moreover, as a consequence of the kinematic
constraint (10) on 𝜕2 , we find that

𝝊 ⋅ 𝒏+||
|

𝜕2 = 𝝊𝜕 ⋅ 𝒏+||
|

𝜕2 , and 𝝊 ⋅ 𝒏−||
|

𝜕2 = 𝝊𝜕 ⋅ 𝒏−||
|

𝜕2 . (11)

With these assumptions in mind, let

𝐅 ∶= grad𝒙𝒚 , and 𝐅𝜕 ∶= grad𝒙
𝒚𝜕 , (12)

denote the bulk and surface deformation gradient with respect to the
reference configuration, either 𝒙 ∈  or 𝒙𝜕 ∈ 𝜕 , respectively. Here,
𝒚 represents the motion of 𝜏 and 𝒚𝜕 the motion of 𝜕𝜏 such that 𝜏 =
𝒚 () and 𝜕𝜏 = 𝒚𝜕 (𝜕), respectively. If not made explicit, differential
operators are computed with respect to the current configuration, either
𝒚 or 𝒚𝜕 . Additionally, the dot operator denotes the bulk material time-
derivative, that is, 𝑠̇ ∶= 𝜕𝑡𝑠+𝝊 ⋅grad𝑠, where 𝜕𝑡 is the conventional time
partial derivative. Conversely, the ring operator represents the surface
material derivative, derived by Cermelli et al. [15], and is given by

𝑠̊ ∶=
□
𝑠 + 𝝊𝜕 ⋅ grad𝑠, (13)

where the normal time derivative is
□
𝑠 ∶= d

d𝜀

(

𝑠(𝒚𝜕 + 𝜀(𝝊𝜕 (𝒚𝜕 , 𝑡) ⋅ 𝒏(𝒚𝜕 ))𝒏(𝒚𝜕 ), 𝑡 + 𝜀)
)

|

|

|𝜀=0
. (14)

Since 𝐅𝜕 is rank deficient, we introduce the pseudo-inverse of the
surface deformation gradient as

𝐅−1
𝜕 ∶= 𝐏𝑛(𝒙𝜕 )(𝐅𝜕 + 𝒏(𝒚𝜕 )⊗ 𝒏(𝒙𝜕 ))−1, (15)

where we explicitly show the dependency on either the reference
configuration 𝒙𝜕 ∈ 𝜕 or the current configuration 𝒚𝜕 ∈ 𝜕𝜏 . Note
that 𝐅𝜕 + 𝒏(𝒚𝜕 )⊗ 𝒏(𝒙𝜕 ) is full rank since 𝒏(𝒚𝜕 ) is not in the range of
𝐅𝜕 . Additionally, we have that

𝐅−1
𝜕 𝐅𝜕 = 𝐏𝑛(𝒙𝜕 ), 𝐅𝜕𝐅−1

𝜕 = 𝐏𝑛(𝒚𝜕 ), and 𝐅−1
𝜕 𝒏(𝒚𝜕 ) = 𝐅−⊤

𝜕 𝒏(𝒙𝜕 ) = 𝟎.

(16)

In the rest of this work, all quantities depend on 𝒚𝜕 ; therefore, we
drop all the arguments. For further details on this pseudo-inverse, the
interested reader is referred to the work by Šilhavý [16] on interactions
of shells with bulk matter, and also to the work by Tomassetti [17] on
a coordinate-free description for thin shells.

Next, we introduce 𝐋 ∶= grad 𝝊 and 𝐋𝜕 ∶= grad 𝝊𝜕 as the bulk
and surface velocity gradient, respectively. We consider the following
3

classical identity in continuum mechanics by Gurtin [18], also known
as Jacobi’s formula,
̇

|𝐅 | = |𝐅 |tr (𝐅̇𝐅−1
 ), (17)

where |𝐅 | denotes the determinant of 𝐅 . The surface counterpart of
expression (17) reads
̊

|𝐅𝜕 | = |𝐅𝜕 |tr (𝐅̊𝜕𝐅−1
𝜕 ). (18)

Furthermore, we have the volumetric and areal Jacobian of deforma-
tion, respectively, defined as

𝐽 ∶=
d𝑣𝜏
d𝑣

= |𝐅 |, (19)

and

𝐽𝜕 ∶=
d𝑎𝜏
d𝑎

= |𝐅𝜕 |, (20)

where d𝑣 and d𝑣𝜏 are the differential of volume at the reference and
current configurations, respectively. Finally, in view of (17) and (18)
and bearing in mind that 𝐅̇ = 𝐋𝐅 and 𝐅̊𝜕 = 𝐋𝜕𝐅𝜕 , we obtain

𝐽̇ = 𝐽 tr (𝐅̇𝐅−1
 ),

= 𝐽 tr (𝐋𝐅𝐅−1
 ),

= 𝐽 div 𝝊 ,

(21)

where div is the bulk divergence, and

𝐽𝜕 = 𝐽𝜕 tr (𝐅̊𝜕𝐅−1
𝜕 ),

= 𝐽𝜕 tr (𝐋𝜕𝐅𝜕𝐅−1
𝜕 ),

= 𝐽𝜕 div𝝊𝜕 .

(22)

Next, following Assumption (A.1), we consider the isochoric motion

̇
|𝜏 | ∶=

̇vol(𝜏 ) = 0, (23)

and assuming that expression (23) holds for any 𝜏 ⊆ 𝜏 with
expression (21), we are led to

0 =
̇

∫𝜏

d𝑣𝜏 = ∫
𝐽̇ d𝑣,

= ∫𝜏

div 𝝊 d𝑣𝜏 . (24)

Thus, it follows by localization

div 𝝊 = 0, in  . (25)
 𝜏
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Now, using the transport theorem, the partwise bulk balance of mass
is given by

̇

∫𝜏

𝜚 d𝑣𝜏 = ∫𝜏

(𝜚̇ + 𝜚 div 𝝊 ) d𝑣𝜏 = 0, (26)

nd by localization we arrive at the pointwise bulk balance of mass

𝜚̇ + 𝜚 div 𝝊 = 0, in 𝜏 , (27)

nd in terms of specific volume 𝜈 ∶= 𝜚−1 ,

𝜈̇ = 𝜈 div 𝝊 , in 𝜏 . (28)

sing the isochoric constraint (25), div 𝝊 = 0, we obtain

𝜚̇ = 0, and 𝜈̇ = 0, (29)

mplying that the bulk mass density 𝜚 and specific bulk volume 𝜈
re independent of time. Moreover, we further restrict 𝜚 and 𝜈 by
ssuming that

 = constant, and 𝜈 = constant, (30)

hich means that applications where spatial variations of the den-
ity are important, such as oceanic and mantle convection, are ex-
luded [19]. Based on these results for the bulk, it would be natural to
ssume that the surface density 𝜚𝜕 is constant as well for all motions.
owever, this would imply that both the volume and surface area do
ot change. This hypothesis for the material motion is far too restric-
ive, and provides the main motivation for taking on a microscopic
iewpoint for the surface material’s motion.

Thus, from a microscopic standpoint, we consider that the surface
luid has a constant density 𝜌, defined as

∶=
d𝑚𝜏
d𝑣𝜏

= constant, (31)

here d𝑚𝜏 is the differential of mass. When the surface fluid deforms
he actual thickness should change to maintain the volume constant.
he apparent surface density 𝜚𝜕 , a macroscopic quantity, is defined as

𝜕 ∶=
d𝑚𝜏
d𝑎𝜏

=
d𝑚𝜏
d𝑣𝜏

𝓁𝜏 = 𝜌𝓁𝜏 , (32)

here 𝓁𝜏 and d𝑎𝜏 are the current thickness and current differential of
rea, respectively. Furthermore, let 𝓁 and d𝑎 be the initial thickness and
ifferential area, respectively. Since the microscopic surface motion is
sochoric, we have that

d𝑎𝜏 × 𝓁𝜏 = d𝑎 × 𝓁, (33)

leading us to a microscopic isochoric motion
̇

|𝓁𝜏𝜕𝜏 | ∶=
̇area(𝓁𝜏𝜕𝜏 ) = 0. (34)

oreover, assuming that expression (34) holds for any 𝜏 ⊆ 𝜕𝜏 , with
xpression (22), we have that the partwise surface balance of mass
eads

=
̇

∫𝜏
𝓁𝜏 d𝑎𝜏 ,

= ∫
̊

𝓁𝜏𝐽𝜕 d𝑎,

= ∫
(𝓁𝜏𝐽𝜕 + 𝓁𝜏𝐽𝜕 ) d𝑎,

= ∫𝜏
(𝓁𝜏 + 𝓁𝜏 div𝝊𝜕 ) d𝑎𝜏 , (35)

which, by localization, renders the pointwise surface balance of mass

𝓁𝜏 + 𝓁𝜏 div𝝊𝜕 = 0, on 𝜕𝜏 . (36)

In view of (32), we have that
𝜚𝜕 = 𝜌, 𝜚𝜕 × d𝑎𝜏 = 𝜌 × 𝓁 × d𝑎, and 𝜈 × d𝑎𝜏 = 𝜈𝜕 × 𝓁 × d𝑎, (37)
4

𝓁𝜏
where 𝜈 ∶= 𝜌−1 is the constant microscopic specific volume and 𝜈𝜕 ∶=
𝜚−1𝜕 is the apparent specific area. Moreover, (37) yields

𝜈𝜕 =
𝐽𝜕
𝓁
𝜈. (38)

Additionally, in view of (33) and the areal Jacobian (20), we have

𝐽𝜕 = 𝓁
𝓁𝜏
. (39)

Next, multiplying (36) by 𝜌 and using (37)1, we arrive at

̊𝜕 + 𝜚𝜕 div𝝊𝜕 = 0, on 𝜕𝜏 , (40)

where div𝝊𝜕 = div (𝐏𝒏𝝊𝜕 ) − 2𝐾 𝝊𝜕 ⋅ 𝒏 with 𝐾 ∶= − 1
2div𝒏 being

he mean curvature. Notice that one can also arrive at the pointwise
urface balance of mass (40) by formulating a partwise balance of mass
or spatially convecting regions 𝜏 ⊆ 𝜕𝜏 and using the localization
rgument. We wish to emphasize that the definition for 𝜌 (31) is

consistent with (40), as it can be written as 𝜌̊𝓁𝜏 = 0, and we restrict
our attention to applications where the macroscopic surface density is
independent of spatial variations. Also, expression (40) may be written
in terms of the apparent specific area, that is,

̊𝜕 = 𝜈𝜕 (div (𝐏𝒏𝝊𝜕 ) − 2𝐾 𝝊𝜕 ⋅ 𝒏), on 𝜕𝜏 . (41)

Lastly, for bulk and surface fields 𝜙 and 𝜙𝜕 the combination of
he Reynolds’ transport theorems with the pointwise balances (27) and
36) renders the following identities

