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An analytical solution describing the electrostatic interaction between particles with inhomogeneous surface charge
distributions has been developed. For particles, each carrying a single charge, the solution equates to the presence of
a point charge residing on the surface, which makes it particularly suitable for investigating the Coulomb fission of
doubly charged clusters close to the Rayleigh instability limit. For a series of six separate molecular dication clusters,
centre-of-mass kinetic energy releases have been extracted from experimental measurements of their kinetic energy
spectra following Coulomb fission. These data have been compared with Coulomb energy barriers calculated from the
electrostatic interaction energies given by this new solution. For systems with high dielectric permittivity, results from
the point charge model provide a viable alternative to kinetic energy releases calculated on the assumption of a uniform
distribution of surface charge. The equivalent physical picture for the clusters would be that of a trapped proton. For
interacting particles with low dielectric permittivity, a uniform distribution of charge provides better agreement with
the experimental results.

I. INTRODUCTION

The behaviour of multiply charged clusters and nan-
odroplets close to the Rayleigh instability limit is a phe-
nomenon of broad relevance and practical importance for a
wide range of processes, including electrospray ionization1,2

and the separation of carbon nanotubes3. Identifying the
point at which highly charged, finite collections of atoms
and molecules become unstable has been the subject of nu-
merous experimental and theoretical studies,4–14 but it is
only recently that detailed patterns of charge separation close
to the Rayleigh instability limit have been established.15,16

Molecular systems for which specific fragmentation pat-
terns have been mapped include: (H2O)2+

n , (NH3)2+
n ,

(CH3CN)2+
n , (C5H5N)2+

n , (C6H6)2+
n ;16 (C6H6)z+

n , (CH3CN)z+
n

and (C4H8O)z+
n with z = 3 and z = 4;17 and (NH3)z+

n clus-
ters with z ≤ 8,18. Precise quantitative data are available for
a range of doubly charged clusters, where Coulomb fission
has been shown to result in asymmetric fragmentation and the
formation of two singly charged clusters.15,16 For these latter
examples, an accurate determination of the centre-of-mass ki-
netic energy release can provide a measure of the Coulomb
repulsion experienced by the two fragments as they separate.
The exact mechanisms leading to charge separation is still
the subject of intense interest, but experiments show that the
outcome of the fragmentation step depends on the size and,
to some extent, the composition of a cluster.16 This com-
bined experimental and theoretical study of cluster dication
fragmentation,16 showed that the barrier to charge separation
depends strongly on the dielectric constant (or polarisability)
of a cluster. In these examples, Coulomb fission has been

a)Electronic mail: fav@triniti.ru.
b)Electronic mail: Anthony.Stace@nottingham.ac.uk
c)Electronic mail: Elena.Besley@nottingham.ac.uk

modelled using a theory of electrostatic interactions that has
been developed for charged particles of dielectric materials19.
The theory assumes that, for each fission product, the single
free charge is uniformly distributed over the surface of the lat-
ter; an approach that has been more widely adopted in the lit-
erature (see papers20–23 and references therein). A more gen-
eral solution to this problem has been proposed by Munirov
and Filippov20.

Whether the assumption of a uniform positive or negative
charge distribution over the surface of a particle is an appro-
priate description is open to speculation. The alternative is
to assume that charge is localized, possible in the form of,
for example, a proton in the case of a positive charge or as
a surface quantum state in the case of an excess electron.
There are a number of examples where experimental data
have been interpreted in terms a localized charge. For exam-
ple, the anomalous behaviour of (H2O)2+

21 has been interpreted
as H3O+ localized at the centre of a water cluster24–29 and
a similar picture of a localized central charge has been pro-
posed to explain optical spectra recorded from xenon cluster
ions, Xe+n .30 For these examples, which are essentially spher-
ical clusters with point charges at their centres, Gauss’s law
states that such a configuration generates a potential equiva-
lent to that of the charge being uniformly distributed across
the surface. In the case of singly charged anionic clusters, a
combination of separate solvated and surface-bound states has
been used to account for experimental electron photodetach-
ment spectra.31–33 For multiply charged clusters, theoretical
studies of the stability of rare gas clusters have been model
on collections of surface-bound charges each occupying a po-
sition determined predominately by Coulomb repulsion.10,14

