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Abstract. The emergence of Machine Learning (ML) has altered how
researchers and business professionals value data. Applicable to almost
every industry, considerable amounts of time are wasted creating bespoke
applications and repetitively hand-tuning models to reach optimal per-
formance. For some, the outcome may be desired; however, the complex-
ity and lack of knowledge in the field of ML become a hindrance. This, in
turn, has seen an increasing demand for the automation of the complete
ML workflow (from data preprocessing to model selection), known as
Automated Machine Learning (AutoML). Although AutoML solutions
have been developed, Big Data is now seen as an impediment for large or-
ganisations with massive data outputs. Current methods cannot extract
value from large volumes of data due to tight coupling with centralised
ML libraries, leading to limited scaling potential. This paper introduces
Hyper-Stacked, a novel AutoML component built natively on Apache
Spark. Hyper-Stacked combines multi-fidelity hyperparameter optimisa-
tion with the Super Learner stacking technique to produce a strong and
diverse ensemble. Integration with Spark allows for a parallelised and
distributed approach, capable of handling the volume and complexity as-
sociated with Big Data. Scalability is demonstrated through an in-depth
analysis of speedup, sizeup and scaleup.
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1 Introduction

Automated Machine Learning (AutoML) is an emerging area that seeks to au-
tomate the Machine Learning (ML) workflow from data preprocessing to model
validation [7]. Such automation provides robust AutoML methods that enable
people, with either little or no specialised knowledge, to integrate ML solutions
into the daily activities of business organisations. The latter is known as the
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democratisation of ML [7] and it is aligned with the actual purpose of Artificial
Intelligence: to learn and act automatically without human intervention [23].

With AutoML, ML solutions are now easily accessible by expert and non-
expert ML users. Those methods usually search for the most suitable ML meth-
ods and their best hyperparameters (known as the Combined Algorithm Selec-
tion and Hyperparameter problem, CASH problem [26]) using an online search
strategy; that is, a process takes place after the input dataset has been pro-
vided. This online search can be purely based on optimisation approaches that
test different promising combinations of algorithms from a predefined base of
ML classifiers to minimise or maximise a performance measure [17].

Alternatively, there are AutoML methods whose online search is comple-
mented with learning strategies like meta-learning [27]. These techniques first
extract meta-features of the input dataset at hand (e.g., number of instances,
features, classes). From these meta-features, meta-learning identifies good candi-
dates of pipeline structures from a predefined knowledge base that stores meta-
features for different datasets and ML models that are likely to perform well on
them. Then, the candidate models are typically used for a warm-start optimi-
sation approach. In addition, other AutoML methods use ensemble learning to
build diverse sets of classifiers from predefined portfolios of ML algorithms [5,11].
These ensemble approaches have proven to be more robust than other AutoML
methods, such as the case of Auto-Gluon, which is the state-of-the-art in Au-
toML thanks to its ensemble learning strategy based on multi-layer stacking [4].

In recent years, both the number of data sources and the scale of such data
have increased exponentially [29], wherein such data is referred to by the term
'Big Data’ [3]. The challenge of computing large amounts of data resides in the
simple principle that volume increases complexity [18]. Furthermore, as the train-
ing time of an ML algorithm is heavily dependent on the number of data points,
efficient ML algorithms must exploit parallelism to achieve sufficient scalability.
Without this, operations on large datasets become infeasible.

Open source AutoML solutions fail to handle the size and variety of Big Data
[28]. Popular tools are often coupled with ML libraries that rely on centralised
data and processing and will only work on a single machine [1]. Consequently,
these cannot scale up as a single machine is limited in terms of parallelism due
to restrictions in hardware. Some commercial products claim to scale AutoML
workloads over multiple nodes; however, many fail to take advantage of superior
Big Data frameworks, such as Apache Spark or Dask. Those that are built to
run on Spark implement outdated solutions, e.g. TransmogrifAl (grid search)
[15], or attempt to integrate it into such frameworks as a second thought (e.g.,
H20’s Sparkling Water that is an interface between Spark and H20), which does
not fully leverage the framework’s abilities. Therefore, a gap exists for a novel
solution that implements an efficient, scalable solution that can run natively on
Spark. In that context, we take the AutoML state-of-the-art and build further
upon the stacking ensemble concept by integrating k-fold cross validation to
conceive a Super Learner [10], which is implemented natively on Apache Spark.
Thus, we can propose an AutoML method to handle Big Data based on the
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simple concept that more diversity is introduced with more models, leading to
increases in stacking performance.