̇

∫𝜏

𝜚𝜙 d𝑣𝜏 = ∫𝜏

( ̇𝜚𝜙 + 𝜚𝜙 div 𝝊 ) d𝑣𝜏 ,

= ∫𝜏

(𝜚 𝜙̇ + (𝜚̇ + 𝜚 div 𝝊 )𝜙 ) d𝑣𝜏 ,

= ∫𝜏

𝜚 𝜙̇ d𝑣𝜏 , (42)

nd, bearing in mind that 𝜚𝜕 = 𝜌𝓁𝜏 , we have that
̇

∫𝜏
𝜚𝜕𝜙𝜕 d𝑎𝜏 =

̇

∫𝜏
𝜌𝓁𝜏𝜙𝜕 d𝑎𝜏

= ∫𝜏
𝜌( ̊
𝓁𝜏𝜙𝜕 + 𝓁𝜏𝜙𝜕 div𝝊𝜕 ) d𝑎𝜏 ,

= ∫𝜏
𝜌(𝓁𝜏 𝜙̊𝜕 + (𝓁𝜏 + 𝓁𝜏 div𝝊𝜕 )𝜙𝜕 ) d𝑎𝜏 ,

= ∫𝜏
𝜌𝓁𝜏 𝜙̊𝜕 d𝑎𝜏 . (43)

. Virtual power principle

To derive the field equations of this continuum framework, we
evise the following principle of virtual powers based on the work by
spath [14], where we consider the presence of scalar and vectorial
irtual fields in the bulk as well as on the surface. That is, the principle
f virtual powers for bulk-surface materials undergoing motion and
hase segregation reads

ext (𝜏 , 𝜕𝜏 ;𝝌 , 𝜒 ,𝝌 𝜕 , 𝜒𝜕 ) = int (𝜏 , 𝜕𝜏 ;𝝌 , 𝜒 ,𝝌 𝜕 , 𝜒𝜕 ), (44)

here 𝜒 and 𝝌 are, respectively, sufficiently smooth scalar and vector
irtual fields defined in 𝜏 , and similarly, 𝜒𝜕 and 𝝌 𝜕 are, respectively,
ufficiently smooth scalar and vector virtual fields defined on 𝜕𝜏 . The
xternal and internal virtual power are, respectively, given by

ext (𝜏 , 𝜕𝜏 ;𝝌 , 𝜒 ,𝝌 𝜕 , 𝜒𝜕 )

∶=∫𝜏
𝒃 ⋅ 𝝌 d𝑣𝜏 + ∫𝜕𝜏

(𝒈 − 𝒕 ) ⋅ 𝝌 𝜕 d𝑎𝜏

+ ∫𝜕𝜏
𝒕 ⋅ 𝝌 d𝑎𝜏 + ∫𝜕2𝜏

𝒉𝜕 ⋅ 𝝌 𝜕 d𝜎𝜏

+ 𝛾𝜒 d𝑣𝜏 + (𝜁 − 𝜉 )𝜒𝜕 d𝑎𝜏
∫𝜏 ∫𝜕𝜏
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

+ ∫𝜕𝜏
𝜉𝜒 d𝑎𝜏 + ∫𝜕2𝜏

𝜏𝜕𝜒𝜕 d𝜎𝜏 , (45)

and

int (𝜏 , 𝜕𝜏 ;𝝌 , 𝜒 ,𝝌 𝜕 , 𝜒𝜕 )

∶=∫𝜏
𝐓 ∶grad 𝝌 d𝑣𝜏 + ∫𝜕𝜏

𝐇 ∶grad𝝌 𝜕 d𝑎𝜏

+ ∫𝜏
𝝃 ⋅ grad 𝜒 d𝑣𝜏 − ∫𝜏

𝜋𝜒 d𝑣𝜏

+ ∫𝜕𝜏
𝝉 ⋅ grad𝜒𝜕 d𝑎𝜏 − ∫𝜕𝜏

𝜛𝜒𝜕 d𝑎𝜏 . (46)

Here, entering in the external virtual power, 𝒃 is the bulk external
force, 𝒈 is the surface external force, 𝒕 is the surface traction, 𝒉𝜕 is
the edge traction, 𝛾 is the bulk external microforce, 𝜁 is the surface
external microforce, 𝜉 is the surface microtraction, and 𝜏𝜕 is the edge
microtraction. Also, entering in the internal virtual power, 𝐓 is the bulk
stress, 𝐇 is the surface stress, 𝝃 is the bulk microstress, 𝜋 is the bulk
internal microforce, 𝝉 is the surface microstress, and 𝜛 is the surface
internal microforce.

Next, by combining (45) and (46) through (44) and using the
divergence theorem and the surface divergence theorem for nonsmooth
closed surfaces (8), we are led to

∫𝜏
𝝌 ⋅ (div 𝐓 + 𝒃) d𝑣𝜏 + ∫𝜕𝜏

𝝌 ⋅ (𝒕 − 𝐓 ⋅ 𝒏) d𝑎𝜏 (47)

+∫𝜏
𝜒 (div 𝝃 + 𝜋 + 𝛾) d𝑣𝜏 + ∫𝜕𝜏

𝜒 (𝜉 − 𝝃 ⋅ 𝒏) d𝑎𝜏

+∫𝜕𝜏
𝝌 𝜕 ⋅ (div (𝐇𝐏𝒏) + 𝒈 − 𝒕 ) d𝑎𝜏 + ∫𝜕2𝜏

𝝌 𝜕 ⋅ (𝒉𝜕 − {{𝐇𝝂}}) d𝜎𝜏

+∫𝜕𝜏
𝜒𝜕 (div (𝐏𝒏𝝉) +𝜛 + 𝜁 − 𝜉 ) d𝑎𝜏 + ∫𝜕2𝜏

𝜒𝜕 (𝜏𝜕 − {{𝝉 ⋅ 𝝂}}) d𝜎𝜏

= 0.

Then, by variational arguments, the surface and edge tractions are,
respectively, given by

𝒕 = 𝐓𝒏, on 𝜕𝜏 , and 𝒉𝜕 = {{𝐇𝝂}}, on 𝜕2𝜏 , (48)

while the surface and edge microtractions are, respectively, given by

𝜉 = 𝝃 ⋅ 𝒏, on 𝜕𝜏 , and 𝜏𝜕 = {{𝝉 ⋅ 𝝂}}, on 𝜕2𝜏 , (49)

and the bulk and surface field equations for motion are, respectively,
given by

div𝐓+ 𝒃 = 𝟎, in 𝜏 , and div (𝐇𝐏𝒏) + 𝒈− 𝒕 = 𝟎, on 𝜕𝜏 , (50)

and the bulk and surface field equations for phase segregation are,
respectively, given by

div𝝃+𝜋+𝛾 = 0, in 𝜏 and div (𝐏𝒏𝝉)+𝜛+𝜁−𝜉 = 0, on 𝜕𝜏 . (51)

Additionally, splitting div  (𝐇𝐏𝒏) = div 𝐇 + 2𝐾𝐇𝒏 and div  (𝐏𝒏𝝉) =
div𝝉 + 2𝐾𝝉 ⋅ 𝒏, the surface field equations (50)2 and (51)2, may take
the following form

div𝐇+2𝐾𝐇𝒏+𝒈−𝒕 = 𝟎, and div𝝉+2𝐾𝝉 ⋅𝒏+𝜛+𝜁−𝜉 = 0, on 𝜕𝜏 .

(52)

Lastly, we decompose the external bulk force and external surface
force into an inertial and non-inertial part, respectively, that is,

𝒃 ∶= 𝒃ni + 𝒃in, and 𝒈 ∶= 𝒈ni + 𝒈in. (53)

For the inertial bulk and surface forces, we consider the relations
{

𝒃in ∶= −𝜚 𝝊̇ , and
𝒈in ∶= −𝜚𝜕 𝝊̊𝜕 = −𝜌𝓁𝜏 𝝊̊𝜕 .

(54)

Therefore, expressions (50) take the form
{

𝜚 𝝊̇ = div 𝐓 + 𝒃ni, in 𝜏 , and
ni (55)
5

𝜌𝓁𝜏 𝝊̊𝜕 = div (𝐇𝐏𝒏) + 𝒈 − 𝒕 , on 𝜕𝜏 .
Similar arguments may be used to decompose the bulk and surface
external microforces into inertial and non-inertial parts.

Remark 1 (Motivation for Discontinuous Surface Stress and Surface Mi-
crostress). In higher-order continua, it is oftentimes found that edge
tractions and edge microtractions are of the form

𝒉𝜕 ∶= {{(G𝒏)𝝂}} and 𝜏𝜕 ∶= {{(𝜮𝒏) ⋅ 𝝂}}, (56)

where G and 𝜮 are, respectively, the hyperstress and the hypermi-
crostress see, for instance, Espath et al. [20,21] for phase field gradient
theories and Fosdick [22] for gradient theories in solid and fluid me-
chanics. Therefore, although one assumes that G and 𝜮 are continuous,
it is expected that G𝒏+ ≠ G𝒏− and 𝜮𝒏+ ≠ 𝜮𝒏− on 𝜕2 . Conversely, in
bulk-surface systems, edge tractions (48)2 and edge microtraction (49)2
take the form

𝒉𝜕 ∶= {{𝐇𝝂}} and 𝜏𝜕 ∶= {{𝝉 ⋅ 𝝂}}, (57)

on 𝜕2 . Thus, one may argue that the surface stress 𝐇 and surface
microstress 𝝉 play a similar role to the hyperstress and hypermicrostress
times the limiting normals, that is, G𝒏± and 𝜮𝒏±. Therefore, we con-
sider that the surface stress 𝐇 and surface microstress 𝝉 are piecewise
smooth but can be discontinuous on an edge 𝜕2 .

3.1. Frame indifference principle

We now require the internal virtual power to be indifferent to frame
changes. That is,

int (𝜏 , 𝜕𝜏 ;𝝌 , 𝜒 ,𝝌 𝜕 , 𝜒𝜕 )

= int (𝜏 , 𝜕𝜏 ;𝝌 + 𝜷 +Ω𝒚, 𝜒 ,𝝌 𝜕 + 𝜷 +Ω𝒚, 𝜒𝜕 ), (58)

where 𝒚 ∈ 𝜏 ∪ 𝜕𝜏 , 𝜷 is a constant (in space) velocity, and Ω

is a constant (in space) rotation, which are applied to the frame of
reference. Note that Ω is a skew-symmetric tensor.

