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Abstract.  

The existing Generalised Stochastic Petri Net and modified Bayesian Stochastic Petri Net (GSPN-mBSPN) 

methodology has demonstrated improved modelling capabilities for fault diagnosis in dynamic systems with 

feedback control loops. However, the GSPN-mBSPN approach uses predefined input conditional probability 

tables (iCPTs) for fault diagnosis, limiting its usage in dynamic fault diagnosis due to the time required to 

define and populate the iCPT entries accurately. This paper presents an algorithm to automatically generate 

iCPT tables, enhancing the modelling capability of the GSPN-mBSPN approach for fault diagnosis of dynamic 

systems under time-varying conditions. The GSPN module in a GSPN-mBSPN model of a dynamic system is 

analysed and structured into sub-net modules, representing system components, monitoring parameters, and 

interactions. These sub-net modules provide data structures for the iCPT tables, describing the working and 

failure states/modes of system components, states of the monitoring parameter, and causal relationships 

between system component states and observable process parameters. The algorithm populates the entries of 

the iCPT tables based on the analysis of the sub-net modules. Application of the algorithm to a water tank level 

control system demonstrates improved speed and accuracy in generating iCPTs for dynamic fault detection 

and diagnosis applications using GSPN-mBSPN approach. 

 

1. Introduction 

Numerous approaches have been documented in the literature for assessing the reliability of complex dynamic 

systems and diagnosing faults (Liu and Zio, 2017; Shukla and Arul, 2020; Vasilyev et al., 2021; Xu et al., 

2023). One promising research direction involves integrating Bayesian Network features into a Petri Net 

model. These approaches offer advantages such as low parameter settings, well-structured interdependencies 

between system components, and the ability to handle time-varying data (Vagnoli and Remenyte-Prescott, 

2022), crucial for developing reliable and effective fault diagnostic methods. However, Bayesian-supported 

Petri Net methods have limitations. For instance, as the number of parent nodes and dependency levels 

increases, the computational complexity of the equations describing the interdependencies in a Bayesian 

Stochastic Petri Net model also grows (Taleb-Berrouane, Khan and Amyotte, 2020). 

Furthermore, the existing Generalised Stochastic Petri Net and modified Bayesian Stochastic Petri Net 

(GSPN-mBSPN) methodology for fault detection and diagnosis relies on predefined input conditional 

probability tables (iCPTs) for its fault diagnostic process. This reliance hinders its effectiveness in diagnosing 

faults in dynamic operating systems under time-varying conditions. Moreover, populating the entries of the 

iCPT tables can be time-consuming and error-prone (Forner, Kumar and Kinshuk, 2013), especially with a 

vast amount of data (Zhou et al., 2018; Kabir and Papadopoulos, 2019). To overcome these challenges, this 

paper proposes a method that automatically generates the structure of the iCPT tables used in the fault 

diagnostic module of a GSPN-mBSPN model. The proposed method dynamically updates the entries of the 

tables through the analysis of the GSPN module. By doing so, it aims to enhance the overall modeling 

capabilities of the GSPN-mBSPN methodology, particularly for fast, accurate, and time-varying fault detection 

and diagnostic applications. 
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2. Overview of the Existing GSPN-mBSPN Approach 

A formal definition of the existing GSPN-mBSPN methodology is first presented here to provide some 

necessary background knowledge. 

Definition 1. A GSPN-mBSPN method is defined as 𝐺𝑆𝑃𝑁 − 𝑚𝐵𝑆𝑃𝑁 =

{𝐺𝑆𝑃𝑁, 𝑃𝑇𝑃 , 𝐴𝑇𝐴, 𝑃𝐶𝑂𝑅𝑃 , 𝑃𝐶𝑂𝑃, 𝑇𝐶𝑅𝑇 , 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒, 𝐴𝑅𝐴, 𝑚𝐵𝑆𝑃𝑁, 𝐴𝐶𝑂𝐴, 𝐴𝐶𝑂𝑅𝐴} such that:  

1. 𝐺𝑆𝑃𝑁 is the conventional Generalised Stochastic Petri Net formalism as defined in  (Nourredine et al., 

2023). 

2. 𝑃𝑇𝑃 is a set of test places (Chen et al., 2010) that enhance the modeling efficiency of Petri net models, 

particularly in complex systems.    

3. 𝐴𝑇𝐴 is a set of test arcs.  

