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Convergence of resistance and evolutionary
responses in Escherichia coli and Salmonella
enterica co-inhabiting chicken farms inChina

Michelle Baker1,13, Xibin Zhang2,13, Alexandre Maciel-Guerra1,13,
Kubra Babaarslan1, Yinping Dong3, Wei Wang3, Yujie Hu 3, David Renney4,
Longhai Liu5, Hui Li6, Maqsud Hossain1, Stephan Heeb 7, Zhiqin Tong6,
Nicole Pearcy1,7, Meimei Zhang8, Yingzhi Geng8, Li Zhao9, Zhihui Hao10,
Nicola Senin 11, Junshi Chen3, Zixin Peng 3 , Fengqin Li3 &
Tania Dottorini 1,12

Sharing of genetic elements among different pathogens and commensals
inhabiting same hosts and environments has significant implications for anti-
microbial resistance (AMR), especially in settings with high antimicrobial
exposure. We analysed 661 Escherichia coli and Salmonella enterica isolates
collected within and across hosts and environments, in 10 Chinese chicken
farms over 2.5 years using data-mining methods. Most isolates within same
hosts possessed the same clinically relevant AMR-carrying mobile genetic
elements (plasmids: 70.6%, transposons: 78%), which also showed recent
common evolution. Supervised machine learning classifiers revealed known
and novel AMR-associated mutations and genes underlying resistance to 28
antimicrobials, primarily associated with resistance in E. coli and susceptibility
in S. enterica. Many were essential and affected same metabolic processes in
both species, albeit with varying degrees of phylogenetic penetration. Multi-
modal strategies are crucial to investigate the interplay of mobilome, resis-
tance and metabolism in cohabiting bacteria, especially in ecological settings
where community-driven resistance selection occurs.

AMR is a major global health problem and livestock farms and their
surrounding environment have been highlighted as a potential
source of AMR infections1. The development of AMR in individual
bacterial species is dependent not only on antibiotic exposure but
also on the presence of other bacteria within their environment, with
which they interact2. Hence, acknowledging the extent to which
bacteria within the same environment are able to co-evolve and share
their genome could help the development of more efficient treat-
ments to fight AMR3,4. In this study, we have focused on two impor-
tant opportunistic pathogens found in livestock Escherichia coli and
Salmonella enterica, which both display high levels of drug resis-
tance, and have zoonotic potential5,6. These species can share genetic

material both within and potentially between species, a mechanism
by which AMR is spread7.

A recent study found that in model experimental systems E. coli
and S. enterica co-cultures evolved different antimicrobial resistance
mechanisms compared to monocultures of either species subject to
the same experimental conditions8. It was also shown that within the
same environment, E. coli and Salmonella spp. are able to directly
communicate using bacterial signalling, increasing antibiotic
tolerance9. A previous study showed that plasmids carrying anti-
microbial resistance genes (ARGs), can be transferred from S. enterica
to E. coli10 andproposed that the similarity of the plasmids in S. enterica
isolated from chicken gut, to plasmids found in pathogenic E. coli,
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another gut resident, could indicate transmission between the
species10. Hence, both bacterial signalling and transfer of genomic
material could impact AMR for species within the same environments.
However, AMR phenotypes in E. coli are not a good indicator of AMR
phenotypes in S. enterica even when taken from the same sample,
suggesting that complex AMR dynamics need to be further studied on
a genomic level to understand this disparity11.

In this study, we collected isolates from the same biological
samples, from animals and surrounding environments, on ten com-
mercial poultry farms and four connected slaughterhouses in three
provinces of China over two-and-a-half years. We focused on two
important opportunistic pathogens E. coli and S. enterica, common in
agricultural settings and representing a significant cause of diarrheal
disease-associated mortality in humans, particularly, in low-to-middle
income countries12. Isolates of both species were collected fromwithin
the same community and across interconnected ones including
chicken faeces, chicken carcasses, chicken feather, chicken caecal
droppings, chicken feed, external soil, barn environment, wastewater,
anal swabs, abattoir environment and drinking water. We first char-
acterised the population structure, evolution and AMR phenotypes of
both E. coli and S. enterica circulating strains, highlighting differences
across environments and hosts. Next, we used a novel data-mining
approach that merges Bayesian divergence analysis, genome-scale
metabolic (GSM) models, culture-based techniques, and machine
learning (ML). The new data analysis pipeline was designed to provide
a wider perspective on the relationships between genetic elements of
E. coli and S. enterica isolates and AMR, by data mining all the possible
correlations betweenSNPs in the coding andnon-coding regions of the
core genome as well as all the accessory genes, and AMR resistance/
susceptibility to multiple antibiotics. We found that most isolates of E.
coli and S. enterica, within the same host and environment, possessed
the same AMR-carrying MGEs, which also appear to have co-evolved,
which in real-world settings pose a high risk of AMR transfer to humans
and the environment13. Moreover, these AMR-carrying MGEs could
also potentially be a pre-requisite for the bacteria to occupy the same
host and environment, as the horizontal gene transfer process may
drive the development of host adaptation14,15. Notably, these MGEs
encoded clinically relevant ARGs (blaCTX-M, APH(3), floR, mphA, and
qnrS1). By utilizing a machine learning pipeline that incorporates a
comprehensive set of genetic features encompassing the entire gen-
ome, including SNPs within core genes, intergenic regions, and
accessory gene content, we were able to pinpoint the genes, muta-
tions, and regulatory elements that displayed a strong correlation with
the antimicrobial susceptibility profiles against up to 28 different
antimicrobials for each isolate of every species. The ML results
revealed that both species had a common subset of features strongly
linked to AMR (including both known and novelmutations and genes).
When analysing the AMR-associated features using GSM models and
protein-protein interaction networks, we found that they were linked
to the same functional pathways, which were essential for growth, and
which were affecting biochemical fluxes within both bacteria indicat-
ing potential common metabolic adaptations.

Results
Differences in antimicrobial-resistant phenotypes, phylogeny,
SNPs, and evolution are observed between the E. coli and S.
enterica isolates across farms, sources, and time
Altogether, we collected 518 E. coli isolates and 143 S. enterica isolates
from a total of 692 animal and 285 environmental samples (see
Methods) taken from both farms and abattoirs; with an overlap of 113
samples where both species were cultured from the same sample.
Samples were taken from ten farms and four connected abattoirs in
three provinces of China: Henan (three farms and two abattoirs),
Liaoning (three farms and one abattoir) and Shandong (four farms and
one abattoir) over a 25-month period, between March 2019 and April

2021, Supplementary Data 1. In each location samples were taken at
three points over the six-week broiler production cycle: t1 - mid-life
~3 weeks old, t2 - full grown ~6 weeks old and t3 - end-of-life ~6 weeks
and 1–5 days, post-slaughter sampling. Themost represented province
by isolate count for E. coli was Henan (n = 219) followed by Shandong
(n = 209) then Liaoning (n = 90). Analogously, for S. enterica the most
represented province was Henan (n = 111), followed by Liaoning
(n = 25) then Shandong (n = 7). The 518 E. coli and 143 S. enterica iso-
lates were laboratory tested for resistance/susceptibility to up to 28
antimicrobials, Fig. S1. In general, most isolates in both species were
resistant to penicillins, monobactams, cephalosporins and aminogly-
cosides, whilst resistance to carbapenems and polymyxins was much
less frequent, Fig S1. To understand the genetic relatedness of the
isolates and its relationship with AMR, maximum likelihood phyloge-
netic trees were constructed for each species, using the core genome
(based on genes present in >99% of isolates) from whole-genome
sequencing data, Fig. 1 and Fig. S2 (further information in Supple-
mentaryNote 1 in the Supplementary Information). InE. coli, resistance
phenotypes were not related to phylogroup, however in S. enterica the
serotype Enteritidis was more susceptible than other serotypes to all
antibiotics except for polymyxins for which it was more resistant, Fig.
S2. When considering individual antibiotics, the three tetracycline
antibiotics (tetracycline, doxycycline and minocycline) were sig-
nificantly different between species (adjusted p-value < 0.001, chi-
squared test with Bonferroni correction), for doxycycline (DOX) and
minocycline (MIN) the resistance was more frequently observed in S.
enterica and for tetracycline (TET) it was more frequently observed in
E. coli. Similarly, both polymyxins (polymyxin B and colistin) had
resistance frequency significantly higher in E. coli (corrected p-
value < 0.001, chi-squared test with Bonferroni correction). Two 3rd
generation cephalosporins (cefepime and ceftazidime) were pro-
portionallymore resistant in S. enterica (corrected p-value < 0.001, chi-
squared test with Bonferroni correction). Finally, the aminoglycoside
streptomycinwas found to have a similar proportion of resistant cases,
but more intermediate and less susceptible isolates in S. enterica
compared to E. coli (corrected p-value < 0.001, chi-squared test with
Bonferroni correction).

The phylogeny results showed that E. coli isolates (Fig. 1 and Fig.
S2a) were highly diverse with no clustering observed across isolates
on sample source type or farm. Sample source type, farms, pro-
vinces, and collection dateswere not associatedwith phylogroups (p-
values > 0.05, Fishers exact test for count data with simulated p-
value). Using the standard association index (ISA) to measure for
clonality in the population16,17, for the E. coli cohort we found the ISA
to be 0.2126 (p-value < 0.0001) at whole cohort level and 0.1313 (p-
value < 0.0001) at ST type level, indicating the presence of clonality.
Conversely, for S. enterica (Fig. 1 and Fig. S2b) statistically significant
differences were observed among isolates in relation to serotypes
per farm, source type and collection date (p-values < 0.0001, Fishers
exact test for count data with simulated p-value), with Havana enri-
ched in ceca samples and Enteritidis enriched in waste water
(adjusted p-values < 0.05, chi-square), Kentucky enriched in Liaoning
1 and Henan 3 (adjusted p-values < 0.05, chi-square) and Enteritidis
enriched in Henan 2 and Shandong 2 (adjusted p-values < 0.05, chi-
square). June 2020 was associated with an enrichment of Havana
serotype samples; this collection month was associated with t1 col-
lections from Henan 1, however Henan 1 collections across all time-
points were not enriched for Havana serotype. For S. enterica, the ISA
of 0.9077 (p-value < 0.0001) at whole cohort level and 0.3883 (p-
value < 0.0001) at ST type level indicated stronger clonality com-
pared to E. coli.