This article introduces a novel approach to scalable AutoML in Big Data,
named Hyper-Stacked. It combines the strength of the Super Learner stacking
ensemble, the efficiency of Greedy K-Fold hyperparameter optimisation, and
Apache Spark’s scalability. The main contributions of this work are:

— A novel AutoML component design, Hyper-Stacked, is presented. This design
efficiently integrates greedy k-fold and the Super Learner stacking approach
to produce a high-performant ensemble. The approach automates the search
for a diverse set of models and combines them to bolster the overall per-
formance. Results showed that the ensemble consistently outperforms the
best-performing individual model.

— This approach was implemented natively on Apache Spark to produce a dis-
tributed and scalable model capable of dealing with the volume, variety and
complexity associated with Big Data. To validate these claims, parallelism
and scalability were critically evaluated in speedup, sizeup and scaleup ex-
periments. Results showed that Hyper-Stacked can handle data growth sig-
nificantly better than sequential processing and single node parallelisms.

The rest of this paper is structured as follows. Section 2 presents background
and related work about AutoML with emphasis on the CASH problem, Ensemble
learning, Meta-learning, and Spark. Then, Section 3 introduces Hyper-Stacked.
Section 4 exposes the experimental framework, and Section 5 presents and anal-
yses the results obtained. Finally, conclusions are discussed in Section 6.

2 Background and Related work

2.1 Problem definition

In AutoML, when algorithm selection is combined with hyperparameter optimi-
sation, it is often referred to as the CASH problem. It can be defined as follows [5].
Let v denote the loss that an algorithm AY) (where j is just an identifier for the
algorithm) returns on Df}gli 4 When trained on D:E:“)ain’ with hyperparameters A.
Given the set of algorithms A, their respective hyperparameters A, and sets of
cross validation folds Dyyqin and Dyesi, CASH focuses on determining the joint

algorithm AU) and hyperparameter AU) that minimises the loss 7.

k
A a= argmin =3y (A0, D, D) (1)
ADeA et

As an alternative to using the argmin operator with respect to a single algo-
rithm AY), we can instead construct a set E, where E represents an ensemble.
In this instance, more than a single algorithm can be chosen and individual
predictions are combined to produce a final output. The new representation is
presented below.
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2.2 CASH methods

This section introduces the most representative approaches to solve the CASH
problem presented in equation 1.

Black box optimisation approaches

The most basic optimisation technique for hyperparameter tuning is grid search.
It involves performing an exhaustive search given a subset of the hyperparam-
eter space [13]. For example, an algorithm may require the tuning of 3 distinct
parameters. Parameter values are selected in uniform or exponential intervals to
form sets of candidate parameters. The algorithm then iterates over each possible
combination of the three parameter subsets to return the best. In this context,
a clear limitation exists, as it remains essentially a brute force approach. As the
number of distinct parameters increase, the number of possible combinations
will increase exponentially and therefore is not viable for larger datasets.

An improvement on grid search emerged, known as random search. Random
search aims to trial a number of random hyperparameter configurations and has
been proven to return models that are equivalent or better, within a fraction of
the computation time [2]. The method of randomly sampling the space, rather
than brute force allows the exploration of a lager search space given the same
computational budget.

Alternatively, Bayesian Optimization (BO) provides an adaptive approach to
black box optimisation. It works by first building a surrogate model (a cheaper
approximation function). Then, the uncertainty in that surrogate is then eval-
uated. Finally, desirable sample spaces are proposed by an acquisition function
defined from this surrogate. As samples are selected, the surrogate is updated
iteratively and the uncertainty is re-quantified. Auto-Sklearn, a python based
AutoML library, adopts this as the primary optimisation method. However, in
the context of Big Data, the standard approach to BO fails to succeed in high
dimensional environments and new approaches are required [16]. AutoML tools,
such as Auto-SKlearn, are yet to incorporate these new approaches.

Multi-Fidelity approaches

Multi-fidelity optimisation seeks to speed up the optimisation process by using
performance estimates from lower-fidelity models [14]. In general, these tech-
niques rely on first training lower-fidelity models (e.g., models trained with a
low computational budget) to reveal promising configurations. These models
can then be allocated additional computational budget to continue training and
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give a "higher" fidelity model. It is relevant to mention that in this approach,
the computational budget must be easily measurable (e.g., training time).

State-of-the-art multi-fidelity methods are built on the successive halving
algorithm that was first proposed by Karnin et al. [8]. Successive halving initially
randomly samples a set of hyperparameter configurations and models are trained
with a specified budget and evaluated to return a metric. The configurations are
ranked based on the metric, and the worst performing half is discarded. Then,
rounds of successful halving are performed until one configuration remains. In
this sense, successive halving can give the effect of early stopping which can
heavily reduce computation.

