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Abstract
Feature-based characterisation, i.e. the characterisation of surface topography based on the isolation
of relevant topographic formations (features) and their dimensional assessment, is a developing field
of surface texturemetrology. Feature-based approaches provide dimensional assessments of
individual features (area, width, height, etc) as well as statistical properties of feature aggregations (e.g.
mean, standard deviation, etc), whichmay bemore intuitive or related to functionality. For powder
bed fusion surfaces, a commonly investigated feature of interest is the particles or spatter present on
the surface. In this work, we address segmentation, a necessary step of feature-based characterisation,
where themeasured surface topography is spatially partitioned into regions to isolate the targeted
features from their surroundings. Three topography segmentationmethods are investigated:
morphological segmentation on edges, contour stability analysis and active contours. To perform the
comparison, three powder bed fusion surfaces obtained at differing build orientations (0°, 30° and
90°) andmeasured using focus variationmicroscopy are subjected to the three segmentation
approaches - optimised to isolate spatter and particles on the surface. The comparison of the
segmentationmethods focuses on performance in feature identification (i.e. the capability to correctly
detect the presence of features) and performance in feature boundary determination (i.e. the capability
to correctly trace the boundaries of each feature). Results show that no segmentationmethod is
consistently superior for all test cases, but the comparison approach is useful to explore and optimise
segmentation alternatives for feature-based characterisation scenarios.

1. Introduction

Feature-based characterisation, i.e. the characterisa-
tion of the salient topographic formations (features) of
a topography, is a developing field of surface metrol-
ogy [1]. Whilst conventional characterisation of sur-
face topography is based on assessing the properties of
the entire measured field by computing texture para-
meters (e.g. ISO 25178-2 [1, 2]), feature-based
approaches typically target individual features (e.g.
pores, scratches, particles, discontinuities and other
singularities) and the characterisation of their geo-
metric properties (e.g. area, width, height, depth) [1].

Feature-based characterisation requires topo-
graphy segmentation, i.e. partitioning of the surface

into regions. Segmentation may be performed in mul-
tiple ways by means of a wide range of algorithms, but
ultimately, it should lead to a partitioning that delimits
the features being targeted, separating them from their
surroundings. Accurate identification of segment
boundaries is, therefore, essential to determine feature
localisation, extents, shape and size properties. Most
of the accuracy of feature-based characterisation is tied
to accuracy of the segmentation step [1]. However, for
complex topographies, the identification of an optimal
segmentation approach is usually far from trivial. A
challenge which is typically encountered is that specia-
lised user input is often required to determine what
defines the feature of interest and, in turn, what cri-
teria should be used to identify the exact transition
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boundaries between a feature and its surroundings.
Even when the definition of the targeted feature is suf-
ficiently clear, the lack of a reference result of what
should constitute an optimal partitioning outcome,
makes it challenging to assess whether a segmentation
method/algorithmperformedwell.

In this work, a specific test case involving feature-
based characterisation is considered. The case revolves
around metallic surfaces fabricated via powder bed
fusion (PBF), an additive manufacturing process that
produces rough surfaces which often need finishing
operations before they can fulfil their functional role.
Additive surfaces are conventionally characterised by
computation of texture parameters [3, 4]. Parameters,
such as the ISO 4287 arithmetic mean deviation (Ra)
[5] for profile-based surface characterisation, and the
ISO 25178-2 arithmetic mean height of the scale lim-
ited surface (Sa) [2], for area-based surface character-
isation, are amongst the most popular choices for PBF
surfaces, and can provide an effective, overall indica-
tion of which surfaces are ‘rougher’ in a comparison.
On the contrary, the appeal of feature-based approa-
ches is that they provide the opportunity to decom-
pose a surface into its relevant constituent topographic
formations (features), and thus describe the surface
itself in terms of the geometric attributes of such fea-
tures [6]. As opposed to texture parameters, feature-
based characterisation may provide indication as to
why one surface may be ‘rougher’ than another, i.e.
what topographic formations (features) may be con-
tributing the most in determining the overall rough-
ness of the surface. For the metal PBF test case, a
typical matter of interest involves the identification
and characterisation of spatter formations and un-
melted particles present on the as-built topography
(that is, before any finishing process). Spatter forma-
tions result from molten particles ejected during sur-
face processing and deposited on the surface in the
form of solidified aggregates [7]. Similar particle clus-
ters (though not technically spatter), may be created by
excess input energy from the melt pool, that can also
act to sinter loose powder adjacent to the build geo-
metry in laser PBF (LPBF) [8] and for the electron
beam PBF (EBPBF) process deliberately sintering a
larger ‘cake’ region around the build geometry of the
layer prior to melting the layer [9]. Forming a clear
picture of location, distribution, size, shape and other
geometric properties of spatter, particles and particle
clusters accumulated over an as-built PBF surface, for
example as a function of surface orientation during the
build process, helps to achieve an enhanced under-
standing of the manufacturing process, and helps
when assessing the surface finishing challenges
[10–13].

