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A B S T R A C T   

Executive functions are associated with concurrent and future mathematics achievement, however, we know less 
about how they are involved in learning new mathematics material. We investigated the contribution of exec-
utive functions to learning new mathematical material, specifically rational number knowledge, in a standard 
classroom situation. We measured rational number knowledge as well as cognitive and applied executive 
functions prior to 8- to 9-year-old children’s first introduction to symbolic rational numbers. Rational number 
knowledge was measured again 6 and 20 months later. Latent growth curve models revealed that rational 
number knowledge at Time 1 was predominantly predicted by cognitive measures of executive function while 
growth in rational number knowledge was predominantly predicted by applied measures. These findings 
demonstrate that, to understand the role of executive functions in classroom learning, we must consider not only 
an individual’s executive function capacity, but also how well they can recruit this in applied settings. 
Educational relevance statement: Executive functions are the set of skills that allow us to control our thoughts and 
behaviour. We investigated the role of executive function skills in learning about rational numbers in mathe-
matics lessons. We found that executive function skills were related both to children’s performance of mathe-
matical procedures as well as how well they could learn new procedures over time. This suggests that one reason 
why children learn at different rates is differences in their executive function skills. Therefore, it may be 
beneficial for teachers to consider the executive function demands of classroom activities.   

1. The importance of mathematics 

Mathematics is essential for everyday activities such as managing 
money, planning schedules, and preparing meals. It is also important in 
more formal settings, including school and the workplace (OECD, 2013). 
Good mathematical skills are associated with higher rates of employ-
ment, better medical and financial decision making, and a better quality 
of life (Gerardi et al., 2013; Parsons & Bynner, 2005; Reyna & Brainerd, 
2007; Skagerlund et al., 2018). However, many individuals struggle to 
achieve the mathematical skills they need to succeed in everyday life 
(Department for Education, 2019). Mathematics is a hierarchical 
domain where new knowledge builds on existing understanding, 
therefore the foundational building blocks are crucial to developing 
more advanced skills. Understanding the learning that takes place to 
acquire these foundational skills is key to improve mathematics out-
comes for all learners. 

Mathematical skills are underpinned by a range of domain-specific 

and domain-general processes. Executive functions (EFs), the pro-
cesses that control our thoughts and actions (Diamond, 2013), are 
important for success in mathematics (e.g. Coolen et al., 2021; Peng 
et al., 2016; Van der Ven et al., 2012). Many existing studies investi-
gating EFs in mathematics have focussed on mathematics achievement; 
performance of skills and knowledge that has already been mastered. 
However, executive functions may be potentially even more important 
in the process of learning mathematics (Cragg et al., 2017). To investi-
gate this, performance of specific mathematical skills needs to be 
measured before and after individuals are taught a new topic, yet few 
studies of this kind have been conducted. In this study, we investigate 
the contribution of EFs to the learning of new mathematical material, 
specifically rational number knowledge, i.e. an understanding of frac-
tions and decimals. Below we first consider why rational number 
knowledge is a valuable domain to test these questions before reviewing 
previous research on the involvement of executive functions for per-
formance in this topic. Finally, we discuss what learning studies can 
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contribute to our understanding of the role of executive functions, over 
and above studies of children’s performance. 

2. Rational number knowledge 

A key development during primary school mathematics occurs when 
children move on from whole number reasoning and arithmetic to using 
fractions and decimals. It has been suggested that rational numbers hold 
a “central position” in mathematical development (Siegler et al., 2012), 
because they represent the first opportunity that individuals have to 
learn that whole number properties are not true of all numbers (e.g. 
multiplication does not always result in a larger number). Indeed, 
rational number knowledge in primary school predicts both later high 
school mathematics achievement (Siegler et al., 2012), and growth in 
mathematics achievement (Bailey et al., 2012), over and above the in-
fluence of whole number mathematics. 

There are two features of rational numbers that may pose difficulties 
for children. First, rational numbers don’t behave in the same way as 
whole numbers. For example, simple heuristics such as “multiplication 
makes more” no longer apply (e.g. 4 × ½ results in a number smaller 
than 4). Consequently, difficulties with rational numbers can stem from 
children inappropriately applying reasoning, biases, or procedures from 
whole number knowledge (often referred to as the whole number bias or 
natural number bias, Ni & Zhou, 2005). Whole number magnitude in-
formation can interfere when children compare fraction magnitudes, for 
example, leading children to conclude that 4/7 is bigger than 4/5 
because 7 is bigger than 5 (Van Hoof et al., 2015). Similarly, children 
often inappropriately apply the whole number heuristic that longer 
numbers are larger (e.g. 125 is larger than 45) to decimal numbers (i.e. 
concluding that 0.125 is larger than 0.45; Vamvakoussi & Vosniadou, 
2004). Children also have difficulty performing arithmetic with frac-
tions, and often inappropriately apply strategies from whole number 
arithmetic or confuse the procedures for addition/subtraction with 
those for multiplication/division (Siegler & Pyke, 2013). Overcoming 
established knowledge and procedures is known to rely on executive 
functions, in particular inhibition, in order to suppress this previously 
relevant, but currently inappropriate, information (e.g. Rossi et al., 
2019). 

Second, unlike whole numbers there are multiple ways to represent 
the same rational number (e.g. ‘half’ as 0.5, 1/2, 2/4, 50 %), as well as 
multiple ways of conceptualising them: as a part-whole, a ratio, a 
magnitude, or an operation (e.g. “what is half of…”). Coordinating and 
switching between these different representations and meanings can be 
particularly challenging (Moss, 2005). Switching between representa-
tions is a hallmark of executive functions, requiring the ability to hold 
multiple representations in mind as well as to suppress one represen-
tation in order to work with another (see Cragg & Chevalier, 2009 for a 
review). 

3. Executive functions and rational number knowledge 

Executive functions may play a particularly important role when 
learning and operating with rational numbers. A number of studies have 
assessed the contribution of a range of cognitive variables, including 
executive functions, on multiple measures of rational number knowl-
edge including fraction concepts, fraction procedures, fraction arith-
metic, and fraction estimation with cross-sectional or longitudinal data 
(Hansen et al., 2015; Hecht et al., 2003; Jordan et al., 2013; Stelzer et al., 
2021; Vukovic et al., 2014; Ye et al., 2016). In sum, they found that 
working memory was associated with fraction outcomes, but often 
operated indirectly by building general numerical competencies such as 
calculation skill (e.g. multiplication and division skills) and magnitude 
reasoning (e.g. whole number line estimation), which in turn helped 
fraction performance. 