To further assess the genomic relatedness of both the E. coli and S.
enterica isolates in our cohort we measured the number of different
core genome SNPs, in a pairwise manner across all isolates and per-
formed network analysis (see Supplementary Note 2). The results
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indicate a geographic diversity and evolution in both species. Finally,
to better understand the phylogenetic and SNP distance differences
observed between E. coli and S. enterica and to explain the evolution of
these two species,we performed a Bayesian inference of phylogeny for
the major phylogroups and serotypes in our cohort. Bayesian Evalua-
tion of Temporal Signal (BETS) analysis showed that eight of themajor
phylogroups and serotypes contained a temporal signal suitable for
analysis (S. enterica: Enteriditis, Indiana, Kentucky, Kedougou, Havana;
E. coli: A, E and F), Supplementary Table 1. The vast phylogenetic and
genomic (SNPs) diversity of E. coli and S. entericawas supported by the
Bayesian divergence analysis results showing that S. enterica strains
were more recently evolved, with MRCAs of S. enterica being around 5
years (Fig. S3), compared to MRCAs for E. coli phylogroups (Fig. S4)
which was in the range of hundreds of years. Root heights varied also
with S. enterica serotype averages between 5–29 years and E. coli
phylogroup root hesight averages between 151 and 400 years, Sup-
plementary Data 2. Predicted nucleotide substitution rates for both
species were relatively consistent across phylogroups and serotypes
and were higher (two orders of magnitude) than though typically
found in literature18,19. These higher thanexpected ratesmayhavebeen
causedbacterial stress inducedby theusageof antibiotics on the farms
in our cohort, which could be leading to increased mutation rates20–23.
Of note, when considering genome-wide substitution rates in E. coli,
clade E is predicted tomutate more slowly than clades A and F. Others
have observed that phylogroup E tends to have a larger genome (as
also seen in our data) resulting in lower replication rates24 and one
could speculate that this lower replication rate could result in the
lower mutation rate we predict. This is a pattern we also see in our S.
enterica isolates, with the largest genomes predicted to have the
slowestmutation rates. For the two largestE. coli serotypes, forwhich a
temporal signal was present (O83:H42 and O8:H16), the MRCA being
also longer, compared to S. enterica (~20 years) with some clustering
by farm observed (Fig. S5).

Together, these results show a diverse, non-clonal and evolutio-
narily distantly related cohort of E. coli isolates potentially indicative of
large circulation populations of commensal E. coli in these farms, with
many samples carrying multidrug resistance. In contrast S. enterica
shows highly clonal, region specific, and evolutionarily closely related
isolates, more indicative of outbreaks of bacterial growth, and as with
E. coli many isolates are multidrug resistant.

Within-host favours sharing of plasmids and mobile genetic
elements carrying AMR genes between E. coli and S. enterica
Genomic mobility through plasmids and mobile genetic elements is
correlated to antimicrobial resistance, giving the opportunity for
genomic content to be shared between bacteria25. In our cohort 99.4%
of E. coli isolates and 88.1% of S. enterica isolates carried plasmids
(Supplementary Data 3). Using MOBsuite26 plasmids were recon-
structed and typed from both species. The total number of plasmids
reconstructed was 3169 in E. coli (mean of 6.1 per isolate) and 572 in S.
enterica (mean of 4 per isolate). Plasmids found in S. entericawere also
significantly smaller (p-value < 0.0001) with a size range of 977bp-
261kbp in S. enterica compared to 983bp-448kbp in E. coli. Gene
content was found to significantly differ between plasmids from each
species (p-value < 0.0001) with E. coli plasmids carrying on average
0.82% (±0.33%) of the genome and S. enterica plasmids carrying 0.45%
(±0.22%). Similar proportions of plasmids with no identifiable replicon
andmultiple repliconswere found in both species. S. entericaplasmids
with no replicon were enriched in Liaoning province (LN1 and LN3),
and Havana and Kentucky serotypes. E. coli no-replicon plasmids were
enriched in farms from each of the provinces (HN1, LN3, and SD3) and
phylogroups B1 andG.However, E. coli carried significantlymore novel
plasmids (n = 59) compared to S. enterica (n = 4), p-value = 0.047. In E.
coli the most prevalent plasmid replicon was IncFIB, found in 402
isolates, followed by IncHI2 found in 239 isolates. In S. enterica, Col(-
pHAD28) was most prevalent, found in 79 isolates followed by IncHI2
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Fig. 1 | PhylogenyofE. coliand S. enterica isolates collected from10commercial
broiler farms in China. (a) Maximum likelihood phylogenetic tree of the whole
cohortof E. coli isolates basedon coregenomeof the 518 isolates, cultured fromthe
animal and environmental samples collected from the 10 farms and 4 abattoirs.
Phylogroups are shownas coloured sections. Sample source, region and number of
resistance classes are shown as rings around the tree. b Maximum likelihood
phylogenetic tree of the whole cohort of S. enterica isolates based on core genome

of the 143 isolates, cultured from the animal and environmental samples collected
from the 10 farms and 4 abattoirs. Serotypes are shown as coloured sections.
Sample source, region and number of resistance classes are shown as rings around
the tree. Farm names are abbreviated: Henan 1 (HN1), Henan 2 (HN2) Henan 3
(HN3), Liaoning 1 (LN1), Liaoning 2 (LN2), Liaoning 3 (LN3), Shandong 1 (SD1),
Shandong 2 (SD2), Shandong 3 (SD3), Shandong 4 (SD4).
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found in 58. All these plasmids have previously been associated with
AMR gene carriage17,27–29. When comparing plasmid types and content
in the 113 E. coli and S. enterica strains isolated from the same samples
we found that 70.6% of isolate pairs cultures from the same sample
carried the same plasmid types. In the plasmid types that were shared
in isolate pairs, we observed more sharing than would be expected by
chance compared to typical plasmid prevalence in isolates collected
fromchickens inChina (p <0.0001, chi-squared test). Among these the
most common shared replicon types were Col(pHAD28) and IncHI2,
Fig. S6. In particular, Col(pHAD28) and IncHI2 were found in 29 and 27
isolate pairs respectively, Fig. S6. For IncHI2, a major AMR carrier30, a
Bayesian phylogenetic analysis of reconstructed IncHI2 plasmid
sequences within our samples, showed that generally E. coli-sourced
plasmids and S. enterica-sourced plasmids fell in different cladeswith a
MRCA of 16 years, Fig. 2. However, there were two regions of more
recent evolution (red rectangles on Fig. 2), with the MRCA dating back
to only 2019, and within these we have pairs of E. coli and S. enterica
strains isolated from the same sample, potentially indicative of recent
transmission of this plasmid between species.

Next, we assessed whether the same mobile ARGs (AMR genes in
the 5 kb vicinity of an MGE)31–35 were found in pairs of E. coli and S.
enterica isolates collected from the same sample. Considering known
ARGs according to the CARD database36, we found 88 E. coli-S. enterica
isolate pairs (78%) carrying the same mobile ARG (Supplementary

Data 4). These mobile ARGs included clinically relevant blaCTX-M,
APH(3), floR, mphA, and qnrS1 genes, all known important to AMR in
human health37 (Fig. S7). Overall, 14 different mobile ARG patterns
were found (SupplementaryData 4). The spreadofmobile ARGs across
farms was broadly reflective of the distribution of isolate pairs (p-
value = 0.064, chi-squared test), Fig. S7a. The spread of mobile ARGs
across source types significantly differed from the expected distribu-
tion (p-value < 0.001, chi squared test) driven by a higher-than-
expected number of mobile ARGs in feed samples (standardized
Pearson residual = 4.468), Fig. S7b.

Gene structures of the ARG containing contigs for mobile ARGs
showed highly conserved structures in both E. coli and S. enterica
isolates, from the same sample and those from different samples, as
seen for example in the gene structures of the QnrS1 gene (Fig. 3).

Overall, the patterns of plasmid andmobileARGpresence suggest
there is high potential for transfer between E. coli and S. enterica in the
farm environments that we have studied which could lead to the
spread of clinically important ARGs, and suggestions that, historically,
this is likely to have occurred. However,wehave not seen any evidence
of this happening on a large scale in the timeframes we have studied.

To investigate the influence of co-inhabitation of E. coli and S.
enterica as well as the influence of country of collection (antimicrobial
usage and microbial ecology) on the observed results (proportion of
distinct plasmid types and mobile ARGs, as well as amount of sharing
between the two bacteria species), we considered three control sets.
The firstwas formedofChinese bird sampleswith apparent absenceof
co-inhabitation (the challenges related to demonstrating absence of
co-inhabitation are discussed in Supplementary Note 3). The second
and third were European, retrieved as publicly available data from two
previous research projects. Namely: “EFFORT against AMR38” (206 E.
coli isolates from chicken faeces with AMR phenotypes, collected in
five different European countries - Denmark, Germany, Switzerland,
Poland, and Spain - where the birds are subjected to strict control
measures against Salmonella, thus co-presence of S. enterica is unli-
kely) and “ENGAGE”39 (92 S. enterica chicken cecum and faeces isolates
from Italy,where samplesmayormaynot contain co-inhabiting E. coli).
We then performed multiple statistical comparison tests to search for
differences in proportions of plasmids and mobile ARGs (including
shared ones) when considering our Chinese isolates (faeces and caecal
swabs) and the European ones (see Supplementary Note 3 for further
details). In general, our results show that:
a. both the number of distinct plasmid types and the number of

mobile ARGs is higher in the Chinese cohort, indicating a likely
influence of the country of collection in the observed results;

b. there is a positive correlation between co-inhabitation of E. coli
and S. enterica, and the proportions of mobile genetic elements
(plasmids and mobile ARGs) observed in their isolates, as
indicated in particular by the comparison of the Chinese co-
inhabiting vs not co-inhabiting cohorts, and by the comparison of
Chinese E. coli isolates (with confirmed co-inhabitation) with the
EFFORT E. coli isolates (with likely absence of co-inhabitation, due
to the very low Salmonella spp. prevalence, owing to the EU
Salmonella control measures Regulation (EC) No. 200/201240—

resulting in strong Salmonella control/vaccination programmes
and less than 0.5% Salmonella positive flocks in commercial
broiler chickens).