Since the frame indifference only plays a part for vector quantities,
we restrict attention to the fields 𝝌 and 𝝌 𝜕 . Thus, enforcing that the
internal power must be indifferent to this change of frame yields

∫𝜏
𝐓 ∶grad 𝝌 d𝑣𝜏 + ∫𝜕𝜏

𝐇 ∶grad𝝌 𝜕 d𝑎𝜏 = ∫𝜏
𝐓 ∶(grad 𝝌 +Ω) d𝑣𝜏

+ ∫𝜕𝜏
𝐇 ∶(grad𝝌 𝜕 +Ω𝐏𝒏) d𝑎𝜏 , (59)

which may be localized to

𝐓 ∶Ω = 𝟎, in 𝜏 , and 𝐇 ∶Ω𝐏𝒏 = 𝟎 on 𝜕𝜏 . (60)

Note that from (60)2, we have that

𝐇 ∶Ω = 𝐇𝒏 ⋅Ω𝒏, on 𝜕𝜏 . (61)

Since (60) must hold for all skew-symmetric tensors, these expressions
imply 𝐓 = 𝐓⊤ and 𝐇𝐏𝑛 = 𝐏𝑛𝐇⊤. The latter implies that both 𝐇 = 𝐇⊤ and
𝐇𝒏 = 𝟎.

4. Partwise balance of forces, microforces, torques & microtorques

Integrating the field equations, balances of forces (50), on each
respective part, we have that

∫𝜏
(div 𝐓 + 𝒃) d𝑣𝜏 + ∫𝜕𝜏

(div (𝐇𝐏𝑛) + 𝒈 − 𝒕 ) d𝑎𝜏 = 𝟎, (62)

nd using the divergence theorem and the divergence theorem on
onsmooth closed surfaces (8), we arrive at

𝜏
𝒃 d𝑣𝜏 + ∫𝜕𝜏

𝐓𝒏 d𝑎𝜏 + ∫𝜕𝜏
(𝒈 − 𝒕 ) d𝑎𝜏 + ∫𝜕2𝜏

{{𝐇𝝂}} d𝜎𝜏 = 𝟎. (63)

astly, using expressions (48) for the surface and edge tractions, we
ind the partwise bulk-surface balance of forces

♯(𝜏 , 𝜕𝜏 ) ∶= 𝒃 d𝑣𝜏 + 𝒈 d𝑎𝜏 + 𝒉𝜕 d𝜎𝜏 = 𝟎. (64)
∫𝜏 ∫𝜕𝜏 ∫𝜕2𝜏
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{

Similarly, by emulating the above procedure for the remaining field
equations, the balances of microforces (51), we arrive at the partwise
bulk-surface balance of microforces

 ♭(𝜏 , 𝜕𝜏 ) ∶= ∫𝜏
(𝜋 + 𝛾) d𝑣𝜏 + ∫𝜕𝜏

(𝜛 + 𝜁 ) d𝑎𝜏 + ∫𝜕2𝜏
𝜏𝜕 d𝜎𝜏 = 0. (65)

Note that the surface traction and the surface microtraction do not ap-
pear in the partwise bulk-surface balance of forces (64) and microforces
(65) as opposed to conventional continuum mechanical theories.

To arrive at the partwise bulk-surface balances of torques and
microtorques of the bulk-surface material, we need to introduce the
position vector 𝒓 ∶= 𝒚 − 𝒐, where 𝒚 ∈ 𝜏 ∪ 𝜕𝜏 and an origin arbitrarily
chosen and fixed 𝒐 ∈  . First, we derive the partwise bulk-surface
balance of torques, for which we take the tensor product between 𝒓
and the force balances in (50). The resulting expression is integrated
over the respective parts, yielding the balance

∫𝜏
𝒓⊗ (div 𝐓 + 𝒃) d𝑣𝜏 + ∫𝜕𝜏

𝒓⊗ (div (𝐇𝐏𝑛) + 𝒈 − 𝒕 ) d𝑎𝜏 = 𝟎. (66)

Noting that grad 𝒓 = 𝟏 and grad 𝒓 = 𝐏𝒏, we employ the following
identities

div(𝒓⊗𝐓) = 𝐓+𝒓⊗div𝐓, and div (𝒓⊗𝐇𝐏𝒏) = 𝐏𝒏𝐇𝐏𝒏+𝒓⊗div (𝐇𝐏𝒏), (67)

long with the divergence theorem and the divergence theorem on
onsmooth closed surfaces (8), to obtain

∫𝜏
(𝒓⊗ 𝒃 − 𝐓) d𝑣𝜏 + ∫𝜕𝜏

𝒓⊗ 𝐓𝒏 d𝑎𝜏 + ∫𝜕𝜏
(𝒓⊗ (𝒈 − 𝒕 ) − 𝐏𝑛𝐇𝐏𝑛) d𝑎𝜏

+ ∫𝜕2𝜏
{{𝒓⊗𝐇𝝂}} d𝜎𝜏 = 𝟎. (68)

Then, using the definitions for the surface and edge tractions (48), we
arrive at

∫𝜏
(𝒓⊗ 𝒃− 𝐓) d𝑣𝜏 + ∫𝜕𝜏

(𝒓⊗ 𝒈− 𝐏𝑛𝐇𝐏𝑛) d𝑎𝜏 + ∫𝜕2𝜏
𝒓⊗ 𝒉𝜕 d𝜎𝜏 = 𝟎. (69)

Lastly, by summing (69) with its negative transposed, we obtain the
artwise bulk-surface balance of torques

♯(𝜏 , 𝜕𝜏 ) ∶= ∫𝜏
𝒓 ∧ 𝒃 d𝑣𝜏 + ∫𝜕𝜏

𝒓 ∧ 𝒈 d𝑎𝜏 + ∫𝜕2𝜏
𝒓 ∧ 𝒉𝜕 d𝜎𝜏 = 𝟎, (70)

here we used the implications of frame-indifference, that is, 𝐓 = 𝐓⊤
nd 𝐇𝐏𝑛 = 𝐏𝑛𝐇⊤, (and consequently 𝐏𝑛𝐇𝐏𝑛 = 𝐏𝑛𝐇⊤𝐏𝑛 since 𝐏2

𝑛 = 𝐏𝑛).
dditionally, we used the wedge product defined as 𝒂∧𝒃 ∶= 𝒂⊗𝒃−𝒃⊗𝒂.

We now construct the partwise bulk-surface balance of micro-
orques. As opposed to the balance of torques, balance of microtorques
annot be presented as the sum of wedge products. First, we multiply
he microforces balances in (51) by the position vector 𝒓, and then
ntegrate the results over the respective parts, to obtain the following
alance

∫𝜏
𝒓(div 𝝃 + 𝜋 + 𝛾) d𝑣𝜏 + ∫𝜕𝜏

𝒓(div (𝐏𝒏𝝉) +𝜛 + 𝜁 − 𝜉 ) d𝑎𝜏 = 𝟎. (71)

ext, we employ the following identities

iv (𝒓⊗𝝃) = 𝝃+ 𝒓 div𝝃, and div (𝒓⊗𝐏𝒏𝝉) = 𝐏𝒏𝝉 + 𝒓 div (𝐏𝒏𝝉), (72)

ollowed by the application of the divergence theorem and the diver-
ence theorem on nonsmooth closed surfaces (8), to write expression
71) as

∫𝜏
(𝒓(𝜋 + 𝛾) − 𝝃) d𝑣𝜏 + ∫𝜕𝜏

(𝒓⊗ 𝝃)𝒏 d𝑎𝜏 + ∫𝜕𝜏
(𝒓(𝜛 + 𝜁 − 𝜉 ) − 𝐏𝒏𝝉) d𝑎𝜏

+ ∫𝜕2𝜏
{{(𝒓⊗ 𝝉)𝝂}} d𝜎𝜏 = 𝟎. (73)

hen, in view of the microtractions (49), we arrive at the partwise
ulk-surface balance of microtorques

♭(𝜏 , 𝜕𝜏 ) ∶= ∫𝜏
(𝒓(𝜋 + 𝛾) − 𝝃) d𝑣𝜏 + ∫𝜕𝜏

(𝒓(𝜛 + 𝜁 ) − 𝐏𝒏𝝉) d𝑎𝜏

+ 𝒓𝜏𝜕 d𝜎𝜏 = 𝟎. (74)
6

∫𝜕2𝜏
5. Conserved species transport

To account for the transport of species in our system, we supplement
the field equations (51) with the partwise bulk-surface balance of
species. We define 𝜑 as the bulk mass fraction of one of the species in
the bulk, and 𝜑𝜕 as its surface counterpart. Moreover, since the sum
of the mass fractions of both species in the bulk is one, we write 𝜑 for
one of the bulk mass fraction and 1−𝜑 for the other bulk mass fraction.
Similarly, on the surface, the surface mass fraction of one species is 𝜑𝜕
nd the other one is 1 − 𝜑𝜕 .

Next, recalling that 𝜚𝜕 = 𝜌𝓁𝜏 , we define the total partwise balance
f species as

̇

∫𝜏
𝜚𝜑 d𝑣𝜏 +

̇

∫𝜕𝜏
𝜌𝓁𝜏𝜑𝜕 d𝑎𝜏 = ∫𝜏

𝑠 d𝑣𝜏 + ∫𝜕𝜏
𝑠𝜕 d𝑎𝜏

− ∫𝜕2𝜏
{{𝒋𝜕 ⋅ 𝝂}} d𝜎𝜏 . (75)

ere, 𝑠 is the bulk species supply, 𝑠𝜕 is the surface species supply,
nd 𝒋𝜕 is the surface species flux.

We also stipulate that the partwise bulk-surface balance of species
75) may be uncoupled into

̇

∫𝜏
𝜚𝜑 d𝑣𝜏 = ∫𝜏

𝜚 𝜑̇ d𝑣𝜏 ,

= ∫𝜏
𝑠 d𝑣𝜏 − ∫𝜕𝜏

𝒋 ⋅ 𝒏 d𝑎𝜏 , (76)

nd
̇

∫𝜕𝜏
𝜌𝓁𝜏𝜑𝜕 d𝑎𝜏 = ∫𝜕𝜏

𝜌𝓁𝜏 𝜑̊𝜕 d𝑎𝜏 ,

= ∫𝜕𝜏
𝒋 ⋅ 𝒏 d𝑎𝜏 + ∫𝜕𝜏

𝑠𝜕 d𝑎𝜏 − ∫𝜕2𝜏
{{𝒋𝜕 ⋅ 𝝂}} d𝜎𝜏 ,

(77)

here we have used identities (42) and (43). Here, 𝒋 is the bulk species
lux.

Next, we apply the divergence and the surface divergence theorems
o the uncoupled partwise balance of species (76) and (77). After
ocalization, we are led to the following pointwise bulk balance of
pecies

 𝜑̇ = 𝑠 − div 𝒋 , in 𝜏 , (78)

nd for the surface, using similar arguments which led us to expression
36), we have that the pointwise surface balance of species reads

𝓁𝜏 𝜑̊𝜕 = 𝒋 ⋅ 𝒏 + 𝑠𝜕 − div (𝐏𝒏𝒋𝜕 ), on 𝜕𝜏 . (79)

ote that the pointwise bulk balance of species has a standard form,
otivating our choice for the uncoupling. However, the pointwise

urface balance of mass has a contribution from the bulk, namely 𝒋 ⋅𝒏.
dditionally, the term div (𝐏𝒏𝒋𝜕 ) may be split as div (𝐏𝒏𝒋𝜕 ) = div𝒋𝜕 +

2𝐾𝒋𝜕 ⋅ 𝒏. Then, the pointwise surface balance of mass (79) may be
written as

𝜌𝓁𝜏 𝜑̊𝜕 = 𝒋 ⋅ 𝒏 + 𝑠𝜕 − div𝒋𝜕 − 2𝐾𝒋𝜕 ⋅ 𝒏, on 𝜕𝜏 . (80)

. Free-energy imbalance

First, note that the actual external and internal power are given by

ext (𝜏 , 𝜕𝜏 ) ∶= ext (𝜏 , 𝜕𝜏 ; 𝝊 , 𝜑̇ , 𝝊𝜕 , 𝜑̊𝜕 ), and
int (𝜏 , 𝜕𝜏 ) ∶= int (𝜏 , 𝜕𝜏 ; 𝝊 , 𝜑̇ , 𝝊𝜕 , 𝜑̊𝜕 ).