Other relevant methods under the multi-fidelity approach are Hyperband
and Greedy k-fold. Hyperband [12] works on the main principle of multi-fidelity
by randomly distributing budget values and performing rounds of successive
halving. This allows the exploration of different convergence behaviours and
ensures that configurations are not discarded too early. On the other hand,
Greedy k-fold [24] applies a similar mechanism to k-fold cross validation. It
works by first evaluating a single fold for all configurations, then proceeds with a
greedy approach. Again, low fidelity models are initially trained, but rather than
performing rounds of evaluations, it pursues only the most promising candidate
model. Evaluations in the original paper show results to perform significantly
better than the successive halving approach, on average 70 % faster.

The main limitation of multi-fidelity evaluation is that using low fidelity
approximations to perform early stopping may remove an optimal configuration.
This is not usually seen as a concern for most, as the performance speedup often
heavily outweighs the approximation error [7]. Efficiency is important to combat
volume when limited to a computational budget.

2.3 Ensemble learning

This section provides an overview of the existing literature surrounding ensemble
learning to solve Equation 2.

Majority Voting and Stacking

Majority voting remains one of the simplest methods in ensemble learning.
Within this ensemble approach, a set of base (heterogenous or homogenous)
classifiers are all trained on the same data set. When making a prediction, every
data point results in a prediction from every classifier. Then, a final prediction is
made by selecting the class that had the most "votes" from the set of classifiers.

Stacking learning builds upon the weighted ensemble by training a meta-
learner on model predictions. Specifically, a set of base learners are first trained
on a training set and each output a prediction. Afterward, predictions are ag-
gregated to construct a new dataset where each data point holds the predictions
from each base model. Thus, the meta-learner can be trained to learn complex
behaviours of the base models. Rather than a user-given weighting, the meta-
learner will determine the importance of base models empirically.
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A significant limitation exists with the stacking method. It is easily suscepti-
ble to overfitting. If a single base model is seen to overfit, the meta-learner may
result in a heavy reliance on that same model and will harm the overall model
performance. This limitation has been reduced by techniques that centre around
the use out of fold predictions, i.e. base models will predict on unseen data. These
methods commonly produce the highest accuracy out of any individual model
or ensemble methods and hence remain popular [19], but are often overlooked
due to their added complexity. Stacking methods are especially applicable here,
as research has shown that stacking can handle high-dimensional datasets [22],
a common attribute of Big Data.

Super learner

Super Learner builds further upon the stacking ensemble by integrating k-fold
cross validation, such as is done in H20’s AutoML framework [11]. In the H20
implementation, heterogenous ensembles (different types of learners) are used.
Then, a mix of random and fixed grids are used to diversify, and two super
learners are trained. One of the super learner is optimised for model performance
by including all model configurations. The latter is based on the simple concept
that more diversity is introduced with more models, leading to an increase in
stacking performance.

Meanwhile, the second super learner is optimised for production uses. In this
case, this super learning considers only the best model from each algorithm to
output faster predictions [11]. The benefit of this twofold approach is that the
two super Learners perform “asymptotically as well as the best possible weighted
combination” [21], and therefore both will perform at least as effectively as the
best performing base model.

K-fold repeated bagging

In the context of AutoML, there is another competitive approach coupled with
ensemble learning, which is K-fold repeated bagging. This approach can be ob-
served in the AutoML framework named Auto-Gluon [4]. Auto-gluon imple-
ments an improved method to prevent overfitting in their approach to multi-
layer stacking. Multi-layer stacking passes predictions through multiple sets of
models, rather than a single set of base models. These ensembles have the po-
tential to perform better than single layer models, however tend to suffer more
from overfitting as the effect is amplified through layers.

To combat this, k-fold repeated bagging was introduced. K-fold repeated
bagging makes additional o-of-fold predictions on n different random partitions
of the training data and takes an average. The value of n is determined by
dividing the total allotted time between an estimate of the time taken for a
given partition. The overall approach is therefore heavily dependent on the given
budget. It is important to say that Auto-gluon was shown to outperform H20’s
framework and 99 % of data scientists in a Kaggle benchmark, however it remains
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a centralised approach. In a distributed context, hurdles such as the non-trivial
task of time estimation need to be considered.

