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Abstract. The U.K. Road network is a complex and dynamic system, managed by a federated network of 

organizations, often with stringent constraints on resourcing. Remediating deterioration of the network is 

both costly and politically sensitive; resilience, sustainability, and utilisation impacts must be constantly 

balanced by asset managing organizations. An approach for localized prediction of deterioration is developed 

in this paper, combining remote sensing and automated survey data into a GIS-based model to support 

decision making. In addition, predictive models are proposed in this paper, based on random forest 

regression and classification approaches, which use the proposed data model to create localized deterioration 

profiles. The machine learning model has been trained with and validated against data from a 21km length of 

the UK Major Roads network, using ~10 years of condition data and authoritative traffic, cartographic, and 

environmental data from several UK government agencies. Both the regression model and the classifier can 

accurately predict condition metrics, described in industry standards. This approach allows for early 

detection and mitigation of pavement failure and support maintenance operations on the network whilst 

minimizing disruption and maximizing return on investment. 

 

1. Introduction 

In England, for areas outside of London, management of road infrastructure is carried out at two tiers: the 

Strategic Road Network (SRN) managed by National Highways, and the Local Road Network (LRN) 

managed by local authorities. Whilst the SRN mostly comprises roads of relatively modern construction, 

acting as arterial trunk roads between towns and cities, the LRN represents a more varied asset and 

comprises anything from minor residential roads constructed over 100 years ago to major connections within 

a region. To allow more effective funding for these intra-region networks, a middle tier of local authority-

maintained roads, the Major Road Network (MRN), was established in 2017 by the U.K. government with 

and additional £3.5Bn. of funding allocated for improvements and capacity increases for these roads 

(Department for Transport, 2018). 

Following the work of (Gong et al. 2018) and (Chen et al 2022) this paper looks to investigate the use of 

Random Forest approaches for prediction of pavement deterioration on the UK MRN and identify key 

datasets that can be used to support the prediction process within the context of the UK LRN. Novel use of 

authoritative spatial and contextual data alongside flexible predictors such as the Random Forest algorithm 

could support the predictive process in lieu of hard-to obtain information such as construction, materials, and 

historic maintenance. Part one of this paper acts as an introduction to UK Highways management and a 

primer on Random Forest algorithms. Part two provides details on data selection, preparation, and model 

configuration; the paper concludes in parts three and four, where results are discussed, and the conclusion 

placed in context. 

 

1.1 Condition and serviceability metrics for pavements 

Pavement roughness, measured as a function of vertical change relative to longitudinal distance, is a widely 

used indicator of pavement serviceability. High or changing roughness values (commonly described using 

measures such as the International Roughness Index, or IRI) indicate a poor ride quality, particularly for 

high-speed roads, and changes in roughness may indicate structural defects within the pavement (Adelinge 

and Gupta, 2013). Automated road surveys, which commonly capture roughness alongside several other 

condition metrics are commonly used by highways management organisations worldwide to assess and 

monitor the condition of their networks (Attoh-Okine and Adarkwa, 2013). These traffic-speed surveys may 

be undertaken alongside other survey techniques (such as visual inspections) to provide a more complete 

image of the road network over time and provide a quantitative measure of the pavement condition. 
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Since 2006, U.K., Local Authorities (LAs) have had a statutory obligation to undertake automated 

surveys of their network under the Surface Condition Assessment for the National Network of Roads 

(SCANNER) specification (Department for Transport, 2021). SCANNER surveys capture a range of 

information, including road geometry, transverse road profile, pavement texture depth, and roughness. 

Roughness is reported as Longitudinal Profile Variance (LPV) as 3m and 10m averages, not IRI, which 

complicates direct comparison of UK pavement data with pavement performance datasets, such as the Long-

Term Pavement Performance (LTPP) database. Finally, for each surveyed 10m section of pavement an 

aggregated and weighted condition indicator – the SCANNER RCI - is calculated and reported by the local 

authority as a key performance indicator for the maintenance operations of the LA.  

The output of the SCANNER RCI calculation is a number score between 0 and 315; due to the nature of 

the weighted calculation, a pavement with only slight defects may score 0, or several minor defects may 

compound to indicate relatively severe overall deterioration. For operational convenience, the SCANNER 

RCI score is categorised to indicate the urgency with which maintenance is required; scores below 40 are 

considered in good repair (‘green’), scores between 40 and 100 should be considered immediate maintenance 

candidates (‘amber’), and scores over 100 are considered in poor condition and likely to need immediate 

maintenance (‘red’).   