4. 𝑃𝐶𝑂𝑅𝑃 denotes a set of conditional output reset places, which are a specialised type of reset places 

(Andrews, 2013). These places serve as interfaces for transmitting observed evidence from the system's 

behavioral GSPN module to its fault diagnostic mBSPN module. 

5. 𝑃𝐶𝑂𝑃 signifies a set of conditional output/trigger places. These places trigger the fault diagnostic module 

when an abnormality is detected during system operation. 

6. 𝑇𝐶𝑅𝑇 represents a set of conditional reset transitions, which are a special type of reset transitions. 𝑇𝐶𝑅𝑇 is 

utilised to model fault detection when the system operating state deviates from its expected normal 

conditions. 

7. 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒 → {0, 1, 2}, denotes the codes for Bayesian inference sampling algorithms: 0 for forward 

sampling, 1 for rejection sampling, and 2 for likelihood weighting sampling (Russell and Norvig, 2010).  

8. 𝐴𝑅𝐴 is a set of reset arcs, where 𝑎𝑅𝐴(𝑝𝐶𝑂𝑅𝑃 , 𝑡𝐶𝑅𝑇) represents the weight of the reset arc from the 

conditional output reset place 𝑝𝐶𝑂𝑅𝑃 to the conditional reset transition 𝑡𝐶𝑅𝑇. 

9. 𝑚𝐵𝑆𝑃𝑁 is a fault diagnostic Petri net module of the integrated GSPN-mBSPN method.  

10. 𝐴𝐶𝑂𝐴: a set of conditional output arcs between 𝑇𝐶𝑅𝑇 and 𝑃𝐶𝑂𝑅𝑃 or between 𝑇𝐶𝑅𝑇 and 𝑃𝐶𝑂𝑃such that 

a. 𝑎𝐶𝑂𝐴(𝑡𝐶𝑅𝑇, 𝑝𝐶𝑂𝑅𝑃) =

{
0                                               𝑖𝑓 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 

{𝑖 + 1| 𝑖 < |𝑃𝐶𝑃𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )|}                                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      
, 

where 𝑖 is the index of the observed conditional probabilistic place 𝑝𝐶𝑃𝑃 ∈ 𝑃𝐶𝑃𝑃
𝑑  in the 

vector of the conditional probabilistic places of transition 𝑡𝐶𝑃𝑇
𝑑  (i.e., 𝑃𝐶𝑃𝑃

𝑑 (𝑡𝐶𝑃𝑇
𝑑 )) such that 

𝑝𝐶𝑂𝑅𝑃 → 𝑒𝐸𝑃(𝑡𝐶𝑃𝑇
𝑑 ) where 𝑒𝐸𝑃(𝑡𝐶𝑃𝑇

𝑑 ) is the evidence place of the conditional probabilistic 

transition 𝑡𝐶𝑃𝑇
𝑑 . 

b. 𝑎𝐶𝑂𝐴(𝑡𝐶𝑅𝑇, 𝑝𝐶𝑂𝑃) = {
1                          𝑖𝑓 𝑚( 𝑝𝐶𝑂𝑃) = 0 
0                                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

  

  where 𝑚(𝑝𝐶𝑂𝑃) is the current marking of the conditional output/trigger place 𝑝𝐶𝑂𝑃.  

 

3. The Proposed Improvement on the GSPN-mBSPN Approach 

The existing GSPN-mBSPN methodology requires a manual definition of input conditional probability tables 

(iCPT) for CPT transitions in text files. The GSPN-mBSPN model of a dynamic system is also described in 

text files as a set of modelling elements. These files are then input into a custom program to represent and 

simulate the model. However, the manual population of iCPT entries is time-consuming and error-prone. To 

address this, an algorithm is developed to automatically generate iCPTs for CPT transitions using the GSPN 

module of the GSPN-mBSPN model. The algorithm, as described by the flowchart and pseudocode in Figure 

1 and Algorithm 1, respectively, involves analysing and structuring the places and transitions of the GSPN 

module into sub-net modules representing system components and interconnections.  Sub-net modules are 

created based on the type of places, transitions, and the arcs connecting them. Timed transitions with input and 

output places of type “component” form sub-net modules for system components. Immediate transitions with 

common input and output places of type “component” and test/inhibitor places of type “normal” form sub-net 

modules for monitoring parameters. Interconnection sub-net modules are formed by immediate transitions with 

common input and output places of type “component” and test/inhibitor places equivalent to lower-level sub-

net modules’ input and output places. A sub-net module’s input and output places represent the states of a 

component, monitoring parameter, or propagated variable in the GSPN module. The created sub-net modules 

are stored in a vector and analysed by the Create_iCPT() function in Algorithm 1 to generate the iCPTs 

automatically. These sub-net modules and their corresponding iCPTs can be used to develop an mBSPN 

module in the GSPN-mBSPN model. Each sub-net module in the GSPN module corresponds to a conditional 
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probabilistic transition  𝑡𝐶𝑃𝑇
𝑑  in the mBSPN module. The input and evidence places of a 𝑡𝐶𝑃𝑇

