
Improving the Modelling Capability of an Integrated Fault Detection and

Diagnostic Petri Net Methodology for Dynamic Systems

Taofeeq Alabi Badmus*, Darren Prescott** and Rasa Remenyte-Prescott***

*Resilience Engineering Research Group, University of Nottingham, Nottingham, UK & Department of Computer

Engineering, Federal University Oye-Ekiti, Ekiti State, Nigeria; email address: taofeeq.badmus@nottingham.ac.uk &

taofeeq.badmus@fuoye.edu.ng

**Resilience Engineering Research Group, University of Nottingham, Nottingham, UK; email address:

darren.prescott@nottingham.ac.uk

***Resilience Engineering Research Group, University of Nottingham, Nottingham, UK; email address: r.remenyte-

prescott@nottingham.ac.uk

Abstract.

The existing Generalised Stochastic Petri Net and modified Bayesian Stochastic Petri Net (GSPN-mBSPN)

methodology has demonstrated improved modelling capabilities for fault diagnosis in dynamic systems with

feedback control loops. However, the GSPN-mBSPN approach uses predefined input conditional probability

tables (iCPTs) for fault diagnosis, limiting its usage in dynamic fault diagnosis due to the time required to

define and populate the iCPT entries accurately. This paper presents an algorithm to automatically generate

iCPT tables, enhancing the modelling capability of the GSPN-mBSPN approach for fault diagnosis of dynamic

systems under time-varying conditions. The GSPN module in a GSPN-mBSPN model of a dynamic system is

analysed and structured into sub-net modules, representing system components, monitoring parameters, and

interactions. These sub-net modules provide data structures for the iCPT tables, describing the working and

failure states/modes of system components, states of the monitoring parameter, and causal relationships

between system component states and observable process parameters. The algorithm populates the entries of

the iCPT tables based on the analysis of the sub-net modules. Application of the algorithm to a water tank level

control system demonstrates improved speed and accuracy in generating iCPTs for dynamic fault detection

and diagnosis applications using GSPN-mBSPN approach.

1. Introduction

Numerous approaches have been documented in the literature for assessing the reliability of complex dynamic

systems and diagnosing faults (Liu and Zio, 2017; Shukla and Arul, 2020; Vasilyev et al., 2021; Xu et al.,

2023). One promising research direction involves integrating Bayesian Network features into a Petri Net

model. These approaches offer advantages such as low parameter settings, well-structured interdependencies

between system components, and the ability to handle time-varying data (Vagnoli and Remenyte-Prescott,

2022), crucial for developing reliable and effective fault diagnostic methods. However, Bayesian-supported

Petri Net methods have limitations. For instance, as the number of parent nodes and dependency levels

increases, the computational complexity of the equations describing the interdependencies in a Bayesian

Stochastic Petri Net model also grows (Taleb-Berrouane, Khan and Amyotte, 2020).

Furthermore, the existing Generalised Stochastic Petri Net and modified Bayesian Stochastic Petri Net

(GSPN-mBSPN) methodology for fault detection and diagnosis relies on predefined input conditional

probability tables (iCPTs) for its fault diagnostic process. This reliance hinders its effectiveness in diagnosing

faults in dynamic operating systems under time-varying conditions. Moreover, populating the entries of the

iCPT tables can be time-consuming and error-prone (Forner, Kumar and Kinshuk, 2013), especially with a

vast amount of data (Zhou et al., 2018; Kabir and Papadopoulos, 2019). To overcome these challenges, this

paper proposes a method that automatically generates the structure of the iCPT tables used in the fault

diagnostic module of a GSPN-mBSPN model. The proposed method dynamically updates the entries of the

tables through the analysis of the GSPN module. By doing so, it aims to enhance the overall modeling

capabilities of the GSPN-mBSPN methodology, particularly for fast, accurate, and time-varying fault detection

and diagnostic applications.

IMA International Conference on Modelling in Industrial Maintenance and Reliability - MIMAR2023

2. Overview of the Existing GSPN-mBSPN Approach

A formal definition of the existing GSPN-mBSPN methodology is first presented here to provide some

necessary background knowledge.

