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Whilst automated analysis of immunostains in pathology research has focused predominantly on the epithelial com-
partment, automated analysis of stains in the stromal compartment is challenging and therefore requires time-
consuming pathological input and guidance to adjust to tissue morphometry as perceived by pathologists. This
study aimed to develop a robust method to automate stromal stain analyses using 2 of the commonest stromal stains
(SMA and desmin) employed in clinical pathology practice as examples. An effective computational method capable of
automatically assessing and quantifying tumour-associated stromal stains was developed and applied on cores of colo-
rectal cancer tissue microarrays. The methodology combines both mathematical models and deep learning techniques
with the former requiring no training data and the latter as many inputs as possible. The novel mathematical model
was used to produce a digital double marker overlay allowing for fast automated digital multiplex analysis of stromal
stains. The results show that deep learning methodologies in combination with mathematical modelling allow for an
accurate means of quantifying stromal stains whilst also opening up new possibilities of digital multiplex analyses.
Introduction

The rise of digital pathology and image analysis in recent years has
opened up the possibility of semi-automatic and automatic methods to be
developed, allowing for relevant immunostains to be detected and inform
treatment, diagnosis etc.1,2 Use of both mathematical modelling3,4 (using
methods such as variational segmentation and clustering) and deep
learning5,6 (using convolutional neural networks (CNNs)) can provide
effective pipelines for assessing stains and segmenting regions of interest
in microscopy images. The 2 methods are often studied and applied inde-
pendently due to large differences in how they operate.

Variational methods (mathematical models) typically segment images
using models which specify pixels/regions of interest based on analytically
defined criteria for example: intensity, shape, smoothness of the region, etc.
Though offering an explainable robust framework for segmentation, histo-
logical images often need inhomogeneous, irregular regions segmented,
and thus applications have been limited.3,4
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The introduction of deep learningmethods in recent years has helped to
improve automated histopathology image analysis beyond previous
methods. Deep learningmethods have been demonstrated to bemore effec-
tive than classic machine learning methods in segmenting histological
images,7,8 and clustering methods have shown potential to separate tissue
micro-environment components like immune cells and cancer-associated
fibroblasts.9

While the predominant focus of published literature is on epithelial im-
munostain evaluation,3,8,9 tumour-associated stromal stain analyses are
challenging as the compartment is morphologically complex, including
muscles, vessels (small and large), and acellular components which may
be stained alongside the stromal cells. As the stromal cells are mainly
spindle shaped, there is inherent variability in their size which adds to
the complexity of assessment. To accurately assess a stromal stain expres-
sion pattern is therefore difficult; yet, given the importance of tumour-
associated stroma in terms of the functional biology of tumours,10 more
and more stromal stains will need to be accurately assessed.
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This current study, conceived as a methodology development initiative,
addressed both mathematical (variational) models and deep learning
(artificial intelligence)-based automated assessment of stromal stains.
Alpha-smooth muscle actin (SMA) and desmin, being the 2 most common
stromal immunohistochemical stains currently used in a clinical setting,
were chosen as exemplars. They signify cellular stromal content and the
pathologists’ evaluate skeletal muscle and smooth muscle differentiation,
respectively, from these 2 stains. Also functionally, these markers have
been found to be expressed in colorectal cancer-associated fibroblasts11 or
desmoplastic tumoural stroma.12 Tissue microarrays (TMAs) are powerful
economising tools that allow for the study of multiple tissue samples simul-
taneously, and it is therefore no surprise that they have been incorporated
into digital pathology methodologies, including assessment strategies for
prognostication.13,14 In the current study, TMAs stainedwith SMA and des-
min were assessed singly and with dual digital overlay as proof of principle
that stromal stains may be efficiently assessed using such techniques on tis-
sue cores. Colorectal cancer (CRC) tissue was chosen as an exemplar, as it
poses a significant health burden, being a leading cause of mortality
throughout the world, with 1.9 million new cases diagnosed each year
and a 5-year survival rate of 50%.15 The principal cause of death in patients
with CRC is metastasis to the liver or lungs occurring in 25% of patients at
diagnosis.16 It has been shown that the tumour stroma plays a vital role in
the process of epithelial–mesenchymal transition (EMT), a crucial process
in invasion and metastasis of CRC. Tumours with high stromal content
have been shown to be associated with poor prognosis and stromal stains
such as SMAhave previously shown their ability to detect cancer-associated
fibroblasts (CAFs).17 Stromal immunostains may therefore have potential
utility in determining patient outcome. This paper therefore addresses the
need for novel methods for the automated detection and quantification of
stromal stains to serve as an adjunct tool for helping pathologists with
their assessments.