𝑑  of a monitoring 

parameter are port places linked to a conditional output place and a conditional output reset place in the fault 

detection module of the GSPN-mBSPN model. The output places of the transition are conditional probabilistic 

places created based on the number of input and output places in the corresponding sub-net module. 

 

 
Figure 1. Flowchart for Automatic Generation of iCPT Tables of  CPT Transitions 

 

Algorithm 1: Pseudo-code for Automatic Generation of iCPTs for CPT Transitions in GSPN-mBSPN 

Input: 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠 is a vector of the sub-GSPN modules in a GSPN-mBSPN model, 𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠 is a 

vector storing the number of lower-level sub-GSPN (𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁) module(s) states (input and output 

places) interconnected to a higher-level sub-GSPN module via test/inhibitor places.     

Output: Generated vector of iCPTs for CPT transitions (that is 𝑉𝑖𝐶𝑃𝑇𝑠) 

Sub-Algorithm1: Function Compute_Number_iCPT_Rows_Columns(𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠) Pseudo-code 

1. {𝑛𝑅𝑜𝑤, 𝑛𝐶𝑜𝑙} ← {1,0}          

2. Initialise loop counter variable 𝑖 ← 0 

3. while 𝑖 < 𝑠𝑖𝑧𝑒𝑜𝑓(𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠) do:          

4.          𝑛𝑅𝑜𝑤 ← 𝑛𝑅𝑜𝑤 ∗ 𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]          
5.          𝑛𝐶𝑜𝑙 ← 𝑛𝐶𝑜𝑙 + 𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] 
6.          𝑖 ← 𝑖 + 1    

7.  endwhile                                

8. Return {𝑛𝑅𝑜𝑤, 𝑛𝐶𝑜𝑙} 

The Main Algorithm: Function Create_iCPT(𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠) 

9. Initialise vector index variable 𝑖 ← 0 

Sub-Algorithm 1                                                                                                                                   
  
                  
                                                                                                                      

Start

Compute the number of rows and columns 
of an iCPT of a sub-GSPN module 

(Lines 2 to 7 of Algorithm 1)

Initialize number of rows 
and columns of the iCPT: 

{nRow, nCol} = {1, 0}
(Line 1 of Algorithm 1)

Input: nSVll-sub-GSPNs: vector of the number of 
states (input and output places) of the lower-

level sub-GSPN modules of a sub-GSPN 
module in a vector of all the sub-GSPN 

modules (Vsub-GSPNs)

Return {nRow, nCol} 
(Line 8 of Algorithm 1)

Input: Vll-sub-GSPNs

Obtain the number of input and output places 
(NumberInOutPlaces) and vector nSVll-sub-

GSPNs of a sub-GSPN module (Vsub-GSPNs[i])
(Lines 11 to 15 in Algorithm 1)

is i < sizeof(Vsub-GSPNs)?
(Line 10 of Algorithm 1)

Yes

Increment i: i = i+1
(Line 73 of Algorithm 1)

Get {nRow, nCol} of iCPT of sub-
GSPN module (Vsub-GSPNs[i])

(Line 16 of Algorithm 1)

Initialise the returned value as local 
variables {nRow, nCol} 
(Line 16 of Algorithm 1)

Initialise the vector of the current marking of the input and 
output places of Vsub-GSPNs[i] and the vector of the current 

marking of the test or inhibitor place of Vsub-GSPNs[i] to zeros
(Lines 18 and 19 of Algorithm 1)

Create an empty map iCPT of Vsub-GSPNs[i]
(Line 17 of Algorithm 1)

Populate the entries of the vector of the probability 
value of the input and output places of Vsub-GSPNs[i] 

(Lines 20 to 26 of Algorithm 1)

No

No

End

End While Loop
(Line 74 of Algorithm 1)

Return vector of iCPTs (ViCPTs)
(Line 75 of Algorithm 1)

NumberTestORInhPlaces: 
Number of test/inhibitor 
places in Vll-sub-GSPNs[i]