Definition 1. A GSPN-mBSPN method is defined as 𝐺𝑆𝑃𝑁 − 𝑚𝐵𝑆𝑃𝑁 =

{𝐺𝑆𝑃𝑁, 𝑃𝑇𝑃 , 𝐴𝑇𝐴, 𝑃𝐶𝑂𝑅𝑃 , 𝑃𝐶𝑂𝑃, 𝑇𝐶𝑅𝑇 , 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒, 𝐴𝑅𝐴, 𝑚𝐵𝑆𝑃𝑁, 𝐴𝐶𝑂𝐴, 𝐴𝐶𝑂𝑅𝐴} such that:

1. 𝐺𝑆𝑃𝑁 is the conventional Generalised Stochastic Petri Net formalism as defined in (Nourredine et al.,

2023).

2. 𝑃𝑇𝑃 is a set of test places (Chen et al., 2010) that enhance the modeling efficiency of Petri net models,

particularly in complex systems.

3. 𝐴𝑇𝐴 is a set of test arcs.

4. 𝑃𝐶𝑂𝑅𝑃 denotes a set of conditional output reset places, which are a specialised type of reset places

(Andrews, 2013). These places serve as interfaces for transmitting observed evidence from the system's

behavioral GSPN module to its fault diagnostic mBSPN module.

5. 𝑃𝐶𝑂𝑃 signifies a set of conditional output/trigger places. These places trigger the fault diagnostic module

when an abnormality is detected during system operation.

6. 𝑇𝐶𝑅𝑇 represents a set of conditional reset transitions, which are a special type of reset transitions. 𝑇𝐶𝑅𝑇 is

utilised to model fault detection when the system operating state deviates from its expected normal

conditions.

7. 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒 → {0, 1, 2}, denotes the codes for Bayesian inference sampling algorithms: 0 for forward

sampling, 1 for rejection sampling, and 2 for likelihood weighting sampling (Russell and Norvig, 2010).

8. 𝐴𝑅𝐴 is a set of reset arcs, where 𝑎𝑅𝐴(𝑝𝐶𝑂𝑅𝑃 , 𝑡𝐶𝑅𝑇) represents the weight of the reset arc from the

conditional output reset place 𝑝𝐶𝑂𝑅𝑃 to the conditional reset transition 𝑡𝐶𝑅𝑇.

9. 𝑚𝐵𝑆𝑃𝑁 is a fault diagnostic Petri net module of the integrated GSPN-mBSPN method.

10. 𝐴𝐶𝑂𝐴: a set of conditional output arcs between 𝑇𝐶𝑅𝑇 and 𝑃𝐶𝑂𝑅𝑃 or between 𝑇𝐶𝑅𝑇 and 𝑃𝐶𝑂𝑃such that

a. 𝑎𝐶𝑂𝐴(𝑡𝐶𝑅𝑇, 𝑝𝐶𝑂𝑅𝑃) =

{
0 𝑖𝑓 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

{𝑖 + 1| 𝑖 < |𝑃𝐶𝑃𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑)|} 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

where 𝑖 is the index of the observed conditional probabilistic place 𝑝𝐶𝑃𝑃 ∈ 𝑃𝐶𝑃𝑃
𝑑 in the

vector of the conditional probabilistic places of transition 𝑡𝐶𝑃𝑇
𝑑 (i.e., 𝑃𝐶𝑃𝑃

𝑑 (𝑡𝐶𝑃𝑇
𝑑)) such that

𝑝𝐶𝑂𝑅𝑃 → 𝑒𝐸𝑃(𝑡𝐶𝑃𝑇
𝑑) where 𝑒𝐸𝑃(𝑡𝐶𝑃𝑇

𝑑) is the evidence place of the conditional probabilistic

transition 𝑡𝐶𝑃𝑇
𝑑 .

b. 𝑎𝐶𝑂𝐴(𝑡𝐶𝑅𝑇, 𝑝𝐶𝑂𝑃) = {
1 𝑖𝑓 𝑚(𝑝𝐶𝑂𝑃) = 0
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 where 𝑚(𝑝𝐶𝑂𝑃) is the current marking of the conditional output/trigger place 𝑝𝐶𝑂𝑃.