Other studies have specifically investigated the role of inhibition in 
rational number knowledge (Avgerinou & Tolmie, 2020; Fitzsimmons 

et al., 2020; Gómez et al., 2015). Gómez et al. (2015) found that chil-
dren’s accuracy scores on a fraction comparison task were significantly 
associated with their inhibition scores on a numerical Stroop task, 
although this relationship was mediated by general mathematics 
achievement. Furthermore, Fitzsimmons et al. (2020) did not find any 
evidence that inhibition skills helped adults perform a rational number 
line estimation task. Finally, Avgerinou and Tolmie (2020) found that 
performance on a non-numerical Stroop task was associated with 8–10 
year olds’ speed on a magnitude comparison task involving fractions and 
decimals, but only when presented under a high cognitive load (i.e. 
when rational numbers were presented with additional, unnecessary 
information such as pictures). Inhibition might therefore have a nuanced 
relationship with rational number knowledge, where it is needed more 
in cognitively demanding conditions. This might be particularly relevant 
for learning situations because building and integrating new knowledge 
is particularly cognitively demanding, and classroom environments 
contain multiple sources of information that need filtering. 

In addition to standard cognitive measures of executive function, 
several studies found that teacher ratings of children’s attention and 
behaviour were a unique predictor of performance on different fraction 
tasks alongside working memory (Hansen et al., 2015; Hecht et al., 
2003; Jordan et al., 2013; Vukovic et al., 2014; Ye et al., 2016). This 
highlights the importance of considering observed behaviour in the 
classroom in addition to performance on cognitive tests. Teacher ratings 
provide insight into how well children can control their attention and 
behaviour in busy classroom situations. However, questionnaire ratings 
of executive function behaviour often show weak correlations with 
standard cognitive measures (Nin et al., 2022; Saunders et al., 2018). 
Moreover, previous research suggests that these two types of measures 
contribute differently to academic achievement (Gerst et al., 2017; Ten 
Eycke & Dewey, 2016). This suggests that these types of measures may 
index different aspects of children’s executive function and behavioural 
control. It is plausible that these different aspects may relate to different 
learning outcomes. Consequently, to understand the role of domain- 
general skills in children’s mathematics learning we need to consider 
measures of both cognitive and behavioural aspects of executive func-
tion skills. 

4. The role of executive functions in learning 

There is now a substantial body of literature on the relationship 
between executive functions and concurrent, as well as future, mathe-
matics achievement. We believe that while these studies provide valu-
able information on the role of executive functions, they do not provide 
specific evidence of the importance of executive function for children’s 
learning. Many longitudinal designs capture general or specific measures 
of children’s performance at different timepoints, but aren’t typically 
designed to focus on material currently being taught in the classroom. 
Children’s ability to understand and remember new information, pro-
cedures and concepts is related to their executive functions (Bascandziev 
et al., 2016, 2018; Grenell & Carlson, 2021; Miller et al., 2016), and this 
is likely to also play out in a classroom situation where they’re being 
taught new material. Longitudinal designs are unlikely to be sensitive 
enough to isolate this specific mechanism. 

We are unaware of any research that has specifically investigated the 
role of executive functions in learning new mathematical material in 
classroom settings. The closest research that has been carried out is 
tutoring studies that track changes in students’ knowledge across a 
relatively short timeframe during which they receive individual or small 
group instruction (Fuchs et al., 2005, 2013; Powell et al., 2009, 2017; 
Powell & Fuchs, 2010; Supekar et al., 2013). Many of these studies were 
concerned with neural predictors (Iuculano et al., 2011; Jolles et al., 
2016; Supekar et al., 2013) and the severity or type of pre-existing 
mathematics difficulties (Powell et al., 2009). However, a small num-
ber have investigated the role of general cognitive skills (e.g. executive 
functions, IQ, reading, attention) as well (Fuchs et al., 2005, 2013; 
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Iuculano et al., 2015; Supekar et al., 2013). For example, Fuchs et al. 
(2005, 2013) tracked the performance of 6–7-year-olds at risk of 
mathematics difficulties as they underwent small group tutoring (3 
sessions per week for 16 weeks) to improve simple arithmetic. They 
found that working memory and teachers’ ratings of attention predicted 
performance on mathematics measures at the end of the period of 
tutoring, indicating that children’s executive functions do have an 
impact on their ability to learn new mathematical material. A similar 
study (Powell et al., 2017) compared the influence of child-level pre-
dictors on responsiveness to calculation and word problem tutoring in 
at-risk 7–8-year-olds. They found that children with greater working 
memory benefitted more from calculation training, but not word prob-
lem training, compared to children with lower working memory ca-
pacity. This suggests that good executive functions may help children to 
compensate for poor mathematics skills. While these studies of small 
group and individual tutoring in at-risk populations indicate a potential 
role for executive functions in mathematical learning, it remains unclear 
whether these findings generalise to all learners in a standard classroom 
situation. This is what we aimed to investigate in the current study. 

5. The current study 

This study compared the role of cognitive and behavioural aspects of 
executive function skills in learning new mathematical material in 
classroom settings, using rational number learning as an example. We 
included two types of executive function tasks and measures: The first 
were standard measures of cognitive executive function processes (vi-
suospatial working memory, inhibition, shifting); the second were 
measures of applied executive function skills and behaviours (following 
instructions, teacher ratings, classroom behaviours). Based on previous 
research we predicted that all three cognitive executive function pro-
cesses would be related to performance of mathematics. We also pre-
dicted that cognitive vs. applied measures would contribute differently 
to children’s learning of new mathematical material over time. We fol-
lowed a single cohort of 8–9-year-olds over the course of 20 months, at 
the start of which they received classroom instruction on rational 
numbers. Children came from the same school, which provides some 
assurance that the children experienced similar educational environ-
ments and teaching practices. We used structural equation modelling to 
assess whether executive functions explain individual differences in 
growth of rational number knowledge across three timepoints. 