(81)

Furthermore, we let conv
ext (𝜏 , 𝜕𝜏 ) denote the conventional power,

which does not include inertial effects, allowing us to write the fol-
lowing relation

− 𝜚𝝊 ⋅ 𝝊̇ d𝑣𝜏 − 𝜌𝓁𝜏𝝊𝜕 ⋅ 𝝊̊𝜕 d𝑣𝜏 +conv
ext (𝜏 , 𝜕𝜏 )
∫𝜏 ∫𝜕𝜏
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= ext (𝜏 , 𝜕𝜏 ) = int (𝜏 , 𝜕𝜏 ), (82)

where expressions (53) and (54) were used.
In the free-energy imbalance, we account for the rate at which

energy is transferred to 𝜏 and 𝜕𝜏 due to species transport, as well as
the external power expenditure. Thus, the free-energy imbalance reads

̇

∫𝜏
𝜚 (𝜓 + 1

2 |𝝊 |
2) d𝑣𝜏 +

̇

∫𝜕𝜏
𝜌𝓁𝜏 (𝜓𝜕 + 1

2 |𝝊𝜕 |
2) d𝑎𝜏 ≤ conv

ext (𝜏 , 𝜕𝜏 )

+ ∫𝜏
𝜇𝑠 d𝑣𝜏 − ∫𝜕𝜏

𝜇𝒋 ⋅ 𝒏 d𝑎𝜏

+ ∫𝜕𝜏
𝜇𝜕𝒋 ⋅ 𝒏 d𝑎𝜏 + ∫𝜕𝜏

𝜇𝜕𝑠𝜕 d𝑎𝜏

− ∫𝜕2𝜏
{{𝜇𝜕𝒋𝜕 ⋅ 𝝂}} d𝜎𝜏 . (83)

Here, 𝜓 is the bulk free-energy density, 𝜓𝜕 is the surface free-energy
density, 𝜇 is the bulk chemical potential, and 𝜇𝜕 is the surface
chemical potential. Next, using (82) in (83) along with expressions (42)
and (43), we arrive at

∫𝜏
𝜚 𝜓̇ d𝑣𝜏 + ∫𝜕𝜏

𝜌𝓁𝜏 𝜓̊𝜕 d𝑎𝜏 ≤ int (𝜏 , 𝜕𝜏 )

+ ∫𝜏
𝜇𝑠 d𝑣𝜏 − ∫𝜕𝜏

𝜇𝒋 ⋅ 𝒏 d𝑎𝜏

+ ∫𝜕𝜏
𝜇𝜕𝒋 ⋅ 𝒏 d𝑎𝜏 + ∫𝜕𝜏

𝜇𝜕𝑠𝜕 d𝑎𝜏

− ∫𝜕2𝜏
{{𝜇𝜕𝒋𝜕 ⋅ 𝝂}} d𝜎𝜏 . (84)

Noting that 𝐏𝒏𝒋𝜕 ⋅ grad 𝜇𝜕 = 𝒋𝜕 ⋅ grad 𝜇𝜕 with expressions
(53), (78), and (79), and using the divergence theorem and the surface
divergence theorem for nonsmooth closed surfaces (8), we arrive at

∫𝜏
𝜚 𝜓̇ d𝑣𝜏 + ∫𝜕𝜏

𝜌𝓁𝜏 𝜓̊𝜕 d𝑎𝜏

≤ ∫𝜏
𝐓 ∶grad 𝝊 d𝑣𝜏 + ∫𝜕𝜏

𝐇 ∶grad𝝊𝜕 d𝑎𝜏

+ ∫𝜏
𝝃 ⋅ grad 𝜑̇ d𝑣𝜏 − ∫𝜏

𝜋𝜑̇ d𝑣𝜏

+ ∫𝜕𝜏
𝝉 ⋅ grad 𝜑̊𝜕 d𝑎𝜏 − ∫𝜕𝜏

𝜛𝜑̊𝜕 d𝑎𝜏

+ ∫𝜏
𝜇 (𝑠 − div 𝒋 ) d𝑣𝜏

− ∫𝜏
𝒋 ⋅ grad 𝜇 d𝑣𝜏

+ ∫𝜕𝜏
𝜇𝜕 (𝒋 ⋅ 𝒏 + 𝑠𝜕 − div𝒋𝜕 ) d𝑎𝜏

− ∫𝜕𝜏
𝒋𝜕 ⋅ grad𝜇𝜕 d𝑎𝜏 . (85)

Next, using the balance of species in bulk (78) and on the surface
(79), we obtain the uncoupled pointwise imbalances, which satisfy
the partwise bulk-surface free-energy imbalance (85). Thus, the point-
wise bulk free-energy imbalance and the pointwise surface free-energy
imbalance, respectively, read

𝜚 𝜓̇−𝐓 ∶grad𝝊+(𝜋−𝜚𝜇 )𝜑̇−𝝃 ⋅grad𝜑̇+𝒋 ⋅grad𝜇 ≤ 0, in 𝜏 , (86)

and

𝜌𝓁𝜏 𝜓̊𝜕 −𝐇 ∶grad𝝊𝜕 + (𝜛 − 𝜌𝓁𝜏𝜇𝜕 )𝜑̊𝜕 − 𝝉 ⋅ grad 𝜑̊𝜕
+ 𝒋𝜕 ⋅ grad𝜇𝜕 ≤ 0, on 𝜕𝜏 ,

(87)

where, to arrive at expression (87), we have used similar arguments
which led us to expression (36). Using the following identities

⊤

7

grad 𝜑̇ = (grad 𝜑 )̇+ (grad 𝝊 ) grad 𝜑 , (88)
and

grad 𝜑̊𝜕 = (grad𝜑𝜕 )̊ + (grad𝝊𝜕 )⊤grad𝜑𝜕 , (89)

where the second identity may be obtained from the first one by
premultiplying by 𝐏𝑛 and assuming a normal constant extension of
𝝊𝜕 and 𝜑𝜕 while noting that 𝜕𝑛𝜑𝜕 = 0, the free-energy imbalances
become
𝜚 𝜓̇ − (𝐓 + grad 𝜑 ⊗ 𝝃) ∶grad 𝝊 + (𝜋 − 𝜚𝜇 )𝜑̇ − 𝝃 ⋅ (grad 𝜑 )̇

+ 𝒋 ⋅ grad 𝜇 ≤ 0, in 𝜏 ,
(90)

and

𝜌𝓁𝜏 𝜓̊𝜕 − (𝐇 + grad𝜑𝜕 ⊗ 𝝉) ∶grad𝝊𝜕 + (𝜛 − 𝜌𝓁𝜏𝜇𝜕 )𝜑̊𝜕
−𝝉 ⋅ (grad𝜑𝜕 )̊ + 𝒋𝜕 ⋅ grad𝜇𝜕 ≤ 0, on 𝜕𝜏 . (91)

7. Constitutive response functions

The set of independent and dependent variables are, respectively,
given by {𝜚𝜕 , 𝜑 , 𝜑𝜕 , grad 𝜑 , grad 𝜑𝜕 , 𝜇 , 𝜇𝜕 , grad 𝝊 , grad 𝝊𝜕}
and {𝜋, 𝜛, 𝝃, 𝝉, 𝒋 , 𝒋𝜕 , 𝐓, 𝐇}. Thus, we find that the local inequalities
(90) and (91) are satisfied in all processes if:

• The bulk and surface free-energy densities 𝜓 and 𝜓𝜕 are, respec-
tively, given by constitutive response functions that are indepen-
dent of 𝜇 , 𝜇𝜕 , grad 𝜇 , and grad𝜇𝜕 :

𝜓 ∶= 𝜓 (𝜑 , grad 𝜑 ), and 𝜓𝜕 ∶= 𝜓𝜕 (𝜚𝜕 , 𝜑𝜕 , grad𝜑𝜕 ).

(92)

Thus, with

𝜓̇ = 𝜕𝜑𝜓 𝜑̇ + 𝜕grad 𝜑𝜓 ⋅ (grad 𝜑 )̇, (93)

and

𝜓̊𝜕 = 𝜕𝜚𝜕𝜓𝜕 𝜚̊𝜕 + 𝜕𝜑𝜕𝜓𝜕 𝜑̊𝜕 + 𝜕grad𝜑𝜕𝜓𝜕 ⋅ (grad𝜑𝜕 )̊,

= − 𝓁𝜏𝜕𝓁𝜏𝜓𝜕 div𝝊𝜕 + 𝜕𝜑𝜕𝜓𝜕 𝜑̊𝜕

+ 𝜕grad𝜑𝜕𝜓𝜕 ⋅ (grad𝜑𝜕 )̊, (94)

we are led to two pointwise free-energy imbalances

(𝐓 + grad 𝜑 ⊗ 𝝃) ∶grad 𝝊 + (𝜚𝜇 − 𝜋 − 𝜚𝜕𝜑𝜓 )𝜑̇

+(𝝃 − 𝜚𝜕grad 𝜑𝜓 ) ⋅ (grad 𝜑 )̇− 𝒋 ⋅ grad 𝜇 ≥ 0, in 𝜏 , (95)

and

(𝐇 + grad𝜑𝜕 ⊗ 𝝉) ∶grad𝝊𝜕 + 𝜌𝓁2
𝜏 𝜕𝓁𝜏𝜓𝜕 div𝝊𝜕

+(𝜌𝓁𝜏𝜇𝜕 −𝜛 − 𝜌𝓁𝜏𝜕𝜑𝜕𝜓𝜕 )𝜑̊𝜕
+(𝝉 − 𝜌𝓁𝜏𝜕grad𝜑𝜕𝜓𝜕 ) ⋅ (grad𝜑𝜕 )̊

−𝒋𝜕 ⋅ grad𝜇𝜕 ≥ 0, on 𝜕𝜏 . (96)

From a microscopic standpoint, one expects to have a constant
microscopic free-energy density for a fixed 𝜑𝜕 and grad 𝜑𝜕 in
the thin film of fluid surrounding the bulk fluid. However, since
the thickness may change, one may stipulate that the surface
free-energy density, therefore, a macroscopic quantity, depends
linearly on thickness 𝓁𝜏 . That is, we may define the surface
free-energy density as