3. The Proposed Improvement on the GSPN-mBSPN Approach

The existing GSPN-mBSPN methodology requires a manual definition of input conditional probability tables

(iCPT) for CPT transitions in text files. The GSPN-mBSPN model of a dynamic system is also described in

text files as a set of modelling elements. These files are then input into a custom program to represent and

simulate the model. However, the manual population of iCPT entries is time-consuming and error-prone. To

address this, an algorithm is developed to automatically generate iCPTs for CPT transitions using the GSPN

module of the GSPN-mBSPN model. The algorithm, as described by the flowchart and pseudocode in Figure

1 and Algorithm 1, respectively, involves analysing and structuring the places and transitions of the GSPN

module into sub-net modules representing system components and interconnections. Sub-net modules are

created based on the type of places, transitions, and the arcs connecting them. Timed transitions with input and

output places of type “component” form sub-net modules for system components. Immediate transitions with

common input and output places of type “component” and test/inhibitor places of type “normal” form sub-net

modules for monitoring parameters. Interconnection sub-net modules are formed by immediate transitions with

common input and output places of type “component” and test/inhibitor places equivalent to lower-level sub-

net modules’ input and output places. A sub-net module’s input and output places represent the states of a

component, monitoring parameter, or propagated variable in the GSPN module. The created sub-net modules

are stored in a vector and analysed by the Create_iCPT() function in Algorithm 1 to generate the iCPTs

automatically. These sub-net modules and their corresponding iCPTs can be used to develop an mBSPN

module in the GSPN-mBSPN model. Each sub-net module in the GSPN module corresponds to a conditional

IMA International Conference on Modelling in Industrial Maintenance and Reliability - MIMAR2023

probabilistic transition 𝑡𝐶𝑃𝑇
𝑑 in the mBSPN module. The input and evidence places of a 𝑡𝐶𝑃𝑇

𝑑 of a monitoring

parameter are port places linked to a conditional output place and a conditional output reset place in the fault

detection module of the GSPN-mBSPN model. The output places of the transition are conditional probabilistic

places created based on the number of input and output places in the corresponding sub-net module.

Figure 1. Flowchart for Automatic Generation of iCPT Tables of CPT Transitions

Algorithm 1: Pseudo-code for Automatic Generation of iCPTs for CPT Transitions in GSPN-mBSPN

Input: 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠 is a vector of the sub-GSPN modules in a GSPN-mBSPN model, 𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠 is a

vector storing the number of lower-level sub-GSPN (𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁) module(s) states (input and output

places) interconnected to a higher-level sub-GSPN module via test/inhibitor places.

Output: Generated vector of iCPTs for CPT transitions (that is 𝑉𝑖𝐶𝑃𝑇𝑠)

Sub-Algorithm1: Function Compute_Number_iCPT_Rows_Columns(𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠) Pseudo-code

1. {𝑛𝑅𝑜𝑤, 𝑛𝐶𝑜𝑙} ← {1,0}

2. Initialise loop counter variable 𝑖 ← 0

3. while 𝑖 < 𝑠𝑖𝑧𝑒𝑜𝑓(𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠) do:

4. 𝑛𝑅𝑜𝑤 ← 𝑛𝑅𝑜𝑤 ∗ 𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]
5. 𝑛𝐶𝑜𝑙 ← 𝑛𝐶𝑜𝑙 + 𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]
6. 𝑖 ← 𝑖 + 1

7. endwhile

8. Return {𝑛𝑅𝑜𝑤, 𝑛𝐶𝑜𝑙}

The Main Algorithm: Function Create_iCPT(𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠)

9. Initialise vector index variable 𝑖 ← 0

Sub-Algorithm 1

Start

Compute the number of rows and columns
of an iCPT of a sub-GSPN module

(Lines 2 to 7 of Algorithm 1)

Initialize number of rows
and columns of the iCPT:

{nRow, nCol} = {1, 0}
(Line 1 of Algorithm 1)

Input: nSVll-sub-GSPNs: vector of the number of
states (input and output places) of the lower-

level sub-GSPN modules of a sub-GSPN
module in a vector of all the sub-GSPN

modules (Vsub-GSPNs)

Return {nRow, nCol}
(Line 8 of Algorithm 1)

Input: Vll-sub-GSPNs

Obtain the number of input and output places
(NumberInOutPlaces) and vector nSVll-sub-

GSPNs of a sub-GSPN module (Vsub-GSPNs[i])
(Lines 11 to 15 in Algorithm 1)

is i < sizeof(Vsub-GSPNs)?
(Line 10 of Algorithm 1)

Yes

Increment i: i = i+1
(Line 73 of Algorithm 1)