Machine learning unravels known and novel AMR-associated
core genome SNPs and accessory genes correlated with resis-
tance/susceptibility profiles to multiple antimicrobials in both
species
Given the similar proportions of resistance, against 28 antimicrobials,
across the 518 E. coli and against 26 antimicrobials across 143 S.
enterica isolates, despite phylogenetic differences, we further investi-
gated which genetic determinants (features) were underlying the
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experimentally determined resistance/susceptibility profiles and if
they were in common between the two species. We assessed whether
the resistance/susceptibility profiles of either E. colior S. enterica could
be explained by the presence of known AMR genes (as found
in CARD36). As previously done by us and others17,41,42, we used
the Jaccard/Tanimoto similarity coefficients43,44 to identify the inter-
section between resistance phenotypes and the knownAMR genes in a
pairwise manner. We found, for E. coli, that the maximum statistically
significant Jaccard value was 0.62 with many antibiotics achieving a
maximum Jaccard association of much less than this (range of max-
imum Jaccard coefficient per antibiotic 0.006–0.62, mean 0.32),
Supplementary Data 5. Similarly for S. enterica, the maximum statisti-
cally significant Jaccard similarity coefficient was 0.71 (range of max-
imum Jaccard coefficient per antibiotic 0.01–0.71, mean 0.51),
Supplementary Data 5. Given the low values of the Jaccard coefficients,
we conclude that the presence of known AMR genes (as found in the
CARD database) alone was not able to adequately explain AMR phe-
notypes in either the E. coli or S. enterica isolates in our study, neces-
sitating an alternative approach. To do this we employed a supervised
machine learning pipeline (Figs. S8a and S9a). The pipeline is aimed at
mining sequencing data to identify the genetic elements that more
strongly correlate with observed phenotypic differences, which in this
case are related to resistance/susceptibility to antibiotics. Note that
whilst the previously described analysis specifically focused on plas-
mids andmobile ARGs, the machine learning pipeline was designed to
provide a wider perspective by investigating all the SNPs in the coding
and non-coding regions of the core genome aswell as all the accessory
genes in search for correlation to AMR traits. Firstly, a test for the
presence of multicollinearity was carried out on the ML features. The
variance inflation factors (VIFs) were computed using the StatsModels
package in Python.Multicollinearity was found in all antibioticmodels:
in E. coli models VIFs ranged from 2 to 265 (mean 109), with many at
infinity; in S. entericamodels VIFs ranged from 7 to 50 (mean 20), with
many at infinity. For this analysis we improved our original ML-based
core methods17,45,46 in a notable way (see Fig. S8a): information about
different genetic features (SNPs from coding and non-coding regions
and presence/absence of accessory genes) were fed all at the same
time as input into the model. This would capture the co-occurrence of
multiple mechanisms (mutations, horizontal gene transfer—HGT) as

well as their additive effect on resistance. To ensure the best perfor-
mance and avoid any bias both species underwent population struc-
ture correction and were tested against a panel of seven ML methods,
five classifiers and twometa-methods (Linear SVM, RBF SVM, Random
Forest, Extra tree classifier, Logistic regression, Adaboost and
XGBoost), with the best classifier performance assessed using the
Friedman and Nemenyi tests (seeMethods and Fig. S10 for details). To
correct for unbalanced classes SMOTE47 or SMOTEENN48 was used to
synthetically oversample theminority class for both and under sample
the majority class for SMOTEENN, and nested cross validation was
employed. This procedure necessitated a minimum of 12 samples in
theminority class for eachpredictivemodel, hence someantimicrobial
datasets were insufficient for ML. For E. coli, ML was able to be carried
out on 21 antimicrobials. Of these 21 models, 17 achieved high per-
formance with an AUC greater than 0.9, and 13 of those achieved an
AUC greater than 0.95, with the doxycycline performing best (AUC =
0.985), Fig. S8b. Similarly, all other performance metrics were good
for these 17 models, Fig. S8c–g. All four poorly performing predictive
models (amoxicillin-clavulanic acid, ceftazidime, cefotaxime-
clavulanic acid and cefepime) were beta-lactam class antimicrobials,
and these models also had a small number of features selected as
predictive by the data pre-processing, Fig. S11a. The performance
metrics for all classifiers are in Supplementary Data 6, while the
selected features for each antibiotic model are in Supplementary
Data 7. For S. enterica a different ML pipeline was used as shown in Fig.
S9a with pre-processing of all three feature types separately using an
extra tree classifier and resampling of classes using SMOTEENN48, see
“Methods” for details of ML pipeline choice. Due to the relatively low
sample number and unbalanced nature of the resistance-susceptibility
profile of the isolates predictivemodels were built for only the thirteen
antimicrobials with enough samples in the minority class. Of these
thirteen models, all had good AUC performance, >0.9, with ten
achieving an AUC >0.95, Fig. S9b. Performance across all metrics was
high, Fig. S9b–g, and gentamicin (GEN) performed best across all
metrics. Unlike for E. coli, the poorer performing antibiotic models
came from three different antibiotic classes: beta lactams (AMC), dia-
minopyrimidines (SXT) and tetracycline (TET) and poorer performing
models did not necessarily have a low number of features, Fig. S11b.
The performance metrics for all classifiers are in Supplementary
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Data 6, while the selected features for each antibiotic model are in
Supplementary Data 7.

The AMR-related features selected by the machine learning
showed differences according to the type and genomic localization
(i.e. SNPs/accessory genes) correlated to the resistance against a spe-
cific antibiotic. Both synonymous and nonsynonymous core genome
SNPs were selected by the ML pipeline, Supplementary Data 8. In both
species, accessory gene presence-absence tended to be selected in
multiple AMR models, whilst SNP features originating from the core
genome tended to be more specific to a single antibiotic, Fig. S12. For
each species, and each antibiotic model, SHAP (SHapley Additive
exPlanations) values were calculated. SHAP values disclose the indivi-
dual contribution of eachgenemutation/accessory geneon the output
of the model, for each isolate. Figures 4 and 5 use a bee swarm plot to
show the correlation of each of the top ten most important genes for
each model for E. coli and S. enterica respectively, to predict the
resistancephenotype. For E. coli, inmost cases the presence of the SNP
in genes/accessory gene was positively correlated to the resistance
phenotype, though there were some genes for which the absence of
the SNPs/accessory gene was positively correlated to the resistance
phenotype, most notably in the prediction of CAZ-C and AMI resis-
tance, Fig. 4. For S. enterica, amoremixed pattern emerged, withmany
gene SNPs/accessory genes negatively correlated to the resistance
phenotype, i.e., correlated to susceptibility, Fig. 5. Most notably, for
gentamicin, the presence of 9 of the top 10 genes were positively
correlated to the susceptible phenotype.

To understand the relationship between AMR phenotype and
genotype, we cross-referenced the SNPs that acted as predictors for
AMR for each antibiotic to the pangenome for eachmodel data set and
identified the corresponding genes. In total the E. coli features (SNPs
and accessory genes) that correlated to AMR profiles across all anti-
biotic ML models, mapped back to 4419 genes, 20.3% of the pangen-
ome. Genes correlated to E. coli resistance were enriched for plasmid
located genes with 256 (5.6% of the 4419 genes) found in plasmids,
compared to 2.4% of the pangenome. In contrast, genes correlated to
S. enterica were less enriched for plasmid localisation, with 89 genes
plasmid-located (2.7%) compared to 1.9% in the pangenome. Of these
just 1% (44 genes) were known AMR genes (defined as being found in
public AMR databases, see Methods). For S. enterica ML selected fea-
tures (SNPs and accessory genes from all ML models) mapped back to
3501 genes, 44.2% of the pangenome and 1.14% of these (40 genes)
were known AMR genes. Considering these known AMR genes that
were selected from the ML pipeline as being predictive of resistance/
susceptibility (SNPs or accessory genes), many of these were found in
multiple ML models (82% for E. coli and 78% for S. enterica), Fig. 6. For
E. coli, of the 44 known AMR genes selected, those relating to multi-
drug resistance (MDR)weremost frequent (9of 44 genes), followedby
aminoglycoside genes (8 of 44). For S. enterica of the 40 known AMR
genes, aminoglycoside genes (11 of 40) were most frequent, followed
by beta lactam genes (8 of 40).

As done previously45, we selected only the top-ranked AMR-rela-
ted genetic determinants that most strongly contribute to the per-
formance of theML classifier. This was done by limiting our analysis to
genes corresponding to the top 10% of ranked features recognized as
discriminant by the AMR classifiers. This led to a total of 1089 genes in
E. coli and 688 in S. enterica, that were correlated to at least one anti-
biotic. Of these 88 were correlated to at least one antibiotic in both E.
coli and S. enterica. Protein-protein interaction (PPI) networks of these
88 genes, Fig. S13, showed that in both species these genes were
interacting with each other significantly more frequently than would
be expected by chance (E. coli adjusted p-value 1.17 × 10−11; S. enterica
adjustedp-value 1.93 × 10−8; hypergeometric test). Thesegenes fell into
multiple functional groups according to KEGG ontology, Supplemen-
taryData 9, including variousmetabolic processes, DNA repair, cellular
transport, cellular community and drug resistance all of which have

been linked to AMR45,49,50. Of particular interest, the genes ompC and
oppC which were selected in both species are involved in beta-lactam
resistance51. The opp gene operon is also known to be involved in
aminoglycoside resistance52 and quorum sensing51, whilst ompC is
known involved also in signal transduction51. The cysgenepathwayhad
many genes selected by machine learning, these genes were highly
connected with other genes in the PPI networks and in the KEGG
ontology were involved in purine and pyrimidine metabolism, pre-
viously suggested to be important in resistance45.