𝜓𝜕 (𝜚𝜕 , 𝜑𝜕 , grad𝜑𝜕 ) ∶=
𝜚𝜕
𝜌
𝜓(𝜑𝜕 , grad𝜑𝜕 ),

= 𝓁𝜏𝜓(𝜑𝜕 , grad𝜑𝜕 ), (97)

where 𝜓 is the microscopic free-energy density in the thin film
of the fluid. Therefore, the corresponding pointwise free-energy
imbalance is given by

(𝐇 + grad𝜑𝜕 ⊗ 𝝉) ∶grad𝝊𝜕 + 𝜌𝓁2
𝜏 𝜓 div𝝊𝜕

+(𝜌𝓁 𝜇 −𝜛 − 𝜌𝓁2𝜕 𝜓)𝜑̊
𝜏 𝜕 𝜏 𝜑𝜕 𝜕
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+(𝝉 − 𝜌𝓁2
𝜏 𝜕grad𝜑𝜕𝜓) ⋅ grad 𝜑̊𝜕

−𝒋𝜕 ⋅ grad𝜇𝜕 ≥ 0 on 𝜕𝜏 . (98)

• The bulk and surface microstress 𝝃 and 𝝉 are, respectively, given
by

𝝃 ∶= 𝜚𝜕grad 𝜑𝜓 , and 𝝉 ∶= 𝜌𝓁𝜏𝜕grad𝜑𝜕𝜓𝜕 . (99)

• The internal bulk and surface microforces 𝜋 and 𝜛 are, respec-
tively, given by constitutive response functions that differ from
the bulk and surface chemical potential by a contribution derived,
respectively, from the response functions 𝜓 and 𝜓𝜕

𝜋 ∶= 𝜚 (𝜇 − 𝜕𝜑𝜓 ), and 𝜛 ∶= 𝜌𝓁𝜏 (𝜇𝜕 − 𝜕𝜑𝜕𝜓𝜕 ). (100)

• Granted that the bulk and surface species fluxes 𝒋 and 𝒋𝜕
depend smoothly on the gradient of the bulk chemical potential,
grad𝜇 , and the surface gradient of the surface chemical potential,
grad 𝜇𝜕 , these fluxes are, respectively, given by a constitutive
response function of the form

𝒋 ∶= −𝑴grad 𝜇 , and 𝒋𝜕 ∶= −𝑴𝜕grad𝜇𝜕 , (101)

where the mobility tensors 𝑴 and 𝑴𝜕 must, respectively, obey
the residual dissipation inequalities

grad 𝜇 ⋅𝑴grad 𝜇 ≥ 0, and grad𝜇𝜕 ⋅𝑴𝜕grad𝜇𝜕 ≥ 0.

(102)

Oftentimes one finds in the literature that 𝑴 ∶= 𝑚𝟏 and 𝑴𝜕 ∶=
𝑚𝜕𝐏𝒏, where 𝑚 and 𝑚𝜕 denote the scalar bulk and surface
mobilities, respectively. With this choice for 𝑴𝜕 , the surface flux
𝒋𝜕 remains proportional to grad 𝜇𝜕 and therefore tangential
to 𝜕𝜏 . As a result of the vanishing contributions of 𝑴𝜕 to the
normal component of 𝒋𝜕 , the pointwise surface species balance
(80) becomes

𝜌𝓁𝜏 𝜑̊𝜕 = 𝒋 ⋅ 𝒏 + 𝑠𝜕 − div𝒋𝜕 , on 𝜕𝜏 . (103)

• The bulk and surface stress are, respectively, given by
{

𝐓 ∶= 𝐓vis(𝐃 ) − 𝑝mech
 𝟏 − grad 𝜑 ⊗ 𝝃,

𝐇 ∶= 𝐇vis(𝜚𝜕 ,𝐃𝜕 ) − 𝑝therm𝜕 𝐏𝒏 − grad𝜑𝜕 ⊗ 𝝉 ,
(104)

where the stretching tensor is defined as 𝐃 ∶= sym grad 𝝊

and 𝐃𝜕 ∶= sym grad 𝝊𝜕 , with sym the symmetric operator.
Furthermore, 𝑝mech

 is the mechanical bulk pressure. In addition,
𝑝therm𝜕 denotes the thermodynamical surface pressure, which is
oftentimes called surface tension. These pressures are discussed
in more detail in what follows. Additionally, we consider that
the viscous bulk and surface stress 𝐓vis and 𝐇vis are, respectively,
linear in 𝐃 and 𝐃𝜕 , that is,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐓vis ∶= 2𝜇̄ 𝐃 ,

𝐇vis ∶= 2𝜇̄𝜕 𝐏𝒏𝐃𝜕𝐏𝒏 + (𝜅̄𝜕 − 𝜇̄𝜕 )(div𝝊𝜕 )𝐏𝒏,

= 2𝜇̄𝜕 𝐏𝒏𝐃𝜕𝐏𝒏 −
𝓁𝜏
𝓁𝜏

(𝜅̄𝜕 − 𝜇̄𝜕 )𝐏𝒏,

(105)

where 𝜇̄ and 𝜇̄𝜕 (𝜚𝜕 ) denote the bulk and surface dynamic
viscosities, (𝜇̄ and 𝜇̄𝜕 (𝜚𝜕 ) are also referred to as the bulk and
surface shear viscosities, respectively) and 𝜅̄𝜕 (𝜚𝜕 ) is the surface
dilatational viscosity, (𝜅̄𝜕 is also referred to as the bulk viscosity
of the surface fluid). Also, note that, in (105)2, we have used the
surface mass balance (36). Next, we decompose 𝐃 and 𝐃𝜕 into
a deviatoric and spherical part, that is, 𝐃 = 𝐃0

 + 1
3 (tr 𝐃 )𝟏 and

𝐃 = 𝐃0 + 1 (tr 𝐃 )𝐏 , with tr (𝐃0) = tr (𝐃0 ) = 0. Then, we may
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compute the viscous dissipation as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐓vis ∶𝐃 =
(

2𝜇̄ 𝐃

)

∶
(

𝐃0
 + 1

3 (tr 𝐃 )𝟏
)

,

= 2𝜇̄ |𝐃0
 |

2,

𝐇vis ∶𝐃𝜕 = 2𝜇̄𝜕 𝐏𝒏𝐃𝜕𝐏𝒏 ∶
(

𝐃0
𝜕 + 1

2 (tr 𝐃𝜕 )𝐏𝒏
)

,

+ (𝜅̄𝜕 − 𝜇̄𝜕 )(div𝝊𝜕 )𝐏𝒏 ∶
(

𝐃0
𝜕 + 1

2 (tr 𝐃𝜕 )𝐏𝒏
)

,

= 2𝜇̄𝜕 |𝐏𝒏𝐃0
𝜕 |

2 + 𝜅̄𝜕 (div𝝊𝜕 )2,

= 2𝜇̄𝜕 |𝐏𝒏𝐃0
𝜕 |

2 + 𝜅̄𝜕

(

𝓁𝜏
𝓁𝜏

)2

,

(106)

where we have taken into account that tr (𝐃 ) = div 𝝊 = 0 and
tr (𝐃𝜕 ) = div𝝊𝜕 = − 𝓁𝜏

𝓁𝜏
. In view of the free-energy inequalities

in (95) and (96), we conclude that 𝜇̄ ≥ 0, 𝜇̄𝜕 (𝜌𝓁𝜏 ) ≥ 0 and
𝜅̄𝜕 (𝜌𝓁𝜏 ) ≥ 0.

• The total pressure in the bulk and surface fluids are, respectively,
given by
{

− 1
3 tr (𝐓) = 𝑝mech

 + 𝑝cap =∶ 𝑝tot ,

− 1
2 tr (𝐇) = 𝑝therm𝜕 + 𝑝mech

𝜕 + 𝑝cap𝜕 =∶ 𝑝tot𝜕 .
(107)

In the above, the mechanical bulk pressure 𝑝 is indeterminate,
whereas the bulk capillary-like pressure is defined as 𝑝cap ∶=
− 1

3 tr (grad 𝜑 ⊗ 𝝃). For the surface, we find 𝑝cap𝜕 ∶= −
1
2 tr (grad𝜑𝜕 ⊗ 𝝉). In view of the surface free-energy imbalance
(98) and the viscous surface dissipation (106)2, the thermody-
namical surface pressure is given by

𝑝therm𝜕 ∶= 𝜌𝓁2
𝜏 𝜓, (108)

and, lastly, 𝑝mech
𝜕 ∶= − 1

2 tr (𝐇
vis) = −𝜅̄𝜕div𝝊𝜕 . Thus, the total bulk

and surface pressure read

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝tot ∶= 𝑝mech
 − 1

3 tr (grad 𝜑 ⊗ 𝝃),

𝑝tot𝜕 ∶= 𝜌𝓁2
𝜏 𝜓 − 𝜅̄𝜕div𝝊𝜕 − 1

2 tr (grad𝜑𝜕 ⊗ 𝝉),

= 𝜌𝓁2
𝜏 𝜓 + 𝜅̄𝜕

𝓁𝜏
𝓁𝜏

− 1
2 tr (grad𝜑𝜕 ⊗ 𝝉).

(109)

• In view of (105) and (108), we conclude that stresses in (104) can
be rewritten as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐓 ∶= 2𝜇̄ 𝐃 − 𝑝mech
 𝟏 − grad 𝜑 ⊗ 𝝃, and

𝐇 ∶= 2𝜇̄𝜕 𝐏𝒏𝐃0
𝜕𝐏𝒏 − (𝜌𝓁2

𝜏 𝜓 − 𝜅̄𝜕div𝝊𝜕 )𝐏𝒏 − grad𝜑𝜕 ⊗ 𝝉 ,

= 2𝜇̄𝜕 𝐏𝒏𝐃0
𝜕𝐏𝒏 −

(

𝜌𝓁2
𝜏 𝜓 + 𝜅̄𝜕

𝓁𝜏
𝓁𝜏

)

𝐏𝒏 − grad𝜑𝜕 ⊗ 𝝉 ,

(110)

Note that the bulk and surface stress in (110) are symmetric,
that is, 𝐓 = 𝐓⊤ and 𝐇 = 𝐇⊤. Due to the frame-indifference
result in (61), surface stresses must also annihilate the normal,
that is, 𝐇𝒏 = 𝟎, which is also satisfied by (110)2. Additionally,
the bulk and surface capillary contributions to the bulk and
surface stress, namely grad𝜑 ⊗ 𝝃 and grad𝜑𝜕 ⊗ 𝝉, respectively,
must also be symmetric. This implies that the expressions for the
bulk and surface microstress given in (99) must be, respectively,
proportional to grad 𝜑 and grad𝜑𝜕 .