In a feature-based characterisation scenario invol-
ving metal PBF surfaces, where the target is the isola-
tion and characterisation of spatter and particles on as-
built surfaces, the choice of an appropriate segmenta-
tionmethod is paramount. As surface topography data

is commonly available as height maps, i.e. matrices of
height values (scalars) distributed along of the rows
and columns of a regular grid [1], potentially applic-
able segmentation methods are commonly found in
the domain of image processing (a height map is
mathematically equivalent to a grayscale, digital image
[1]). In this work, three methods of feature-based seg-
mentation were investigated: morphological segmen-
tation on edges [2, 11] and active contours [14], both
derived from the domain of image processing and
recently adapted to operate on topography data, and
contour stability analysis [10, 12], an original method
developed directly for areal topography data. In-house
developed implementations of the threemethods were
applied to a selected set of surfaces belonging to the
test case, and their performance was quantitatively
compared.

2.Methodology

2.1. Sample surfaces
To perform the comparison, three PBF surfaces
obtained at differing build orientations (LPBF top (0°)
surface, EBPBF angled (30°) surface and EBPBF side
(90°) surface) were measured using focus variation
microscopy [15, 16], optimised for measurement
following the work in [17], and subjected to the
segmentation approaches which were optimised to
isolate particles and spatter on the surface. The three
surfaces were chosen as representative of a large range
of scenarios, with the LPBF top surface typically
featuring the least number of features, the EBPBF side
surface featuring the most, and the angled EBPBF
surface featuring an intermediate number of spatter
and particles. Example measured topographies from
the three samples are shown infigure 1.

2.2. Segmentation using contour stability analysis
Contour stability analysis was originally presented in
reference [6], where it was applied to identify particles
and spatter features on LPBF surfaces. Contour
stability analysis is essentially an edge detection
method that privileges sharp transitions, so it prefer-
entially works for features delimited by steep ‘walls’,
which applies to most particles/spatter formations in
the test case. In contour stability analysis, the mea-
sured topography is sectioned by a series of slicing
planes at decreasing height starting from the top. Each
slicing plane results in a series of cross-sectional
contours. Each contour is tracked as its shape changes
moving down through the sequence of slicing planes.
Those contours that change minimally (i.e. within a
small, predefined threshold), are defined as stable, and
are representative of steep feature boundaries in the
original, sectioned topography. In order to efficiently
trackmultiple contours acrossmany slicing planes, the
method implements a spatial binning process for the
contourmaps and considers as stable those portions of
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contours that do not exit their original bins. Once the
more stable contours are identified and cleaned via a
sequence of morphological operations, those forming
closed loops are extracted and used to isolate fea-
tures [6].

In this work, contour stability analysis was imple-
mented for particle and spatter detection with the fol-
lowing parameters.

(a) An S-filter of nesting index 8 μmand an L-filter of
nesting index 250 μm were applied to remove
noise and the underlying large-scale waviness
whichmay confuse the contour stability analysis.

(b) Contour stability was run with the following
settings: the threshold for maximum lateral
movement of contour points across slicing planes
was set to 2 μm over a vertical range of 5 μm
(computed with a series of vertically stacked
slicing planes set 0.25 μmapart); to connect edges
that are detected by the algorithm into closed
regions that represent feature objects on the
surface, morphological dilation and erosion over
a three pixel structuring element was applied in
the segmentation binarymask.