Methods

Tissue cores and staining

Anonymised tissue cores (in the form of a TMA) were provided from a
random cohort of colorectal cancer cases from Nottingham University
Hospitals NHS Trust [Ethics approved by Health Research authority, East
Midlands - Leicester Central Research Ethics Committee, REC reference:
23/EM/0079; IRAS project ID: 313393]. The tumour cores were selected
for each case from 3 different tumoural areas: luminal, central, and periph-
eral, to account for tumoural heterogeneity. These cores were stained with
clinical grade antibodies SMA and desmin and counterstained by haema-
toxylin [Ventana Benchmark Ultra]. Digital images of SMA and desmin-
stained TMA cores were obtained using a DP200 scanner (Roche) (×40
magnification). Digital images of colorectal tissue cores from the Human
Protein Atlas (proteinatlas.org)18,19 stained with Vimentin and SMA were
also assessed. In total, 6 cores with Vimentin and 12 cores with SMA were
available.

Manual annotations

To inform both methodologies, 113 cores were manually annotated
using the hand-guided “Wand-Tool” in QuPath under consultant patholo-
gist guidance. All cores were annotated including their stromal compart-
ments, with care taken to highlight large blood vessels and muscularis if
present. This was done as the SMA and desmin stain were specifically
assessed in the stroma, excluding confounding staining in these anatomical
structures. These annotations formed the basis of both methodologies
tested.

Manual assessment of stain

Where manual assessment of stain was performed, histopathologists
used an eye-estimate of the percentage of stromal area stained with SMA
2

and desmin (mentally accounting for area of muscle or large vessels); a
stain intesnity of 0, 1, and 2 was allocated on manual judgement. A H-
score was produced and median cutoff was generated to classify for
“high” or “low” stromal staining. Chi-squared analysis was used to assess
significant correlations between manual assessment versus automated as-
sessment as outlined later. Adjusted residuals signifywhere the significance
in tables arise from.

Stroma region detection by deep learning

The detection of the stromal region was done using deep learning
methods as manual annotations were available. Stain segmentation was
not achievable via deep learning due to lack of such training data.

Deep learning method
A U-Net model20 (shown in Fig. 1) was applied for the stromal region

segmentation task. Each tissue core was an RGB image, which was then
pre-processed and fed into the U-Net. The final layer of the network was a
softmax function, with the models output being a predicted mask map
Uk k 0,1, ,K , where K is the number of classes. In this case, K 3 and
the 3 classes were “background”, “stroma”, and “muscle”. These classes ac-
count for acellular stroma, cellular stroma, and muscularis propria/muscle
in vessel walls. The involvement of the extra class (i.e., muscle) was under
the consideration of the highly visual similarity between stroma andmuscle
regions. The loss function was the commonly used cross-entropy loss.

For pre-processing, the images of cores cropped from 40× magnifica-
tion of various sizes were first downsized to 256×256 for both training
and testing. Random rotation and flipping operations were adopted on
images for data augmentation during training.

Stain detection by mathematical modelling

For the task of stain segmentation, an unsupervised variational method
was used as exhaustive manual annotation of the stained region necessary
for a deep learning method was unfeasible. The adopted method is the re-
gion-based convex relaxation variant of the Mumford-Shah method, as
proposed and studied21 for segmentation of multi-channel images. Denote
a d-channel colour image as f f 1, , f d with different colour channels
f i Ω R for i 1, , d, where Ω⊂R2 is an image domain. The method
utilises 3 stages: the convex relaxedMumford-Shah model in the first stage,
lifting the image into a larger image space by combining another colour
representation in the second stage, and a thresholding strategy to obtain
segmentation in the final stage.

The first stage was achieved by minimising the following functional, as
in Xiaohao et al.,21 for each channel f i separately to achieve a smooth image
u u1, , ud :

E ui
λ
2 Ω

f i ui
2 dx

μ
2 Ω

∇ui 2 dx
Ω
∣∇ui∣dx (1)

For TMA cores, images are given as RGB and so d 3.
In the second stage, dimension lifting was performed by using the Lab

colour space. The 3 channels in the Lab colour space are: perceived light-
ness (L), green–red colours (a), and blue–yellow colours (b). The Lab
space was designed so that a numerical change is proportional to a similar
perceived change in colour. It is noted inGeorge22 that the Lab colour space
is better suited for image segmentation rather than RGB for certain chal-
lenging tasks. For the particular case of stain detection in cores stained by
SMA and desmin, the stains are coloured brown, and in particular, the b
channel in the Lab space segments brown colours well.

The dimension lifting was done simply by concatenating the RGB
channels of the restored image u with the transformed image into the Lab
space. Let u′ u′1, u′2, u′3 be the Lab transform of the RGB image u.
After concatenation, the vector valued image u∗ with d 6

u∗ u1, u2, u3, u′1, u′2, u′3 ,

http://proteinatlas.org


Fig. 1. The architecture of U-Net for image segmentation. C represents the number of channels.
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is used in the third stage to achieve stain segmentation by thresholding.
Fig. 2 shows a typical image of a SMA-stained tumour core and each of
the 6 channels utilised.

The third stage achieves segmentation by thresholding. Threshold
values can be set manually or found automatically using the k-means algo-
rithm. K-means is an unsupervised clustering method which partitions a set
of pixels into K clusters based on their intensities. Similarly, coloured pixels
will be grouped into the same cluster.