In contrast, molecular dynamics simulations of mixed wa-
ter/ammonia/methanol clusters show that charge carriers in
the form of NH+

4 are distributed throughout.34

As an alternative to the assumption of a homogeneous dis-
tribution of free charge over the surface of the interacting par-

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
19

34
7



Interaction between two dielectric particles 2

ticles, this paper considers the case where for two charged,
dielectric, spherical particles originating from Coulomb fis-
sion there are inhomogeneous distributions of free charge on
their surfaces. The charge distributions are described by δ -
functions of angular variables and a general solution is de-
rived for a point charge of one elementary unit residing on
the surface of each particle of arbitrary radius. The proposed
solution is ideally suited to the study of processes involving
the coalescence and Coulomb fission of charged clusters, liq-
uid droplets and other nanoscale particles, where the particles
concerned carrying one or few elementary charges (in abso-
lute value). It may also be relevant for the study of electro-
static interactions between patchy colloidal particles35. The
model is tested against fragmentation data recorded of a se-
ries of doubly charged molecular clusters composed of ben-
zene, tetrahydrofuran (THF), pyridine, ammonia, acetonitrile,
and water molecules. In particular, values predicted for the
Coulomb repulsion energy between separating fragments are
compare with accurate kinetic energy release measurements
extracted from experimental data.

II. ELECTROSTATIC INTERACTION ENERGY OF
INHOMOGENEOUSLY DISTRIBUTED FREE CHARGES

To account for an inhomogeneous distribution of free
charge residing on the surface of the interacting particles, we
assume a δ -function distribution of charge which is depen-
dent on angular variables and the problem is solved following
an approach proposed by Munirov and Filippov20.

A. Geometry of the problem and expansion of the
electrostatic potential

We consider two spherical particles with radii a1 and a2,
and charges q1 and q2, which are generally non-uniformly dis-
tributed over their surfaces; the particles have dielectric con-
stants ε1 and ε2 and they are placed in a uniform dielectric
medium with permittivity ε . We introduce a Cartesian coor-
dinate system such that the z-axis is directed along a line con-
necting the centres of the particles (see Fig. 1). The choice of
the plane xz remains arbitrary.

In bispherical coordinates,36–38 denoted as (ξ ,η ,ϕ) (see
Fig. 1):

x =
asinη cosϕ

coshξ − cosη
, y =

asinη sinϕ

coshξ − cosη
, z =

asinhξ

coshξ − cosη
,

where a = a1 sinhξ1 = a2 sinhξ2, ξ1 and ξ2, are the coordi-
nate surfaces, which coincide with the surfaces of the parti-
cles, such that

coshξ1 =
R2 +a2

1−a2
2

2Ra1
, coshξ2 =

R2 +a2
2−a2

1
2Ra2

,

where R is the distance between centers of the particles: R =
z1−z2 = a(cothξ1 + cothξ2) = a1 coshξ1+a2 coshξ2, z1 and

FIG. 1. Geometry describing the interaction between two particles
with radii a1 and a2 in a bispherical coordinate system (ξ ,η ,ϕ).

z2 are z-coordinates of centers of the particles:

z1 = acothξ1 = a1 coshξ1, z2 =−acothξ2 =−a2 coshξ2.