2.3.Morphological segmentation on edges
Morphological segmentation consists of partitioning
the topography into hills or dales, as described in ISO
25178-2 [2] and elsewhere [18]. Hills are areas from
whichmaximum uphill paths lead to one specific peak
and dales are areas from which maximum downhill
paths lead to one specific pit. As a rough surface will
typically result in amultitude of hills or dales, methods
have been defined to simplify the partitioning by
aggregating individually less relevant (i.e. smaller) hills
or dales to larger ones [18]. The most widespread
aggregation methods are area pruning and Wolf (i.e.
height) pruning [18], respectively based on merging
hills/dales with smaller footprint areas, or smaller
local height/depth, to larger ones. Morphological
segmentation into hills/dales can be performed using
a variant, specifically designed to detect edges [17, 18].
In this variant, an artificial topography is created,
containing the absolute values of the local slope of the
original topography. This topography is partitioned
with dale-based segmentation [19, 20]. The method is
colloquially referred to as morphological segmenta-
tion on edges [16] because local concentrations of large
slopes (visible as dale crests in the absolute slope map)
are typically representative of edges in the original

Figure 1.Example surface topography heightmaps (a) LBPF top surface (b)EBPBF angled surface and (c)EBPBF side surface.
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topography. Morphological segmentation on edges
was recently applied to the identification of spatter and
un-melted particles in PBF surfaces [11], using the
following steps.

(a) An L-filter with nesting index 250 μm is applied
to suppress large scale (waviness) components on
the surface. As for contour stability analysis, this
step is designed to remove topography compo-
nents whichmay confuse the actual segmentation
algorithm.

(b) Sobel operators are applied to produce a gradient
magnitude map of the surface (particles and
spatter would possess high gradients around the
edge of the feature).

(c) The gradient magnitude map was taken as abso-
lute value (that is, negative slopes are turned into
positive, so that high-slope regions appear as
crests surrounding low-sloped regions-dales in
the gradient map). Finally, morphological seg-
mentation into dales was applied and pruning of
these segmented regions was performed by
thresholding the heights above three standard
deviations of the mean height to isolate the top-
most regions of the segmentation map, which are
most likely to correspond to protruded forma-
tions such as spatter and particles.

In this work, morphological segmentation on
edges was implemented for particle and spatter detec-
tion, following the method proposed in reference [4].
The following parameters were adopted.

(a) An S-filter with nesting index at 8 μm and an
L-filter with nesting index 250 μmwere applied to
extract the roughness surface.

(b) Sobel operators were applied to produce the
gradient magnitude map, later turned into abso-
lute values.

(c) Morphological segmentation into dales was
applied.

(d) Threshold-based isolation of the top-most
regions, with varying thresholds depending on
the surface condition.

For the LPBF top surface, the threshold was
applied at the value of the mean height, plus one times
the standard deviation; for the EBPBF angled surface,
the threshold was set at themean height plus half stan-
dard deviation; and for the EBPBF side surface the
threshold was set at the mean height. These values
were chosen as optimised to isolate the top-most
regions corresponding to the protruding formations.

2.4. Segmentation using active contours
Active contours is a method that, starting from an
initial guess, iteratively refines the position of a closed
contour that is meant to separate the region of interest
from its surroundings [14, 21–24]. Strictly speaking,
active contours should be regarded as an edge refine-
ment method, not an edge identification method,
however, the method is always paired to an initial
contour rough-guessingmethod, so that the combina-
tion of both steps represent an actual edge identifica-
tion. Starting from the initial guess, active contours
makes use of mathematical models that mimic energy
minimisation, to iteratively move the contour towards
its most stable position (moving outwards or inwards,
depending on the variant). The final stable position is
assumed as the boundary of the feature being isolated.