6. Method 

6.1. Participants 

Eighty-eight 8–9-year-olds (M = 8.58, SD = 0.29, 52 female) took 
part. All children attended a suburban primary school in a predomi-
nantly White British, average socio-economic status neighbourhood. 
Parents provided informed consent and children provided assent to take 
part. Ethical approval for the study was obtained from the Lough-
borough University Ethics Review Sub-Committee. 

All parents provided consent and therefore we included the entire 
Year 4 cohort (3 classes). No children were excluded from the study. All 
children were following the same curriculum and thus the sample may 
include children with special education needs. The children were all in 
the same educational environment and were taught using the same 
scheme of work to the same schedule. Schools in the UK are required to 
follow the National Curriculum, however this provides only a high-level 
description of topics and does not give detailed descriptions of precisely 
what should be taught, how and when. To achieve our aim of closely 
associating the study to instruction of a particular topic required all 
children to be in the same educational environment and thus would not 
be possible across different schools or year groups. We collaborated with 
teachers in the design of the study, including: identifying a suitable 
mathematical topic (rational numbers), inclusion of the following 

instructions task, the practicalities of timing of assessment points in 
relation to classroom instruction. 

6.2. Design and procedure 

The study had three testing time-points (Time 1, Time 2, Time 3), 
determined in collaboration with the class teachers. Baseline testing at 
Time 1 took place immediately before teachers delivered the first block 
of focused teaching about fractions and decimals. Teachers returned to 
this topic to recap and further develop children’s knowledge periodi-
cally between Time 1 and Time 2 (6 months later). Time 2 testing took 
place immediately following one of these recap weeks. Time 3 testing 
took place 14 months after Time 2. Although material about fractions 
and decimals had been taught during this period, Time 3 testing did not 
closely follow a period of studying this material. The National Curric-
ulum followed by the children included: recognise, write, compare and 
order unit and non-unit fractions (symbolically and using diagrams), 
addition and subtraction of fractions with the same denominators, 
recognise and write decimals with tenths and hundredths, compare 
numbers with the same number of decimal places, solve simple problems 
involving these fractions and decimals. 

At Time 1 each participant was tested individually in a one-hour 
session in a quiet room away from the classroom. This session 
included a rational number knowledge test, four measures of cognitive 
executive function processes (based on Cragg et al., 2017), and one 
measure of applied executive function skills: the following instructions 
task (based on Yang et al., 2014). The WIAT-II Numerical Operations 
subtest and a rational number estimation task were completed in a 
separate whole-class session. At Time 2 and Time 3 the rational number 
knowledge test was administered in a ten-minute individual session 
away from the classroom and the rational number estimation task was 
assessed in a whole-class session. Two further measures of applied ex-
ecutive function skills were collected: At Time 1, teachers were asked to 
rate children’s executive function skills using the Behavior Rating In-
ventory of Executive Function (BRIEF; Gioia et al., 2000), and obser-
vations of each child’s attention and behaviour in the classroom were 
recorded during the first block of focused teaching (based on Blatchford 
et al., 2011). 

6.3. Tasks 

6.3.1. Mathematics tasks 

6.3.1.1. Rational number knowledge. Children completed a worksheet 
assessing their knowledge of decimals and fractions. Each question was 
read aloud by the researcher and repeated once if requested. Twelve 
items assessed knowledge of fractions and 12 items assessed knowledge 
of decimals. The questions were designed to reflect the curriculum 
content for fractions in Year 4 at that time. Skills assessed included: (i) 
the ability to flexibly switch between types of representations (for 
example, writing verbally presented fractions/decimals, matching 
symbolic fractions to concrete objects, matching pictures to written 
symbols), (ii) understanding of fraction and decimal magnitude 
(comparing and ordering) and (iii) simple computation (addition or 
subtraction). The questions included verbal word problems, written 
arithmetic, pictures and 3D objects and there were a variety of response 
types, including written responses, multiple choice, ordering and 
drawing. The measure used was total correct score (max = 24) and a 
higher score reflected better performance. Omega reliability for the 
Time 1 data was 0.82. 

6.3.1.2. Rational number estimation. Each child was given a booklet of 
10 number lines on A4 paper. Each trial was on a separate page with a 
25 cm line placed in the centre of the page, with ‘0’ above the left end of 
the line and ‘1’ above the right end of the line. Children were asked to 
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mark the position of a fraction or decimal (written in the centre at the 
top of the page). Fraction items (1/19, 1/7, 1/4, 3/8, 1/2, 4/7, 2/3, 7/9, 
5/6, 12/13) and decimal items (0.05, 0.1, 0.25, 0.4, 0.5, 0.57, 0.67, 
0.78, 0.8, 0.9) were matched for approximate magnitude. Children 
completed all the fraction items in one block and all the decimal items in 
another block with items pseudo-randomised within each block. Block 
order was counterbalanced across participants. The measure of perfor-
mance was percent absolute error (the average absolute distance be-
tween the actual and estimated positions of numbers on the line, divided 
by the length of the line and multiplied by 100) and a lower score re-
flected better performance. Omega reliability for the Time 1 data was 
0.59. 

6.3.1.3. Arithmetic. The WIAT-IIUK (Wecshler Individual Achievement 
Test; Wechsler, 2005) Numerical Operations subtest was administered. 
This is a paper-and-pencil test that measures the ability to solve written 
calculations and simple equations. The total number of correct items 
(starting from item 7 with credit given for the earlier items) was used as 
the outcome measure and a higher score reflected better performance. 
Reliability for this age group is 0.91 (Wechsler, 2005). 

6.3.2. Cognitive executive function processes 

6.3.2.1. Visuospatial working memory (VSWM). We used the VSWM 
measure from Cragg et al. (2017). A series of 3 × 3 grids of black squares 
were presented with symbols on three of the squares. The children had 
to click on the odd-one-out symbol as quickly as they could. Following a 
series of grids (determined by the span length) the children were asked 
to recall the position of the odd-one-out symbol on each grid, in the 
correct order. The children first completed a practice block with one trial 
containing a span length of one and two trials with a span length of two. 
The practice trials could be repeated if necessary. For the test trials there 
were three trials at each span length, beginning with a span length of 
two. If the children responded correctly to at least one of the trials at 
each span length they continued to the next span length, up to a 
maximum of nine. The measure used was the total number of locations 
correctly recalled and a higher score reflected better performance. 