For this particular application of stain detection, we addressed the chal-
lenges arising from the tasks of SMA and desmin stain detection. Threshold
values were determined for both cores separately, and in addition, a
method was developed which grades the intensity of the SMA staining
based on a heatmap. Heatmaps were generated using the intensity of cer-
tain channels of u∗, the output from the variational model. Finally, in the
mathematical modelling, an image registration method is applied, which
aligns an SMA image with its desmin counterpart, allowing for the region
of double staining to be identified.
Fig. 2. An illustration of each individual channel of an RGB image

3

SMA stain detection
While k-means is a popular choice to cluster an image, segmenting

the SMA stain using k-means is not sufficient: objects of a similar inten-
sity were also identified in the same cluster as the brown stain (such as
muscle, blood vessels, and fibroblasts). Changing the number of clusters
in the k-means algorithms hinders performance further, as the staining
and similarly coloured unwanted objects were not distinct enough to
warrant a new cluster. Therefore, segmentation of the stain only is
achieved using 2 steps: an initial k-means run on the whole 6-vector
image, followed by a second k-means run on just the b channel in the
Lab space.

First, the k-means algorithm is performed on thewhole image u∗, so that
the image domain is split into 3 regions, Ω Ω1∪Ω2 ∪Ω3. The final clus-
ter, Ω3, is a good approximation of the cellular stroma, and as such is
later used in results to provide ratios of stained cellular stroma.

However, to achieve stained segmentation only, Ω3 is further refined
using the k-means algorithm again with 3 clusters restricted to the domain
, and of each individual channel in the transformed Lab space.
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Ω3, but the image used is the b channel only of the 6-vector image, i.e. u′3.
The resulting cluster containing the stain only is defined asΩSMA A second
run of k-means on the b channel is effective at partitioning miscellaneous
objects from the stain.

To ensure an automatic method, both Ω3 and ΩSMA are taken as the
clusters from the respective run of k-means with the largest value in the b
channel.

Desmin stain detection
For desmin-stained images, the process was slightly different, as the des-

min staining is sparse to absent in the cores. The steps included running the
variational model (2.5), lifting into Lab space, running k-means on the 6-
vector image u. However, the refinement of the k-means result was done
by simple thresholding, unlike in the previous SMA case, where k-means
was run twice. The k-means algorithm assumes that the size of clusters
are of roughly similar, and so k-means would not effective separate the
stain fromother objects, as the stain is not large enough to be a distinct clus-
ter. Moreover, unlike SMA images, the stain in desmin images is rather dis-
tinct, and so, a simple operation like a predefined threshold value is
effective. Therefore, the domain containing desmin stain only, ΩDesmin is
found by thresholding the image in the domain Ω3. Further detail can be
found in the results section, in which further development of the model is
discussed.

Grading SMA stains
As well as assessing the spatial stain distribution, the strength of the

stain was also assessed based on the intensity value of the pixels in the seg-
mented stromal area. In SMA images, a darker colour implies a stronger
stain while a lighter colour is representative of a fainter stain. A method
was developed to class stains into 3 grades by thresholding a heatmap.

To construct the heatmap, the output of the variational model in Lab
spacewas used, but scaled by a factor of 10 in the a and b channels to obtain
a vector valued image w u′1, 10u′2, 10u′3 These 2 channels show a dis-
tinction between different shades of brown, allowing for the differentiation
of intensity values. Then, the original Lab image u′ u′1, u′2, u′3 and scaled
Lab image w are used as input into the MATLAB function imcolordiff,
which calculates the colour difference between images. The output of the
function gave , a heatmap. Most SMA images produced a heatmap with
an approximate maximum value of 1.25, though in some cases, a max of
1.4 was noted.

Classifying different grades was done by selecting thresholds applied to
, on the domainΩSMA. Denoting the 3 grades asΩGi , i 1, 2, 3, the 3 sets

defining 3 grades were defined as:

ΩG1 x ∈ ΩSMA 0 35 x 0 75 (2)

ΩG2 x ∈ ΩSMA 0 75 x 1 15 (3)

ΩG3 x ∈ ΩSMA 1 15 x (4)

Alignment of SMA and desmin cores by image registration
With both SMA and desmin cores segmented, the level of double bio-

marker positive stroma (i.e., the region of the stroma that is stained by
both biomarkers) can be assessed. Simple overlaying is not sufficient as
the SMA and desmin images are not usually aligned.

Image registration methods are used to align 2 images. The aim of
image registration is to find a deformable transformation y x R2 R2

which maps an image T to a fixed image R, with T,R ∈ Ω⊂R2, such that
T y x ≈R x . The transformation is usually written as y x x φ x ,
where φ x φ1 x ,φ2 x is the displacement vector field.