2.4 Meta-learning

This section focuses on aspects of meta-learning that rely on learning from prior
tasks rather than outputs coming within the same task. The interest reader can
be referred to [27] to consult other approaches of meta-learning within AutoML.
To learn from prior tasks, a learning algorithm may be run a number of times
and the related data from the training (model evaluations, hyperparameter con-
figurations, training time etc.) can be stored as features in a new dataset [7]. It
raises the layer of abstraction above traditional ML in two main approaches.
The first approach is learning from model evaluations, which has demon-
strated effective results in warm-start optimisation [25]. Warm-start optimisa-
tion removes the exploration of search spaces that have been explored in similar
tasks and provides a starting point for hyperparameter optimisation. Conversely,
the second approach is learning from task properties, which looks at the CASH
problem from a different perspective. Instead of tuning every algorithm, the
search space can be reduced by selecting a few of the most promising. Learning
tasks can be characterized by meta-features and a meta-model can provide a way
of associating these meta-features to a subset of algorithms based on prior ex-
perience. This has produced promising results in the context of Big Data, when
combined with multi-fidelity optimisation [1]. The primary limitation is that
only a finite amount of information can be captured in the meta features [27].

2.5 Spark

Apache Spark is an open-source, distributed processing framework used for large
scale workloads. This section provides relevant concepts related to Apache Spark.

Data Locality

Typically, to deal with larger datasets, the user may be required to scale their
resources, that is, additional memory or cores may be added. Nevertheless, this
approach of scaling up on a single node, known as vertical scaling, fails to con-
tinue to scale as it is limited to the hardware capacity and eventually will reach
a hard upper limit.

An alternative paradigm to vertical scaling is horizontal scaling, which al-
lows nodes to be added to an existing pool of resources. As more machines can
be introduced, the user is no longer bound by the hardware limits. The tradi-
tional approach to high performance computing (HPC) relies on communication
between storage nodes and compute nodes. In this sense, a bottleneck exists
between storage and compute in data intensive jobs, as network I/O becomes
the limiting factor and node computation remains low and unused [6].

The bottleneck mentioned above can be resolved by distributing data across
the compute nodes and storing it on local disks. This allows each node to perform
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operations on their subset of the data, reducing cross-switch network traffic and
leading to a performance gain [6]. This is the concept of data locality and is
essential to the scalability of data processing. In summary, regardless of how
the code is written, scalability is also heavily dependent on the architecture and
where your data is situated. In this context, Spark implements data locality to
facilitate the efficient compute of operations.

Parallelism

When performing parallel operations on shared data, the data itself must also
support parallelism. Concurrent, or parallel data structures allow data to be
accessed by multiple threads. Spark implements resilient distributed datasets
(RDDs) to accomplish data parallelism by organising data as a collection of
partitions that can be held over one or more machines [30]. This can then be
operated in parallel via a low-level API, through actions and transformations. For
example, data may be partitioned into 20 distinct partitions, across 2 nodes in a
cluster. Spark can then run a single task per partition in that RDD concurrently,
up to the number of cores in that cluster. If each machine has 4 cores, it is possible
to run 8 concurrent tasks on 8 partitions. This allows scalability as tasks can be
run independently across hundreds of nodes in a cluster.

Spark ML

Spark ML is Apache Spark’s ML library that implements ML algorithms and
utility functions. This scalable library is in some sense a basic AutoML library.
It allows a pipeline to string together pre-processing operations and a Cross-
Validator class to perform grid search and return the best model. There cur-
rently exists no available ensemble learning methods, aside from common ML
algorithms such as Random Forest and Gradient Boosted Trees that are ensem-
bles as themselves.

Spark ML is important to scalability as implementations overcome the curse
of modularity. The curse of modularity states that there is an assumption behind
ML algorithms that the data can fit, in its entirety, in memory on a single ma-
chine [9]. In other words, some algorithms have been developed using modular
strategies that, when used outside of the scope of in-memory data, will break.
This explains why many popular libraries are inherently unable to scale. Oppo-
site to such situation, Spark ML implements these algorithms in a way that can
be broken down and distributed across multiple machines.

3 Hyper-Stacked: A Scalable and Distributed Approach
to AutoML for Big Data

In this section, we introduce Hyper-Stacked °. First, Section 3.1 motivates the
need for the proposed method. Then, Section 3.2 presents the general architec-
ture of Hyper-Stacked and details of its inner workflow.

® https://github.com/jsebanaz90 /Hyper-Stacked
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3.1 Motivation

As we stated before, the core aims of existing AutoML methods are (1) High
Computational Efficiency, (2) Good Performance, and (3) Reduced Human In-
teraction. Nevertheless, the current solutions suffer from the following issues,
which have motivated the design of Hyper-Stacked.