Yes

Populate the row of the iCPT of Vll-sub-

GSPNs[i] component/system monitoring 
parameter and store the iCPT  in ViCPTs 

(Lines 28 and 29 of Algorithm 1)

Populate the rows of the iCPT of Vll-sub-GSPNs[i] 
propagated variable and store the iCPT  in ViCPTs 

(Lines 30 to 72 of Algorithm 1)

is 
NumberTestORInhPlaces = 0 or 
(NumberTestORInhPlaces != 0 & 

Typeofall(pTPorINHP) = normal))?
(Line 27 of Algorithm 1)

Initialise i = 0
(Line 9 of Algorithm 1)

The Main Loop of Algorithm 1
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10. while 𝑖 < 𝑠𝑖𝑧𝑒𝑜𝑓(𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠) do 

11.     𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠 = number of input and output places in 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] 
12.        if (𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠 < 2) then 

13.         𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠 ← 2 

14.        endif 

15.     𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠 ← 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]       // Get the vector 𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠 of  𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] 
16.    initialise {𝑛𝑅𝑜𝑤, 𝑛𝐶𝑜𝑙} = call Compute_Number_iCPT_Rows_Columns(𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠) //Sub- 

      //Algorithm1       

17.       create 𝑖𝐶𝑃𝑇       //create an empty map for storing the entries of the iCPT of  𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] 
18.    initialise 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔[𝑛𝐶𝑜𝑙] with zeros 

19.    initialise 𝑃𝑟𝑜𝑏𝑉𝑎𝑙[𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠] with zeros 

20.       get 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔 from 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]  
21.       if (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔 = 𝑃𝑟𝑜𝑏𝑉𝑎𝑙[𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠]) then 

22.             clear 𝑃𝑟𝑜𝑏𝑉𝑎𝑙[𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠] 

23.             populate 𝑃𝑟𝑜𝑏𝑉𝑎𝑙[𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠] with 
1

𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠
 

24.        else 

25.             𝑃𝑟𝑜𝑏𝑉𝑎𝑙[𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠] ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑂𝑢𝑡𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔 

26.     endif 

27.     if (
𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠 𝐢𝐧 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] = 0 𝐨𝐫 

(𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠 ≠ 𝟎 𝐚𝐧𝐝 𝑇𝑦𝑝𝑒𝑜𝑓𝑎𝑙𝑙(𝑝
𝑇𝑃𝑜𝑟𝐼𝑁𝐻𝑃

) 𝐢𝐧 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖]= normal)
) then        

28.            insert { 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔, 𝑃𝑟𝑜𝑏𝑉𝑎𝑙} in 𝑖𝐶𝑃𝑇 

29.            store 𝑖𝐶𝑃𝑇 in 𝑉𝑖𝐶𝑃𝑇𝑠  // Storing iCPT of a system monitoring parameter or component           

30.     else                               // This is an interconnection sub-GSPN module 

31.         create 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛    //Creation of a 3D vector to store a 2D vector     

        //holding all the possible combinations of markings of test/inhibitor places in 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] 
32.         initialise 𝑛𝐶𝑜𝑙 ← 0         // initialisation of 𝑛𝐶𝑜𝑙 of 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] to zero 

33.         for each 𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁 of 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] do       

34.              create 𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛   //Creation of a 2D vector to store the     

             //possible combination of the markings of the test/inhibitor places in 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] 
             // Get the total number of states of the current 𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁  

35.              get 𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁 = number of states of 𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁 in vector 𝑛𝑆𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠 

36.              𝑛𝐶𝑜𝑙 ← 𝑛𝐶𝑜𝑙 + 𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁                      // increment 𝑛𝐶𝑜𝑙 by 𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁 

            // Generate possible marking permutation of the input and output places of  𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁  

37.             Initialise loop counter variable 𝑗 ← 0 

38.             while 𝑗 < 𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁 do         

39.                  initialise 𝑡𝑒𝑚𝑝𝑉𝑒𝑐[𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁] with zeros //Entries of a temporary vector for storing   

                 //the marking combinations of the input and output places of 𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁 are set to 0s  

40.                  update 𝑡𝑒𝑚𝑝𝑉𝑒𝑐[𝑗] ← 𝑡𝑒𝑚𝑝𝑉𝑒𝑐[𝑗] + 1 

41.                  store 𝑡𝑒𝑚𝑝𝑉𝑒𝑐[𝑗] 𝐢𝐧 𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

42.                  get 𝑀′(𝑝) 𝐢𝐧 𝑖𝑛𝑜𝑢𝑡𝑝𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁[𝑗]    //𝑀′(𝑝) is the current marking of a place 𝑝 at the   