The Lame coefficients hξ , hη and hϕ in bispherical coordi-
nates are determined from the expressions38:

hξ = hη =
a

coshξ − cosη
, hϕ =

asinη

coshξ − cosη
. (1)

The electrostatic interaction between particles in a uni-
form dielectric is determined by the Laplace equation ∆φ = 0,
which in bispherical coordinates can be solved by separating
variables with the introduction of a new quantity

φ(ξ ,η ,ϕ) = ψ(ξ ,η ,ϕ)
√

coshξ − cosη ,

here φ is the electrostatic potential. Bound solutions of the
Laplace equation in bispherical coordinates for regions inside
(ψI and ψII) and outside the particles (ψIII) can be represented
as follows

ψI(ξ ,η ,ϕ) =
∞

∑
`=0

`

∑
m=0

[
Am
` cos(mϕ)+A−m

` sin(mϕ)
]

× e−(`+
1
2 )ξ Pm

` (cosη), (2)

ψII(ξ ,η ,ϕ) =
∞

∑
`=0

`

∑
m=0

[
Bm
` cos(mϕ)+B−m

` sin(mϕ)
]

× e(`+
1
2 )ξ Pm

` (cosη), (3)

ψIII(ξ ,η ,ϕ) =
∞

∑
`=0

`

∑
m=0

{[
Cm
` cos(mϕ)+C−m

` sin(mϕ)
]

× e−(`+
1
2 )ξ +

[
Dm
` cos(mϕ)+D−m

` sin(mϕ)
]

× e(`+
1
2 )ξ

}
Pm
` (cosη), (4)
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Interaction between two dielectric particles 3

where Pm
` (cosη) is the Legendre polynomial function, and the

potential expansion coefficients A±m
` , B±m

` , C±m
` and D±m

` are
determined in Appendix A.

The electrostatic potential satisfies the following boundary
conditions39

φ |ξ=ξ1−0= φ |ξ=ξ1+0, φ |ξ=−ξ2−0= φ |ξ=−ξ2+0, (5)

ε
1

hξ

∂φ

∂ξ
|ξ=ξ1−0 −ε1

1
hξ

∂φ

∂ξ
|ξ=ξ1+0 = 4πσ1,

ε2
1

hξ

∂φ

∂ξ
|ξ=−ξ2−0 −ε

1
hξ

∂φ

∂ξ
|ξ=−ξ2+0 = 4πσ2,

(6)

where σ1, σ2 are the surface densities of free charge residing
on the particles, which are generally functions of η and ϕ .

The distribution of surface charge is usually given in a
spherical coordinate system with an origin at the centre of the
i-th particle as

σi(θi,ϕ) =
∞

∑
n=0

n

∑
m=0

(
σ

m
i,n cosmϕ +σ

−m
i,n sinmϕ

)
×Pm

n (cosθi), i = 1, 2. (7)

Here, θi is the polar angle of a point on the surface of the
i-th particle with a pole at its center, i.e. the angle between
the radius vector to the point in question and the positive di-
rection of the z-axis as denoted by θ10 and θ20 in Fig. 1, and
ϕ is the azimuthal angle of this point. Decomposition of the
surface charge represented by Eq. (7) in the bispherical coor-
dinate system has been proposed by Munirov and Filippov20:

σi(η ,ϕ) =
√

coshξi− cosη

×
∞

∑
`=0

`

∑
m=0

(
σ̃

m
i,` cosmϕ + σ̃

−m
i,` sinmϕ

)
× e−(`+

1
2 )|ξi|Pm

` (cosη), (8)

where

σ̃
±m
i,` =

∞

∑
n=m

bnm
i,` σ

±m
i,n , (9)

and the decomposition coefficients bnm
i,` are defined by the fol-

lowing expression

bnm
i,` = 2m+ 1

2 e−(n−m)ξi sinhm
ξi
(`−m)!
(`+m)!

×
min(`,n)−m

∑
ν=0

(−1)n−m+ν e2νξi
(`+n−ν)!

ν!(n−m−ν)!(`−m−ν)!
. (10)

In the case of a uniform surface charge distribution in
Eq. (7), n = 0 and using Eq. (10) we obtain

b00
i,` = 2

1
2 , bnm

i,` = 0 for n > 0, m≥ 0. (11)

For the case of an axially symmetric charge distribution, m =
0, such that

σi (θi) =
∞

∑
n=0

σi,nPn (cosθi) , i = 1, 2, (12)

and from Eq. (10) we obtain

bn
i,` =
√

2e−nξi
min(`,n)

∑
ν=0

(−1)n+ν e2νξi
(`+n−ν)!