Machine learning reveals differences in AMR-associated muta-
tions and accessory genes between co-inhabiting E. coli and S.
enterica in chickens and those of E. coli and S. enterica that do
not necessarily co-inhabit
Similar to what done when searching for plasmids and mobile genetic
elements carryingAMRgenes andpresent in co-inhabiting E. coli and S.
enterica, we wanted to investigate whether the results (identified
genetic elements associated with AMR) predicted by the machine
learningpipeline trainedwith theChinese E. coli and S. enterica cohorts
(with confirmed co-inhabitation of the bacterial species) would change
if the same pipeline was trained with different cohorts (e.g., from
another country, and/or with no confirmed co-inhabitation). To this
purpose, we resorted to our Chinese E. coli not co-inhabiting chicken
isolates and again to the previously described EFFORT (E. coli) and
ENGAGE (S. enterica) European datasets, and investigated how the
predictions would change once the machine learning pipelines were
trained using those sets. The full results are given in Supplementary
Note 4, Supplementary Tables 3–6, and Supplementary Data 12–14.

In summary, when looking at the European cohorts and at the
Chinese not co-inhabiting isolates, the comparative analyses were only
possible for subsets of antibiotics with sufficient data for ML training.
The results indicate a larger overlap of results (genetic elements
shared by E. coli and S. enterica, identified byML) when comparing co-
inhabiting and not co-inhabiting isolates collected in China, with
respect to overlaps observed when comparing results from co-
inhabiting Chinese isolates with European isolates. In more detail, a
39.67% prediction overlap was observed when comparing Chinese co-
inhabiting and not co-inhabiting datasets, whilst a 14.19% prediction
overlap was observed when comparing Chinese co-inhabiting E. coli vs
European not co-inhabiting E. coli (EFFORT dataset), and 3%prediction
overlap was observed when comparing Chinese co-inhabiting S.
enterica vs European not-necessarily co-inhabiting S. enterica
(ENGAGE). As stated earlier, the absence of co-inhabitation in the
European samples cannot be fully demonstrated and may be unlikely
at least for the ENGAGE set, hinting at the observed differences being
likely influenced in no small amount by country of collection, although
more investigation should be needed to fully assess the influence of
both co-inhabitation and country of collection in themachine learning
predictions.

Integration with GSM models reveals that many top-ranked
AMR-related genes are essential genes for growth and affect
commonmetabolic pathways correlated to AMR in both species
To further investigate the systemic relationships connecting the
identified AMR genetic signatures on a mechanistic level, and to
elucidate their mechanistic effects beyond genes encoding proteins
targeted by drugs (i.e., positive selection in basal biosynthetic, reg-
ulation, and repair pathways), we integrated the top 10% ranked
genetic determinants identified byML with the GSMmodels of E. coli
(K-12 MG1655, iML151553) and S. enterica (STM v1.054), see Supple-
mentary Data 10. Many accessory genes, as missing from these
reference genomes, were not included in the analysis. For E. coli, for
each antibiotic model on average 10% (n = 30, mean across 19 anti-
biotic models) of metabolic genes accounted for in iML1515 from the
top-ranked 10% features (n = 135, mean across 19 antibiotic models),
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Fig. 4 | Bee swarm plot of SHAP-calculation for the ten highest ranking genes
for each of the E. coli antibiotic ML models. Genes are sorted by their mean
absolute SHAP value in descending order with genes carrying most important
features (SNP or accessory gene) at the top. Genes labels as ‘group_’ are unan-
notated genes. Each dot corresponds to one isolate in the study. The colour red
indicates the presence of the feature while the colour blue indicates its absence.

The bee swarm plot shows how the different feature in each isolate affects the
prediction of theMLmodel towards resistance to the respective antibiotic. Positive
SHAP values indicate a change in the expected model prediction towards resis-
tance, while negative SHAP values indicate a change towards susceptibility. The
plot is based on the ML model with all selected features included.
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whilst for S. enterica proportionally more metabolic genes were
found, 28% (n = 24, mean across 12 antibiotic models). To investigate
the importance of these metabolic genes to the bacteria we simu-
lated ‘loss of function’ mutations for each gene using the GSM
models. For E. coli 22 knockouts of 22 genes were predicted to be
lethal in rich environmental conditions (luxS, accD, hemE, dxs, ubiD,
coaE, ispB, aroC, ispG, lptG, ribC, ispA, lpxD, waaA, murA, kdsC, cysG,
folC, psd, hemD, mraY, ftsI. yrbG, hemL, ubiA). The gene lptG is an ABC
transporter and was selected in 15 of 19 antibiotic ML models, so it
may be an important drug target for multidrug resistance. Similarly,
the genes dxs and ubiD were selected in ten ML models. For S.
enterica only ten genes were essential in rich media (dfp, fepD, ribF,

fepB, luxS, hemB, aroA, fepC, entF, mrsA) with three of those from the
fep gene operon, the primary iron import transporter in S. enterica,
important for virulence55.

To investigate the system level effect of eachgeneonmetabolism,
beyondessentiality,weperformedafluxbalance analysis. In particular,
we knocked out individual genes, blocking the flux through reactions
associated with that specific gene and evaluated the change in flux
span as a result of the gene knockout. In doing so, we can infer
potential metabolic adaptation mechanisms that can be linked to a
change in gene function (i.e., downregulation, overexpression, or
deletion) and find clusters of genes affecting the same reaction path-
ways, which may indicate metabolic adaptions to antibiotic stress.

Fig. 5 | Bee swarm plot of SHAP-calculation for the ten highest ranking genes
for each of the S. enterica antibiotic MLmodels. Genes are sorted by their mean
absolute SHAP value in descending order with genes carrying most important
features (SNP or accessory gene) at the top. Genes labels as ‘group_’ are unan-
notated genes. Each dot corresponds to one isolate in the study. The colour red
indicates the presence of the feature while the colour blue indicates its absence.

The bee swarm plot shows how the feature in each isolate affects the prediction of
the MLmodel towards resistance to the respective antibiotic. Positive SHAP values
indicate a change in the expected model prediction towards resistance, while
negative SHAP values indicate a change towards susceptibility. The plot is based on
the ML model with all selected features included.
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Fig. 6 | Known AMR genes predictive of resistance in antibiotic models.
a Undirected graph of genes found byML as predictive of resistance-susceptibility
profiles to a panel of 21 antimicrobials in E. coli and present in public AMR gene
databases connected to the antibiotic model in which they were selected. Nodes of
the graph represent either the antibioticmodel (indicated by three letter antibiotic
abbreviation) or the known AMR gene. Gene nodes are colour-coded by antibiotic
class. Edges of graphs connect antibiotic model nodes to gene nodes and are

unweighted. b Undirected graph of genes found by ML as predictive of resistance-
susceptibility profiles to a panel of 12 antimicrobials in S. enterica and present in
public AMR gene databases connected to the antibiotic model in which they were
selected. Nodes of the graph represent either the antibiotic model (indicated by
three letter antibiotic abbreviation) or the known AMR gene. Gene nodes are
colour-coded by antibiotic class. Edges of graphs connect antibiotic model nodes
to gene nodes and are unweighted.
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Pathwayenrichment on thosegenes significantly affecting the reaction
fluxes revealed a number of significant pathways in each species and a
core set of pathways significantly effected in both species (Fig. 7). The
latter involving pentose phosphate pathway, cofactor metabolism,
cysteine metabolism, histidine metabolism, lysine and threonine
metabolism, tyrosine, tryptophan and phenylalanine metabolism, cell
envelope biosynthesis, phospholipid metabolism, purine and pyr-
imidine biosynthesis, purine metabolism, nitrogen metabolism,
methionine metabolism, proline metabolism, peptidoglycan metabo-
lism, transport metabolism, and tRNA charging (Fig. 7).

Next, we considered which genes were responsible for all sig-
nificantly affected pathways in the flux balance analysis, Fig. 7. In E. coli
many genes were found to be reducing the flux span in each pathway,
Fig. 8a, including a large number of genes in the purine and histidine
pathways, highlighting the potential importance of these as potential
gene targets. To understand whether these pathways are consistently
important across the phylogenetic distribution of samples we looked
at whether themutations identifiedwith theML in the AMR-associated
genes and correlated to each pathway were present in every E. coli
isolate, Fig. 8b. Interestingly, with the exception of a small group of
isolates within phylogroup E, all E. coli isolates had accessory genes
and/or mutations in core genes present in every significant pathway
indicating that these AMR-associated genetic determinants are
broadly present across the E. coli phylogeny. However, the lack of
mutated genes/accessory genes in phylogroup E is relevant as this
phylogroup is associated with human pathogenic E. coli including the
highly virulent O157:H456.

For S. enterica, many of the same pathways as for E. coli were
significantly affected, with 16 genes on which AMR-associated muta-
tions were selected from both E. coli and S. enterica ML predictive
models Fig, 9a. However, the genes within these pathways carrying the
AMR-associated mutations showed different phylogenetic patterns to
those selected by ML in E. coli, Fig. 9b. When examining individual
isolates, Fig. 9b reveals a distinct pattern of AMR feature presence and
absence in S. enterica phylogeny. Among the various serotypes, only
the Enteritidis serotype isolates exhibit the ML-selected AMR features
across all pathways, whereas the remaining serotypes display features
associated to a considerably smaller number of metabolic pathways.