                //location 𝑗 in the vector of the input and output places of  𝑙𝑙 − 𝑠𝑢𝑏 − 𝐺𝑆𝑃𝑁 (𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁
𝐼𝑁𝑃𝑂𝑈𝑇𝑃 ) 

43.                 compute 𝑖𝑛𝑑𝑒𝑥 ← 𝑗 + 𝑛𝐶𝑜𝑙 − 𝑛𝑆𝑜𝑓𝑙𝑙𝑠𝑢𝑏𝐺𝑆𝑃𝑁 //Compute index of p to be updated 

                //Update 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔 of 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] value at index with 𝑀′(𝑝) 

44.                  update 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔[𝑖𝑛𝑑𝑒𝑥] ← 𝑀′(𝑝) 𝐢𝐧 𝑉𝑙𝑙−𝑠𝑢𝑏−𝐺𝑆𝑃𝑁
𝐼𝑁𝑃𝑂𝑈𝑇𝑃 [𝑗] 

45.                  𝑗 ← 𝑗 + 1  

46.              endwhile     

47.              store 𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐢𝐧 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

48.           endforeach  

49.          create vector iterator 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟 //The creation of a 3D vector  

         //iterator to store the 2D vector iterators of the entries in 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛         

50.          for each 2D vector in 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 do      

51.               create 𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝑖𝑡𝑒𝑟 //Creation of a 2D vector iterator to the beginning  

              //of each 2D vector in 𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛    

52.               store 𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝑖𝑡𝑒𝑟 𝐢𝐧 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟 

53.          endforeach           
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             // Cascading content of the 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟 vector to obtain all the possible  

            // marking combinations. First, initialise size of the 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟 vector to size 

54.             initialise 𝑠𝑖𝑧𝑒 ← 𝑠𝑖𝑧𝑒𝑜𝑓(𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟) 

55.             While 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟[0] ≠ 𝑒𝑛𝑑𝑜𝑓(𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛[0]) do          

                  // Get the current marking combination data vector from  𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟  

56.                  𝑀 = 𝐠𝐞𝐭 𝑟𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 𝐟𝐫𝐨𝐦 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟 

                 // Insert a new row into the 𝑖𝐶𝑃𝑇 of 𝑉𝑠𝑢𝑏−𝐺𝑆𝑃𝑁𝑠[𝑖] 
57.                    if (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔 = 𝑀) then 

58.                        insert { 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝑂𝑅𝐼𝑛ℎ𝑃𝑙𝑎𝑐𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔, 𝑃𝑟𝑜𝑏𝑉𝑎𝑙} in 𝑖𝐶𝑃𝑇 

59.                    else  

60.                        insert { 𝑀, 𝑃𝑟𝑜𝑏𝑉𝑎𝑙} in 𝑖𝐶𝑃𝑇 

61.                    endif 

                   //increment the iterator to determine the next possible marking combination  

62.                    + + 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟[𝑠𝑖𝑧𝑒 − 1] 
                   //Determine when the new cascade of marking combinations begins 

63.                    initialise 𝑘 ← 𝑠𝑖𝑧𝑒 − 1 

64.                   while (𝑘 > 0 𝐚𝐧𝐝 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟[𝑘] == 

65.                        𝑒𝑛𝑑𝑜𝑓(𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛[𝑘] do          

66.                        initialise 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟[𝑘] ← 

67.                        𝑠𝑡𝑎𝑟𝑡𝑜𝑓(𝑆𝑢𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛[𝑘]  
68.                       + + 𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑠𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟[𝑘] 
69.                        𝑘 ← 𝑘 − 1                  

70.                   endwhile     

71.                  endwhile 

72.     endif    

73.     increment 𝑖 ← 𝑖 + 1        

74. endwhile  

75. Return 𝑉𝑖𝐶𝑃𝑇𝑠                             

 

4. Application of the Improved GSPN-mBSPN Methodology 

In this section, we consider a water tank level control system depicted in Figure 2 to demonstrate the 
effectiveness of the proposed algorithm for generating conditional probability tables for a GSPN-mBSN model 
of a dynamic system. The system includes three valves (V1, V2, and V3) with three states (working, failed 
open, failed close), two level sensors (S1 and S2) with three states (working, failed high, failed low), two 
controllers (C1 and C2) with three states (working, failed high, failed low), six pipelines (P1 to P6) with two 
states (not blocked, blocked), one overspill tray with a monitoring sensor SP1 (water present, no water present), 
and three flow sensors (VF1, VF2, and VF3) for monitoring flow in and out of the system. Further details 
about the water tank level control system can be found in the published article by (Hurdle, Bartlett and 
Andrews, 2009).  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Schematic Diagram of the Water Tank Level Control System 
 