ν!(n−ν)!(`−ν)!
. (13)

B. Point charges represented by δ -functions on the surfaces
of particles

In a bispherical coordinate system, charge located on the
surface of a sphere at the position defined by the coordinates
ηi0 and ϕi0 (i = 1,2) can be expressed as

σi (η ,ϕ) = σi0δ (cosη− cosηi0)δ (ϕ−ϕi0) . (14)

The value of σi0 is determined by integration of the charge
distribution (14) over the surface of the ith particle:

qi =
∫∫
Ωi

σi (η ,ϕ)hη hϕ dηdϕ =
a2σi0

(coshξi− cosηi0)
2 (15)

leading to the following expressions

σi0 =
qi

a2 (coshξi− cosηi0)
2 (16)

and

σi (η ,ϕ) =
qi

a2 (coshξi− cosηi0)
2

×δ (cosη− cosηi0)δ (ϕ−ϕi0) . (17)

Equation (17) can be expressed in the form of Eq. (8). Taking

Si =
σi√

coshξi− cosη
. (18)

and using (8), Si(η ,ϕ) can be represented as

Si(η ,ϕ) =
∞

∑
`=0

`

∑
m=0

(
σ̃

m
i,` cosmϕ + σ̃

−m
i,` sinmϕ

)
× e−(`+

1
2 )|ξi|Pm

` (cosη) (19)

which, using (17) gives

Si (η ,ϕ) =
qi

a2 (coshξi− cosηi0)
3/2

√
coshξi− cosηi0

coshξi− cosη

×δ (cosη− cosηi0)δ (ϕ−ϕi0) . (20)

Multiplying Eqs. (19) and (20) by cos(mϕ)Pm
n (cosη) or

sin(mϕ)Pm
n (cosη) and integrating over sinηdηdϕ using
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Interaction between two dielectric particles 4

Eqs. (C5) and (C6) we obtain from (19):

2π∫
0

π∫
0

Si(η ,ϕ)

{
cosmϕ

sinmϕ

}
Pm

n (cosη)sinηdηdϕ =

=
2π

2n+1
(n+m)!
(n−m)!

{
(1+δm0) σ̃m

i,n
(1−δm0) σ̃

−m
i,n

}
e−(n+ 1

2 )|ξi| (21)

and from (20)

2π∫
0

π∫
0

Si(η ,ϕ)

{
cosmϕ

sinmϕ

}
Pm

n (cosη)sinηdηdϕ =

=
qi

a2 (coshξi− cosηi0)
3/2
{

cosmϕi0
sinmϕi0

}
Pm

n (cosηi0). (22)

Eqs. (21) and (22) can be combined to give{
σ̃m

i,n
σ̃
−m
i,n

}
=

2n+1
2π

(n−m)!
(n+m)!

qi

a2 e(n+ 1
2 )|ξi|

× (coshξi− cosηi0)
3/2
{ 1

1+δm0
cosmϕi0

sinmϕi0

}
Pm

n (cosηi0).

(23)

For η = 0,π and ϕ = 0,2π we should consider the limits of
η → 0+0,π−0 and ϕ → 0+0,2π−0.

Since choice of the xz plane is arbitrary, it is chosen such
that ϕ10 = 0. In this case, for decomposition of the surface
charge of the first particle, terms with negative index “−m”
are equal to zero. Note that for fixed ηi0, the charge moves
across the surface as the interparticle distance changes. To
avoid this, it is necessary to specify an angle in a spherical
coordinate system with a pole at the centre of each particle.
Therefore, we have

cosη10 = coshξ1−
sinh2

ξ1

coshξ1 + cosθ10
, (24)

cosη20 = coshξ2−
sinh2

ξ2

coshξ2− cosθ20
(25)

where θ10, θ20 are polar angles in a spherical coordinate sys-
tem with poles at the centres of the first and second particles,
respectively. For the case of several point charges present on
the surface, it is necessary to sum expression (23) for each
charge.