Lastly, we use the above results to present the explicit form of the
bulk and surface chemical potentials. Substitution of (49) and (51) in
(100) yields

𝜚𝜇 = −div 𝝃 − 𝛾 + 𝜚𝜕𝜑𝜓 , in 𝜏 , (111)

and
𝜌𝓁𝜏𝜇𝜕 = −div (𝐏𝒏𝝉) − 𝜁 + 𝝃 ⋅ 𝒏 + 𝜌𝓁𝜏𝜕𝜑𝜕𝜓𝜕 , on 𝜕𝜏 . (112)
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In view of (99), these expressions take the following form

𝜚𝜇 = 𝜚𝜕𝜑𝜓 − div
(

𝜚𝜕grad 𝜑𝜓

)

− 𝛾, in 𝜏 , (113)

nd, recalling that 𝜚𝜕 = 𝜌𝓁𝜏 , we obtain

𝓁𝜏𝜇𝜕 = 𝜌𝓁2
𝜏 𝜕𝜑𝜕𝜓−div

(

𝜌𝓁2
𝜏 𝜕grad𝜑𝜕𝜓

)

−𝜁+𝜚𝜕grad 𝜑𝜓 ⋅𝒏, on 𝜕𝜏 .

(114)

Additionally, the term div  (𝜌𝓁2
𝜏 𝜕grad𝜑𝜕𝜓) may be split as

div (𝜌𝓁2
𝜏 𝜕grad𝜑𝜕𝜓) = 𝜌𝓁2

𝜏 div (𝜕grad𝜑𝜕𝜓) +2𝜌𝓁𝜏𝜕grad𝜑𝜕𝜓 ⋅ grad 𝓁𝜏 .
Then, expression (114) can be rewritten as

𝜌𝓁𝜏𝜇𝜕 = 𝜌𝓁2
𝜏 𝜕𝜑𝜕𝜓 − 𝜌𝓁2

𝜏 div (𝜕grad𝜑𝜕𝜓) − 2𝜌𝓁𝜏𝜕grad𝜑𝜕𝜓 ⋅ grad𝓁𝜏

− 𝜁 + 𝜚𝜕grad 𝜑𝜓 ⋅ 𝒏, on 𝜕𝜏 . (115)

8. Specialized equations

To exemplify our bulk-surface continuum theory for fluid flow
undergoing phase segregation, we consider the following free-energy
densities
⎧

⎪

⎨

⎪

⎩

𝜓 ∶= 1
𝜖 𝑓 (𝜑 ) +

𝜖
2 |grad 𝜑 |

2, and

𝜓𝜕 ∶= 𝓁𝜏
(

1
𝛿 𝑔(𝜑𝜕 ) +

𝜄𝛿
2 |grad𝜑𝜕 |

2
)

,
(116)

o that the total free-energy functional reads

∫𝜏
𝜚𝜓 d𝑣𝜏 + ∫𝜕𝜏

𝜌𝓁𝜏𝜓𝜕 d𝑎𝜏

= ∫𝜏
𝜚

(

1
𝜖 𝑓 (𝜑 ) +

𝜖
2 |grad 𝜑 |

2
)

d𝑣𝜏

+ ∫𝜕𝜏
𝜌𝓁2
𝜏

(

1
𝛿 𝑔(𝜑𝜕 ) +

𝜄𝛿
2 |grad𝜑𝜕 |

2
)

d𝑎𝜏 , (117)

hich describes the phase segregation in our bulk-surface system. Here,
, 𝛿, and 𝜄 are real positive constant parameters, while 𝑓 and 𝑔 denote
he bulk and surface potentials, respectively. With this choice for the
ree-energy densities, the bulk and surface microstress (99) specialize
o

∶= 𝜖𝜚grad 𝜑 , and 𝝉 ∶= 𝜄𝛿𝜌𝓁2
𝜏 grad𝜑𝜕 , (118)

hile the internal bulk and surface microforce (100) become

∶= 𝜚 (𝜇 − 1
𝜖 𝑓

′(𝜑 )), and 𝜛 ∶= 𝜌𝓁𝜏 (𝜇𝜕 − 𝓁𝜏
1
𝛿 𝑔

′(𝜑𝜕 )). (119)

Furthermore, we consider the following bulk and surface species fluxes

𝒋 ∶= −𝑴grad 𝜇 , and 𝒋𝜕 ∶= −𝑴𝜕grad𝜇𝜕 , (120)

where, for the sake of simplicity, we use 𝑴 ∶= 𝑚𝑰 and 𝑴𝜕 ∶= 𝑚𝜕𝐏𝒏
ith scalar functions 𝑚 , 𝑚𝜕 ≥ 0 to ensure that bulk and surface
obilities satisfy the residual dissipation inequalities (102).

Thus, in view of expressions (118) and (120), the bulk field equa-
ion (51)1 takes on the following form

𝜇 = 1
𝜖 𝜚𝑓

′(𝜑 ) − 𝜖𝜚 ▵𝜑 − 𝛾, in 𝜏 , (121)

here ▵∶= div grad denotes the Laplace operator. Additionally, for the
bove choices the surface species Eq. (52)2 can be written as

𝓁𝜏𝜇𝜕 = 1
𝛿 𝜌𝓁

2
𝜏 𝑔

′(𝜑𝜕 ) − 𝜄𝛿𝜌𝓁𝜏 (𝓁𝜏 ▵𝜑𝜕 + 2 grad𝜑𝜕 ⋅ grad𝓁𝜏 )

+ 𝜖𝜚grad 𝜑 ⋅ 𝒏 − 𝜁, on 𝜕𝜏 , (122)

ith ▵∶= divgrad denoting the Laplace–Beltrami operator, see also
efinition (5). Note that we have arrived at Eq. (122) using the surface
icrotraction (49) , as well as grad 𝜑 ⋅ 𝒏 = 0.
9

1  𝜕
Next, we derive the specialized equations of motion. First, using the
urface free-energy density (116)2 and the microstresses (118), the bulk
nd surface stresses (110) specialize to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐓 ∶= 2𝜇̄ 𝐃 − 𝑝mech
 𝟏 − 𝜖𝜚grad 𝜑 ⊗ grad 𝜑 , and

𝐇 ∶= 2𝜇̄𝜕 𝐏𝒏𝐃0
𝜕𝐏𝒏 −

(

𝜌𝓁2
𝜏

(

1
𝛿 𝑔(𝜑𝜕 ) +

𝜄𝛿
2 |grad𝜑𝜕 |

2
)

+ 𝜅̄𝜕
𝓁𝜏
𝓁𝜏

)

𝐏𝒏

− 𝜄𝛿𝜌𝓁𝜏grad𝜑𝜕 ⊗ grad𝜑𝜕 ,

(123)

recalling that 𝐃 ∶= sym grad 𝝊 , 𝐃𝜕 ∶= sym grad 𝝊𝜕 and that 𝐃0
𝜕

s the deviatoric part of 𝐃𝜕 . Using these bulk stress (123)1, the bulk
quation of motion (55)1 takes on the form

𝜚 𝝊̇ = div 𝐓 + 𝒃ni,

= 2 div (𝜇̄ 𝐃 ) − grad 𝑝mech
 − 𝜖𝜚div (grad 𝜑 ⊗ grad 𝜑 )

+ 𝒃ni, in 𝜏 . (124)

Conversely, we arrive at the specialized surface equation of motion by
using the surface traction (48)1 into surface Eq. (55)2 and splitting the
surface divergence operator as done in (52), followed by substitution
of the stresses (123), yielding

𝜌𝓁𝜏 𝝊̊𝜕 = div𝐇 + 2𝐾𝐇𝒏 + 𝒈ni − 𝐓𝒏,

= 2 div (𝜇̄𝜕𝐏𝒏𝐃0
𝜕𝐏𝒏) − 𝜌𝓁

2
𝜏 grad

(

1
𝛿 𝑔(𝜑𝜕 ) +

𝜄𝛿
2 |grad𝜑𝜕 |

2
)

− 2𝜌𝓁𝜏
(

1
𝛿 𝑔(𝜑𝜕 ) +

𝜄𝛿
2 |grad𝜑𝜕 |

2
)

grad𝓁𝜏 − grad

(

𝜅̄𝜕
𝓁𝜏
𝓁𝜏

)

− 𝜄𝛿𝜌𝓁𝜏 div
(

grad𝜑𝜕 ⊗ grad𝜑𝜕
)

− 𝜄𝛿𝜌 grad𝓁𝜏 ⋅
(

grad𝜑𝜕 ⊗ grad𝜑𝜕
)

+ 𝒈ni − 2𝜇̄ 𝐃𝒏 + 𝑝mech
 𝒏 + 𝜖𝜚 grad 𝜑 ⊗ grad 𝜑𝒏,

on 𝜕𝜏 , (125)

where we have additionally used that 𝐏𝒏𝒏 = 𝟎.
Lastly, supplementing the specialized field equations (121), (122),

(124), and (125) with the isochoric constraints in (25) and (36) renders
a system of equations that describes the dynamics of the bulk-surface
system in terms of the state variables 𝜑 , 𝜑𝜕 , 𝝊 , 𝝊𝜕 , 𝑝mech

 and 𝓁𝜏 .

9. Dynamic boundary conditions

We use dynamic boundary to refer to a boundary that is endowed
with its own mechanical laws, whereas static boundary is reserved for
a boundary that is arbitrarily prescribed as an function of space and
time, yet does not obey any underlying partial differential equation.
Therefore, we impose static boundary conditions on 𝜕2𝜏 , as we have
not endowed edges with their own mechanical laws. Furthermore, for
the sake of simplicity, we only impose dynamic conditions on 𝜕𝜏 , and
do not consider any static conditions 𝜕𝜏 , as was done in [14].

Prior to establishing dynamic boundary conditions on 𝜕𝜏 , let us
introduce an environmental surface imbalance. To this end, we here
use the partwise surface imbalance presented by Espath [14] based
on arguments described by Fried & Gurtin in [23, surface free-energy
imbalance (92)] on a migrating boundary 𝜕𝜏 . Specifically, we stipulate
that

surf (−𝜕𝜏 ) + env(𝜕𝜏 ) ≥ 0, (126)

where surf (−𝜕𝜏 ) represents the power expended on 𝜕𝜏 by the ma-
terial inside 𝜏 and 𝜕𝜏 in addition to the rate at which energy is
transferred from 𝜏 to 𝜕𝜏 . Furthermore, env(𝜕𝜏 ) combines the power
expended by the environment on 𝜕𝜏 and the rate at which energy is
transferred from the environment to 𝜕𝜏 . Therefore, on 𝜕𝜏 , we define

surf (−𝜕𝜏 ) ∶= − (𝝊 − 𝝊𝜕 ) ⋅ 𝒕 d𝑎𝜏 − 𝒉𝜕 ⋅ 𝝊𝜕 d𝜎𝜏
∫𝜕𝜏 ∫𝜕2𝜏
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e

− ∫𝜕𝜏
(𝜑̇ − 𝜑̊𝜕 )𝜉 d𝑎𝜏 − ∫𝜕2𝜏

𝜏𝜕 𝜑̊𝜕 d𝜎𝜏

− ∫𝜕𝜏
(𝜇𝜕 − 𝜇 )𝒋 ⋅ 𝒏 d𝑎𝜏 + ∫𝜕2𝜏

{{𝜇𝜕𝒋𝜕 ⋅ 𝝂}} d𝜎𝜏 ,

(127)

where surf (−𝜕𝜏 ) = −surf (𝜕𝜏 ). We define the contribution from the
environment as follows

env(𝜕𝜏 ) ∶= ∫𝜕2𝜏
𝒉env𝜕 ⋅ 𝝊env

𝜕2
d𝜎𝜏 + ∫𝜕2𝜏

𝜏env𝜕 𝜑̇
env
𝜕2

d𝜎𝜏 − ∫𝜕2𝜏
𝜇env
𝜕2
𝚥env
𝜕2

d𝜎𝜏 .