6.3.2.2. Non-numerical inhibition. We used the non-numerical inhibi-
tion measure from Cragg et al. (2017). On each trial two animal images 
were presented on either side of the screen, one large animal (e.g. an 
elephant or giraffe) and one small animal (e.g. a ladybird or frog). One of 
the animal images was presented with an area on screen four times 
larger than the other image. On congruent trials (50 %) the animal that 
was larger in real life was also the larger image on the screen, and on 
incongruent trials (50 %) the animal that was smaller in real life was the 
larger image on the screen. The children were asked to press a button on 
the keyboard that corresponded to the side of the screen of the larger 
animal in real life. 

The task included a practice block of eight trials and two test blocks 
of 48 trials. At the start of the task the children were shown the animal 
images individually and asked whether the animal was large or small in 
real life. All children completed this without problem, indicating that 
they had the necessary real-world knowledge to perform the task. Me-
dian reaction times for correct trials were calculated for the congruent 
and incongruent trials. The measure of inhibition was the difference in 
reaction time for congruent and incongruent trials. Smaller differences 
indicated better performance. 

6.3.2.3. Numerical inhibition. We used the numerical inhibition mea-
sure from Cragg et al. (2017). On each trial, children were shown two 
arrays of white dots on opposite sides of a black screen, created using the 
Gebuis and Reynvoet (2011) method to control continuous quantities. 
The ratio between the number of dots ranged from 0.5 to 0.8 and the 
number of dots in each array ranged from 5 to 28. On congruent trials 

(50 %) the more numerous array had larger dots and the array encom-
passed a larger area. On incongruent trials (50 %) the more numerous 
array had smaller dots and the array encompassed a smaller area. The 
children were asked to press a button on the keyboard that corresponded 
to the side that the larger array was on. Two example trials were 
completed first and feedback was provided. The children then 
completed six practice trials and two blocks of 20 test trials. Accuracy 
was calculated for the congruent and incongruent trials separately. The 
measure of inhibition was the difference in accuracy for congruent and 
incongruent trials. Smaller differences indicated better performance. 
Omega reliability based on accuracy was 0.56 for congruent trials and 
0.62 for incongruent trials. 

6.3.2.4. Shifting. Children completed the Animal Sorting subtest from 
the NEPSY-II (Korkman et al., 2007). The test contains 8 cards coloured 
blue or yellow which contain pictures of animals (e.g., a cat, 2 fish, an 
elephant, etc.) within a scene. The cards can be sorted in different ways, 
for example blue vs. yellow cards, pictures with sun vs. pictures with 
rain. Following an example, the children were given up to 360 s to sort 
the cards in as many different ways as they could. If children stated they 
had finished, or if 120 s elapsed without a response, the test was dis-
continued. A raw score of the total number of permissible sorts was 
calculated. A higher score indicated better performance. Reliability for 
raw scores for this age group is 0.7 (Korkman et al., 2007). 

6.3.3. Applied executive function skills 

6.3.3.1. Following instructions task. We used an adapted version of the 
following instructions task from Yang et al. (2014). Six different col-
oured objects, including pencils, rubbers and rulers were laid out in front 
of a set of six different coloured locations, including gift bags, folders 
and boxes. The children wore earphones and heard pre-recorded audi-
tory instructions about what to do with these objects, for example, “Spin 
the black pencil”, “Put the pink rubber in the blue bag.” There were eight 
trials, ranging from lists of two instructions up to five, presented in the 
same pseudorandomised order for all participants. The arrangement of 
both objects and locations differed on each trial. The experimenter 
recorded when the participants first moved to follow the instructions, 
and whether they were accurate in following the whole list. Accuracy 
scores for completing the whole set was used as the measure. A higher 
score reflects better performance. Omega reliability was 0.79. 

6.3.3.2. Teacher ratings of executive function. Teachers were asked to 
complete the Behavior Rating Inventory of Executive Function (BRIEF; 
Gioia et al., 2000) for each child. This includes 86 items designed to 
measure everyday behaviours associated with different areas of execu-
tive function in children aged 5 to 18 years. We used the raw score for 
the Global Executive Composite where a lower score reflects better 
everyday executive function. Internal reliability of the Global Executive 
Composite is 0.98 (Gioia et al., 2000). 

6.3.3.3. Classroom observations of attention and behaviour. Each child 
was observed for between four and fifteen 10 s periods (mean = 11.1). 
For the majority of children (n = 74) these observations were across two 
lessons on different days. For each 10 s observation period their 
behaviour was coded as one of three on-task or four off-task behaviours 
(see Blatchford et al., 2011 for details). Following piloting we used a 
simplified version of their coding with the following categories: on-task 
independently, on-task with teacher, on-task with other children, off- 
task independently passive, off-task independently active, off-task 
actively with other children, off-task with teacher. All observations 
were completed by the same trained observer and a time signal (audible 
only to the researcher) was used to mark 10 s intervals. The measure 
used was the overall proportion of time on-task. A higher score reflects 
more time on-task. At the end of the study we also asked teachers to rate 
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each child’s behaviour on a 5-item scale measuring children’s attention 
and behaviour in class (items: Follows rules and instructions; listens 
attentively; completes work on time; works autonomously; works and 
play co-operatively with other children). The correlation between pro-
portion of time on-task from our classroom observations and overall 
teacher ratings was rs = 0.41, p < .001). 

6.4. Analysis plan 

We first conducted descriptive statistics and correlations among 
variables, followed by a repeated-measures ANOVA of the outcome 
measures to explore the pattern of growth. The data were then analysed 
with Latent Growth Curve Modelling (LGM), using Mplus (Version 8.1; 
Muthén & Muthén, 1998). We modelled growth trajectories for both the 
rational number knowledge and estimation tasks and explored the de-
gree to which cognitive executive function processes, applied executive 
function skills and prior arithmetic skills predicted initial performance 
and growth over the three time points. First, the development of per-
formance on the rational number and estimation tasks was investigated 
in two separate univariate latent growth curve models (unconditional 
models). Next, models including the predictor variables were fit to the 
data for each outcome measure (conditional models). Models were 
evaluated based on overall model fit indices (Browne & Cudeck, 1992; 
Byrne, 2012; Hu & Bentler, 1999; see Table 3). 