In this work, active contours was implemented for
particle and spatter detection by subjecting the surface
topography to a L-filter with nesting index 70 μm. The
index was chosen based on the approximate size of
individual particles, to remove larger topographical
features. On the L-filtered surface, a thresholding
operation was applied at 90% of the height range on
the surface for the LPBF top surface and the EBPBF
angled surface, and at 70% of the height range for the
EBPBF side surface. The thresholding is designed to
isolate the top-most regions of the filtered topography,
which are most likely to correspond to protruded for-
mations such as spatter and particles. On the resulting
threshold map, topologically disconnected isles were
isolated, then some filtered out based on size, hor-
izontal aspect ratio and height (in the corresponding
height map) when not consistent with typical spatter
and particles of known geometric attributes. Bound-
aries extracted from the final isle map were individu-
ally used as initial contour rough guesses for running
the active contours algorithm. Active contours was
run using 100 iterations, and the geodesic ‘edge’
method [21]with negative contraction bias (leading to
outwards growth of the contour). The output of each
run was a segmentation mask that could be applied to
the surface topography to isolate the spatter/particle
features.

2.5. Comparison of segmentationmethods
A performance comparison of the segmentation
methods applied to the test cases was carried out by
designing a series of quantitative performance indica-
tors. The performance aspects targeted by the indica-
tors were (a) the feature identification capability, i.e.
the capability of producing segments containing the
targeted features; and (b) the accuracy in feature
boundary identification, i.e. the capability of segmen-
tation to place segment boundaries corresponding to
actual feature boundaries.

All the quantitative performance indicators
assume the availability of a reference, ideal segmenta-
tion result, where each targeted feature is
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appropriately represented by a segment, andwhere the
feature boundaries exactly correspond to the segment
boundaries. The reference segmentation result can be
compared with the result of each investigated method,
to assess performance of the latter. However, due to
lack of an optimal segmentation method whose per-
formance is recognised as ideal for the selected test
case, a segmentation result was hand-drawn for each
test surface to act as a comparison reference. Clearly
though, adopting a reference result created by a
human operator is susceptible to bias and repeat-
ability/reproducibility issues because of the presence
of subjective assessment [25].

The performance indicators illustrated in the fol-
lowing assume that any segmentation result, whether
generated by one of the compared methods or manu-
ally generated by the operator, is available in the form
of a map of identifiers (IDs). A map of IDs is a grid of
ID values, the same size as the original height map, so
that each location (map point) in the height map is
univocally associated to one and only one segment (the
one represented by the ID value associated to that
point). To maintain the useful parallel to digital ima-
ges, map points will be referred to as ‘pixels’ from now
onwards.

The following definitions for the quantitative per-
formance indicators assume the pre-processing steps
shown in see figure 2.

For each subset of the height map containing an
individual feature (figure 2(a)), the corresponding
reference, ideal segmentation result is assumed avail-
able (figure 2(b)). Notice that in the ideal result, the
feature has been identified (i.e. there is a segment cov-
ering the region occupied by the feature), and the fea-
ture boundary has been correctly localised (i.e. the
segment boundaries do coincide with the actual fea-
ture boundaries). In figure 2(c), the result of a segmen-
tation algorithm to be evaluated is shown. Clearly,
whilst a segment has been created approximately
corresponding to the position of the actual feature (i.e.
successful identification), the segment boundaries do
not correspond exactly to the feature boundaries, lead-
ing to different statuses associated with the segment
pixels, depending onwhere they fall with respect to the
actual feature (figure 2(d)). Such statuses can be
derived from the results of a binary classifier and are
summarised in table 1.

The following performance indicators, originally
devised for binary classifiers, can be adopted to
describe the performance of segmentation with
respect to an individual feature.

Figure 2.Pre-processing for the quantitative performance indicators for individual feature assessment showing (a) portion of surface
topography (heightmap)where a feature instance is visible, highlighted by the thick black contour (b) ideal segmentation result drawn
by hand; (c) result of one of the segmentation algorithms; (d) classification of the individual cells from comparing the segmentation
result with the reference, ideal one.
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High precision implies a low number of excess
pixels, a 100%precision implies zero excess pixels.
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High recall implies a lownumber ofmissing pixels,
a 100% recall implies zeromissing pixels.
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Specificity selectivity, true negative rate TNR
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.
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Similar to the concept of metrological precision,
high specificity implies a low number of excess pixels (
i.e. pixels wrongly recognised as belonging to the fea-
ture). However, different to precision, the viewpoint is
the identification of the background.