Get {nRow, nCol} of iCPT of sub-
GSPN module (Vsub-GSPNs[i])

(Line 16 of Algorithm 1)

Initialise the returned value as local
variables {nRow, nCol}
(Line 16 of Algorithm 1)

Initialise the vector of the current marking of the input and
output places of Vsub-GSPNs[i] and the vector of the current

marking of the test or inhibitor place of Vsub-GSPNs[i] to zeros
(Lines 18 and 19 of Algorithm 1)

Create an empty map iCPT of Vsub-GSPNs[i]
(Line 17 of Algorithm 1)

Populate the entries of the vector of the probability
value of the input and output places of Vsub-GSPNs[i]

(Lines 20 to 26 of Algorithm 1)

No

No

End

End While Loop
(Line 74 of Algorithm 1)

Return vector of iCPTs (ViCPTs)
(Line 75 of Algorithm 1)

NumberTestORInhPlaces:
Number of test/inhibitor
places in Vll-sub-GSPNs[i]

Yes

Populate the row of the iCPT of Vll-sub-

GSPNs[i] component/system monitoring
parameter and store the iCPT in ViCPTs

(Lines 28 and 29 of Algorithm 1)

Populate the rows of the iCPT of Vll-sub-GSPNs[i]
propagated variable and store the iCPT in ViCPTs

(Lines 30 to 72 of Algorithm 1)

is
NumberTestORInhPlaces = 0 or
(NumberTestORInhPlaces != 0 &

Typeofall(pTPorINHP) = normal))?
(Line 27 of Algorithm 1)

Initialise i = 0
(Line 9 of Algorithm 1)

The Main Loop of Algorithm 1

IMA International Conference on Modelling in Industrial Maintenance and Reliability - MIMAR2023

10. while 𝑖 < 𝑠𝑖𝑧𝑒𝑜𝑓(𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠) do

11. 𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠 = number of input and output places in 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]
12. if (𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠 < 2) then

13. 𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠 ← 2

14. endif

15. 𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠 ← 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] // Get the vector 𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠 of 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]
16. initialise {𝑛𝑅𝑜𝑤, 𝑛𝐶𝑜𝑙} = call Compute_Number_iCPT_Rows_Columns(𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠) //Sub-

 //Algorithm1

17. create 𝑖𝐶𝑃𝑇 //create an empty map for storing the entries of the iCPT of 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]
18. initialise 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔[𝑛𝐶𝑜𝑙] with zeros

19. initialise 𝑃𝑟𝑜𝑏𝑉𝑎𝑙[𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠] with zeros

20. get 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔 from 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]
21. if (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔 = 𝑃𝑟𝑜𝑏𝑉𝑎𝑙[𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠]) then

22. clear 𝑃𝑟𝑜𝑏𝑉𝑎𝑙[𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠]

23. populate 𝑃𝑟𝑜𝑏𝑉𝑎𝑙[𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠] with
1

𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠

24. else

25. 𝑃𝑟𝑜𝑏𝑉𝑎𝑙[𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠] ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔

26. endif

27. if (
𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠 𝐢𝐧 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] = 0 𝐨𝐫

(𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠 ≠ 𝟎 𝐚𝐧𝐝 𝑇𝑦𝑝𝑒𝑜𝑓𝑎𝑙𝑙(𝑝
𝑇𝑃𝑜𝑟𝐼𝑁𝐻𝑃

) 𝐢𝐧 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]= normal)
) then

28. insert { 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔, 𝑃𝑟𝑜𝑏𝑉𝑎𝑙} in 𝑖𝐶𝑃𝑇

29. store 𝑖𝐶𝑃𝑇 in 𝑉𝑖𝐶𝑃𝑇𝑠 // Storing iCPT of a system monitoring parameter or component

30. else // This is an interconnection sub-GSPN module

31. create 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 //Creation of a 3D vector to store a 2D vector

 //holding all the possible combinations of markings of test/inhibitor places in 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]
32. initialise 𝑛𝐶𝑜𝑙 ← 0 // initialisation of 𝑛𝐶𝑜𝑙 of 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] to zero

33. for each 𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁 of 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] do

34. create 𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 //Creation of a 2D vector to store the

 //possible combination of the markings of the test/inhibitor places in 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]
 // Get the total number of states of the current 𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁

35. get 𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁 = number of states of 𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁 in vector 𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠

36. 𝑛𝐶𝑜𝑙 ← 𝑛𝐶𝑜𝑙 + 𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁 // increment 𝑛𝐶𝑜𝑙 by 𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁

 // Generate possible marking permutation of the input and output places of 𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁

37. Initialise loop counter variable 𝑗 ← 0

38. while 𝑗 < 𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁 do

39. initialise 𝑡𝑒𝑚𝑝𝑉𝑒𝑐[𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁] with zeros //Entries of a temporary vector for storing

 //the marking combinations of the input and output places of 𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁 are set to 0s

40. update 𝑡𝑒𝑚𝑝𝑉𝑒𝑐[𝑗] ← 𝑡𝑒𝑚𝑝𝑉𝑒𝑐[𝑗] + 1

41. store 𝑡𝑒𝑚𝑝𝑉𝑒𝑐[𝑗] 𝐢𝐧 𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

42. get 𝑀′(𝑝) 𝐢𝐧 𝑖𝑛𝑜𝑢𝑡𝑝𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁[𝑗] //𝑀′(𝑝) is the current marking of a place 𝑝 at the

 //location 𝑗 in the vector of the input and output places of 𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁 (𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁
𝐼𝑁𝑃𝑂𝑈𝑇𝑃)

43. compute 𝑖𝑛𝑑𝑒𝑥 ← 𝑗 + 𝑛𝐶𝑜𝑙 − 𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁 //Compute index of p to be updated

 //Update 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔 of 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] value at index with 𝑀′(𝑝)

44. update 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔[𝑖𝑛𝑑𝑒𝑥] ← 𝑀′(𝑝) 𝐢𝐧 𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁
𝐼𝑁𝑃𝑂𝑈𝑇𝑃 [𝑗]

45. 𝑗 ← 𝑗 + 1

46. endwhile

47. store 𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐢𝐧 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

48. endforeach

49. create vector iterator 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟 //The creation of a 3D vector

 //iterator to store the 2D vector iterators of the entries in 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

50. for each 2D vector in 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 do

51. create 𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝑖𝑡𝑒𝑟 //Creation of a 2D vector iterator to the beginning

 //of each 2D vector in 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

52. store 𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝑖𝑡𝑒𝑟 𝐢𝐧 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟

53. endforeach

IMA International Conference on Modelling in Industrial Maintenance and Reliability - MIMAR2023

 // Cascading content of the 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟 vector to obtain all the possible

 // marking combinations. First, initialise size of the 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟 vector to size

54. initialise 𝑠𝑖𝑧𝑒 ← 𝑠𝑖𝑧𝑒𝑜𝑓(𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟)

55. While 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟[0] ≠ 𝑒𝑛𝑑𝑜𝑓(𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛[0]) do

 // Get the current marking combination data vector from 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟

56. 𝑀 = 𝐠𝐞𝐭 𝑟𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 𝐟𝐫𝐨𝐦 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟

 // Insert a new row into the 𝑖𝐶𝑃𝑇 of 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]
57. if (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔 = 𝑀) then

58. insert { 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔, 𝑃𝑟𝑜𝑏𝑉𝑎𝑙} in 𝑖𝐶𝑃𝑇

59. else

60. insert { 𝑀, 𝑃𝑟𝑜𝑏𝑉𝑎𝑙} in 𝑖𝐶𝑃𝑇

61. endif

 //increment the iterator to determine the next possible marking combination

62. + + 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟[𝑠𝑖𝑧𝑒 − 1]
 //Determine when the new cascade of marking combinations begins

63. initialise 𝑘 ← 𝑠𝑖𝑧𝑒 − 1

64. while (𝑘 > 0 𝐚𝐧𝐝 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟[𝑘] ==

65. 𝑒𝑛𝑑𝑜𝑓(𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛[𝑘] do

66. initialise 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟[𝑘] ←

67. 𝑠𝑡𝑎𝑟𝑡𝑜𝑓(𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛[𝑘]
68. + + 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟[𝑘]
69. 𝑘 ← 𝑘 − 1

70. endwhile

71. endwhile

72. endif

73. increment 𝑖 ← 𝑖 + 1

74. endwhile

75. Return 𝑉𝑖𝐶𝑃𝑇𝑠

4. Application of the Improved GSPN-mBSPN Methodology

In this section, we consider a water tank level control system depicted in Figure 2 to demonstrate the
effectiveness of the proposed algorithm for generating conditional probability tables for a GSPN-mBSN model
of a dynamic system. The system includes three valves (V1, V2, and V3) with three states (working, failed
open, failed close), two level sensors (S1 and S2) with three states (working, failed high, failed low), two
controllers (C1 and C2) with three states (working, failed high, failed low), six pipelines (P1 to P6) with two
states (not blocked, blocked), one overspill tray with a monitoring sensor SP1 (water present, no water present),
and three flow sensors (VF1, VF2, and VF3) for monitoring flow in and out of the system. Further details
about the water tank level control system can be found in the published article by (Hurdle, Bartlett and
Andrews, 2009).