— Centralised data approach: Open source AutoML solutions fail to handle
the size and variety of Big Data [28]. Popular tools are often coupled with
ML libraries that rely on centralised data and processing and will only work
on a single machine [1]. Consequently, these are unable to scale as a single
machine is limited in terms of parallelism due to restrictions in hardware.
Some commercial products claim to scale AutoML workloads over multiple
nodes; however, many of them fail to take advantage of superior Big Data
frameworks, such as Apache Spark.

— Optimisation and reduced scalability: When optimisation deals with
small- or medium-size datasets, many algorithms can be generated, tuned
and tested because the complexity of the learning task at hand is influenced
by its data size. On the other hand, the latter may stop happening as the data
size grows. In this scenario, it is harder to tune and test multiple algorithms,
as the optimisation becomes expensive and the set of candidate ML methods
could decrease, affecting the final solutions’ performance.

Considering the motivations presented above, we want to conceive a new
AutoML method that relies on a distributed approach. In this sense, we intro-
duce Hyper-Stacked, a new AutoML method based on greedy k-fold and Super
Learner stacking to produce a high-performant ensemble. The approach auto-
mates the search of a diverse set of models and combines them to bolster the
overall performance, which allows to path the way towards three main goals of
AutoML: (1) High Computational Efficiency, (2) Good Performance, and (3)
Reduced Human Interaction. Firstly, the Super Learner was chosen as the base
mechanism as it hosts the high performance of stacking (goal 2) and reduces
overfitting. Secondly, The overarching concept of Hyper-Stacked focuses on find-
ing strong heterogeneous learners amongst the search space to achieve a high
stacking performance, while keeping the number of base models low to remain
efficient (goal 1). Thirdly, Hyper-Stacked aims to succeed in both through effec-
tive hyperparameter optimisation. In doing so, we are guaranteed to automati-
cally (goal 3) return the best individual model (the aim of the CASH problem)
and an ensemble that returns an equal or higher predictive performance.

In summary, Hyper-Stacked combines the strength of the Super Learner
stacking ensemble, the efficiency of Greedy K-Fold hyperparameter optimisa-
tion, and the scalability of Spark. To the best of our knowledge, at this time, the
Super Learner has not yet been implemented on Apache Spark and no solution
yet exists that combines the Super Learner and Greedy k-fold optimisation.
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3.2 Hyper-Stacked’s design and workflow

Hyper-Stacked was implemented as a Scala package that can run on top of a
distributed Spark cluster. We also used the MLIlib, to make practical machine
learning scalable and manageable. From this library, we selected the following
classifiers to be part of the algorithms that can be part of the ensemble built in
the inner structure of Hyper-Stacked: Random Forest (RF), Gradient Boosted
Trees (GBT), LinearSVC (LSVC), Logistic Regression (LR), and Naive Bayes
(NB). Besides, the meta-learner is chosen from this portfolio of methods.

The architecture of Hyper-Stacked is shown in Figure 1. Besides, pseudocode
1 presents the step-by-step followed by Hyper-Stacked’s Super learner and Greedy
k-fold components; wherein lines 1-19 illustrate the generation of the base mod-
els and the meta-learner selection, lines 20-25 represent the training process of a
Hyper-Stacked model, and lines 26-28 summarize how the final predictions are
made. More details of this process are presented as follows.

Fig. 1. General architecture of Hyper-Stacked based on greedy k-fold and Super
Learner stacking
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Hyper-Stacked uses a list of descriptor tuples instead of a set of candidate
models. Each tuple contains a learning algorithm and the number of random hy-
perparameter configurations to generate. Random parameters are generated and
fed into the greedy k-fold method for each algorithm type. The latter allows us
to run greedy k-fold multiple times, returning different model types. The speci-
fied number is important to vary the number of configurations for the different
hyperparameter search spaces an algorithm may have.

The result of the original greedy k-fold would contain the hyperparameter
configuration of the best model, and a model could then be trained on the
full dataset with those optimal hyperparameters. In Hyper-Stacked, we return
models that were trained during hyperparameter optimisation, reuse them and
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the k-fold data splits later. Instead of a configuration, a list of trained models
is returned, one for each fold. The final result of greedy k-fold will be a list of
lists of fold models, where each element represents a different hyperparameter
configuration that was fully evaluated; this is flattened for ease of iteration. In
addition, to minimise the movement of data, each fold is considered one at a time,
and we iterate through each hyperparameter configuration before continuing to
the next fold. Each fold model will output a prediction, and we aggregate them
in the same way as the original to train the meta learner.