(128)

Now, on 𝜕2𝜏 , we set 𝒉env𝜕 = 𝒉𝜕 , 𝝊env
𝜕2

= 𝝊𝜕 , 𝜏env𝜕 = 𝜏𝜕 , 𝜑̇env
𝜕2

= 𝜑̊𝜕 ,
𝜇env
𝜕2

= 𝜇𝜕 , and 𝚥env
𝜕2

= {{𝒋𝜕 ⋅ 𝝂}}. Thus, the surface free-energy imbalance
in (126) reads

− ∫𝜕𝜏

(

(𝝊 − 𝝊𝜕 ) ⋅ 𝒕 + (𝜑̇ − 𝜑̊𝜕 )𝜉 + (𝜇𝜕 − 𝜇 )𝒋 ⋅ 𝒏
)

d𝑎𝜏 ≥ 0. (129)

Uncoupling this expression gives us

∫𝜕𝜏
(𝝊 − 𝝊𝜕 ) ⋅ 𝒕 d𝑎𝜏 ≤ 0, ∫𝜕𝜏

(𝜑̇ − 𝜑̊𝜕 ) 𝜉 d𝑎𝜏 ≤ 0, and

∫𝜕𝜏
(𝜇𝜕 − 𝜇 ) 𝒋 ⋅ 𝒏 d𝑎𝜏 ≤ 0.

(130)

9.1. Essential dynamic boundary conditions

Essential boundary conditions result from the prescription of the
surface fields onto the bulk fields. That is,
𝝊 = 𝝊𝜕 ,

𝜑 = 𝜑𝜕 ,

𝜇 = 𝜇𝜕 ,

⎫

⎪

⎬

⎪

⎭

on 𝜕ess
𝜏 . (131)

9.2. Natural dynamic boundary conditions

Natural boundary conditions arise by specifying that the normal
component of the bulk stress (described by the surface traction), the
bulk microstress (described by the surface microtraction), and the bulk
species flux are, respectively, equal to the normal component of the
surface stress, the surface microstress, and the surface species flux on
𝜕nat

𝜏 . In general, these are given by

𝒕 = 𝐇𝒏,

𝜉 = 𝝉 ⋅ 𝒏,

𝒋 ⋅ 𝒏 = 𝒋𝜕 ⋅ 𝒏,

⎫

⎪

⎬

⎪

⎭

on 𝜕nat
𝜏 . (132)

However, we have that 𝐇𝒏 = 𝟎, due to (110)2 in addition to frame-
indifference requirements. Furthermore, we have 𝝉 ⋅ 𝒏 = 0 and 𝒋𝜕 ⋅
𝒏 = 0 as a result of adopting a tangential surface microstress 𝝉 and a
tangential surface mass flux 𝒋𝜕 . Thus, the natural boundary conditions
read

𝒕 = 𝟎,
𝜉 = 0,

𝒋 ⋅ 𝒏 = 0,

⎫

⎪

⎬

⎪

⎭

on 𝜕nat
𝜏 , (133)

which satisfy the requirements in (129).

9.3. Mixed dynamic boundary conditions

In view of (129), we formulate a set of mixed boundary conditions,
which are dissipative in nature. These are given by

𝒕 = 1
𝐿𝝊

𝐏𝒏(𝝊𝜕 − 𝝊 ) =
1
𝐿𝝊

(𝝊𝜕 − 𝝊 ),

𝜉 = 1
𝐿𝜑

(𝜑̊𝜕 − 𝜑̇ ),

𝒋 ⋅ 𝒏 = − 1 (𝜇𝜕 − 𝜇 ),

⎫

⎪

⎪

⎬

⎪

⎪

on 𝜕mix
𝜏 , (134)
10

𝐿𝜇
⎭

where 𝐿𝝊, 𝐿𝜑, 𝐿𝜇 > 0. The expressions in (134) should be understood
as the surface traction, the surface microtraction, and the normal bulk
species flux defined across 𝜕mix

𝜏 , respectively, driven by the difference
in velocity, microstructure (described by the phase field), and chemical
potential between the bulk and surface material. Here, we assume that
the dependency is linear and that the parameters 𝐿𝝊, 𝐿𝜑, 𝐿𝜇 act as
relaxation parameters. Furthermore, note that the rightmost expression
in (134)1 arises in view of assumption (A.2).

In [24], a mixed type of boundary condition similar to (134)3
was proposed. The theory for mixed dynamic boundary conditions for
phase-field models was further extended and presented for both the
microstructure and chemical potential in [14,25].

10. Static edge boundary conditions

We complement the dynamic boundary conditions on 𝜕𝜏 previ-
ously presented by a set of static boundary conditions on 𝜕2𝜏 . In
particular, we formulate the essential and natural boundary conditions
resulting from the action of a static environment on the edge 𝜕2𝜏 , that
is, the curve where the dynamic surface 𝜕𝜏 loses smoothness. On static
edges 𝜕2ess

𝜏 , we first present the essential boundary conditions, which
read
𝝊𝜕 = 𝝊env

𝜕2
,

𝜑𝜕 = 𝜑env
𝜕2
,

𝜇𝜕 = 𝜇env
𝜕2
,

⎫

⎪

⎬

⎪

⎭

on 𝜕2ess
𝜏 , (135)

where 𝝊env
𝜕2

is the action of the velocity, 𝜑env
𝜕2

is the assignment of
microstructure, and 𝜇env

𝜕2
is the action of the chemical potential, all

originating from a static environment acting on the edge 𝜕2ess
𝜏 .

Alternatively, as natural boundary conditions, we may prescribe

𝒉𝜕 ∶= {{𝐇𝝂}} = 𝒉env𝜕 ,

𝜏𝜕 ∶= {{𝝉 ⋅ 𝝂}} = 𝜏env𝜕 ,

𝚥𝜕2 ∶= −{{𝒋 ⋅ 𝝂}} = 𝚥env
𝜕2
.

⎫

⎪

⎬

⎪

⎭

on 𝜕2nat
𝜏 , (136)

where 𝒉env𝜕 and 𝜏env𝜕 are the assigned edge traction and edge mi-
rotraction of the static environment across 𝜕2nat . Furthermore, 𝚥env

𝜕2
epresents the transfer of species from the static environment to 𝜕2nat

𝜏 .

1. Dissipation inequalities

Here, we are interested in understanding the behavior of the total
nergy variation, that is,

̇

∫𝜏
𝜚 (𝜓 + 1

2 |𝝊 |
2) d𝑣𝜏 +

̇

∫𝜕𝜏
𝜌𝓁𝜏 (𝜓𝜕 + 1

2 |𝝊𝜕 |
2) d𝑎𝜏 . (137)

To simplify and understand the decay of each energetic contribution,
that is, the free energy and kinetic energy densities, we will spit these
into
⎧

⎪

⎪

⎨

⎪

⎪

⎩

̇

∫𝜏
𝜚𝜓 d𝑣𝜏 +

̇

∫𝜕𝜏
𝜌𝓁𝜏𝜓𝜕 d𝑎𝜏 , and

̇

∫𝜏
1
2𝜚 |𝝊 |

2 d𝑣𝜏 +
̇

∫𝜕𝜏
1
2𝜌𝓁𝜏 |𝝊𝜕 |

2 d𝑎𝜏 .

(138)

Emulating the procedure presented by Espath [14] for the temporal
change in free-energy functional, we arrive at

̇

∫𝜏
𝜚𝜓 d𝑣𝜏 +

̇

∫𝜕𝜏
𝜌𝓁𝜏𝜓𝜕 d𝑎𝜏

=∫𝜏

(

𝜇𝑠 + 𝛾𝜑̇
)

d𝑣𝜏 − ∫𝜏
grad 𝜇 ⋅𝑴grad 𝜇 d𝑣𝜏

− ∫𝜏

(

grad 𝜑 ⊗ 𝝃
)

∶grad 𝝊 d𝑣𝜏

+
(

𝜇𝜕𝑠𝜕 + 𝜁𝜑̊𝜕
)

d𝑎𝜏
∫𝜕𝜏
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− ∫𝜕𝜏
grad𝜇𝜕 ⋅𝑴𝜕grad𝜇𝜕 d𝑎𝜏

− ∫𝜕𝜏
𝜌𝓁𝜏

2𝜓 div𝝊𝜕 d𝑎𝜏

− ∫𝜕𝜏

(

grad𝜑𝜕 ⊗ 𝝉
)

∶grad𝝊𝜕 d𝑎𝜏

− ∫𝜕𝜏

((

𝜑̊𝜕 − 𝜑̇
)

𝜉 + (𝜇 − 𝜇𝜕 )𝒋 ⋅ 𝒏
)

d𝑎𝜏

+ ∫𝜕2𝜏

(

𝜑̊𝜕{{𝝉 ⋅ 𝝂}} − 𝜇𝜕{{𝒋𝜕 ⋅ 𝝂}}
)

d𝜎𝜏 . (139)

Next, we consider the temporal change in kinetic energy (138)2.
or this purpose, we consider the decomposition into inertial and non-
nertial parts (53) and (54). Then, the variation in kinetic energy rate
eads