 

1.2 GIS data and deterioration factors. 

Flexible pavements (e.g., pavements constructed of asphalt and granular base materials) have several modes 

of failure. Once the waterproof surface layer of a pavement is breached, water ingress can cause rapid 

structural failure and disintegration such as potholes (Adelinge and Gupta, 2013); age can cause materials to 

degrade and become porous and simple wear can cause fretting and cracking. Climate effects such as freeze-

thaw can cause delamination and ravelling, and deterioration can quickly spread points of weakness such as 

edges and joints (Al-Omari and Darter, 1995). These kinds of defects can be quick forming, costly to repair, 

and represent a safety risk to users of the road network. Datasets such as weather, geographic context, 

construction and maintenance history, and traffic profiles may help to target proactive interventions.   

 

1.3 Random Forest Classification and Regression  

Among common machine learning and inductive inference approaches, decision tree (and random forest of 

decision tree) algorithms are amongst the most widely used due to their relative ease of interpretation, their 

ease of configuration, and their ability to handle complex relationships between inputs and outputs. Whilst an 

individual decision tree is prone to overfitting and has a poor tolerance of outliers, using multiple decision 

trees acting in parallel, working on partitioned training data, and using an aggregated output, can improve 

overall accuracy and improve the tendency to overfit at the cost of interpretability. Random forest 

approaches can be used for either regression or classification without fundamentally changing the underlying 

algorithm; the key difference is at the final aggregation stage, where for example either majority vote (for 

classification) or mean value (for regression) could be used to predict a target variable (Liaw and Weiner, 

2002). (Gong et al., 2018) successfully used a random forest approach to predict IRI from the construction 

and condition data, and in their systematic review of ML approaches in civil engineering Chen (Chen et 

al.,2022) notes the potential for random forests for pavement prediction, and suggests key inputs to the 

predictive model.  

Figure 1. Location plan indicating the A6097 area of study. 
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2. Proposed Methodology   

2.1 Pavement and traffic data selection 

Chen (2022) suggests that the key inputs for predictive models for pavement are existing condition, materials 

and construction, climate, and traffic characteristics. Definitive construction details for existing pavements 

can be difficult to determine, particularly on the LRN where roads may have been constructed using locally 

available materials and historic design specifications. Authoritative condition data for UK local roads is the 

purview of UK local authorities, and Nottinghamshire County Council provided SCANNER condition data 

for their network covering 2007 – 2021 in native UK Pavement Management System Interchange format. To 

allow for detailed analysis, a subset of this data was used covering one part of the Nottinghamshire Major 

Road Network.  

The A6097 comprises an approximately 22 km long section of single- and dual- carriageway road, 

approximately 9km East of Nottingham, crossing the Trent Valley, and acting as a key internal artery for the 

county of Nottinghamshire. Much of the road was constructed in 1932, with successive modernization work 

undertaken to-date, most recently with major junction improvements in 2009 and with further upgrades to 

the road proposed as part of the MRN inaugural phases of work. Detailed construction and material records 

are unavailable, but general changes in construction methodology between sections of road have been 

captured by the local authority in their network hierarchy. In addition, traffic volumes (taken from U.K. 

Office of National statistics data) are consistent along the road’s length. A location plan is shown in figure 1. 

Speed limit data was provided by Nottinghamshire as part of their network model and has been taken 

validated against speed limit signage.  

In the U.K., traffic volume and character from automated traffic counts are reported by the Office of 

National Statistics (ONS). As part of the proposed modernization work, survey data from 2012 has been 

projected forwards to provide current and predicted traffic volumes for the northern and southern halves of 

the road and traffic volumes, reported as Average Annual Daily Traffic (AADT) and Average Annual Daily 

Flow (AADF), are relatively consistent along the road’s length.  

 

Table 1. List of datasets and inputs to the predictive model. 

 

Dataset Source  Metrics 

Network Model Nottinghamshire County Council Speed limit, lane count 

Traffic Volume U.K., Office of National Statistics AADT, AADF, and %HGV 

Major maintenance works Nottinghamshire CC Major schemes, 

2007 - 2021 

Resurfacing and realignment of 

carriageways. 

Road condition data Nottinghamshire CC SCANNER data, 

2007-2021 

Pavement condition and 

geometry 

Topography U.K., Environment Agency Digital 

Terrain Model (DTM) 

Elevation (m AoD) 

Topographic Position Index Derived from DTM data (Wilson et al., 

2007) 

Descriptive statistics (mean, 

median, maximum, minimum) 

Terrain Ruggedness index Derived from DTM data (Riley et al, 

1999)  

Descriptive statistics (mean, 

median, maximum, minimum) 

Slope angle (degrees) Derived from DTM (Zevenbergen and 

Thorne, 1987) 

Descriptive statistics (mean, 

median, maximum, minimum) 

Rainfall catchment Derived from DTM (O’Callaghan and 

Mark, 1984) 

Descriptive statistics (mean, 

median, maximum, minimum) 