To output a prediction from the Super Learner, features are first passed
into each base model to construct a set of features for the meta-model. The
meta-model can then produce a final output based on the results of the base
models. The meta-classifier can therefore learn complex behaviours of the base
classifiers. In this case, rather than a user-given weighting, as defined in the
weighted ensemble, the meta-classifier will empirically determine the importance
of base classifiers.

Finally, Pseudocode 1 shows the automatic selection of the meta-learner.
Hyper-Stacked removes the reliance on the user to choose a meta-learner by
performing an additional round of cross-validation on the list of available learning
algorithms. It is essential to perform this selection the same way it was for
the original training set because we do not know a priori which algorithm will
perform best as the meta-learner.

4 Experimental Design

This paper seeks to answer whether it is possible to design a distributed and
scalable AutoML to deal with Big Data in supervised learning tasks. To accom-
plish such a purpose, we introduce the Hyper-Stacked method. In particular, this
method is tested in binary supervised classification problems and determines its
performance in three crucial Big Data metrics: Speedup, Scaleup, and Sizeup.

This section shows the factors and issues related to the experimental study.
First, we provide details of the problems chosen for the experimentation (Section
4.1). Then, we introduce details about the big data architectures considered to
test Hyper-Stacked in Section 4.2. Finally, we present the three experiments on
Speedup, Scaleup, and Sizeup metrics.

4.1 Binary supervised learning problems

For this experimentation we chose four representative datasets, which are shown
in Table 1. These datasets represent binary classification problems and their
composition vary on size and dimensions.

It is important to mention that the number of instances in these datasets may
be lower than traditionally seen in current real-world Big Data. The intention
is to keep the number of instances in a permissible range to run on a single
node and return in a ‘reasonable’ time. In reality, a single node would take a
significant amount of compute time and could take days, weeks or months. With
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Algorithm 1: Super Learner with Greedy k-Fold
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Data:
Dirqin <— training dataset
Diest <— test dataset
n <— number of k folds
T <+— list of tuples (a,r) where a is a learning algorithm and r is the number
of random parameters to generate for that algorithm
M <— a list of learning algorithms included in meta-learner selection
Result: Set of predictions corresponding to input Diest
k_folds «— divide D¢rqin into n number of approximately equal partitions;
Lbest = []7
for t «n T do
Cy <— generate random candidate models (a,r);
Abest «— do Greedy K-Fold(Cy) where |Apest| > 1 ;
append Apest t0 Lpest;
end
flatten Lpest;
for k; in k_ folds do
kvaiid <— ki;
Ktrain <— remaining k folds;
for [ in Lpest do
‘ OOF <— predict on kyq1:a with | and store result and label;
end
toor <— concatenate OOF (Dirain . length x 1. length);
end
meta-features «— union all ipoF;
meta_k_folds «+— divide meta-features into n number of approximately equal
partitions;
Mpest <— do K-fold Cross-Validation(meta_k_ folds);
base_models = [];
for [ in L do
base_ model +— train [ on Dirqain;
append base_model to base_models;
end
meta_ model <— train mpes; on meta-features;
base_layer output <— for base_model in base models do transform Dies;
with base_ model;
predictions — transform base_ layer output with meta_ model;
return predictions on Diest

mid-large size datasets, we can run trials comfortably on different-sized clusters
to demonstrate the scalability and strength of the approach. These datasets are
deemed suitable for ML problems by the research community and are commonly
used in benchmarks and research papers.
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Table 1. Binary classification datasets

Dataset Number of Training instances Number of features

FLIGHT 516513 29
SUSY 3500066 18
HEPMASS 4899792 28
HIGGS 7701355 28

4.2 Experimental setups

All experiments done with Hyper-Stacked were set up on the Databricks plat-
form, which allows clusters of variable size and configurations to be easily in-
stantiated. To measure the time of experiments, we implemented a logger object.
Specifically, the time before is recorded, then the function is executed, and the
time is once again recorded to calculate the difference between them finally.
The log function is only used around larger functions, as small operations are
likely to return inaccurate results due to lazy evaluation. A run-time limit of ten
hours was applied to all trials, and the leader board of model performances was
recorded for every trial.

The specifications for the three chosen cluster sizes to be used in these ex-
periments are summarised in Table 2. All cluster sizes contain a single driver
node with 4 cores with 14GB memory. The memory of each worker remains the
same (28GB).