7. Results 

7.1. Descriptive statistics and preliminary analyses 

Table 1 presents the descriptive statistics and Table 2 presents the 
correlations for all measures. The measures were all within the accept-
able limits of skewness (< 3) and kurtosis (<4; Kline, 2011), except for 
the numerical inhibition measure. This was due to one participant who 
did not fall within 3 standard deviation of the mean and to correct for 
this we excluded their numerical inhibition measure from the analyses. 

To examine children’s average development, we performed two 
repeated measures ANOVAs, one for rational number knowledge and 
one for rational number estimation, with Time (three time points) as the 
within-subjects factor (see Fig. 1). For rational number knowledge there 
was a significant main effect of Time, F(2, 170) = 133.84, p < .001, ηp

2 =

0.61. Tests of polynomials indicated a significant linear effect, F(1, 85) 
= 422.88, p < .001, ηp

2 = 0.76, and a non-significant quadratic effect of 
Time, F(1, 85) = 0.91, p = .663, ηp

2 = 0.002. For rational number esti-
mation there was also a significant main effect of Time, F(2, 168) =
21.520, p < .001, ηp

2 = 0.61. Tests of polynomials indicated a significant 
linear effect, F(1, 84) = 36.988, p < .001, ηp

2 = 0.31, and a non- 

significant quadratic effect of Time, F(1, 84) = 1.005, p = .319, ηp
2 =

0.01. 

7.2. Growth curve models 

7.2.1. Rational number knowledge 
First, we built an unconditional growth model (without predictors) 

to identify an appropriate growth curve that would accurately depict 
development on the individual level. Based on the above ANOVA results, 
we initially hypothesised linear growth across time. This model included 
initial status (i.e. intercept) and growth (i.e. slope) latent factors. The 
factor loadings for the intercept were fixed to 1. For the slope factor, the 
first factor loading (the outcome in the first measurement point) was 
fixed to 0 to represent initial status and the other two factor loadings 
were fixed to 0.6 and 2, respectively according to the unequal intervals 
between time points. This model was not identified due to negative re-
sidual variance values for Time 1 and Time 3. As both values for the 
negative residual variance were small and insignificant, we fixed them 
to 0 and reran the model. The linear growth model did not demonstrate 
good fit based on the RMSEA (0.242), CFI (0.904), TLI (0.904) and 
SRMR (0.085) fit indices. 

As Fig. 1 demonstrates that growth was not perfectly linear, we ran a 
non-linear latent growth model where the slope factor loadings for the 
outcome at Time 3 was freely estimated. This model demonstrated good 
fit to the data and was accepted as our final model (Table 3). The esti-
mated factor loading for Time 3 was 1.143 (SE = 1.116, p < .001). The 
significant and positive mean of the slope factor (M = 6.090, p < .001) 
indicated a substantial gain in rational number knowledge over the 
period of 20 months. There was significant variance in the intercept and 
the slope (Vintercept = 21.563, p < .001, and Vslope = 13.238, p < .05, 
respectively), indicating variability in the rate of children’s learning. 
The negative correlation between the intercept and the slope, r =
− 0.135, was not significant (p = .931), indicating that there is no sig-
nificant relationship between a child’s performance at Time 1 and 
learning over time. 

Having identified the best-fitting unconditional model, we subse-
quently ran two conditional models by including predictors. In the first 
conditional model, arithmetic skill, VSWM, non-numerical inhibition, 
numerical inhibition, shifting, following instructions, BRIEF, and class-
room observation were used to predict the intercept and slope growth 
factors. A second conditional model was run without arithmetic skill as a 
predictor. 

Both models fit the data well (see Table 3 for the fit indices). The 
standardised regression coefficients are reported in Table 4 for model 1 
and Table 5 for model 2. In conditional model 1 only arithmetic skill (β 
= 0.576) was a significant predictor of rational number knowledge at 

Table 1 
Descriptive statistics of the outcome measures at three time points and the time-invariant predictors.   

M SD Min. Max. Skew. Kurt. 

Outcome measures       
Rational Number Knowledge 1  7.26  4.32  1.00  21.00  1.22  1.56 
Rational Number Knowledge 2  10.93  5.96  0.00  24.00  0.60  − 0.64 
Rational Number Knowledge 3  14.29  5.76  0.00  24.00  − 0.20  − 0.89 
Rational Number Estimation 1  25.11  8.27  3.19  40.64  − 0.89  0.66 
Rational Number Estimation 2  22.54  10.28  2.31  51.19  − 0.04  − 0.37 
Rational Number Estimation 3  18.47  10.17  1.74  41.88  0.09  − 0.66 

Predictors       
Arithmetic  16.09  4.14  9.00  30.00  1.03  1.47 
VSWM  26.70  13.27  3.00  64.00  0.20  − 0.33 
Non-numerical inhibition  0.13  0.08  − 0.05  0.35  0.28  0.51 
Numerical inhibition  0.31  0.19  − 0.20  0.85  2.81  15.89 
Shifting  4.25  2.10  0.00  9.00  − 0.11  − 0.50 
Following instructions  0.73  0.27  0.00  1.00  − 0.65  − 0.55 
BRIEF  105.19  39.29  63.00  214  1.32  0.83 
Classroom observations  0.76  0.19  0.27  1.00  − 0.05  − 0.83 

Note. VSWM = Visuospatial Working Memory. Min./Max. = Observed minimum/maximum. Skew = Skewness, Kurt = Kurtosis. n = 88. 
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Time 1, accounting for 58 % of the variance in the intercept factor. 
Following instructions (β = 0.319) and BRIEF (β = − 0.315) were sig-
nificant predictors of growth, accounting for 34 % of the variance in the 
slope factor. In conditional model 2, VSWM (β = 0.264), non-numerical 
inhibition (β = − 0.239) and BRIEF (β = − 0.288) were significant pre-
dictors of Time 1 performance, accounting for 38 % of the variance. 
Following instructions (β = 0.296) and BRIEF (β = − 0.288) were again 
significant predictors of growth, accounting for 31 % of the variance in 
model 2. In both models, initial status correlated negatively with the 
slope factor, (model 1: r = − 0.55, p < .001; model 2: r = − 0.48, p <
.001). 