The above indicators can be computed for each
individual feature and its associated portion of the seg-
mentation map. Once repeated for all the individual
features presented on a test surfaces, they can be aggre-
gated into performance statistics (e.g. mean and stan-
dard deviation of each indicator). The indicators
provide information intuitively related tometrological
accuracy in feature boundary identification. To quan-
tify performance in feature identification, the number
of features that have no corresponding pixels in the
segmentation map (i.e. the number of totally ignored
features) is counted and compared to the total number
of features present in the analysed region (from the
reference segmentation result). The following ratio is
defined:

Identification error ratio
no. ignored features

no. total features
4

=

( )

The identification performance is defined as the
complement of the identification error ratio:

Identification performance

no. identified features

no. total features
no. total features no. ignored features

no. total features
5

=

=
-( )

( )

In addition, the indicators applied to individual
features can be applied to all pixels within the image to
offer a complementary assessment of the segmenta-
tions approaches with respect to the whole surface.
This is done by comparing the binary maps. Alongside
this, an indicator for the accuracy of the segmentation
approach can be used to describe the performance
with respect to thewhole image:

TP TN

TP FP TN FN
Accuracy

no. feature pixels no. background pixels

total no. pixels
.
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Accuracy provides an overall view of classification
performance. However, the result is skewed by differ-
ent number of feature and background pixels in the
analysed region of the segmentation map. Therefore,
the following balanced form can be adopted:

TP

TP FP

TN

TN TP

TPR TNR

Balanced accuracy
2

2
arithmetic average of recall and specificity.
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3. Results

In figures 3, 6 and 9, segmentation maps are shown
from the different segmentation methods applied to
the LPBF top surface. Pixels are coloured based on the
comparison with the ideal reference classification
results. Note that the coloured maps have been
obtained by aggregating the comparison results
obtained for each individual feature (particle or
spatter). Missing (feature) pixels are shown in blue,
thus particles/spatter features that are shown as
entirely blue are ignored features that reduce the
overall identification performance of the method. On
the contrary, identified (or partially identified) features
are marked with yellow pixels (feature pixels). For

Table 1.Classification of pixels in the segmentationmap depending onwhether they correspond to features or background pixels.

Class Description Short name (feature-centric)

TP (true positive) 1-valued segmentation pixel overlaid to a feature pixel in the heightmap feature pixel

FP (false positive) 1-valued segmentation pixel overlaid to a background pixel in the heightmap excess (feature) pixel
TN (true negative) 0-valued segmentation pixel overlaid to a background pixel background pixel

FN (false negative) 0-valued segmentation pixel overlaid to a feature pixel missing (feature) pixel
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those, excess pixels (orange) and missing pixels (blue)
provide an indication of boundary detection
performance.

Figures 4, 7 and 10 show boxplots of all the perfor-
mance metrics calculated on individual objects that
are found on both the reference and the segmentation
approach for each surface. Each object is considered as
a whole regardless of how small the overlap of match-
ing pixels might be; this is to determine how effective
the segmentation is for specific features on the surface.

Figures 5, 8 and 11 show the values of the perfor-
mance parameters calculated over the whole surface as
determined by the binary classification tests shown in
figures 3, 6 and 9. These results only give a general
assessment of the segmentation and do not consider
the effectiveness of boundary detection.

3.1. LPBF top surface
For the LPBF top surface (figure 3), where there is an
expected lownumber of features (particles and spatter)
on the surface, the morphological segmentation on
edges (figure 3(a)) resulted in the lowest identification
performance of 0.087 (about 9% identified features).
Contour stability identifiedmore features (figure 3(b))
with an identification performance of 0.621. Active
contours resulted in the highest identification perfor-
mance (figure 3(c))with a score of 0.776.

Figure 4 shows specificity, precision and recall cal-
culated on the matched features for the LPBF top sur-
face. For morphological segmentation on edges, the
boxplots were calculated for nine matched features.
The boxplot for contour stability was calculated on
sixty-four matching features and active contours was
calculated on eightymatching features.

Morphological segmentation on edges has the
highest scores for precision and specificity, both with
low dispersion. For precision, contour stability and
active contours have higher dispersion whilst contour

stability possesses a much higher median value very
close to unity. Active contours has the highest scores
and significantly low dispersion for recall, performing
better than the others, suggesting that it is often the
best approach to identify most of the spatter forma-
tions and particles present on the surface. All three
approaches result in high scores and low dispersion for
specificity, with all values greater than 0.99.