Table 2. Specifications for the Spark clusters to be used in the experiments

Number of Number of cores

Cluster Total number of cores
workers per worker
1 1 1 1
2 1 8 8
3 3 8 24

4.3 Experiment Speedup, Sizeup, Scaleup

In this set of experiments, the primary aim is to demonstrate the scalability,
efficiency and effective parallelism of Hyper-Stacked. Therefore, we step up ex-
periments around speedup, sizeup and scaleup metrics to accomplish such an
aim. These experiments focused on measuring the relative change as an element
of the system changes. The three experiments are described as follows.

— In speedup, the size of the data remains constant and the number of cores are
increased. Speedup shows how much faster the same data can be processed
with n cores instead of 1. This metric can be estimated by calculating the
ratio of the time taken for a sequential execution versus a parallel execution.
For the experiments carried out in this work, the data is kept at 33 % as
this value was achievable by all cluster sizes.
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— In sizeup, the number of cores remains constant and the size of the data is
increased. Sizeup allows us to see how time scales with increasing intervals of
data size. This metric can be found by calculating the ratio of execution time
between an initial dataset versus a dataset n-times larger. For this study, the
intervals were chosen to be 10 %, 20 %, 40 % and 80 %.

— In scaleup, both the number of cores and size of the data are increased
(by the same factor). Scaleup combines the two to measure how a program
performs as a system gets larger and has to process larger datasets. The
following configurations were chosen: 100/24 (= 4.16 %) with 1 core, 100/3
(= 33.33 %) with 8 cores and 100 % with 24 cores.

5 Analysis of Results

This section analyses the experimentation results from the following angles.

— Speedup: to evaluate the ability of Hyper-Stacked of improving its execution
time through parallelism (using additional cores).

— Sizeup: to assess the ability of Hyper-Stacked to handle increasing amounts
of data within a parallel environment.

— Scaleup: to evaluate the ability of Hyper-Stacked to handle both increase the
amount of data and the size of the system. It can be found by calculating
the ratio of execution time between an initial dataset and system, versus a
dataset m-times larger with an m-times larger system.

5.1 Speedup

Figures 2a and 2b show the speedup for each dataset with a single core, eight
cores, and twenty four cores. As it can be seen, the speedup achieved for the
FLIGHT dataset was only 1.899 despite parallelising over 24 cores. Furthermore,
there was almost no speedup between eight cores and twenty-four (speedup in-
crease of 0.084). In contrast, the speedup achieved for the HIGGS dataset was
4.413, but again, despite the addition of sixteen cores, the speedup increase was
1.125. This can be clearly seen in Figure 2a where comparisons were done againts
linear speedup.

Through these results, it is hard to pinpoint the main cause of the lack of
speedup. It should be noted that between the datapoints at eight and twenty-
four cores is the introduction of a distributed cluster (increase from 1 to 3 worker
nodes). Despite this, the speedup is not expected to be as low as observed in a
Spark application. Through additional investigation, the training of base models
(layer one models) and meta models (layer two models) were compared in terms
of speedup. Figure 5.1 shows that the speedup of these are almost identical,
failing to identify any existing limiting. component.

Furthermore, Figure 2b shows a clearer comparison between the datasets. A
trend can be clearly seen as the larger datasets (HIGGS and HEPMASS) achieve
a significantly better speedup than the smaller datasets (FLIGHT and SUSY).
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In fact, they are sorted in size order. As a result of these findings, an additional
run was performed, which is shown in Figure 4.

In this experiment, the size of the data was increased from 33 % to 100
% of the dataset. As seen in Figures 4a and 4b, a greater difference is seen
when using a larger amount of data. The speedup analysis in Figure 4a shows a
speedup increase from 4.413 (seen previously) to 10.210. This can be considered
a reasonable speedup and significantly better than seen when using 33 % of the
data. Therefore, we can say the speedup can be heavily dependent on the size
of the data, and clearly, the amount of the data used in the initial experiments
was insufficient. It is possible that some rate-limiting factors exist within the
component; however, without additional experiments using larger datasets, it is
difficult to determine at this time.

5.2 Sizeup

The results in Figures 5 and 6 depict the sizeup for each dataset. Specifically,
Figure 5a shows the sizeup results for the smallest of the four datasets (FLIGHT
dataset). It can be observed that Cluster 1 can execute eight times the size of
the original data with a size up of 3.753. In comparison, Cluster 3 executes eight
times the size of the original data with a size up of 1.964. The latter means that
although the data increased eightfold, the execution time of Cluster 1 increased
by around a factor of 4, whereas Cluster 3 only increased by a factor of 2.