This indicates that the interplay between metabolism and AMR in S.
enterica is influenced by serotype specificity. In summary, a high
number of the samemetabolic pathways are correlated toAMR in both
S. enterica and E. coli, with genes correlated to AMR and significantly
underlying metabolic function overlapping in both species. However,
these AMR-associated determinants show a different phylogenetic
pattern between the two species: prevalent across all metabolic
pathways throughout the phylogeny of E. coli, whilst, in S. enterica,
these determinants are prevalent to certain serotypes across all
pathways.

To perform a preliminary validation of the AMR-related genetic
elements (SNPs and accessory genes) identified by theML pipeline, we
selected three of the top-ranked SNP candidates, prioritizing the fol-
lowing aspects in relation to the associated genes: (i) presence in the E.
coli and S. enterica co-inhabiting set; (ii) harbouring non-synonymous
SNP; (c) significantly impacting reaction flux when knocked out, as
highlighted by the genome-scale metabolic model; (d) availability of
the knockout strain. This resulted in three genes, top-ranked byML for
the antibiotics ampicillin and doxycycline, namely: hisA (obtained by
mapping the SNP: P109Q back onto the genome), argI (SNP: A153T)
and fhuB (SNP: N47D). To our knowledge, neither of these three genes
is currently present in any AMR databases.

Although knocking out the entire gene cannot replace the in vitro
study of the effects of the individual mutations onto the AMR phe-
notype, our preliminary results showed that all three gene mutants
exhibited increased antimicrobial susceptibility compared to the par-
ental wild type (Supplementary Note 5).

Discussion
Considerable attention has been recently given to achieving a better
understanding of the AMR evolutionary dynamics in microbial
communities57 and their impact on opportunistic pathogens such as E.
coli and S. enterica with high zoonotic potential and inhabiting ecolo-
gical settings, where communities are interconnected and can impact
resistance selection. However, to which extent these key pathogens
rely on theMGEs andmutations in the core genome for the acquisition
and sharing of AMR is unclear. Analogously, despite, a recognition of
the role metabolism-resistance trade-offs in the evolution of AMR45,58,
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the impact such trade-off has on the co-adaptive trajectories that are
most likely to be followed by species resident within same commu-
nities remains a challenge.

The gutmicrobiota of chickens raised in intensive farmswith high
antimicrobial exposure is a significant reservoir for the transmission of
AMR among both resident pathogens and commensals in the animals,
as well as across interconnected environmental communities

surrounding the farms. Studying antimicrobial resistance and meta-
bolism in this ecological context presents a unique opportunity to
investigate the dissemination and evolution of AMR, as well as the
trade-offs between metabolism and AMR in vivo.

We anticipate that the collective evolutionary trajectory of resis-
tance and metabolism of coexisting bacteria subject to the same
antibiotic pressure, described in this work may affect resistance and
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evolutionary responses to antibiotic treatments of other bacteria
inhabiting the same microbiota more broadly.

In this work, by using a data-mining approach powered by ML,
Bayesian divergence analysis and GSMmodelling, we showed that at a
larger scale, differences in the phylogeny and evolution of S. enterica
and E. coli were observed, but, at a finer scale, most isolates of each
species inhabiting the same host and environment, possessed the
same plasmids and MGEs carrying clinically relevant ARGs.

In particular we found IncHI2, a plasmid known to be a very
important carrier of AMR genes59 in a number of S. enterica and E. coli
strains isolated from the same samples. Bayesian divergence analysis
highlighted two recently co-evolved clusters of IncHI2 plasmids iso-
lated from both species, indicative of relatively recent HGT between
species which may also indicate a host adaptation process for these
species. This plasmid has been previously associated with cross spe-
cies horizontal transfer60, however, to our knowledge direct transfer of
this plasmid (IncHI2) between strains isolated from these two species
has not previously been observed, although it has been observed in a
small number of other plasmid types, e.g., IncY61. Analogously, we
found same mobile ARG sequences (ARGs-transposons) in pairs of E.
coli and S. enterica isolates collected from the same sample. Whilst the
samemobile ARGs have been found in different bacterial species62 and
different sample sources31,32, this is thefirst time that almost all of E. coli
and S. enterica isolates collected from the same sample, showed
mobile ARGs including clinically relevant ARGs (blaCTX-M, APH(3), floR,
mphA, and qnrS1)with a highly conservedmobile ARG structure. These
resistances (beta-lactams, blaCTX-M, aminoglycosides, APH(3), florfeni-
col and chloramphenicol, floR, macrolide, MphA and quinolone, qnrS1)
are a growing problem worldwide. The fact that these antimicrobial
resistance genes are found in conserved mobile genetic elements
between S. enterica and E. coli, is particularly relevant because itmeans
that they can easily be transferred between different bacterial species,
accelerating the spread of resistance. A consideration arising from this
result is that, probablymanyother species present in the samesamples
and interconnected communities have the same resistances. Our
results indicate that sharing is influenced bymany factors, andwehave
reported evidence on the effects of co-inhabitation, as well as country
of collection, possibly reflecting differences in regulations, interven-
tions and overall microbial ecology. It is probable that conducting
large-scale analyses will be essential to consistently detect these
occurrences of AMR gene transfer among strains of different species.

Antibiotic susceptibility testing done against 28 antimicrobials
showed similar proportions of resistant isolates in both species for
many antibiotics, in line with previous studies11. However, when the
resistance-susceptibility profiles were analysed against the genomes
of each isolate from each species through our machine learning
pipeline, both known and novel genomic features (SNPs in the core
genome and accessory genes) were found predictive of the AMR
profiles. Comparison between the two species highlighted a common
core set of genes that were linked to AMR (604 annotated genes, of
which 88 were in the top 10% of most important genes correlated to
AMR). In both species, accessory gene presence-absence tended to
be selected in multiple AMR models, whilst SNP features originating

from the core genome tended to be more specific to a single anti-
biotic. Overall, we observed that whilst for E. coli the genes mainly
were positively correlated with resistance, for S. enterica the genes
mainly were correlated with susceptibility. The genes from this core
set were found to have a significant level of interaction with each
other and with some known AMR genes (e.g., gyrA, gyrB, bcr,
oppC)36,51. OmpC variants have been linked to multidrug resistance in
E. coli63 and very recently the mutations in the gene ompC have been
suggested as being correlated to extensively drug resistant E. coli
with the appearance of mutations preceding the acquisition of
resistance64. Our results suggest that this gene could have similar
important functions also in S. enterica. These findings demonstrate
the efficacy of integrating whole-genome sequencing and ML in
creating a streamlined approach for identifying both known and new
AMR genes. Given the constantly evolving nature of AMR, it is crucial
to advance techniques capable of detecting novel and emerging
genetic determinants that underlie complex resistant phenotypes. By
outperforming traditional methods, ML-enhanced techniques offer
increased accuracy and potency.

GSM modelling further indicated a core set of same metabolic
pathways which were affected by the AMR-associated genes found in
both E. coli and S. enterica by the ML pipeline. Whilst several of these
genes have been previously correlated to AMR, this is the first time
they have been found to be linked to metabolic processes and to
functionally overlap in the two species. One such pathway, tRNA
charging, is essential to protein translation and recent papers have
suggested that bacteria may use mistranslation to control exposure to
stress caused by antibiotics65. This response involves mistranslation of
methionine66 and so could be linked to methionine metabolism,
another pathway significantly linked to AMR in both species. In addi-
tion, cell envelope biosynthesis, pentose phosphate pathway, histidine
metabolism and phospholipid metabolism have all previously been
linked to potential antibiotic resistance mechanisms45. Of the AMR-
related genes found to affect the metabolic pathways in both species
there are several genes from the cys operon, as well as several pur
genes. Both of these gene clusters have been previously highlighted in
connection to AMR in E. coli45. In addition, genes involved in the TCA
cycle were selected in each species with sdhA selected in both; the TCA
cycle has recently been highlighted as a promising target for new
antimicrobial therapies67.

In this study, wedeveloped a customMLpipeline to incorporate a
large number of genetic elements (SNPs in coding and non-coding
regions of the core genome, as well as accessory genes) and perform a
broad-spectrumsearch for correlations toAMR. It wouldbe interesting
to study how our results compare to applying GWAS methods
instead68–73 (see also Supplementary Note 6).

A limitation of this study is that the analysis of association of AMR
resistance to genetic featureswasprimarily in silico, with experimental
gene validation restricted to a small number of genes and a knock out
approach (Supplementary Note 5). To fully validate the predictions
made in this study experimental validation of the specific genetic
mutations would be required. It is important to note that the in silico
mutations made for metabolic genes should be tested in an in vitro

Fig. 8 | AMR-associated genes have been found to impact numerous metabolic
pathways in E. coli, many of them are also considered essential metabolic
genes, and are prevalent across all metabolic pathways throughout the phy-
logeny of E. coli. a An overview of the metabolic pathways affected by those AMR-
associated genes significantly influencing reaction fluxes in E. coli. All genes
annotatedwere found to have reduced the flux span through themetabolic system
whenknocked out, 11 ofwhichwere essential genes (i.e. gene knockoutswere lethal
in rich media). Significance was tested using hypergeometric enrichment tests
(two-tailed) with the false discovery rate (FDR) threshold <1%. Genes highlighted in
pink carriedmutations thatwere selected in the E. coliMLmodels only, genes in red
carried mutations that were selected in both the E. coli and S. enterica models,

metabolic pathways are labelled in brown. b Heatmap showing, for each E. coli
isolate (columns of the heatmap),whether the isolate contained anAMR-associated
gene that if knocked out also significantly affected one or more metabolic path-
ways. The top part of the heatmap shows the phylogenetic relationship between
each isolate. The first row of the heatmap indicates the phylogroup to which each
isolate belongs. The subsequent rows indicate the metabolic pathways into which
the genes were grouped, with only pathways significantly enriched with ML selec-
ted genes shown. Pink represents the presence of a mutated gene/accessory gene,
blue represent the absence. For brevity, A and B1 clades, which showedpresence of
genes in every pathway, were collapsed.
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model (e.g. natural host derived and human macrophages and/or
epithelial cells) in order to validate the physiological relevance of the
metabolic pathway findings. In relation to the analyses done to
understand the influence of co-inhabitance as well as country of col-
lection in the observed results (genetic elements tied to AMR), another
limitation of our study is intrinsic to the challenge of accounting for
the many further confounding factors which may have influenced our

results. Further insight is given in Supplementary Note 6. One further
limitation of the results is the close genomic homology of E. coli and S.
enterica, whichmayhave contributed to someof theoverlappingAMR-
associated genes selected by the machine learning and metabolic
modelling. Future studies should consider comparisons between co-
inhabiting gut bacteria species less closely related, for example
Enterococcus spp. or Campylobacter spp.
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Overall, this work has shown the importance and the power, as
also suggested by others57, of adopting bespoke analytical methods
when studying how bacteria coexisting in multi-species communities
respond to antibiotics. Furthermore, it also emphasizes the need to
explore not only individual pathogens but also the intricate microbial
ecosystems they inhabit and evolve in.