In the case of mapping SMA images to desmin images, the core aim is to
map segmented stain from the SMA image using an appropriate map, such
that the mapped SMA stain is aligned with the segmented desmin stain.
This allows for the comparison of regions where staining is positive for
4

both images. To do this, a variational registration model is implemented,
given by the following:

min
φ

MI T x φ x R x
α
2 Ω

2

ℓ 1

∇φℓ
2 dx

where MI is theMutual Information (MI) similarity measure, Pluim Josien
et al.23 defined as:

MI T x φ x ,R x
R2
pT,R t, r log

pT,R t, r
pT t pR r

dt dr,

where pT , pR are the probability distribution functions (PDFs) of grey values
in T and R, and pT,R is the joint PDF of grey values.

After finding a transformation from the SMA image to the desmin
image, assessing the regions of double staining is simple. The transforma-
tion was applied to the SMA stain segmentation, and the double-stained re-
gion is determined by the intersection of the transformed segmented SMA
stain and the segmented desmin stain.

Results

Combining outputs from both the mathematical model (MM) and the
deep learning method (DLM) leads to interesting results, based on their
ability to segment out stroma from epithelium (DLM), as well as their abil-
ity to identify positive stromal cells (MM) and remove large vessels or
muscularis components from the stromal compartment assessment (DLM).
In order to identify and segment the stromal region in each TMA core, the
DLM is solely utilised due to availability of training data of stromal regions
for DLM and MM’s inability to differentiate between cells. The regions
within the stromal compartment which had taken up the SMA stain were
then identified using the MM due to DLM’s inability to function without
training data, and MM’s ability to differentiate contrast in colours within
the stromal region, without training data. Finally, theMMwas used to iden-
tify cases with both SMA and desmin positivity.

Development of method

Due to the nature of stromal stains, such as SMA or desmin, the com-
plexity of accurately identifying and quantifying the speicfic stromal cell
component requires a multi-layered approach. For the segmentation of
SMA, running k-means only once would not be sufficient. The difficulty
of using the k-means algorithm to partition the SMA images was due to
its tendency to cluster the brown staining with unwanted similar colours,
such as intense haematoxylin-stained immune cells.

An example of the standard k-means output is shown in Fig. 3 on a given
SMA image. The image domain is clustered into 3 clusters with the k-means
algorithm, such thatΩ ∪3

i 1Ωi. The cluster containing the stain (Ω3) con-
tains additional unwanted objects that differ in colour value only slightly,
as shown in Fig. 3e, in which the mask of the cluster multiplied with the
RGB image is shown. The difference between the stained pixels and other
pixels becomes more obvious when examining the b channel in the Lab
space, as shown in Fig. 3f, where the stained pixels have a larger intensity
in this channel. Therefore, including a second k-means run on the b channel
only allows for the differentiation of the stromal stain from other objects.
Fig. 4 shows the refinement ofΩ3 from Fig. 3, where the unwanted objects
are in one cluster (refined cluster 1) and the stained pixels are in another
cluster (refined cluster 2, i.e., ΩSMA). Note that Ω3 and ΩSMA are detected
automatically by taking the cluster from the respective run of k-means
with the largest value in the b channel.

For desmin stained detection, the k-means algorithmwas not suitable to
further partition the image domain as k-means assumes the size of each
cluster to be relatively equal. Due to the low levels of desmin staining ob-
served in the TMA cores, the required cluster containing the stain would



Fig. 3.Mathematical output (b)–(d) of the 3 clusters on the given SMA image (a). In addition, (e)–(f) show the RGB image, and the b channel from the Lab colour space of the
stain cluster.
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also need to be small to accommodate the level of desmin stain. As a result,
the k-means output on desmin images tended to group brown staining with
unwanted objects. Moreover, the intensity of staining in desmin images in
the b channel of the Lab space is rather distinct, and therefore simple
thresholding is a suitable solution to acquire ΩDesmin

To formally define this, the stain on the desmin image, ΩDesmin, is
found by thresholding the b channel over the domain Ω3 after an initial
k-means run:

ΩDesmin x ∈ Ω3 u′3 x ρ ,

where ρ 0 65. In principle, the tolerance for choosing ρ for this particular
application of desmin staining is wide, as the stains are distinct enough.

The typical k-means output for desmin images is shown in Fig. 5, in
which the cluster containing the stain (Ω3) contained both stained pixels
and many unwanted objects. To refine the segmentation, the b channel
(displayed in Fig. 5f) is thresholded to obtain ΩDesmin. An example of refin-
ing the initial k-means cluster in this way can be found in Fig. 6.

To conclude the development of the methods, a summary of the overall
method to achieve segmentation of both the stroma by deep learning and
stain segmentation by mathematical model involving: segmentation of
both SMA and desmin cores, and alignment of the 2 cores via registration
is shown in Fig. 7.

Analysis of stromal segmentation

Statistical comparisons between average scores for manually anno-
tated stromal segmentation and automated DLM stromal segmentation
5

(cases n 35, cores n 84, a subset of the in-house dataset) are
presented in Table 1 with a chi-squared analysis. It was found that
the 2 methods were significantly correlated with each other
p ≤ 0 001 , whereby both methods would correctly identify cases as
either low or high percentage stroma. Only 4 cases differed on final
outcome.