As shown in figure 5 for the whole surface, mor-
phological segmentation on edges possesses the lowest
scores for balanced accuracy and recall. However,
morphological segmentation on edges results in the
highest values for precision and specificity. Contour
stability appears to be not as precise as morphological
segmentation on edges. Otherwise, the performance
parameters for contour stability fall between the two
other approaches with a comparably higher score for
specificity. Active contours does result in a high score
for recall, suggesting that it does identify a lot of the
features as found in the reference, consistent with the
highest score for accuracy. However, lower scores of
precision and specificity suggest that active contours
generally overestimate both the size and number of
relevant features, a result that can be visualised in
figure 3.

3.2. EBPBF angled surface
The EBPBF angled surface (figure 6), features an
increased number of particles and spatter formations
with respect to the LPBF top surface. Morphological
segmentation on edges (figure 6(a)) resulted in an
identification performance of 0.574. Contour stability
resulted in the lowest score for this surface
(figure 6(b)), with an identification performance of
0.465. Active contours resulted in the highest identifi-
cation performance (figure 6(c)), with a score of 0.929.

Figure 7 shows the boxplots for individual match-
ing features between the reference and segmentation

Figure 3.Binary classification test results between themanual reference and the segmentation approach for LPBF top surface, in the
figure, yellow representsmatching pixels, orange represents excess pixels and blue denotesmissing pixels.
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results for the EBPBF angled side surface. For mor-
phological segmentation on edges, the boxplots were
calculated for seventy-three matched features. The
boxplots for contour stability were calculated on fifty-
nine matching features, whilst for active contours they
were calculated on 118matching features. As shown in
figures 1 and 6, there are some particles that appear
adhered to layer edges and as groups of particle
clusters.

In figure 7, a relatively high dispersion of the scores
for all segmentation methods is observed when com-
pared to the top surface, with exception of contour sta-
bility, likely due to the difficulty in defining contours
on particle clusters that have low gradients. Morpho-
logical segmentation on edges results in high scores for
precision and specificity but lower scores for recall.
Contour stability possesses the highest scores and low-
est dispersion for both precision and specificity. Active
contours result in the highest score and lowest

dispersion for recall, with the interquartile range
(IQR) above 0.8, following a similar trend as pre-
viously observed for the LPBF surface (figure 4).

For the performance indicators calculated over the
whole image, morphological segmentation on edges,
as shown in figure 8, resulted in the highest value of
balanced accuracy and very high values for precision
and recall. Contour stability still has reasonably high
values for precision and recall, but with a much lower
specificity leading to a lower balanced accuracy. Active
contours, whilst having a high recall and a good preci-
sion, has the lowest specificity suggesting that, whilst
there was good agreement between the method and
the reference, there was still some over-estimation of
features.

3.3. EBPBF side surface
The EBPBF side surface (figure 9), featured the highest
number of spatter formations and particles, with an

Figure 4.Precision, recall and specificity formatched features on the LPBF top surface.

8

Surf. Topogr.:Metrol. Prop. 7 (2019) 045020 LNewton et al



increased occurrence of particle clusters. Morphologi-
cal segmentation on edges (figure 9(a)) resulted in the
lowest identification performance with a value of
0.313. Contour stability identified more features
(figure 9(b)) with an identification performance of
0.417. Active contours resulted in the highest identifi-
cation performance (figure 9(c))with a score of 0.600.

The boxplots for the individual matching features
for the EBPBF side surface are shown in figure 10. Due

to the further increase in the number of features and
increased presence of agglomerations, there appears to
be an even greater dispersion for most of the perfor-
mance metrics across the segmentation approaches.
For morphological segmentation on edges, the box-
plots were calculated for 36 matched features. The
boxplots for contour stability were calculated on 48
matching features, whilst those for active contours
were calculated on 69matching features.

Figure 5.Performance indicators calculated over the whole datasets for the LPBF top surface.