Methods
Ethics statement
This study was performed in accordance with protocols approved by
the EthicsCommitteeof the StateKey Laboratoryof theChinaNational
Centre for Food Safety Risk Assessment (CFSA). The ethical approval
number of CFSA is 2018018. Ethical approval has also been obtained
from the Research Ethics Committee in the School of Veterinary
Medicine and Science at the University of Nottingham, application ID:
2340 180613.

Experimental design
For the study we selected ten large-scale commercial poultry farms
belonging to three different provinces in China (Shandong, Henan and
Liaoning), covering an area of 472,500 km2, each farm feeding into one
of four regional abattoirs (two in Henan, one in Liaoning and one in
Shandong). Each farm features multiple barns, each containing
between 12,000 and 32,800 birds, leading to a total production
capacity of 110,730 to 380,000birds per breeding cycle (dependingon
farm). Broiler production is based on self-breeding with broilers bred
on the farm and moved to the barns in same-aged batches. Of the ten
selected farms, four (three in Liaoning and one in Shandong) use net
housing systems,whilst the other six use cage housing systems.During
collection, the number of birds per barn did not significantly differ
between the twohousing systems (t-test,p-value = 0.07). E. coli isolates
(n = 96) taken from one farm (Shandong 1) were part of a pilot
experiment with the results previously published17.

In total 977 samples were collected from: chicken faeces (n = 372),
chicken cecal (n = 52), chicken anal swabs (n = 10), chicken feathers
(n = 65), chicken carcasses (n = 193), feed (n = 64), barn environment
swabs (n = 32), drinking water (n = 58), abattoir environment swabs
(n = 15), wastewater (n = 32), external soil (n = 84). Details on the col-
lection methods are as follows. For faecal and cecal samples, each
sample consisted of ~10 g fresh sample of mixed chicken faeces (2–3
chickens) or an ~2 g mixed fresh sample of 2–3 chicken caecal drop-
pings, collected from the bottom of the chicken cage/net using a
sterilized spoon. Chicken anal swab samples were collected using
cotton-tipped swabs. Feather samples were collected from the bottom
of the chicken cage/net and swabbed using cotton tipped swabs. Barn
floor samples were taken using a sterilized spoon. Not less than 20mL
each of chicken drinking water from farm and waste effluent water
from the slaughterhouse were collected from the water pipe or by
pipettes. About 10 g each feed sample was collected using a sterilized
spoon. Pooled carcass samples were collected in the abattoirs using a
sponge swab (SS100NB, Hygiena International, Watford, UK) on the
surface of the carcass. Abattoir environment samples were taken from
the processing and collected from multiple surfaces, e.g., the cutting
table and transfer belt of the cutting and deboning house. Soil samples

consisted of about 10 g soil, collected outdoors at depth of 1–3 cm, 5m
from the external barnwalls, to ensure sufficient separation fromareas
of human use. All biological samples were collected using aseptic
techniques, and then stored in secure containers at 4 °C during
transportation to the laboratory and extracted within 24 h.

Bacterial isolation and identification
A quantity (volume) of 1 g (mL) sample of faeces, soil, feed, water each
was vortexed with 9mL of sterile buffered peptone water tube (BPW;
Luqiao Inc., Beijing, China) for 1min; chicken carcass sponge samples
were homogenised with 10mL BPW for 1min in a stomacher bag. For
isolationof E. coli, ~1mLdilution (of any of the above samples)was then
added to 9mL E. coli (EC) broth (Luqiao Inc.) and incubated at 37 °C for
16–20h in order to enumerate presumptive E. coli populations. A
loopful of these solutions was then streaked onto an eosin-methylene
blue (EMB) agar and MacConkey (MAC) Agar (Luqiao Inc.) and incu-
bated at 37 °C for 18–24 h. Typical E. coli colonies were screened and
subsequently characterized by a Bruker MALDI Biotyper (Germany).
The positive isolates identified were further confirmed by PCR using E.
coli-specific primers ITS-F (5′-CAATTTTCGTGTCCCCTTCG-3′) and ITS-
R (5′- GTTAATGATAGTGTGTCGAAAC-3′)74. Thermal amplification
conditions were as follows: pre-incubation at 94 °C for 5min, followed
by 30 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for
30 s, elongation at 72 °C for 30 s, and a final extension of 72 °C for
5min. Out of all isolates analysed, 518 were identified as E. coli positive
and included: chicken faeces (n = 261), chicken carcasses (n = 67),
chicken feathers (n = 53), chicken cecal droppings (n = 45), chicken
feed (n = 30) external soil (n = 16), barn environment (n = 16), waste
water (n = 12), anal swabs (n = 9), abattoir environment (n = 7) and
drinking water (n = 2). Similarly, for isolation of S. enterica, ~1mL enri-
ched dilution was added to 9mL RV broth and SC broth (Luqiao Inc.)
and incubated at 42 °C and 37 °C for 16–20h, respectively, in order to
enumerate presumptive Salmonella populations. A loopful of these
solutions was then streaked onto a Chromogenic Salmonella agar
(Luqiao Inc.) and incubated at 37 °C for 24–48 h. Typical Salmonella
colonies were screened and subsequently characterized by Bruker
MALDI Biotyper (Germany). The positive isolates identified were fur-
ther confirmed by PCR using Salmonella specific primers invA-F (5′-
GTGAAATTATCGCCACGTTCGGGCAA-3′) and invA-R (5′-TCATCG-
CACCGTCAAAGGAACC-3′)75. Thermal amplification conditions were as
follows: pre-incubation at 94 °C for 5min, followed by 30 cycles of
denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, elongation at
72 °C for 30 s, and a final extension of 72 °C for 5min. In total, 143 were
identified as S. enterica positive and included: chicken faeces (n = 59),
chicken cecal droppings (n = 23), chicken carcass (n = 20), chicken
feather (n = 13), barn environment (n = 8), wastewater (n = 6), external
soil (n = 5), chicken feed (n = 4), abattoir environment (n = 4), drinking
water (n = 1). The identified E. coli and S. enterica isolates were kept in
brain heart infusion broth (BHI) medium with 20% glycerol at −80 °C
freezer for further characterization.

Antimicrobial susceptibility testing
Antimicrobial susceptibility to a panel of agents was determined by
brothmicrodilution and interpreted according to the criteria based on

Fig. 9 | AMR-associated genes have been found to impact numerous metabolic
pathways in S. enterica, many of them are also considered essential metabolic
genes, however, are prevalent across all pathways only in certain serotypes in
the S. enterica phylogeny. a An overview of the metabolic pathways affected by
those AMR-associated genes significantly influencing reaction fluxes in S. enterica.
All genes annotated were found to have reduced the flux span through the meta-
bolic system when knocked out, six of which were essential genes (i.e. gene
knockouts were lethal in richmedia). Significancewas tested using hypergeometric
enrichment tests (two-tailed) with the false discovery rate (FDR) threshold <1%.
Genes highlighted in blue were selected in the S. entericaMLmodels only, genes in

red were selected in both the E. coli and S. entericamodels, metabolic pathways are
labelled in brown. b Heatmap showing, for each S. enterica isolate (columns of the
heatmap), whether the isolate contained an AMR-associated gene that if knocked
out also significantly affected one ormoremetabolic pathways. The top part of the
heatmap shows the phytogenic relationship between each isolate. The first row of
the heatmap indicates the phylogroup to which each isolate belongs. The sub-
sequent rows indicate themetabolic pathways into which the genes were grouped,
with only pathways significantly enriched with ML selected genes shown. Pink
represents the presence of a mutated gene/accessory gene, blue represent the
absence.
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the Clinical & Laboratory Standards Institute (CLSI) interpretive cri-
teria (CLSI 2009). The resistance/susceptibility of 28 and 26 anti-
microbial compounds were measured for each of the E. coli and S.
enterica isolates, respectively, ampicillin (AMP), ampicillin/sulbactam
(AMS), tetracycline (TET), chloramphenicol (CHL), trimethoprim/sul-
famethoxazole (SXT), cefazolin (CFZ), cefotaxime (CTX), cefotax-
imecClavulanic acid (CTX-C – E. coli only), ceftazidime (CAZ),
ceftazidime/clavulanic acid (CAZ-C – E. coli only), cefoxitin (CFX),
gentamicin (GEN), imipenem (IMI), nalidixic acid (NAL – E. coli only),
azithromycin (AZI – S. enterica only), sulfisoxazole (SUL), ciprofloxacin
(CIP), amoxycillin/clavulanic acid (AMC), polymyxin E (CT), polymyxin
B (PB), minocycline (MIN), amikacin (AMI), aztreonam (AZM), cefe-
pime (FEP), meropenem (MEM), levofloxacin (LEV), doxycycline
(DOX), kanamycin (KAN) and streptomycin (STR). E. coli ATCC 25922
was used as a control for the antimicrobial susceptibility testing.