7.2.2. Rational number estimation 
Similarly to rational number knowledge, first, we built an uncondi-

tional linear growth model for rational number estimation without 
predictors, using the factor loadings to 0, 0.6 and 2 for the outcomes 
measured at three time points. This model demonstrated good fit to the 
data (see Table 3) and we accepted this as our final unconditional model. 
There was significant variance in both the intercept and slope (Vintercept 
= 54.663, p < .001, and Vslope = 20.741, p < .001, respectively). The 
initial status correlated negatively with the slope factor, r = − 0.27, p =
.05. 

We subsequently ran two conditional models by including pre-
dictors. In the first conditional model, arithmetic skill, VSWM, non- 
numerical inhibition, numerical inhibition, shifting, following in-
structions, BRIEF, and classroom observation were used to predict the 
intercept and slope growth factors. A second conditional model was run 
without arithmetic skill as a predictor. Neither Conditional Model 1 nor 
Model 2 demonstrated good fit (see Table 3 for the fit indices). Based on 
the modification indices, we tried several things to improve model fit, e. 
g. (i) allowing the BRIEF measure to covary with the outcome at Time 1 
and (ii) adding covariance terms between the outcomes and BRIEF 
measure and adding some constraints (i.e. equal residual variances of 
the growth factors and equal effects on each time point). However, the 
fit deteriorated every time. As we were not able to address the exact 
cause of the misfit, we were not able to adjust and test the conditional 

Fig. 1. Average development of rational number knowledge and rational 
number estimation across the three time points. (Knowledge: higher scores 
mean better performance, estimation: lower scores mean better performance.) 

Ta
bl

e 
2 

Co
rr

el
at

io
ns

 a
m

on
g 

th
e 

st
ud

y 
va

ri
ab

le
s.

   

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

1.
 R

N
K 

1 
 

0.
77

9*
* 

 
0.

73
6*

* 
 

−
0.

60
4*

* 
 

−
0.

69
7*

* 
 

−
0.

57
2*

* 
 

0.
72

4*
* 

 
0.

42
5*

* 
 

−
0.

17
5 

 
−

0.
13

6 
 

0.
29

0*
* 

 
0.

21
4*

  
−

0.
42

6*
* 

 
0.

30
7*

* 
2.

 R
N

K 
2 

  
0.

75
0*

* 
 

−
0.

62
3*

* 
 

−
0.

69
5*

* 
 

−
0.

68
2*

* 
 

0.
68

3*
* 

 
0.

42
7*

* 
 

−
0.

11
0 

 
−

0.
03

2 
 

0.
32

2*
* 

 
0.

33
3*

* 
 

−
0.

45
6*

* 
 

0.
43

0*
* 

3.
 R

N
K 

3 
   

−
0.

51
7*

* 
 

−
0.

67
9*

* 
 

−
0.

68
5*

* 
 

0.
65

8*
* 

 
0.

42
8*

* 
 

−
0.

25
7*

* 
 

−
0.

12
1 

 
0.

29
4*

* 
 

0.
29

2*
* 

 
−

0.
52

1*
* 

 
0.

38
4*

* 
4.

 R
N

E 
1 

   
 

0.
59

9*
* 

 
0.

43
7*

* 
 

−
0.

60
8*

* 
 

−
0.

38
7*

* 
 

0.
00

4 
 

0.
00

0 
 

−
0.

32
6*

* 
 

−
0.

04
8 

 
0.

20
3*

  
−

0.
34

1*
* 

5.
 R

N
E 

2 
   

  
0.

58
2*

* 
 

−
0.

56
6*

* 
 

−
0.

29
8*

* 
 

0.
21

3*
  

0.
07

9 
 

−
0.

20
4*

  
−

0.
10

0 
 

0.
41

2*
* 

 
−

0.
26

2*
* 

6.
 R

N
E 

3 
   

   
−

0.
43

7*
* 

 
−

0.
31

9*
* 

 
0.

18
1*

  
−

0.
01

0 
 

−
0.

32
8*

* 
 

−
0.

15
4 

 
0.

39
5*

* 
 

−
0.

19
6*

 
7.

 A
ri

th
m

et
ic

   
   

  
0.

38
0*

* 
 

−
0.

29
2*

* 
 

−
0.

01
1 

 
0.

35
8*

* 
 

0.
14

6 
 

−
0.

46
4*

* 
 

0.
30

1*
* 

8.
 V

SW
M

   
   

   
0.

04
6 

 
−

0.
07

5 
 

0.
28

6*
* 

 
0.

18
5*

  
−

0.
31

2*
* 

 
0.

34
3*

* 
9.

 N
on

-n
um

er
ic

al
 in

hi
bi

tio
n 

   
   

   
−

0.
02

6 
 

0.
10

8 
 

0.
07

9 
 

0.
03

9 
 

0.
11

6 
10

. N
um

er
ic

al
 in

hi
bi

tio
n 

   
   

   
 

−
0.

05
1 

 
−

0.
17

5 
 

−
0.

16
5 

 
0.

07
9 

11
. S

hi
fti

ng
   

   
   

   
0.

24
7*

  
−

0.
30

8*
* 

 
0.

31
7*

* 
12

. F
ol

lo
w

in
g 

in
st

ru
ct

io
ns

   
   

   
   

 
−

0.
02

9 
 

0.
13

3 
13

. B
RI

EF
   

   
   

   
  

−
0.

31
3*

* 
14

. C
la

ss
ro

om
 o

bs
er

va
tio

ns
   

   
   

   
  

1 

N
ot

e.
 R

N
K 
=

Ra
tio

na
l N

um
be

r 
Kn

ow
le

dg
e.

 R
N

E 
=

Ra
tio

na
l N

um
be

r 
Es

tim
at

io
n.

 V
SW

M
 =

Vi
su

os
pa

tia
l W

or
ki

ng
 M

em
or

y.
 

*
p 
<

.0
5.

 
**

p 
<

.0
1 

(1
-ta

ile
d)

. 

C. Gilmore et al.                                                                                                                                                                                                                                



Learning and Individual Differences 110 (2024) 102408

7

models further, and therefore did not interpret estimation scores any 
further. 