Figure 2. Schematic Diagram of the Water Tank Level Control System

The GSPN-mBSPN model of the water tank system consists of 254 places, 161 transitions, and 962 arcs.
Analysis of the GSPN module of the GSPN-mBSPN model by the developed bespoke C++ program produces
twenty interconnections and sixteen component sub-net modules, including the system monitoring parameter
sub-net module. The program analyses these modules using the algorithm presented in Section 3 to

Section 1

Section 2
Section 3

Section 4

IMA International Conference on Modelling in Industrial Maintenance and Reliability - MIMAR2023

automatically generate thirty-six input conditional probability tables (iCPTs) corresponding to these modules,
with a total of 1780 iCPT entries. The iCPTs are populated dynamically based on the current state of the
components and interconnected variables in the system. Examples of automatically generated input conditional
probability tables for sample components, propagated variables, and monitoring variables are shown in Figure
3. Mean creation times, confidence intervals, and margin of errors (half-width) for different categories of
iCPTs in the GSPN-mBSPN model are presented in Table 1. These values were obtained after 50 simulations
using the iCPT auto-generation algorithm implemented in the bespoke C++ program. Simulations were
performed on a Windows 10 64-bit Intel(R) Core (TM) i3 system with a 3.60 GHz processor and 8.00 GB of
RAM. The mean creation time of the iCPT for pipe P1 state initially fluctuates but gradually stabilizes after
25 simulations, as shown in Figure 4. Similar trends were observed for the other generated iCPTs. Running 50
simulations ensures the accuracy of the results presented in Table 1. The mean creation time of an iCPT for a
propagated sub-net module in the water tank system increases as the number of interconnection sub-net
modules increases. Specifically, in Section 4, the mean creation time of the iCPT for sensor SP1 is higher. This
is because the presence of water in the tray can be caused by overflow if water flows into the tank via Section
1 without flowing out through the outlets in Sections 2 and 3 of the system.

Figure 3: Samples of the Automatically Generated Conditional Probability Tables

Table 1: Creation Time of Some Selected Input Conditional Probability Tables

S/No

Conditional Probability Table

with:

Mean Creation

Time (ms)

Half

width

Confidence

Interval (CI95%)

% Error

at CI95%

1

2 states, 1 row (e.g., Pipe P1

states)

28.84

1.51

[27.33, 30.35]

5.24 %

2

6 states, 1 row (Tank level

discretisation states)

29.34

1.52

[27.82, 30.86]

5.18 %

3

3 states, 18 rows (e.g., Sensor

S1 readings)

29.64

1.53

[28.11, 31.17]

5.16 %

4

2 states, 2 rows (e.g., Flow

sensor VF1 states)

30.54

1.55

[28.99, 32.09]

5.08 %

5

2 states, 48 rows (e.g., States of

sensor SP1 states in the tray)

30.78

1.56

[29.22, 32.34]

5.07 %

Figure 4: The Mean Creation Time of iCPT for Pipe P1 State against the Number of Simulations

IMA International Conference on Modelling in Industrial Maintenance and Reliability - MIMAR2023

5. Conclusion

This paper proposes an algorithm for automatically generating conditional probability tables (CPTs) based on

the GSPN module in a GSPN-mBSPN model of a dynamic system. The algorithm was implemented in a C++

bespoke code developed for the modelling and analysis of a GSPN-mBSPN model. A GSPN-mBSPN model

of a water tank level control system was used as a case study to check the efficiency of the implemented

algorithm in terms of speed and accuracy. The CPTs from the analysis of the GSPN-mBSPN model of the

water tank level control system demonstrated improved accuracy and efficiency in defining CPTs for a GSPN-

mBSPN model of a dynamic system. Thus, this proved the effectiveness of the implemented algorithm. Future

research aims to show how the improved GSPN-mBSPN approach could automatically generate the fault

diagnostic module (mBSPN) of a GSPN-mBSPN through further analysis of the enhanced GSPN-mBSPN

approach. Besides, the application of the method for fault detection and diagnosis of a dynamic system under

time-varying dynamic conditions will be explored in future work.