DNA purification and extraction
All the E. coli and S. enterica isolates were subjected to genomic DNA
extraction in accordance with the manufacturer’s protocol of E.Z.N.A.
Bacterial DNA Kit (Omega Bio-Tek, Norcross, GA, USA) followed DNA
sequencing on an Illumina Hiseq 2500 PE150 platform (Illumina, San
Diego, CA, USA).

Library construction and whole-genome sequencing
The template genomic DNA was fragmented by sonication to an insert
size of 350 bp using NEBNext Ultra DNA Library Prep Kit for Illumina
(NEB, USA) following the manufacturer’s recommendations and index
codes were added to attribute sequences to each sample and
sequenced using an Illumina Hiseq 2500 PE150.

Genome assembly and annotation
All sequences were pre-processed through readfq v1076. To clean the
data, reads containing low-quality bases (mean quality value ≤ 20) over
40%were removed. Readswith greater than 10%unidentified bases (N)
were removed as well as the adapters. The whole-genome shotgun
sequencing produced high-quality reconstructed genomes with a N50
larger than 50,000 and less than 250 contigs. Cleaned data were
processed for genome assembly with SPAdes v3.13, and QUAST v4.5
was used for assessing the assembly. The contigs with length shorter
than 500 nucleotides were filtered out. The completeness and con-
tamination of genomes were assessed through checkM with the line-
age_wf pipeline. Genomes were annotated with Prokka v1.14.577 using
default parameters with—addgenes–usegenus.

Screening of annotated genes against ABR databases, plasmid
databases and in silico subtyping
The whole-genome sequences were screened against the CARD36

database with a minimum coverage of 70% and minimum identity of
90% to identify known AMR-associated genes in the isolate cohort. In
addition the annotated genes obtained from Prokka v1.14.577 were
screened against the CARD36, ARG-Annot78 and Resfinder79 databases
using Abricate80 and the NCBI AMRfinder81 database; all the com-
parative analyses have been done with a minimum coverage of 70%
and identity of 80%. Plasmids screening was conducted using the
PlasmidFinder82 database in Abricate80. Sequence types for both spe-
cies were identified through MLST83 which mapped the sequences to
the PubMLST84 database. For E. coli Phylogroups were identified using
in silico Clermont typing85. Serotypes were identified through the
EcOH database86 using Abricate80. For S. enterica, serotypes were
identified with SeqSero287.

To compare plasmid presence with the level observed previously
we downloaded from BV-BRC88 (accessed 9th March 2023), all the
good quality E. coli (n = 705) and S. enterica (n = 265) isolates collected
fromchicken inChina (SupplementaryData 11) and conductedplasmid
screening on these using the PlasmidFinder82 database in Abricate80.

Jaccard/Tanimoto similarity coefficients were calculated in a pairwise
manner between the presence of resistant AST profiles for each anti-
biotic and the presence of known AMR genes as found in CARD. The
Jaccard coefficient was calculated as

A \ Bj j
Aj j+ Bj j � A \ Bj jð Þ ð1Þ

where A is a resistant phenotype and B is the presence of the AMR
gene. A Jaccard value of 1 represents perfect intersection and 0
represents no intersection. The significance of the Jaccard coefficient
was tested statistically using an MCA approach89 and Jaccard coeffi-
cients with an FDR adjusted p value < 0.05 were used42.

Population structure analysis
Linkage disequilibrium of the 518 E. coli and 143 S. enterica isolates in
our cohort was evaluated using the standardized index of association
(ISA)

16, which estimates the homologous recombination for the cohorts
by assessing the linkage disequilibrium among the seven MLST loci.
For each species separately the LIAN Ver. 3.7 program was used to
calculate the ISA for all the isolates and for a subset of them (one isolate
for each ST type) from the ratio of the variance of observed mis-
matches in the test set (VD) to the variance expected for a state of
linkage equilibrium (Ve), scaled by the number of loci used in the
analysis (L)16,

ISA =
1

L� 1
VD

Ve
� 1

� �
ð2Þ

The significance of ISA was determined by a Monte Carlo simula-
tion with 105 resampling.

Generation of genetic features input files
For each species, all annotated genomes were taken as input for pan-
genome analysis with core gene alignments through Roary v3.1390. For
hypothetical proteins, assigned with group IDs by Roary, we identified
putative gene names via a BLAST search of the GenBank and SwissProt
databases at 80% identity.

The core genome alignment for each specieswas taken as input to
produce a file of core gene SNPs present in the cohort using snp-sites91.
A presence-absence table of accessory genes was generated from the
gene presence-absence Rtab file produced in Roary90, with genes
considered to be accessory genes if present in less than 99% of isolates
(and hence not included the core genome). To map intergenic SNPs,
for each species an alignment of core intergenic regions was created
using Piggy v1.592. As input all the output files fromRoary90 and gff files
for each isolate were used. An alignment of the intergenic clusters was
generated by Piggy v1.592 and SNPs were called from this alignment
using SNP-sites.

Network analysis based on core genome SNPs
Networks of E. coli and S. enterica isolates collected from different
samples sources in the farms and different regions of China were
created using a pairwise hamming distance comparison based on core
genome SNPs. Each node represents an isolate, while the edge repre-
sents the hamming distance between two isolates multiplied by the
total number of SNPs found in our cohorts (215,224 SNPs in E. coli;
96,135 SNPs in S. enterica). A thresholdof 15 or less SNPs differencewas
used to filter the edges in the network as suggested by Ludden et al.
(2019)93 and used by us previously17. To consider intra- and intercluster
variability across geography and time a threshold of <100 SNPs was
applied asdonepreviously94 and this subset of isolate pairswas plotted
using Python (Matplotlib v3.6.295). Statistical comparisons were made
using the SciPy package96 implementing ANOVA tests with post hoc
Tukey comparisons.
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Whole-genomephylogenetic analysis andBayesian evolutionary
analysis
IQTree v2.1.4-beta97 was used to construct the maximum-likelihood
phylogenetic trees from the core genome alignment. The alignment
length of the E. coli core genome was 2,214,946 nucleotide sides of
which 198,217 were informative. For the S. enterica core genome the
alignment length was 3,489,080 nucleotide sites with 87,084 infor-
mative sites. For both E. coli and S. enterica different nucleotide
replacement models were tested automatically with the GTR (+F + R3)
replacementmodel selected as thebestmodel. TheUltrafastbootstrap
algorithm was used with 10000 replicates to assess branch support.
The phylogenetic trees were subsequently visualised through
iTOLv598. Subsets of sequences from this study from individual phy-
logroups (E. coli) or serotypes (S. enterica), were selected for Bayesian
evolutionary analysis using BEAST v 1.10.499. Analysis was conducted
on a core genome alignment of each lineage by using Roary v3.1390.
The alignment lengths varied between 510,551 and 4,261,565 and can
be found in Supplementary Data 2. BETS analysis100 was used to check
for a temporal signal in each serotype/phylogroup and found temporal
signal in five S. enterica serotypes (Enteriditis, Indiana, Kentucky,
Kedougou, Havana) and three E. coli phylogroups (A, E and F), which
were taken further for analysis in BEAST, Supplementary Table 1. The
BETS analysis showed that there was insufficient temporal signal in E.
coli Clades B1 and D, so these clades were not subjected to BEAST
analysis. For each species, all combinations of three clock models
(strict, uncorrelated log normal, and uncorrelated exponential) and
four tree priors (constant coalescent, logistic growth, Bayesian skyline,
and birth-deathmodel) were tested using steppingstone sampling on a
subset of the isolates to identify the best model. The GTR-gamma
nucleotide substitution model was used, as selected for the maximum
likelihood tree. The analysis was run for three independent chains until
the effective sample size (ESS), that is, the effective number of inde-
pendent draws from the posterior distribution, for all parameters was
greater than 200 per chain. Convergence was assessed in Tracer
v1.7.1101, and chains were subsequently combined using LogCombiner
v1.10.4102. The maximum clade credibility tree was selected using
TreeAnnotator v1.10.4102 and then visualized in iToL v598.

Plasmid reconstruction and evolutionary phylogeny
Plasmids were reconstructed using the MOB-recon algorithm in the
MOB-suite package v 3.1.226, using default settings. For a subset of
IncH2 plasmids, found in both species in a single sample, variants were
called against the plasmid reference R478 (GenBank accession no.
BX664015) and a core SNP alignment was generated in snippy
v.4.4.5103. An E. coli poultry-sourced IncHI2 plasmid sequence, pAPEC-
o1-R (Genbank DQ517526.1) was also included as an outgroup for the
phylogeny. The core SNP alignment was used as input for Bayesian
evolutionary analysis using BEAST v 1.10.499.

To select the best BEASTmodel all combinations of three clock
models (strict, uncorrelated log normal, and uncorrelated expo-
nential) and three tree priors (constant coalescent, logistic growth,
and Bayesian skyline) were tested using path sampling to identify
the best model. Log marginal likelihood values were in the range of
−411,744 to −403,646. The best model was a random uncorrelated
exponential clockmodel, with a constant coalescent growthmodel.
The GTR-gamma nucleotide substitution model was used, for
nucleotide substitution. Using the chosen model, the analysis was
run for three independent chains of 100million steps. Convergence
was assessed in Tracer v1.7.1101, and chains were subsequently
combined using LogCombiner v1.10.4102. The maximum clade
credibility tree was selected using TreeAnnotator v1.10.4102 and
then visualized in iTOL v598. In addition to the phylogroup analyses,
the BEAST analysis was also conducted for two E. coli serotypes,
O83:H42 and O8:H16, using the same models used for the phy-
logroup analyses.