8. Discussion 

In this study we examined the role of executive functions in rational 
number learning across three time points. We included two types of 
executive function tasks and measures; standard measures of cognitive 
executive function processes which capture children’s capacity to control 
their attention and behaviour in a focused situation, and broader mea-
sures of children’s applied executive function skills, which capture the 
extent to which children control their attention and behaviour in a real- 
world environment. Our findings extend the previous literature on the 

relationship between executive function skills and rational number 
knowledge (Hansen et al., 2015; Hecht et al., 2003; Jordan et al., 2013; 
Stelzer et al., 2021; Vukovic et al., 2014; Ye et al., 2016) by separating 
out contributions to performance and learning. We found that applied 
executive function skills consistently predicted rational number 
learning. In contrast, children’s cognitive executive function processes 
were related to their performance of rational number knowledge at a 
single point in time, but only when arithmetic skills were not included in 
the model. Although performance on the rational number estimation 
task improved over time, the conditional models did not demonstrate a 
good fit. This may reflect, in part, lower internal reliability for the 
measure of rational number estimation than rational number knowl-
edge. We therefore base our interpretations on the rational number 
knowledge measure. 

We ran two conditional models to explore predictors of rational 
number learning, one including arithmetic skill in addition to the 
cognitive and applied executive function measures, and one without. 
When arithmetic skill was included in the model it was the only pre-
dictor of rational number knowledge at Time 1. In the second model, 
without arithmetic skill, Time 1 performance was associated with vi-
suospatial working memory, non-numerical inhibition and the BRIEF. 
Given the well-established strong relationship between executive func-
tion and arithmetic (e.g. Cragg et al., 2017; Peng et al., 2016) and the 
strong relationship between arithmetic and rational number knowledge 
(e.g. Jordan et al., 2013; Vukovic et al., 2014), it is not surprising that 
arithmetic was the strongest predictor of concurrent rational number 
knowledge. This is consistent with previous research into predictors of 
rational number knowledge and demonstrates the importance of prior 
arithmetic skills for initial levels of rational number knowledge, prior to 
focused instruction on this topic. 

In line with previous research (e.g. Jordan et al., 2013; Stelzer et al., 
2021) we found shared variance between executive function and 
domain-specific mathematics predictors, such that working memory and 
inhibition were the only significant predictors of concurrent rational 
number knowledge when arithmetic was not included in the model. This 
pattern of results supports framework models of mathematics whereby 
executive function skills feed into performance on specific components 
of mathematics, which in turn support overall mathematics achievement 
(Cragg et al., 2017; Geary, 2004; Gilmore, 2023). 

The conditional model produces two different measures, the inter-
cept and slope, which tap into different aspects of learning and perfor-
mance. Performance at Time 1 (intercept) captures both prior learning 
as well as the processes that are recruited when the task is performed. 
These processes include holding the question in mind, translating be-
tween representations (pictures, words and digits) and suppressing 
whole number knowledge, all while mentally calculating the answer. 
Time 1 scores were not at floor level (M = 7.26 out of 24), indicating that 

Table 3 
Fit indices on the unconditional and conditional (i.e. with predictors) latent growth models (LGMs) and the corresponding fit criteria.   

χ2 df χ2/df RMSEA CFI TLI SRMR 

Rational Number Knowledge 
Unconditional 0.904 1 0.904 0.000 1.000 1.0002 0.038 
Conditional Model 1 12.351 9 1.372 0.067 0.986 0.959 0.046 
Conditional Model 2 9.561 8 1.195 0.048 0.993 0.978 0.044  

Rational Number Estimation 
Unconditional 0.615 2 0.308 0.000 1.000 1.029 0.031 
Conditional Model 1 20.077 9 2.231 0.122 0.919 0.785 0.056 
Conditional Model 2 19.829 9 2.203 0.120 0.900 0.734 0.053  

Fit Criteria    
0 ≤ χ2/df ≤ 2 < 0.05 ≥ 0.95 ≥ 0.95 0 ≤ SRMR ≤0.05 

Note. χ2 = chi-square value; df = degrees of freedom; CFI = Comparative Fit Index; TLI = Tucker–Lewis Index; RMSEA = Root Mean Square Error Approximation; 
SRMR = Standardised Root Mean Square Residual.  

Table 4 
Standardised regression coefficients from Conditional Model 1 for intercept and 
slope growth factors of rational number knowledge.   

Intercept (Initial Status) Slope (Growth)  

β SE β SE 

Arithmetic  0.576**  0.084  − 0.076  0.162 
VSWM  0.131  0.081  0.100  0.141 
Non-numerical inhibition  − 0.066  0.079  − 0.225  0.135 
Numerical inhibition  − 0.133  0.075  − 0.020  0.132 
Shifting  − 0.011  0.082  − 0.067  0.143 
Following Instructions  0.070  0.075  0.319*  0.137 
BRIEF  − 0.127  0.084  − 0.315*  0.144 
Classroom observations  0.057  0.081  − 0.228  0.143 

Note. VSWM = Visuospatial Working Memory. 
* p < .05. 
** p < .01. 

Table 5 
Standardised regression coefficients from Conditional Model 2 for intercept and 
slope growth factors of rational number knowledge.   

Intercept (Initial Status) Slope (Growth)  

β SE β SE 

VSWM 0.264** 0.094 0.070 0.137 
Non-numerical inhibition − 0.239** 0.087 − 0.220 0.125 
Numerical inhibition − 0.154 0.089 − 0.024 0.129 
Shifting 0.098 0.096 − 0.074 0.136 
Following Instructions 0.116 0.091 0.296* 0.139 
BRIEF − 0.288** 0.095 − 0.288* 0.135 
Classroom observations 0.119 0.097 0.214 0.140 

Note. VSWM = Visuospatial Working Memory. 
* p < .05. 
** p < .01. 

C. Gilmore et al.                                                                                                                                                                                                                                



Learning and Individual Differences 110 (2024) 102408

8

children did have some existing rational number knowledge prior to the 
first formal block of instruction. Growth (slope) on the other hand, 
captures how well children have acquired new knowledge and skills 
over time. This is driven by how well they can connect new and existing 
knowledge, increase the efficiency of procedures and pay attention in 
the classroom. There was significant variability in both performance at 
Time 1 and growth over time, indicating the wide range of starting 
points and learning rates within a single classroom. 