Acknowledgement

The authors would like to thank Petroleum Technology Development Fund (PTDF), Abuja, Nigeria, for

funding and supporting Taofeeq Alabi Badmus PhD research through the fund Overseas Scholarship Scheme

(OSS) programme [award number P6797054741222445].

References

Andrews, J. (2013) ‘A modelling approach to railway track asset management’, Proceedings of the Institution of

Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 227(1), pp. 56–73. Available at:

https://doi.org/10.1177/0954409712452235.
Chen, Y.C. et al. (2010) ‘Petri-net based approach to configure online fault diagnosis systems for batch processes’,

Industrial and Engineering Chemistry Research, 49(9), pp. 4249–4268. Available at:

https://doi.org/10.1021/ie901410p.

Forner, L., Kumar, V.S. and Kinshuk (2013) ‘Assessing design of online courses using bayesian belief networks’, in

Proceedings - 2013 IEEE 5th International Conference on Technology for Education, T4E 2013. IEEE Computer

Society, pp. 36–42. Available at: https://doi.org/10.1109/T4E.2013.17.

Hurdle, E.E., Bartlett, L.M. and Andrews, J.D. (2009) ‘Fault diagnostics of dynamic system operation using a fault tree

based method’, Reliability Engineering and System Safety, 94(9), pp. 1371–1380. Available at:

https://doi.org/10.1016/j.ress.2009.02.013.

Kabir, S. and Papadopoulos, Y. (2019) ‘Applications of Bayesian networks and Petri nets in safety, reliability, and risk

assessments: A review’, Safety Science. Elsevier B.V., pp. 154–175. Available at:

https://doi.org/10.1016/j.ssci.2019.02.009.

Liu, J. and Zio, E. (2017) ‘System dynamic reliability assessment and failure prognostics’, Reliability Engineering and

System Safety, 160, pp. 21–36. Available at: https://doi.org/10.1016/j.ress.2016.12.003.

Nourredine, O. et al. (2023) ‘A new generalized stochastic Petri net modeling for energy-harvesting-wireless sensor

network assessment’, International Journal of Communication Systems [Preprint]. Available at:

https://doi.org/10.1002/dac.5505.

Russell, S.J. and Norvig, P. (2010) Artificial Intelligence A Modern Approach. Third Edition. Edited by M.J. Horton et

al. Upper Saddle River, New Jersey: Pearson Education, Inc.

Shukla, D.K. and Arul, A.J. (2020) ‘Static and dynamic reliability studies of a fast reactor shutdown system using smart

component method’, Annals of Nuclear Energy, 136. Available at: https://doi.org/10.1016/j.anucene.2019.107011.

Taleb-Berrouane, M., Khan, F. and Amyotte, P. (2020) ‘Bayesian Stochastic Petri Nets (BSPN) - A new modelling tool

for dynamic safety and reliability analysis’, Reliability Engineering and System Safety, 193. Available at:

https://doi.org/10.1016/j.ress.2019.106587.

Vagnoli, M. and Remenyte-Prescott, R. (2022) ‘Updating conditional probabilities of Bayesian belief networks by

merging expert knowledge and system monitoring data’, Automation in Construction, 140. Available at:

https://doi.org/10.1016/j.autcon.2022.104366.

Vasilyev, A. et al. (2021) ‘Dynamic Reliability Assessment of PEM Fuel Cell Systems’, Reliability Engineering and

System Safety, 210. Available at: https://doi.org/10.1016/j.ress.2021.107539.

Xu, J. et al. (2023) ‘A new approach for dynamic reliability analysis of reactor protection system for HPR1000’,

Reliability Engineering and System Safety, 234. Available at: https://doi.org/10.1016/j.ress.2023.109147.

Zhou, Y. et al. (2018) ‘Using Bayesian network for safety risk analysis of diaphragm wall deflection based on field data’,

Reliability Engineering and System Safety, 180, pp. 152–167. Available at: https://doi.org/10.1016/j.ress.2018.07.014.