Mobile ARG analysis
To look for the presence of shared mobile ARG content across dif-
ferent sources, ARGs carried by both species were considered for
samples where both species were found in a single sample. Filtered
contigs (>500bp) in each assembly were searched for ARGs andMGEs
using a BLASTn104 search against the CARD36 and ISfinder105 databases
using a high identity (90%) and coverage (90%) to prevent false posi-
tives and variant uncertainty106. The distance between them ARG and
MGE was calculated based on the position of the ARG and MGE in the
contig31. ARG carrying contigs with a distance between ARG and MGE
of >5 kb were discarded31,33, with the remaining contigs classed as
mobile ARGs. Contigs were annotated using Prokka 1.14.677. ARGswere
further classified as clinically important if the ARG was included in the
Risk I (clinically important ARGs dataset) according to Zhang et al.37.
The structure for themobile ARGpatterns (theMGE type, ARGcarried,
MGE carried, sample source, farm, and distance) was summarised. For
the ARG qnrS1, the gene structurewas visualised using EasyFigv2.2.5107.

Machine learning analysis
Machine learning methods were used to search for the features in the
genome sequence of S. enterica and E. coli isolates which could
strongly correlate to resistance to each one of the of the 26 and
28 selected antimicrobials, respectively. The AMR phenotype (resis-
tant, susceptible) of each sample was used as the class label with
intermediate phenotypes neglected. One ML pipeline was proposed
for each one of the studied species. In both cases, to correct for the
population structure a weighted pairwise chi-squared tests between
each feature and the phenotype class was used, as suggested by Aun
et al.108 using each feature class (accessory genes, core genome SNPs
and intergenic region SNPs) individually. The weights of each genome
were calculated using the method of Gerstein, Sonnhammer, and
Chothia109. As the classes were unbalanced, we oversampled the min-
ority class as a pre-processing step for E. coli using a SyntheticMinority
Over-sampling Technique approach (SMOTE)47 and during the training
phase for S. enterica using a SMOTE and Edited Nearest Neighbours
(SMOTEENN) approach110 to balance the proportion of classes in the
data set. The Python package Scikit-learn version 1.2.1111 was used to
make the classification and to select the most important features.

The overall data analysis pipeline consisted of two phases:
• Phase I – WGS Whole-genome sequence features preselection:

For each antibiotic, isolation of a first set of WGS features (i.e.
presence/absence of accessory genes, core genome SNPs and
intergenic region SNPs) was conducted. For the E. coli pipeline
the features were selected based on the correlation with the
resistance/susceptibility profiles of E. coli using a chi-square test
(p-value < 10−5) and followed by further selection based on the
Gini feature importance of an ExtraTree Classifier with 50
estimators. For the S. enterica pipeline, the features were
selected based on the Gini feature importance of an ExtraTree
Classifier with 50 estimators. In both cases the features were
selected if their Gini importance was higher than the overall
mean value.

• Phase II - Assessment of feature predicting-power through the
development of ML-powered predictive functions: a panel of
machine learning methods (logistic regression (LR), linear
support vector machine (L-SVM), radial basis function support
vector machine (RBF-SVM), extra tree classifier, random forest,
adaboost and xgboost) were then run using as input the pre-
selected features uncovered on the first step and their
performances were evaluated based on a nested cross
validation.

Nested Cross-validation (NCV)112 was employed to assess the
performance and select the hyper-parameters of the proposed classi-
fiers. NCV consists of an outer loop dedicated to randomly split the
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data into new training and testing sets, and an inner loop where dif-
ferent configurations (sets of hyperparameters) for the predictive
function are tested with the outer loop training and testing sets. In our
analysis the inner loop of the NCV used a stratified threefold cross-
validation; while the outer loop measured the ROC-AUC (receiver
operating characteristic area under the curve) accuracy, sensitivity,
specificity and Cohen’s kappa of the test data set (unseen in the inner
loop for the training) using fivefold stratified cross-validation. Thirty
iterations were carried out, wherein each iteration an NCV was
employed.

To compare the results obtained by the seven different classifiers
used, a Friedman Statistical F-test (FF) with Iman-Davenport correction
was employed for statistical comparison of multiple113. The classifiers
for each dataset were ranked separately based on their AUC perfor-
mance, i.e., the classifier with the highest AUC gets ranking 1, the
second highest AUC gets ranking 2, and so on. In case of ties, average
ranks are assigned. The FF test was applied, and the null hypothesiswas
rejected. The post-hoc Nemenyi test113 was used to find if there is a
single classifier or a group of classifiers that performs statistically
better in terms of their average rank after the FF test has rejected the
null hypothesis that the performance of the comparisons on the
individual classifiers over the different datasets is similar.

Undirected graphswerecreated usingNetworkX114 to visualize the
interconnected whole-genome sequence features (accessory genes,
core genome SNPs and intergenic region SNPs) with the antibiotic
models where they were selected. In addition, undirected graphs were
created to visualize the interconnected ARGs (based on the selected
features) and the antibiotics where they were selected.

Genome scale metabolic model
The cobra toolbox in python was used for all simulations. The models
iML151553 of E. coli K-12 MG1655 strain and STM v1_054 of S. enterica
subsp. enterica serovar Typhimurium str. LT2 were downloaded from
the BiGG database115 using the cameo python toolbox116.

Flux variability analysis (FVA) was applied to the wild-type model
and each knockout model using the cobra toolbox in python117. FVA
calculates theminimumandmaximumflux througheach reaction in the
model, given a set of constraints, resulting in the range of possible
fluxes for each reaction (flux span). FVA was simulated using glucose as
theonly carbon source in aerobicminimalM9mediumconditions. Note
that reaction loops in the solution were not allowed. Networkx’s greedy
modularity algorithm114 was applied to assign genes and reactions to a
cluster in order to identify groupsof genes that have a similar impact on
the metabolic fluxes. We identified metabolic pathways that were
enriched in each cluster using hypergeometric enrichment tests using
the scipy functionhypergeom.Weconsidered apathway as significantly
enriched in a cluster using hypergeometric enrichment tests if the false
discovery rate (FDR)was <1%andused theBenjamini-Hochbergmethod
for correction against multiple testing. We considered two sets of
pathway lists for the enrichment. The first used the 40 subsystems as
defined in the GSMmodels. A second list of pathways was downloaded
from the BioCyc database using the SMART tables for E. coli and S.
enterica118, which provided a more extensive list of specific metabolic
pathways. Significant pathways from each model were visualised in
Gephi v0.9.7119. To create metabolic system diagrams the KEGG (Kyoto
Encyclopaedia of Genes and Genomes) was used to create the pathway
for each species, Salmonella enterica subsp. enterica serovar Typhimur-
ium LT2: STM0194 (stm) for S. enterica and Escherichia coli K-12MG1655:
b0153 (eco) for E. coli. In addition, MetaCyc and BIGG models web
serviceswereused tocheck each reaction’smetabolites and responsible
genes, and genes were also manually curated using literature.

Statistical analysis
Statistical comparisons were made using the SciPy package imple-
menting: 1. ANOVA tests with post hoc Tukey comparisons to consider

intra- and inter-cluster variability across geography and time for the
network analysis (p-value < 0.001); 2. A two-sided chi-squared test
with Bonferroni correction to evaluate the similarities between E. coli
and S. enterica AMR patterns over different antibiotics (p-value <
0.001); and 3. A two-sided Fishers exact test with simulated p-value
was used to test for consider variations in serotypes between farms
and source type. 4. Two-sided proportion tests Proportion test (F
tests) with Bonferroni correction were used to assess differences in
the frequency of MGE types among different cohorts with p-
values < 0.05 considered statistically significant. A two-sided Fried-
man Statistical F-test (FF) with Iman-Davenport correction for sta-
tistical comparison of multiple datasets over the seven different
classifiers used (p-value < 0.05). With 7 classifiers and N antibiotic
models, the Friedman test is distributed according to the F dis-
tribution with 7−1 = 6 and (7−1)×(N−1) degrees of freedom. The
number of antibiotic models used for the E. coli datasets were: 21
(Chinese all isolates), 3 (Chinese co-inhabiting chicken isolates), 15
(Chinese not co-inhabiting chicken isolates), 7 (EFFORT not co-
inhabiting chicken isolates) The critical values for the E. coli datasets
were: F(6,120) for p value = 0.05 is 2.17500625 for the Chinese all
isolates, F(6,12) for p value = 0.05 is 2.99612038 for the Chinese co-
inhabiting chicken isolates, F(6,84) for p value = 0.05 is 2.20855381
for the Chinese not co-inhabiting chicken isolates and F(6,36) for p
value = 0.05 is 2.36375096 for the EFFORT not-necessarily co-inha-
biting chicken isolates. While the number of antibiotic models used
for the S. enterica datasets were: 13 (Chinese all isolates), 5 (Chinese
co-inhabiting chicken isolates), 5 (ENGAGE not co-inhabiting chicken
isolates). The critical values for the S. enterica datasets were: F(6,72)
for p value = 0.05 is 2.22740397 for the Chinese all isolates, F(6,24)
for p value = 0.05 is 2.50818882 for both the Chinese co-inhabiting
chicken isolates and the ENGAGE not-necessarily co-inhabiting
chicken isolates. The post-hoc Nemenyi test was used to find if there
is a single classifier or a group of classifiers that performs statistically
better in terms of their average rank after the FF test has rejected the
null hypothesis that the performance of the comparisons on the
individual classifiers over the different datasets is similar. For the
GSM models, we considered a pathway as significantly enriched in a
cluster using hypergeometric enrichment tests if the false discovery
rate (FDR) was <1% and used the Benjamini-Hochberg method for
correction against multiple testing. For the validation experiment,
the statistical comparison of the optical density at 600 nm between
the mutant and the wild-type strains in different concentrations was
performed using a two-sided t-test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data supporting the conclusions of this article are
available in the NCBI database under BioProject accession numbers:
PRJNA675772 (Shandong 1_1 and 1_2). PRJNA841811 (E. coli WGS from
other farms). PRJNA841813 (S. enterica from all farms). Public datasets
were obtained from the European Nucleotide Archive with accession
numbers listed in Supplementary Data 11.

Code availability
The code is available on Github: https://github.com/tan0101/
Commercial_WGS2023 under https://doi.org/10.5281/zenodo.
10210870120
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