From Eqs. (8) and (23) we obtain the following expression
for the distribution of density of free charge

σi(η ,ϕ) =
qi

a2 (coshξi− cosηi0)
3/2
√

coshξi− cosη

×
∞

∑
`=0

`

∑
m=0

2`+1
2π

(`−m)!
(`+m)!

(
1

1+δm0
cosmϕi0 cosmϕ

+ sinmϕi0 sinmϕ

)
Pm
` (cosη)Pm

` (cosηi0) , i = 1,2. (26)

In the case of an axially symmetric system, we proceed
from the relationship

σi = σi0δ (cosη− cosηi0) . (27)

and find that

σi0 =
qi

2πa2 (coshξi− cosηi0)
2 . (28)

Therefore, recalling that the δ -function is a functional, we
give the distribution of surface charge a convenient form

σi (η ,ϕ) =
qi

2πa2 (coshξi− cosηi0)
3/2

×
√

coshξi− cosη δ (cosη− cosηi0) . (29)

From Eqs. (8) and (29), proceeding with similar steps to those
used to obtain Eq. (26), we derive the distribution of axially
symmetric free charge

σi(η ,ϕ) =
qi

4πa2 (coshξi− cosηi0)
3/2
√

coshξi− cosη

×
∞

∑
`=0

(2`+1) P̀ (cosη)P̀ (cosηi0) , i = 1,2. (30)

Taking into account Eq. (C1), this leads to Eq. (29).
An alternative method of representing the surface charge

density in the presence of point charges defined by a δ -
function is shown in Appendix B. This method has been de-
rived in spherical coordinates. Our numerical tests show that
this alternative approach is less effective and requires signif-
icantly more computational resources. Therefore, in this pa-
per all calculations have been performed using the method de-
scribed in this section. In numerical solutions to the problem,
a finite number of terms is considered up to a given value:
` = `max, where the accuracy of representation (29) using fi-
nite terms can be examined using expression (C3).

C. Density of the total surface charge

The distribution of the total charge density on the surface
of particles is determined from a discontinuity of the normal
component of the electric field

σ1,t =
1

4πhξ

∂φIII

∂ξ

∣∣∣∣
ξ=ξ1

− 1
4πhξ

∂φI

∂ξ

∣∣∣∣
ξ=ξ1

,

σ2,t =
1

4πhξ

∂φII

∂ξ

∣∣∣∣
ξ=−ξ2

− 1
4πhξ

∂φIII

∂ξ

∣∣∣∣
ξ=−ξ2

.

(31)

From the boundary condition (5) it follows that

A±m
` =C±m

` +D±m
` e(2`+1)ξ1 ,

B±m
` =C±m

` e(2`+1)ξ2 +D±m
` .

(32)

Using Eqs. (2), (3), (4) and (32), we obtain from Eqs. (31)

σ1,t =
(coshξ1− cosη)3/2

4πa1 sinhξ1

∞

∑
`=0

`

∑
m=0

(2`+1)
[
Dm
` cos(mϕ)+

+D−m
` sin(mϕ)

]
e(`+

1
2 )ξ1 Pm

` (cosη), (33)
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Interaction between two dielectric particles 5

σ2,t =
(coshξ2− cosη)3/2

4πa2 sinhξ2

∞

∑
`=0

`

∑
m=0

(2`+1)
[
Cm
` cos(mϕ)+

+C−m
` sin(mϕ)

]
e(`+

1
2 )ξ2 Pm

` (cosη), (34)

For the axially symmetric problem, Eqs. (33) and (34) are re-
duced to

σ1,t =
(coshξ1− cosη)3/2

4πa1 sinhξ1

∞

∑
`=0

(2`+1)D`e(`+
1
2 )ξ1 P̀ (cosη),

σ2,t =
(coshξ2− cosη)3/2

4πa2 sinhξ2

∞

∑
`=0

(2`+1)C`e(`+
1
2 )ξ2 P̀ (cosη).