̇

∫𝜏
1
2𝜚 |𝝊 |

2 d𝑣𝜏 +
̇

∫𝜕𝜏
1
2𝜌𝓁𝜏 |𝝊𝜕 |

2 d𝑎𝜏

= ∫𝜏
𝜚𝝊 ⋅ 𝝊̇ d𝑣𝜏 + ∫𝜕𝜏

𝜌𝓁𝜏𝝊𝜕 ⋅ 𝝊̊𝜕 d𝑎𝜏 ,

= ∫𝜏
𝝊 ⋅ (𝒃ni + div 𝐓) d𝑣𝜏

+ ∫𝜕𝜏
𝝊𝜕 ⋅ (𝒈ni − 𝒕 + div (𝐇𝐏𝒏)) d𝑎𝜏 ,

= ∫𝜏
(𝝊 ⋅ 𝒃ni − 𝐓 ∶grad 𝝊 ) d𝑣𝜏

+ ∫𝜕𝜏
(𝝊𝜕 ⋅ 𝒈ni −𝐇𝐏𝒏 ∶grad𝝊𝜕 ) d𝑎𝜏

− ∫𝜕𝜏
(𝝊𝜕 − 𝝊 ) ⋅ 𝒕 d𝑎𝜏 + ∫𝜕2𝜏

𝝊𝜕 ⋅ {{𝐇𝝂}} d𝜎𝜏 ,

(140)

where we have used the field equations (52) and surface traction (48)1.
In view of the free- and kinetic-energy rates in (139) and (140), and

by symmetry of 𝐓 and 𝐇𝐏𝑛, the variation in total energy reads
̇

∫𝜏
𝜚 (𝜓 + 1

2 |𝝊 |
2) d𝑣𝜏 +

̇

∫𝜕𝜏
𝜌𝓁𝜏 (𝜓𝜕 + 1

2 |𝝊𝜕 |
2) d𝑎𝜏

= ∫𝜏

(

𝜇𝑠 + 𝛾𝜑̇
)

d𝑣𝜏 − ∫𝜏
grad 𝜇 ⋅𝑴grad 𝜇 d𝑣𝜏

− ∫𝜏

(

𝐓 + grad 𝜑 ⊗ 𝝃
)

∶𝐃 d𝑣𝜏

+ ∫𝜏
𝝊 ⋅ 𝒃ni d𝑣𝜏 + ∫𝜕𝜏

(

𝜇𝜕𝑠𝜕 + 𝜁𝜑̊𝜕
)

d𝑎𝜏

− ∫𝜕𝜏
grad𝜇𝜕 ⋅𝑴𝜕grad𝜇𝜕 d𝑎𝜏

− ∫𝜕𝜏
𝜌𝓁𝜏

2𝜓 div𝝊𝜕 d𝑎𝜏

− ∫𝜕𝜏

(

𝐇𝐏𝒏 + grad𝜑𝜕 ⊗ 𝝉
)

∶𝐃𝜕 d𝑎𝜏 + ∫𝜕𝜏
𝝊𝜕 ⋅ 𝒈ni d𝑎𝜏

− ∫𝜕𝜏

((

𝜑̊𝜕 − 𝜑̇
)

𝜉 + (𝜇 − 𝜇𝜕 )𝒋 ⋅ 𝒏 + (𝝊𝜕 − 𝝊 ) ⋅ 𝒕
)

d𝑎𝜏

+ ∫𝜕2𝜏

(

𝜑̊𝜕{{𝝉 ⋅ 𝝂}} − 𝜇𝜕{{𝒋𝜕 ⋅ 𝝂}} + 𝝊𝜕 ⋅ {{𝐇𝝂}}
)

d𝜎𝜏 , (141)

here we recall that the stretching tensors are given by 𝐃 ∶= sym
grad 𝝊 and 𝐃𝜕 ∶= sym grad 𝝊𝜕 . Substitution of the constitutive re-
sponse for the bulk and surface stresses (110) and the thermodynamical
surface pressure (108), specializes (141) to

̇
𝜚 (𝜓 + 1

2 |𝝊 |
2) d𝑣𝜏 +

̇
𝜌𝓁𝜏 (𝜓𝜕 + 1

2 |𝝊𝜕 |
2) d𝑎𝜏
11

∫𝜏 ∫𝜕𝜏
= ∫𝜏

(

𝜇𝑠 + 𝛾𝜑̇
)

d𝑣𝜏 − ∫𝜏
grad 𝜇 ⋅𝑴grad 𝜇 d𝑣𝜏

− ∫𝜏
2𝜇̄𝜕 |𝐃0

 |
2 d𝑣𝜏

+ ∫𝜏
𝝊 ⋅ 𝒃ni d𝑣𝜏 + ∫𝜕𝜏

(

𝜇𝜕𝑠𝜕 + 𝜁𝜑̊𝜕
)

d𝑎𝜏

− ∫𝜕𝜏
grad𝜇𝜕 ⋅𝑴𝜕grad𝜇𝜕 d𝑎𝜏

− ∫𝜕𝜏

(

2𝜇̄𝜕 |𝐏𝒏𝐃0
𝜕 |

2 + 𝜅̄𝜕 (div𝝊𝜕 )2
)

d𝑎𝜏 + ∫𝜕𝜏
𝝊𝜕 ⋅ 𝒈ni d𝑎𝜏

− ∫𝜕𝜏

((

𝜑̊𝜕 − 𝜑̇
)

𝜉 + (𝜇 − 𝜇𝜕 )𝒋 ⋅ 𝒏 + (𝝊𝜕 − 𝝊 ) ⋅ 𝒕
)

d𝑎𝜏

+ ∫𝜕2𝜏

(

𝜑̊𝜕{{𝝉 ⋅ 𝝂}} − 𝜇𝜕{{𝒋𝜕 ⋅ 𝝂}} + 𝝊𝜕 ⋅ {{𝐇𝝂}}
)

d𝜎𝜏 , (142)

here we have used the viscous dissipation identities (106), the iso-
horic constraint tr 𝐃 = div 𝝊 = 0 (25), as well as the identity
r (𝐏𝒏𝐃𝜕 ) = div𝝊𝜕 .

Lastly, we consider the set of mixed boundary conditions on 𝜕𝜏 ∶=
mix
𝜏 (134) and natural boundary conditions on 𝜕2𝜏 ∶= 𝜕2nat

𝜏 (136).
hen, in view of the residual dissipation inequality in (102), we arrive
t the Lyapunov decay relation

̇

∫𝜏
𝜚 (𝜓 + 1

2 |𝝊 |
2) d𝑣𝜏 +

̇

∫𝜕𝜏
𝜌𝓁𝜏 (𝜓𝜕 + 1

2 |𝝊𝜕 |
2) d𝑎𝜏

= ∫𝜏

(

𝜇𝑠 + 𝛾𝜑̇
)

d𝑣𝜏 − ∫𝜏
grad 𝜇 ⋅𝑴grad 𝜇 d𝑣𝜏

− ∫𝜏
2𝜇̄𝜕 |𝐃0

 |
2 d𝑣𝜏

+ ∫𝜏
𝝊 ⋅ 𝒃ni d𝑣𝜏 + ∫𝜕𝜏

(

𝜇𝜕𝑠𝜕 + 𝜁𝜑̊𝜕
)

d𝑎𝜏

− ∫𝜕𝜏
grad𝜇𝜕 ⋅𝑴𝜕grad𝜇𝜕 d𝑎𝜏

− ∫𝜕𝜏

⎛

⎜

⎜

⎝

2𝜇̄𝜕 |𝐏𝒏𝐃0
𝜕 |

2 + 𝜅̄𝜕

(

𝓁𝜏
𝓁𝜏

)2
⎞

⎟

⎟

⎠

d𝑎𝜏 + ∫𝜕𝜏
𝝊𝜕 ⋅ 𝒈ni d𝑎𝜏

− ∫𝜕𝜏

(

1
𝐿𝜑

|𝜑̊𝜕 − 𝜑̇ |
2 + 1

𝐿𝜇
|𝜇 − 𝜇𝜕 |

2 + 1
𝐿𝝊

|𝝊𝜕 − 𝝊 |
2
)

d𝑎𝜏

+ ∫𝜕2𝜏

(

𝜑̊𝜕𝜏
env
𝜕 + 𝜇𝜕 𝚥env𝜕2

+ 𝝊𝜕 ⋅ 𝒉env𝜕

)

d𝜎𝜏 ,

≤ ∫𝜏

(

𝜇𝑠 + 𝛾𝜑̇
)

d𝑣𝜏 + ∫𝜏
𝝊 ⋅ 𝒃ni d𝑣𝜏

+ ∫𝜕𝜏

(

𝜇𝜕𝑠𝜕 + 𝜁𝜑̊𝜕
)

d𝑎𝜏 + ∫𝜕𝜏
𝝊𝜕 ⋅ 𝒈ni d𝑎𝜏

+ ∫𝜕2𝜏

(

𝜑̊𝜕𝜏
env
𝜕 + 𝜇𝜕 𝚥env𝜕2

+ 𝝊𝜕 ⋅ 𝒉env𝜕

)

d𝜎𝜏 . (143)

In (143), we identify the following environmental contributions

• 𝜇𝑠 represents the rate at which energy is transferred to 𝜏 due
to the production of species, and 𝜇𝜕𝑠𝜕 represents the rate at
which energy is transferred to 𝜕𝜏 due to species production;

• 𝛾𝜑̇ represents the power expended on the microstructure of 𝜏
by sources external to the body 𝜏 , whereas 𝜁𝜑̊𝜕 denotes the
power expended on the microstructure of 𝜕𝜏 by sources external
to the boundary of the body 𝜕𝜏 , which do not originate from 𝜏 ;

• 𝝊 ⋅ 𝒃ni represents power expended in 𝜏 by the environment,
whereas 𝝊𝜕 ⋅ 𝒈ni represents the power expended on 𝜕𝜏 by the
environment;

• 𝜑̊𝜕𝜏env𝜕 represents the power expended across 𝜕2𝜏 by edge mi-
crotractions from the environment exterior to both 𝜕 and  ;
𝜏 𝜏
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• 𝜇𝜕 𝚥env𝜕2
represents the energy exchange across 𝜕2𝜏 induced by a

tangent–normal species flux from the exterior of 𝜕𝜏 and 𝜏 ;
• 𝝊𝜕 ⋅ 𝒉env𝜕 represents the power expended across 𝜕2𝜏 by edge

tractions from the environment.

astly, the following terms may contribute to dissipation in the bulk-
urface system

• grad𝜇 ⋅𝑴grad𝜇 and grad𝜇𝜕 ⋅𝑴𝜕grad𝜇𝜕 represent dissipation
due to species diffusion in 𝜏 and 𝜕𝜏 , respectively;

• the term 2𝜇̄𝜕 |𝐏𝒏𝐃0
𝜕 |

2 represents the viscous dissipation in 𝜏 ,
whereas 2𝜇̄𝜕 |𝐏𝒏𝐃0

𝜕 |
2+ 𝜅̄𝜕 (𝓁𝜏∕𝓁𝜏 )2 denotes the viscous dissipation

in 𝜕𝜏 ;
• 1
𝐿𝜑

|𝜑̊𝜕 − 𝜑̇ |
2 represents power expended across 𝜕𝜏 driven by

the difference in microstructure (described by the phase field)
between 𝜕𝜏 and the adjacent 𝜏 ;

• − 1
𝐿𝜇

|𝜇𝜕 − 𝜇 |
2 represents energy exchange across 𝜕𝜏 due to the

difference in chemical potential between 𝜕𝜏 and the adjacent 𝜏 ;
• 1
𝐿𝝊

|𝝊𝜕 − 𝝊 |
2 = 1

𝐿𝝊
|𝐏𝒏(𝝊𝜕 − 𝝊 )|

2 represents power expended
across 𝜕𝜏 driven by the difference in the tangential velocity
components between 𝜕𝜏 and the adjacent 𝜏 .
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