Figure 6.Binary classification test results between themanual reference and the segmentation approach for EBPBF angled surface, in
the figure, yellow denotesmatching pixels, orange represents excess pixels and blue denotesmissing pixels.
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In figure 10, morphological segmentation on
edges results in the highest values and lowest disper-
sion for precision and specificity, with both contour
stability and active contours possessing higher disper-
sion and lowermedian scores. For recall, there is a very
large dispersion for active contours, however, the
median is significantly lower when compared to con-
tour stability. Whilst contour stability has the highest
score for recall, it also has high dispersion. In addition,
contour stability possesses the largest IQR for specifi-
city—which is also greater than the greatest result
found across all the surfaces considered.

The performance indicators calculated over the
whole image can be seen in figure 11. Morphological
segmentation on edges appears to have performed the
best for the EPBPF side surface, with the highest value
of balanced accuracy and very high values for precision
and recall. Contour stability still has reasonably high
values for precision and recall, but with a much lower

specificity leading to a lower balanced accuracy (not
shown). Active contours, whilst having a high recall
and a good precision, has the lowest specificity sug-
gesting overestimation of feature size.

3.4. Summary of the comparison results
For identification performance, active contours scored
the highest across all surface cases with morphological
segmentation on edges resulting in the lowest scores
for the LPBF top surface and the EBPBF side surface.
Contour stability performed reasonably for all surface
cases. It appears that the EBPBF angled surface was the
easiest surface to segment, as reflected by the highest
scores for each approach. On the contrary, the lowest
score for identification performance was observed for
morphological segmentation on edges on the LPBF
top surface.

The results for the individual matched objects
(particles, spatter and particle cluster formations)

Figure 7.Precision, recall and specificity formatched features on the EBPBF angled surface.
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show a trend for higher dispersion for the scores
(lower agreement) with increasing complexity (from
LPBF top surfaces to EBPBF side surfaces) which sug-
gests that, as the individual features on the surface get
more complex, all segmentation approaches find it
more difficult to identify features that agree with the
reference segmentation. Consistently, morphological
segmentation on edges reported high scores and a
lower dispersion for precison and recall, whilst active

contours generally had the higher scores for recall.
Contour stability generally performed better than
active contours for precision and specificity, and
showed scores for recall improving with increasing
complexity of the surface.

When comparing the result for the whole surface,
the increasing complexity and number of features is
reflected in the balanced accuracy, with the lowest
values found on the EBPBF side surface and the

Figure 8.Performance indicators calculated over the whole datasets for the EBPBF angled surface.

Figure 9.Binary classification test results between themanual reference and the segmentation approaches applied to the EBPBF side
surface. In thefigure, yellow denotesmatching pixels, orange represents excess pixels and blue denotesmissing pixels.
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highest scores found on the LPBF top surface. The
lowest values for precision were found on the LPBF
top surface where all methods were unable to identify
many of the spatter and particle features.

In general, there is a trade-off between recall and
specificity across all three methods. Active contours is
generally a good approach, with low precision and
specificity but high recall. On the contrary, morpholo-
gical segmentation on edges, whilst leading to lower
recall, possesses higher scores for precision and speci-
ficity. Essentially, active contours will find all objects
found in the reference, but at the cost of oversizing fea-
ture boundaries. Morphological segmentation on
edges may struggle to identify all objects in the refer-
ence but will more closely track the edges of the object
boundaries. Contour stability falls between the other
two methods in terms of performance, but is particu-
larly weak when confronted with agglomerated

particles, resulting in lower scores for recall on sur-
faces where these types of features are present.

4.Discussion

4.1. Limits of the segmentation validationmethod
A reference segmentation result is necessary to com-
pute the performance indicators that have been
proposed in this work. However, in the absence of an
ideal segmentation method to use as a reference, the
use of a manually obtained segmentation result has
been suggested. Clearly, the reliance on a result
obtained by a human operator is prone to be affected
by subjective bias, and such bias is not only operator-
dependent, but may also be application dependent, as
operators may find different challenges when proces-
sing different types of surfaces. Visual understanding

Figure 10.Precision, recall and specificity formatched features on the EBPBF side surface.
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of reconstructed, digital topographies is affected by
many confounding factors, including the influence of
measurement error, and-for complex topographic
objects-lack of definition of what an actual featuremay
look like, or even worse, how exactly a feature
boundary may be identified. In addition, performance
degrades with increased feature count, as the operator
is more likely to cause errors when large numbers of
features must be manually assessed. These issues
should be considered when assessing the reliability
and reproducibility of the results presented by this
paper. Regardless, the goal of this research is to
highlight the need for a quantitative evaluation of
segmentation performance, and several relevant,
quantitative indicators has been provided.