Moreover, 4-fold cross-validation was adopted for the evaluation,
where the 113 images were split into a training set and test set with a
ratio of 75:25 in each of the 4 independent experiments. Further, 20% of
the training set were randomly selected as the validation set. The mean
values and standard variances of the corresponding performance metrics
are reported in Table 2.

The DLM and manual segmentation of the stromal region were also
compared with a trainee histopathologist’s manual scoring of the percent-
age stroma (cases n 32, cores n 59, a subset of the in-house dataset)
presented in Table 3 with a chi-squared analysis. Both methods displayed
significant association with the histopathological assessment, however
the deep learning method correctly categorised a further 2 cases compared
to the manual segmentation method.

To clearly determine stromal stain expression, the DLMwas designed to
exclude regions of muscle and large blood vessels where possible. Fig. 8 is
representative of no muscle regions in the cores, whilst Fig. 9 is representa-
tive of substantially large muscularis regions in the cores. It is observed that
the trained model can recognise the stromal regions with high accuracy.
However, as seen from Fig. 9, in some difficult cases, the model still had a
tendency to mistakenly recognise muscle regions as stromal regions. This
is mainly due to the high morphological similarity between stromal cells
and muscles fibres.



Fig. 4. Output of the refined clusters on the image stained by SMA from Fig. 3 (SMA). The top row shows misc objects and the bottom row shows the stain.
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Analysis of SMA stained stroma

Using the SMA segmentation result, 2 scores were produced: The first
score, denoted as SMA 1, was the percentage of stain taken up with respect
to the area of the entire stromal compartment. This stromal compartment
score is segmented using DLM, and the stained region segmented and quan-
tified using theMM. The second score, denoted as SMA 2, is a percentage of
stain taken up with respect to the area of the cellular stroma, which is more
likened to the way in which a histopathologist would quantify a stromal
stain. The cellular stroma region is taken as Ω3, as defined in
Section 2.5.1,which is the initial output of the k-means algorithmbefore re-
finement. Some examples can be found in Fig. 10, and quantitative results
for the SMA scoring using these 2methods can be found in the first and sec-
ond column of Table 4, respectively.

Additionally, in Fig. 11, the associated heatmaps generated by the MM
are shown, allowing for the classification of the stain into intensity grades
1–3. This allows for an image-based H-score to be calculated, capturing
both the intensity and the percentage of SMA/desmin positivity from the
segmented stromal cells. Thus, offering an effective automatedmeans to ac-
curately quantify stromal biomarker expression. The scores for intensities
1–3 (as well as the negative area denoted as intensity 0) are shown in
Table 4, in which the number reflects the percentage of stromal stain
categorised into the respective grade with specifically for the area of the
6

stromal cells within the stromal compartment. Subsequently, the image
analysis basedH-Score is calculated and displayed in the following column.

Analysis of desmin-stained stroma

Quantitative scoring on the cores stained by desmin is done by the MM
only. Fig. 12 shows some examples on some cores. Quantitative results for
the scoring of these cores can be found in the second last column of Table 4.
This score is a percentage of stain taken up with respect to the area of the
entire stromal compartment, defined exactly the same as the first SMA
score. In order to generate this score, the stromal region of the core must
be found. To acquire this, the SMA core is registered to the desmin core,
and the DLM stromal segmentation output is also registered to provide
the stromal segmentation of the desmin core.

Overlay of SMA and desmin-positive stroma

Analysing the region of double positivity requires first alignment of the
SMA image to desmin image, as in general, the 2 images do not coincide
with each other. As described in Section 2.5.4, this is achieved by register-
ing the SMA image to the desmin image. Some sample results are displayed
in Fig. 13, in which the SMA and desmin images are displayed in the first 2
columns, and the registered SMA image is shown in the third column. With



Fig. 5. The k-means output (b)–(d) of the 3 clusters on the given desmin image (a), the RGB image of Ω3 (e) and the b channel from the Lab colour space.

L. Burrows et al. Journal of Pathology Informatics 15 (2024) 100351
the same transformation, the segmented SMA stain (as shown in Fig. 10) is
moved and displayedwhere it coincides with the desmin stain (as shown in
Fig. 12), which is displayed in the final 2 columns. Quantitative results for
the scoring of these cores can be found in thefinal column of Table 4. This is
a score of the percentage of stain taken up in both cores with respect to the
entire stromal compartment.

Bland–Altman

Bland–Altman plots are provided to demonstrate the differences be-
tween scores provided by the MM and 2 histopathologists. Plots comparing
both methods of SMA scores are given (firstly, as a percentage of the stro-
mal compartment and secondly, as a percentage of stromal cells). In
Fig. 14, the Bland–Altman plots for the first method of scoring SMA cores
are shown, as well as show the histogram of the scores. It is noted that
the manual scores by the histopathologists have a tendency to underesti-
mate “low” scores and overestimate “high” scores, and therefore further
Bland–Altman plots are constructed in Figs. 15 and 16, in which the data
has been split into “low” and “high” according to the median cutoff of the
histopathologists’ scores in Fig. 15, and the median cutoff of the MM
method in Fig. 16. Similar plots for the second method of scoring SMA
cores are shown in Figs. 17 and 18. Finally, the Bland–Altman plot for scor-
ing on desmin cores is shown in Fig. 19.