Geomorphic context Derived from DTM (Jasiewicz and 

Stepinski, 2013)  

Total coverage (m)  
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2.2 Geography and geomorphology data selection  

The Ordnance Survey (OS) provide an authoritative source for U.K. mapping data via their statutory 

relationship with U.K., Local Authorities. The OS provides detailed topologic and network maps for the 

whole of Great Britain on a commercial basis, with licenses available for research purposes on a non-

commercial basis. Due to the rural nature of the A6097, area coverage of permissively licensed alternatives 

such as OpenStreetMap was found to have comparatively lower levels of detail than OS alternatives, missing 

information such as road widths and minor junctions. OS Highways data also correlated more closely and 

completely to the surveyed data than either openstreetmap or the LA’s own network hierarchy. Distance to 

the nearest junction on the carriageway was calculated from the OS Highways dataset. 

A comparison of available Digital Terrain Models (DTMs) for the area of concern revealed that U.K., 

Environment Agency (EA) aerial survey data was both the highest available resolution (1m) and cheapest 

available. As part of their flood monitoring program, the EA undertakes ongoing aerial surveys of the route 

of the river Trent and its floodplain which the A6097 crosses in its southern extent. Permissively licensed 

DTM data was available from the OS, but at much lower resolution (10m), and higher resolution survey data 

was prohibitively costly or license-constrained along the full length of the route. A full list of datasets and 

metrics is included in table 1. 

Underlying geology along the road length was considered as an input, and geological data from the 

British Geological survey was checked. In its southern and central areas, the road is mostly underlain by the 

Mercia Mudstone group, comprising weak interbedded sandstones and mudstones. In the northern extent, the 

road sits on the Sherwood sandstone group, a strong sequence of red sandstones. In both cases, the 

competent underlying bedrock is unlikely to be a source of failure that would be registered by the 

SCANNER survey. In the central floodplain area around the river Trent, the road is built onto an engineered 

embankment that rests on fluvial sands and gravels (the Trent Valley Formation). As with the northern 

extents, whilst mass movement and flooding may represent a risk to the road, these issues are unlikely to 

present in an immediately apparent way in SCANNER survey data. As such, the underlying geology was not 

included in the predictive model. 

 

2.3 Data Preparation  

SCANNER condition data was provided in U.K. Pavement Management System (PMS) HMDIF format. A 

loader was written using the Python programming language to parse the files, extract records relevant to the 

road of concern, and load the result into a Postgres database. Start and end points for each survey section and 

for each for each survey undertaken was generated from the HMDIF data, and a survey path generated by 

connecting the start and end points for each survey chainage.  

 

Figure 2. Extraction and positioning of survey locations from GPS tracks.  

 

Centroids for each survey path were then calculated, and cluster analysis using the DBSCAN (Khan et al. 

2014) algorithm (minimum cluster 3 points, minimum distance 2.5 meters) was used to filter outlier survey 

points that may have been the result of survey error or junction realignment. Survey path lines were then 

spatially buffered by 2m to create survey event polygons with a 10m length, resulting in 18,108 survey event 

polygons covering the full length of the road and containing approximately12 years of condition data. The 
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stages of this process are illustrated in figure 2. SCANNER RCI values and contributing condition 

parameters were calculated following the SCANNER specification (UK Roads Board, 2011).  

The DTM was used as source data to calculate geomorphological terrain characteristics and to calculate 

descriptive statistics for each survey event polygon – a full list of input parameters is given in table 1. Each 

quantitative value was then normalized with respect to other records in the dataset using the minimum and 

maximum values of that variable. The resulting dataset comprises 12348 records in 3242 clusters, recording 

time since previous survey, change in condition since previous survey, and ground context for a particular 

cluster of condition data. 

 

2.4 Model development and training. 

Decision tree regressors and classifiers from the python scikit-learn package (Pedregosa et al., 2011) were 

used to build the Machine learning models. For each training cycle, 70% of the dataset was used for training 

the model, 20% for testing the model, and 10% was set aside for model validation. 

Separate models using the same baseline data were trained to calculate regression models for each of 

roughness, cracking, transverse profile, texture depth, and Scanner RCI.  In addition, simple linear 

regressions were calculated for each curve to allow for a baseline to assess relative performance. 

To evaluate the predictive performance of the random forest classifier, the SCANNER RCI scores for 

each survey event were assigned their appropriate condition category (Red, Amber, Green). The time interval 

to the next survey within a cluster was then established for each record, and the condition category at the 

time of the next survey was added as a target variable for the classifier. This approach looks to establish 

whether, given a condition category at time ‘a’, can the classifier predict the condition category at a future 

time ‘b’.  

 

3. Results 

Table 2. Performance of random forest regression on the SCANNER deterioration dataset.   