—o— Cluster_1 —o— Cluster_1
35 —e— Cluster_2 30 —e— Cluster 2
—o— Cluster_3 —o— Cluster_3

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Size of data (percentage) Size of data (percentage)

(a) Sizeup comparison for the FLIGHT(b) Sizeup comparison for the SUSY
dataset dataset

Fig. 5. Sizeup comparison for FLIGHT and SUSY datasets

In the other datasets, the overall data size increases and Cluster 1 is unable
to execute within the given budget. Using SUSY, Cluster 1 is able to execute
40 % of the data with a sublinear size up of 3.753. Unfortunately, problems
arise when executing HEPMASS and HIGGS (Figures 6a and 6b). Due to the
10-hour constraint, we are only able to gather two datapoints, 10 % and 20 %.
For the 20 % size up, cluster 1 begins to exceed a linear size up for HEPMASS
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Fig. 6. Sizeup comparison for HEPMASS and HIGGS datasets

and HIGGS achieving a size up 2.617 and 2.310 respectively. The gradients of
the lines, shown in Figures 6a and 6b, show that as the datasets become larger,
systems with sequential processing are unable to deal with the growth of data.

Additionally, both clusters 2 and 3 are able to return the results for all
datasets in a reasonable time. Size up values between clusters 2 and 3 are sim-
ilar with smaller datasets, as seen in Figures 5a and 5b. These two clusters are
also consistently similar at low data percentages with all of the datasets. How-
ever, the difference is seen when the growth of the larger datasets reaches 80
%. In the largest dataset (HIGGS), shown in Figure 6b, an eightfold data size
increase caused the execution time of Cluster 2 to increase by a factor of 3.602,
whereas Cluster 3 only increased by a factor of 2.024. This shows that the par-
allelism within Hyper-Stacked allows greater sized clusters to effectively handle
the growth of data.

5.3 Scaleup

Figure 5.3 shows the scaleup analysis for Hyper-Stacked. It displays a comparison
to the ideal scaleup value. The ideal value is where the execution time is kept
equal as the system and data size grows by the same factor, and in reality
is unattainable. Although Hyper-Stacked does not achieve an ‘ideal’ result, all
results appear to taper off in an acceptable range between 0.684 and 0.792. The
decrease between 8 and 24 cores is assumed to be partially down to the fact
the processing is now distributed and communication (shuffle read and write)
between workers is necessary.

From the graphs presented, we can see that the scaleup exhibits a similar
trend to speedup. The lines appear sorted in size order, HIGGS achieving a sig-
nificantly better efficiency value than FLIGHT. FLIGHT achieves a scale up of
0.774 then 0.684, whereas HIGGS achieves a better result of 0.995 then 0.792.
Similar to speedup, it is hard to determine the true metric through these experi-
ments as the sizes of the datasets chosen seem to be insufficient. Nevertheless, the
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findings show that Hyper-Stacked is still shown to be scalable when increasing
the size of the data, number of cores and number of nodes.

6 Conclusions

In this work, we introduced Hyper-Stacked. This new AutoML method combines
the strength of the Super Learner stacking ensemble, the efficiency of Greedy K-
Fold hyperparameter optimisation, and the scalability of Apache Spark. Hyper-
Stacked was implemented natively on Apache Spark to produce a distributed
and scalable model capable of dealing with the volume, variety and complexity of
Big Data. Parallelism and scalability were critically evaluated in speedup, sizeup
and scaleup through different experiments to validate the general architecture
of Hyper-Stacked. The experiments focused on binary classification problems,
using datasets varying in size and dimensions.

From the results obtained, we extracted interesting conclusions. A limita-
tion was uncovered during the speedup experiments in Section 5.1, where the
addition of workers resulted in a minimal speedup. This can be explained by
Amdahl’s law, which states that the performance increase from parallelisation
cannot exceed the inverse of the non-parallelisable element of work [20]. The
mechanism that Spark uses to distribute work (setting up a job on the driver,
scheduling and data shuffles) results in overhead, i.e. a nonzero amount of non-
parallelisable work. The relative amount of parallelisable work is then bounded
by the size of the dataset, as larger datasets reduce the significance of the over-
head. As Hyper-Stacked was developed to perform efficiently with Big Data, it
may be preferable to use an alternative tool for smaller datasets that fit in the
memory of a single machine.

In future work, we will follow different paths. First, the implementation itself,
despite only being currently applicable to binary classification, can be easily ex-
tended to regression and multiclass classification using different Spark ML algo-
rithms. An evaluation of all three problem types would provide additional insight
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into the applicability of this AutoML approach and its ability to generalise to
different problems. Second, larger, more complex datasets could be approached
to check the robustness and scalability of Hyper-Stacked in multiclass supervised
learning problems.
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