Human Protein Atlas

The proposedmethodwas applied to CRC TMA images from theHuman
Protein Atlas.18,19 Two independent stromal stains were analysed: 12 cores
7

stained by SMA and 6 cores stained by vimentin. Cores were assessed digi-
tally using theMMandmanually by a histopathologist. Assessment of stains
from manual assessment and proposed model correlate well, though
correlation of stroal detection was not as strong. Some example stain seg-
mentations of SMA are shown in Fig. 20 and of vimentin in Fig. 21. A
Bland–Altman plot of the H-Score comparison is shown in Fig. 22.

Discussion

In histopathology practice, in contrast to epithelial stains, which are rel-
atively easier to annotate and asssess both manually and digitally, stromal
stains present unique challenges. Thesemay be due to stromal composition,
cellular or acellular; stromal cell irregularmorphology or apparent interdig-
itation/overlap. This study therefore aimed to develop an efficient auto-
mated flowthrough to analyse stromal staining which abrogate the
aformentioned challenges. The holistic approach involved both assessment
of the percentage stromal area as well as the percentage of stromal cells that
were stained. Confounding staining in smooth muscle fibres of the muscu-
lar bowel wall and muscular vessel walls was accounted for.

Two approaches for the automated determination and quantification of
stromal stains within CRC were developed. In order to determine whether
the 2methods were comparable to the current clinical standard assessment,
2 histopathologists (1 at an early training stage (HP1) and 1 a specialist
(HP2) examined the stained cores.

The DLM tackled the problem of stromal detection, and was found to be
successful at determining high and low percentage stroma comparable with
the pathologists’manual estimation. Knowing the methods were compara-
ble to clinical estimations of percentage stroma, quantification of stromal



Fig. 6. Output of the refined clusters on the image stained by desmin from Fig. 5. The top row shows misc objects and the bottom row shows the stain.
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stains followed using the MM, which relies on the segmented stromal com-
partment from the DLM, was similarly comparable to manual scoring, as
corroborated by the chi-squared tests. As demonstrated in the Bland–Alt-
man plots, of particular interest is the potential unconscious bias of scoring
to extremes from the histopathologists’ scores. It is noted that there may be
a tendency to underestimate scores with low staining, and overestimate
cores with high staining, as depicted by the histograms of each histopathol-
ogist. This is an advantage of the MM, as it is objective and has inherent
quantitative accuracy.

The SMA scores obtained by the MM discussed so far are representative
of the area taken up by the stain with respect to the entire stromal compart-
ment, cellular and acellular. TheMM is also capable of giving a score of the
area stained with respect to the cellular stroma only. This latter method is
representative of how a stromal stain such as SMA would be quantified to
help clinicians and avoid over- or underestimation. The struggle tomentally
account for acellular components may also be relieved.

In contrast to SMA stain which has a wider natural range of variability
between tumours, desmin, as a stromal stain in colorectal cancer, is skewed
towards the underexpressed range. Here also, the MM proves more accu-
rate and inherently outperformsmanual scorers in the sub 1% range. Quan-
tification via pixel intensity is therefore likely to be more accurate in
quantifying scantly stained stromal stains at relatively fast speeds.
8

In the rapidly transforming field of digital pathology, segmentation of
epithelium and stroma have been attempted by several studies using math-
ematical modelling, including a level-based active contour method and
clustering.4 However, use of a simple piecewise-constant intensity distribu-
tion assumption is likely to lead to poor performance on complex images.
Other researchers3 were able to differentiate between tumour and non-
tumour epithelium in WSIs of CRC by training a self-organising map. This
approach was effective, but if it needs to be colour-independent, as when
assessing stromal stains, it would perhaps struggle at quantification.

In contrast to previous mathematical models, the MM presented in this
paper is novel in that it was primarily built to assess the staining in the stro-
mal compartment as opposed to concentrating on epithelial stains. As the
starting point to the analysis, the use of a relaxedMumford-Shah variational
model allows for piecewise-smooth intensity distributions, meaning amore
sophisticated segmentation output is produced when compared with a
piecewise-constant assumption. Moreover, the MM method utilises the 6
colour channels jointly and separately where appropriate, improving on
results where colour channels are treated individually.

The methods used in this paper avoid pre-selecting tumour regions be-
fore algorithm application and/or selecting a stromal hotspot.24,25

In contrast to the proposed method, the aforementioned studies all re-
quire user interaction when processing new unseen data, and are therefore



Fig. 7. An overview of the mathematical method.

Table 1
Manual stromal segmentation versus automated stromal segmentation cross-tabulation.

Automated segmentation Adjusted residuals

Low % stroma High % stroma Low % stroma High % stroma χ2 P-value

Manual segmentation <.001
Low % stroma 16 (88.9%) 2 (11.1%) 4.6 −4.6
High % stroma 2 (11.8%) 15 (88.2%) −4.6 4.6

Table 2
Mean values and the standard variances of the stroma segmentation performances
of DLM. Four-folder cross-validation is adopted. There are 3 categories for the
outputs.