4.2. Additional computational costs of segmentation
The segmentation methods illustrated in this work
have been compared solely in terms of their perfor-
mance on a specific test case. It is important to point
out the fact that such performance is normally not
obtained out-of-the-box, and each segmentation
method requires a long tuning process, in order to
perform optimally on each class of surfaces and target
features. When choosing a segmentation method, the
number and complexity of actions and decisions
involved in tuning the method for the test case should
be considered aswell.

For example, morphological segmentation on
edges run with default parameters will always result in

over-segmentation, even if the original topography is
only moderately complex [19]. Subsequent post-pro-
cessing to reduce the number of segments is typically
required which, however, requires the careful tuning
of several parameters (as described in section 2.3).
Contour stability also requires careful tuning of sev-
eral parameters. In addition, contour stability was
designed to preferentially address steep edges, and per-
forms relatively weakly when encountering locally
smooth gradients, such as those observed with
agglomerated particles in the test case (see section 3.2).
Active contours is possibly the approach requiring the
most involving set-up, in particular because of the
need to perform a rough-guess of the initial contours,
which requires a whole new topography pre-proces-
sing step. Ultimately, thus, the choice of a segmenta-
tion method may also be dictated by complexity of its
set-up and fine-tuning, which in turn may be affected
by application-dependent circumstances.

Other challenges have been found to be con-
sistently shared across applications. For example, for
all the test cases and all the methods investigated, fil-
tering was required to remove larger-scale topo-
graphic formations which can confuse the
segmentation process. Though this aspect has not
been covered in detail in this paper, the identification
of optimal filtering parameters is often challenging
and still subject to trial and error. Initial set-up is
important for any segmentation approach and it is
important that the user is experienced with both

Figure 11.Performance indicators calculated over thewhole datasets for the EBPBF side surface.
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surface characterisation and the processes that pro-
duce the surface in order to meaningfully determine
the features being assessed.

4.3.Measurement uncertainty for feature-based
segmentation and characterisation
Measurement uncertainty for feature-based segmen-
tation and characterisation should be provided, just as
measurement uncertainty for areal topography data-
sets has been previously investigated [26–28]. Estima-
tion of uncertainty in feature-based characterisation is
an important challenge to the adoption of these
methods, requiring understanding of the influence
factors associated with the topography data from the
measurement as well as how this error may propagate
through the various stages of the segmentation and
characterisation.

5. Conclusions

Feature based characterisation is away to assess surface
topography that is complementary to texture para-
meters, and in some casesmay provide richer informa-
tion content, as features can be defined that more
closely match the subject of interest in any specific
surface investigation scenario.

Segmentation, the act of partitioning a surface
topography into regions (segments) plays a funda-
mental role in feature-identification. In particular, the
accuracy of a segmentation method at identifying
region boundaries directly influences the accuracy in
the assessment of a feature geometrical properties.

This paper presents amethod to compare segmen-
tation results and quantitatively assess their perfor-
mance under different viewpoints related to both the
capability of identifying features, and the capability to
accurately delimit feature boundaries. The method is
based on computing a series of quantitative perfor-
mance indicators and requires a reference (ideal seg-
mentation result) onwhich to compare. In the absence
of an ideally performing, algorithmic segmentation
method acting as a reference, the ideal result is cur-
rently produced manually by an expert operator.
Manual generation may create issues of reproduci-
bility, especially on complex surfaces with many fea-
tures. However, if multiple segmentation methods are
compared with each other using the same reference
result, the method can provide a comparative, com-
prehensive assessment of segmentation performance.

Future work would see themethodology proposed
used to compare segmentation methodologies and
settings in order to optimise the segmentation meth-
ods for specific features, such as particles and particle
clusters, as well as further developing segmentation
approaches to target different features present on the
additivemanufactured surface.
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