(35)

Note from Eqs. (33–35) that the distribution of total charge
includes the quantities D`e(`+

1
2 )ξ1 and C`e(`+

1
2 )ξ2 , and this is

unlike the expression for the electrostatic force derived in the
next section, where the force is defined simply from products
of the expansion coefficients of the electrostatic potential. In
the case of a uniform distribution of free surface charge, this
does not present any difficulties, as F±m

` used in expression
(A1) and defined by Eqs. (A5), decrease exponentially with `,
and accordingly D`e(`+

1
2 )ξ1 and C`e(`+

1
2 )ξ2 also decrease ex-

ponentially. In the case of a δ -like distribution of free charge,
F±m
` in (A5) is expressed as (the upper line in curly brackets

refers to the index “+m”, the lower line refers to “−m”)

F±m
`,i =

4qi

a
(2`+1)

(`−m)!
(`+m)!

(coshξi− cosηi0)
3/2

×
{ 1

1+δm0
cosmϕi0

sinmϕi0

}
Pm
` (cosηi0), (36)

the values are of order O(1) for all `.
We next consider the simple case of an axially symmetric

system. In this case, from (A1) - (A5) we obtain (denoting
y` = (C`,D`)

T )

−A`y`−1 +C`y`−B`y`+1 = F`,
(
`= 0,1, . . .∞

)
, (37)

where

A` = `

(
(ε1− ε)e−(`−

1
2 )ξ1 (ε1 + ε)e(`−

1
2 )ξ1

(ε2 + ε)e(`−
1
2 )ξ2 (ε2− ε)e−(`−

1
2 )ξ2

)
, (38)

(C`)11 = (ε− ε1)

× [sinhξ1− (2`+1)coshξ1]e−(`+
1
2 )ξ1 ,

(C`)12 =
[
(ε− ε1)sinhξ1

+(2`+1)(ε + ε1)coshξ1
]
e(`+

1
2 )ξ1 ,

(C`)21 =
[
(ε− ε2)sinhξ2

+(2`+1)(ε + ε2)coshξ2
]
e(`+

1
2 )ξ2 ,

(C`)22 = (ε− ε2)

× [sinhξ2− (2`+1)coshξ2]e−(`+
1
2 )ξ2 ,

(39)

B` = (`+1)

×

(
(ε1− ε)e−(`+

3
2 )ξ1 (ε1 + ε)e(`+

3
2 )ξ1

(ε2 + ε)e(`+
3
2 )ξ2 (ε2− ε)e−(`+

3
2 )ξ2

)
, (40)

F` =

(
8πaσ̃1,`e−(`+

1
2 )ξ1

8πaσ̃2,`e−(`+
1
2 )ξ2

)
. (41)

For sufficiently high values of `, the diagonal elements of
the matrices A`, B` and C` become negligible because, even
with δ -localized charges, they decrease with ` as e−`ξ1 or
e−`ξ2 . Therefore, at sufficiently large ` ≥ Lmax the expansion
coefficients of the potential for each particle cease to depend
on their own charge. In this case, if we introduce new vari-
ables

ĉ` =C`e(`+
1
2 )ξ2 , d̂` = D`e(`+

1
2 )ξ1 (42)

for `≥ Lmax systems, equation (37) takes the form

− `d̂`−1 +

[(
ε− ε1

ε + ε1

)
sinhξ1 +(2`+1)coshξ1

]
d̂`

− (`+1) d̂`+1 = f`,1 ≡
F̀ ,1

ε + ε1
,

− `ĉ`−1 +

[(
ε− ε2

ε + ε2

)
sinhξ2 +(2`+1)coshξ2

]
ĉ`

− (`+1) ĉ`+1 = f`,2 ≡
F̀ ,2

ε + ε2
.