Model Acc Sens IoU Dice

DLM 0.926 ± 0.011 0.822 ± 0.026 0.944 ± 0.007 0.763 ± 0.032

Table 3
Manual and deep learning stromal segmentation versus histopathologist’s manual asses

Histopathologist assessment

Low % stroma High % stroma

Manual segmentation
Low % stroma 13 (76.5%) 4 (23.5%)
High % stroma 3 (20%) 12 (80%)

Deep learning segmentation
Low % stroma 14 (82.4%) 3 (17.6%)
High % stroma 2 (13.3%) 13 (86.7%)

L. Burrows et al. Journal of Pathology Informatics 15 (2024) 100351
not fully automated. In particular, the DLM is able to provide a segmenta-
tion of tumour and stromal regions on SMA-stained TMA cores automati-
cally without any user interaction. Tumour and stromal regions are also
segmented on desmin images using the same DLM by registering the 2
cores together, thereby moving the stromal region segmented on the SMA
image to the desmin image.
sment cross-tabulation.

Adjusted residuals χ2 P-value

Low % stroma High % stroma

.001
3.2 −3.2
−3.2 3.2

<.001
3.9 −3.9
−3.9 3.9



Fig. 8. Examples of segmentation results on cores without significant muscle regions. Those in the upper row are the original images, while those in the lower row are
the segmentation results. The orange colour represents predicted stroma regions found using the DLM, and the blue colour represents the brown stainings found using
the MM.

Fig. 9. Examples of segmentation results on cores with significant muscle regions. Those in the upper row are the original images, while those in the lower row are the
segmentation results. The orange colour represents predicted stroma regions found using the DLM, and the blue colour represents the brown stainings found using the MM.
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Fig. 10. A compilation of results from the mathematical model detecting SMA staining. The first column shows the original image, the second column shows the binary
segmented stain, the third column shows the segmented stain in RGB, and the final column shows the segmented stain overlaid on the original image.
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Table 4
Quantitative scores for cores shown in Figs. 10, 11, 12, and 13. Including thefirstmethod of SMA scoring, negative scores aswell as the 4 intensity grades of SMA stromal stain
(G0, G1, G2, and G3), the associated H-Score, the second method of SMA scoring, the desmin score, and the double positive score.

SMA 1 SMA 2 G0 G1 G2 G3 H-Score Desmin Double

Case 1 23.8 67.4 32.6 7.91 59.1 0.386 127.3 0.03 0.02
Case 2 19.2 67.9 32.1 2.38 62.0 3.52 136.9 2.35 0.65
Case 3 32.2 83.3 16.7 20.6 62.1 0.647 146.7 0.12 0.04
Case 4 8.0 33.4 66.6 7.17 25.7 0.499 60.0 0.13 0.02

Fig. 11.Heatmaps from the images shown in Fig. 10. The first column displays the original image, the second column shows the resulting heatmap, and the third, fourth, and
fifth columns show the stain designated as grades 1, 2, and 3, respectively.

L. Burrows et al. Journal of Pathology Informatics 15 (2024) 100351
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Fig. 12. A compilation of results from the mathematical model detecting desmin staining. The first column shows the original image, the second column shows the binary
segmented stain, the third column shows the segmented stain in RGB, and the final column shows the segmented stain overlaid on the original image.
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Fig. 13. A compilation of double stain analysis. Results for SMA and desmin stain segmentation can be found in Figs. 10 and 12 respectively. In the first column, the SMA
image is shown, in the second column, the desmin image is shown, and in the third column, the registered SMA image to be aligned with the desmin image is displayed.
In column 4, the binary region of double staining is displayed, and in the final column, the double stained region is overlaid onto the original desmin image.

L. Burrows et al. Journal of Pathology Informatics 15 (2024) 100351
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Fig. 14. The first row shows the histogram of the scores provided by: histopathologist 1 (H1), histopathologist 2 (H2), and the MM. In the second row, Bland–Altman plots
display the discrepancy in SMA scoring comparing the 2 methods with scoring H1 and H2. The MM correlates more with H2.

Fig. 15. Bland–Altman plots of SMA scoring based on splitting the data into “low” and “high” according to the median cutoff of the respective histopathologists’ scores.
Examples of cases scored as “low” by the respective histopathologist on the left, and similarly on the right display plots scored as “high”.

L. Burrows et al. Journal of Pathology Informatics 15 (2024) 100351
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Fig. 16. Bland–Altman plots of SMA scoring based on splitting the data into “low” and “high” according to themedian cutoff of theMMmethod. On the left examples of cases
scored as “low” by the MM, and similarly on the right display plots scored as “high”.

Fig. 17. The first row shows the histogram of the scores provided by: histopathologist 1 (H1), histopathologist 2 (H2), and the MM for SMA staining as a percentage of the
stromal cells. In the second row, Bland–Altman plots display the discrepancy in SMA scoring comparing the MM with scoring H1 and H2.