 

 
Linear regression, 

mean R2, 

Random Forest Regression, mean R2, 

(RMSE) 

Training Test 

Texture Depth -19.34 0.66 0.64 (6.4) 

Cracking -20.49 0.45 0.34 (22.8) 

Transverse Profile -19.5 0.61 0.55 (7.3) 

Longitudinal 

Profile 
-19.27 0.68 0.64 (4.9) 

Scanner RCI -19.35 0.78 0.75 (11.2) 

 

3.1 Regression results 

The random forest regression outperformed the linear regression for all SCANNER parameters, although it 

should be noted that the linear regression is an exceptionally poor fit overall with negative average R2 values 

for all condition metrics, indicating that a linear regression was a worse characterization than simply taking 

the average condition value over the survey period. Many sections (45%) exhibit no deterioration at all over 

the survey period or exhibit little change (+37%). Of key importance is the starting condition; if a section of 

pavement is in good repair, it tends to remain in good repair, and if a section has begun to deteriorate, the 

deterioration rate increases; this is consistent with our understanding of pavement behavior, where one defect 

represents a point of weakness from which further deterioration can spread. The plot of actual vs. predicted 

Scanner RCI values, based on results from the test dataset, is shown in Figure 3; The plot shows significant 

heteroskedasticity for low RCI values, which makes sense when considering that the underlying data 

comprises significantly nonlinear time series values, where each value is contingent on its predecessor.  

In some cases, conditions on a section improved, which may be either due to spurious detections during 

survey, or spot-maintenance that was not captured in the major remediation schemes dataset. This is of 

particular concern for cracking, which has a poor regression result; indeed, the contribution of cracking to 

the overall SCANNER RCI has reduced weighting relative to other parameters to reflect this disparity (UK 

Roads Board, 2011).  
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Relative sparsity of data may also have been problematic for the regression model more generally (the 

average number of datapoints per section is 5), and aggregation of sections into comparably performing 

groups may significantly improve the quality of prediction by increasing available data. Longitudinal profile 

variance (LPV) and texture depth performed the best of the individual defects; as noted above, LPV is a 

compound metric that may reflect several underlying issues or construction defects and tends to remain static 

for adversely affected sections. Texture depth is perhaps the metric most reflective of general ‘wear and 

tear’, as vehicle traffic effectively polishes the road surface, and correlation with other condition metric such 

as surface coefficient of friction may be insightful. A summary of the results for all SCANNER parameters, 

including the aggregate RCI, is shown in table 2. 

   

Figure 3. Actual condition vs. Predicted for the SCANNER RCI, from the test dataset.  

 

3.2 Classifier results 

Given a start condition and a duration of time to the next survey, the classifier correctly predicted the future 

condition category at a location in all except 4 cases from the total 2967 in the test dataset. In two of those 

instances the condition improved – indicating either a repair or an incorrect detection on previous readings – 

and in one instance the result was borderline (value of 98.4 vs. predicted condition ‘Red’, which has a 100 

threshold). It should be noted that changes in condition are relatively uncommon (which is reflected in the 

results), and the average survey interval in the dataset is 2.7 years – meaning deteriorating pavements are 

likely to be in significant disrepair at the time of the second survey. As discussed in the methodology, 

records affected by major maintenance (e.g., resurfacing) were removed from the dataset, and it is logical 

that most significantly deteriorated areas are most likely to have major interventions. 

 

Table 3. Confusion Matrix showing the performance of the random forest classifier  

on the on the SCANNER deterioration dataset. 

 

 Predicted section condition 

Actual 

section 

condition 

as Green Amber Red 

Green 2673 0 0 

Amber 0 283 1 

Red 0 3 7 

 

4. Conclusion 

Using the above methods, it has been shown that data-rich models incorporating GIS data can predict 

deterioration across several parameters, and a method for correlating condition metrics tied to the logical 
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network back to the physical network has been demonstrated. The capability of Random Forest approaches 

to model both regressions and classifications has been demonstrated. The ease of deployment and ready 

availability of this model makes it potentially applicable to highways management organizations with 

comparable datasets, particularly UK local authorities with extensive major rural road networks as a low-cost 

supplement to their existing systems; however additional training will be required where there are significant 

variations in traffic volume. 

Future work is focusing on models with greater input flexibility such as graph-based models, and on 

sensitivity analysis to establish which factors correlate most to with deterioration. Most sections do not 

significantly deteriorate, and future work will consider a shift to identifying deteriorating sections (i.e., 

classification and outlier extraction) on a per-defect basis, rather than regression for all sections.  In addition, 

incorporation of climactic factors, drainage, buried assets, and geotechnical features are likely to improve 

predictive model accuracy and will be considered in future approaches with more diverse road.  
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