Growth in rational number knowledge was predominantly predicted 
by applied executive function skills, namely performance on the 
following instructions task and teacher ratings on the BRIEF. This was 
consistent for both Model 1 (including arithmetic) and Model 2 (without 
arithmetic). This is in keeping with the notion that learning is driven by 
children’s attention and behaviour in the classroom as well as how well 
they can harness their executive function skills. It is logical that these 
classroom behavioural skills are important predictors of mathematics 
success. For example, children who focus and stay ‘on task’ are more 
likely to process information and experience a better quality and 
quantity of practice to help them learn new concepts and procedures 
compared to children who are distracted and do not engage with ma-
terial. There may also be an interaction between a child’s attention and 
behaviour and their level of prior knowledge. One recent study (Geary 
et al., 2021) found that 12–13-year-olds with poor in-class attention but 
good prior knowledge made less progress in mathematics in one year 
than those with good in-class attention and weaker prior knowledge. 
Thus, classroom attention is a key skill for mathematics success, as it 
may partially compensate for difficulties with other skills (e.g. 
knowledge). 

Perhaps surprisingly, performance on our cognitive visuospatial 
working memory measure was only weakly associated with growth. This 
appears to be at odds with previous studies showing that working 
memory predicts growth in mathematics achievement over time (Rib-
ner, 2020). However, a strong predictor of growth was performance on 
the following instructions task, which has been used as a measure of 
children’s ability to apply their working memory (Holmes et al., 2009). 
One interpretation of this is that cognitive tests of working memory 
measure the maximal capacity of what you can do in a controlled 
experimental setting, whereas applied measures such as the following 
instructions task, indicate how well you are able to recruit that capacity 
in a less controlled situation, more similar to everyday life. It is the raw 
capacity that may be important when actively processing mathematical 
information, as reflected by the relationship between working memory 
and performance at a single time point (Table 2). However, learning 
depends on how likely you are to recruit that capacity in busy 
demanding situations. Hence the applied working memory measure 
(following instructions) was related to learning over time. 

Teacher’s ratings of children’s everyday executive functions using 
the BRIEF were associated with learning over time in both models and 
Time 1 performance when arithmetic was not included in the model. 
Teachers’ judgements of a child’s executive function are likely to reflect 
both children’s executive function capacity as well as how likely they 
are to apply it, and may also reflect the contribution of prior learning to 
performance at a single timepoint. When arithmetic was included in the 
model, inhibition was not related to either Time 1 performance or 
growth. This likely reflects shared variance given the previously- 
established relationship between inhibition and arithmetic (e.g. Cragg 
et al., 2017; Megías et al., 2015). For model 2, not including arithmetic, 
non-numerical inhibition had a comparable association with both Time 
1 performance and learning over time, although this did not reach sig-
nificance for growth. This finding supports previous studies indicating 
that inhibition supports rational number knowledge (Avgerinou & Tol-
mie, 2020; Gómez et al., 2015), most likely by helping to suppress 
established, but interfering, whole-number knowledge and procedures 
(e.g. Rossi et al., 2019). However, it suggests that inhibition may also 
play a wider role in the classroom by helping children to filter out 
irrelevant information and focus on what they are learning. 

8.1. Strengths and limitations 

This study is one of the first to investigate the processes involved in 
the learning of new mathematical material in classroom settings rather 
than changes in mathematics achievement or specific mathematical 
skills over time. This allows us to separate learning and performance 
more clearly. Moreover, our design was developed in collaboration with 
teachers who helped us to choose a topic where they felt there was 
variation in children’s rates of learning, determine the best timepoints to 
capture that learning and identify applied executive functions skills that 
they viewed as most important for learning. 

However, the study also had important limitations. Due to working 
collaboratively with teachers and to ensure that our measurement points 
would coincide with periods of instruction (which would differ from 
school-to-school) our study was run in a single school with all Year 4 
children taking part. However, there is no reason to think that the re-
lationships we observed between executive function skills and mathe-
matical outcomes would be unique to this school. Importantly however, 
the involvement of a single school limited our sample to 88 children. 
This is a small sample for latent growth modelling, particularly given the 
non-linear growth, although this is within some published recommen-
dations (e.g. Curran et al., 2010; Shi et al., 2021) We attempted to 
mitigate this by testing only theoretically-driven models and by the 
relative simplicity of our model (only three measurement points). We 
also note that we have no issues such as missing data or non-normality. 
However, our findings should be considered tentative until replicated 
with a larger, pre-registered study. 

Future research should also include multiple measures for each ex-
ecutive function process or skill in order to control for task-specific 
measurement error, as well as a wider range of cognitive measures. 
This should include measures of intelligence in order to more accurately 
specify the contribution of executive function skills. This would reveal 
how much of the shared variance between executive function skills and 
rational number knowledge is also shared with intelligence vs. that 
which is unique. Previous work has indicated substantial shared vari-
ance between measure of intelligence and working memory (Ackerman 
et al., 2005), but not necessarily inhibition and shifting (Benedek et al., 
2014; Friedman et al., 2006). Consequently, unpicking this relationship 
would more precisely specify the contribution of executive function 
skills. 

Finally, our design involved assessing executive function skills at the 
first timepoint and only assessing mathematics learning at subsequent 
time points. Consequently, we are not able to pinpoint bidirectional 
relationships between executive functions and mathematics (e.g., 
Coolen et al., 2021). It would be valuable to combine multiple assess-
ments of executive functions with the current learning-focused design 
used here. Further research with a more comprehensive, and therefore 
potentially less noisy, measure of rational number estimation may allow 
growth models for this outcome to be run. This would allow insight into 
whether children’s magnitude conceptions of rational number develop 
similarly to their knowledge of rational numbers and are influenced by 
similar cognitive skills. 

8.2. Conclusion 

In conclusion, our study adds to the literature implicating a role for 
executive functions in mathematics. We go beyond previous findings to 
demonstrate a role for executive function, in particular working memory 
and inhibitory control, in both the performance and learning of math-
ematics. Crucially, we found that it was the application of executive 
function skills that predicted learning, rather than more standard 
cognitive executive function processes that are typically studied in 
relation to mathematics. This highlights that standard lab-based mea-
sures of executive function processing capacity do not tell the whole 
story and we also need to consider whether or not children are able to 
apply these processes in their everyday life. 
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