L. Burrows et al. Journal of Pathology Informatics 15 (2024) 100351
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Fig. 18. Thefirst row showsBland–Altman plots of SMA scoring stromal cells based on splitting the data into “low” and “high” according to themedian cutoff of the respective
histopathologist. The second row shows Bland–Altman plots of SMA scoring on stromal cells based on splitting the data into “low” and “high” according to the median cutoff
of the MM.

Fig. 19. Bland–Altman plots displaying discrepancy in desmin scoring between the
mathematical model and histopathologist 1.

L. Burrows et al. Journal of Pathology Informatics 15 (2024) 100351
While there exist automated methods of tumour epithelium
segmentation,3,14,26,27 these works typically focus on the sole task of
segmentation rather than quantifying immunostain expression. The main
novelty of the proposed work is in its ability to both segment out the
17
stromal compartment, and to produce multiple H-scores for multiple stro-
mal stains without the need to alter the DLM. With the stromal and epithe-
lium regions detected by the DLM, and the stained regions detected by the
MM, the proposed method can produce scores for the ratio of stained
stroma with respect to the total stromal area. The ability of the MM to
automatically categorise regions into grades based on the intensity of the
stain, providing an image-based H-score, parallels commonplace methods
like H-scores done by practicing pathologists, with the advantage of provid-
ing objectivity in assessment. Further to this, the MM is also able to detect
only the stromal cells within the region, which gives the ability for the pro-
posedmethod to produce a score for the ratio of stained stromawith respect
to the area of the stromal cells. While the presented results achieve this on
SMA and desmin staining, there is no limit to the number of stromal
stains this method could quantify at a single time. With minor alterations
to the clustering method to account for the differences in stromal stain ex-
pression, it would be possible to detect the stained regions with very similar
methods.

Due to the complexity of multiple pathways involved in cancer, multi-
ple factors contribute to cancer progression. IHC multiplexing has been an
innovative tool to extrapolate data regarding several protein interactions
within tissues, however this is an intricate and often costly process. There-
fore, the ability to carry out digital multiplexing of stromal stains is ex-
tremely desirable. To the best of our knowledge, the use of registration
techniques to align multiple versions of a TMA slide to facilitate a digital
multiplexing method have not been published. Aligning 2 TMA slides via
registration, using a rigid transformation with normalised cross-
correlation as the similarity measure has been attempted previously,28

but did not incorporate the additional information of the stain segmenta-
tion as in the proposed method. It is therefore an advantage of the MM
that precise regions of double staining can be detected.

The proposed registration method seems to be rather robust in aligning
the 2 images, which allows for accurate merging of the 2 stained



Fig. 20. An example of a result of CRC tissue stained with SMA, (https://www.proteinatlas.org/ENSG00000107796-ACTA2/tissue/colon) from the Human Protein Atlas.19

Fig. 21. An example of a result of CRC tissue stainedwith vimentin, (https://www.proteinatlas.org/ENSG00000026025-VIM/tissue/colon) from the Human Protein Atlas.19
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segmentations. This would prove extremely useful in novel immunohisto-
chemical studies to help elucidate pathways and perhaps produce tools
for multi-overlay image panels to help predict operative functional path-
ways in tumours, which in the long run, could alter patient stratification
and prognosis.

To provide further validation of the methodology, we applied the MM
to open access images of CRC cores stained with SMA and vimentin, with
vimentin being anothermesenchymal stain used commonly in clinical prac-
tice. The results highlighted the ability of the model to function regardless
of a users’ staining protocol or the reagents used to stain tissue. This is often
a pitfall of many automated quantification methods as changes in staining
intensities lead to discrepancies between results, and may inhibit the algo-
rithm from working correctly. The accurate quantification of a third party
core stained with vimentin also emphasises the methodologies’ ability to
segment and quantify any stromal stain. However, a potential limitation
of the proposedworkflow is that a limited set of datawas available for train-
ing, and so tuning the DLM was infeasible. Therefore, a larger training set
18
would be desirable to further improve the accurate segmentation and quan-
tification of stromal stains.

Conclusions

In summary, the combination of the DLM and MM provides a frame-
work to accurately quantify stromal stains. Starting off with segmenting
the stromal compartment as well as the stained region of the stroma, the
method developed allows for objective accurate quantification of stromal
immunostains. This will help both clinicians and researchers to assess the
prognostic implications better and help understand the contribution of
the mesenchymal microenvironment to tumour development and progres-
sion. TheMMuses image registration to register 2 cores stained by different
markers (SMA and desmin) in order to detect regions of double staining. In
future, suchmultiplexingwith accurate quantification procedures, will help
pave research for understanding the functional pathways activated or inac-
tivated together in the tumour-associated stromal compartment.

https://www.proteinatlas.org/ENSG00000107796-ACTA2/tissue/colon
https://www.proteinatlas.org/ENSG00000026025-VIM/tissue/colon


Fig. 22. Bland–Altman plots of H-Scores on the Human Protein Atlas images19 of both SMA and Vimentin.
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