The GSPN-mBSPN model of the water tank system consists of 254 places, 161 transitions, and 962 arcs. 
Analysis of the GSPN module of the GSPN-mBSPN model by the developed bespoke C++ program produces 
twenty interconnections and sixteen component sub-net modules, including the system monitoring parameter 
sub-net module. The program analyses these modules using the algorithm presented in Section 3 to 

Section 1 

Section 2 
Section 3 

Section 4 
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automatically generate thirty-six input conditional probability tables (iCPTs) corresponding to these modules, 
with a total of 1780 iCPT entries. The iCPTs are populated dynamically based on the current state of the 
components and interconnected variables in the system. Examples of automatically generated input conditional 
probability tables for sample components, propagated variables, and monitoring variables are shown in Figure 
3. Mean creation times, confidence intervals, and margin of errors (half-width) for different categories of 
iCPTs in the GSPN-mBSPN model are presented in Table 1. These values were obtained after 50 simulations 
using the iCPT auto-generation algorithm implemented in the bespoke C++ program. Simulations were 
performed on a Windows 10 64-bit Intel(R) Core (TM) i3 system with a 3.60 GHz processor and 8.00 GB of 
RAM. The mean creation time of the iCPT for pipe P1 state initially fluctuates but gradually stabilizes after 
25 simulations, as shown in Figure 4. Similar trends were observed for the other generated iCPTs. Running 50 
simulations ensures the accuracy of the results presented in Table 1. The mean creation time of an iCPT for a 
propagated sub-net module in the water tank system increases as the number of interconnection sub-net 
modules increases. Specifically, in Section 4, the mean creation time of the iCPT for sensor SP1 is higher. This 
is because the presence of water in the tray can be caused by overflow if water flows into the tank via Section 
1 without flowing out through the outlets in Sections 2 and 3 of the system. 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 3: Samples of the Automatically Generated Conditional Probability Tables 

 

Table 1: Creation Time of Some Selected Input Conditional Probability Tables 

S/No 

  

Conditional Probability Table 

with: 

Mean Creation 

Time (ms) 

Half 

width 

Confidence 

Interval (CI95%) 

% Error 

at CI95% 

1 

  

2 states, 1 row (e.g., Pipe P1 

states) 

28.84 

  

1.51 

  

[27.33, 30.35] 

  

5.24 % 

  
2 

  

6 states, 1 row (Tank level 

discretisation states) 

29.34 

  

1.52 

  

[27.82, 30.86] 

  

5.18 % 

  
3 

  

3 states, 18 rows (e.g., Sensor 

S1 readings) 

29.64 

  

1.53 

  

[28.11, 31.17] 

  

5.16 % 

  
4 

  

2 states, 2 rows (e.g., Flow 

sensor VF1 states) 

30.54 

  

1.55 

  

[28.99, 32.09] 

  

5.08 % 

  
5 

  

2 states, 48 rows (e.g., States of 

sensor SP1 states in the tray) 

30.78 

  

1.56 

  

[29.22, 32.34] 

  

5.07 % 

  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The Mean Creation Time of iCPT for Pipe P1 State against the Number of Simulations 
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5. Conclusion 

This paper proposes an algorithm for automatically generating conditional probability tables (CPTs) based on 

the GSPN module in a GSPN-mBSPN model of a dynamic system. The algorithm was implemented in a C++ 

bespoke code developed for the modelling and analysis of a GSPN-mBSPN model. A GSPN-mBSPN model 

of a water tank level control system was used as a case study to check the efficiency of the implemented 

algorithm in terms of speed and accuracy. The CPTs from the analysis of the GSPN-mBSPN model of the 

water tank level control system demonstrated improved accuracy and efficiency in defining CPTs for a GSPN-

mBSPN model of a dynamic system. Thus, this proved the effectiveness of the implemented algorithm. Future 

research aims to show how the improved GSPN-mBSPN approach could automatically generate the fault 

diagnostic module (mBSPN) of a GSPN-mBSPN through further analysis of the enhanced GSPN-mBSPN 

approach. Besides, the application of the method for fault detection and diagnosis of a dynamic system under 

time-varying dynamic conditions will be explored in future work. 
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