(43)

For a uniform distribution of free surface charge, Eq. (41) re-
duces to

F` =

(
2
√

2 q1 sinhξ1
a1

e−(`+
1
2 )ξ1

2
√

2 q2 sinhξ2
a2

e−(`+
1
2 )ξ2

)
. (44)

and for δ -type charges localised along the z-axis gives

F̀ ,i = 8πaσ̃i,`e−(`+
1
2 )ξi

=
2qi

a
(2`+1)(coshξi− cosηi0)

3/2 P̀ (cosηi0) . (45)

In the case of δ -localized charges, one can see from Eqs. (43)
and (45) that with increasing ` the new coefficients ĉ` and d̂`
remain of the order of O(1), and calculation of the total charge
density distribution is not trivial.

For `≥ Lmax, matrices (38), (39) and (40) take the following
form (for new variables)

A` =

(
0 `
` 0

)
, (46)

(C`)11 = 0,

(C`)12 =

[(
ε− ε1

ε + ε1

)
sinhξ1 +(2`+1)coshξ1

]
,

(C`)21 =

[(
ε− ε2

ε + ε2

)
sinhξ2 +(2`+1)coshξ2

]
,

(C`)22 = 0,

(47)

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
19

34
7



Interaction between two dielectric particles 6

B` =

(
0 (`+1)

(`+1) 0

)
. (48)

Using the matrix sweep method described in Appendix A
requires the introduction of a direct sweep matrix α`+1 (A7),
which for `≥ Lmax also takes on a diagonal form

α`+1 =

 B`,21
C`,21−A`,21α`,11

0

0 B`,12
C`,12−A`,12α`,22

 . (49)

In the limit of `→ ∞ Eq. (49) leads to

α`+1 =

((
2coshξ2−α`,11

)−1 0
0

(
2coshξ1−α`,22

)−1

)
(50)

and from the condition α`+1 = α` we obtain

α`+1 =

(
e−ξ2 0

0 e−ξ1

)
(51)

For the vector β`+1 from Eq. (A7) one can obtain

β`+1,1 =
A`,21β`,1 + F̀ ,2

C`,21−A`,21α`,11
,

β`+1,2 =
A`,12β`,2 + F̀ ,1

C`,12−A`,12α`,22
,

(52)

which in the limit of `→ ∞ gives

β`+1,1 =
β`,1 +2 f`,2/(2`+1)

2coshξ2−α`,11
= e−ξ2

(
β`,1 +

2 f`,2
2`+1

)
,

β`+1,2 =
β`,2 +2 f`,1/(2`+1)

2coshξ1−α`,22
= e−ξ1

(
β`,2 +

2 f`,1
2`+1

)
.

(53)

These expressions show that in the case of a uniform dis-
tribution of surface charge, β`+1,1 = β`,1e−ξ2 and β`+1,2 =

β`,2e−ξ1 , i.e. as ` increases, they tend to zero. For the case of
a point (or circumferential distribution) of δ -localized charge
lying on the axis, we have that

β`+1,1 = e−ξ2

[
β`,1

+
4q2

a(ε + ε2)
(coshξ2− cosη20)

3/2 P̀ (cosη20)

]
,

β`+1,2 = e−ξ1

[
β`,2

+
4q1

a(ε + ε1)
(coshξ1− cosη10)

3/2 P̀ (cosη10)

]
.

(54)

For large `, when δ -localized charges are located on the z-
axis (i.e., at ηi0 = 0 or π) coefficients β`+1,i tend to a constant
value determined by the following relations

β`+1 =

(
b1,`P̀ (cosη20)
b2,`P̀ (cosη10)

)
, (55)

where

b1,` =
4q2

a(ε + ε2)

(coshξ2− cosη20)
3/2

eξ2 − P̀ −1 (cosη20)/P̀ (cosη20)
,

b2,` =
4q1

a(ε + ε1)

(coshξ1− cosη10)
3/2

eξ1 − P̀ −1 (cosη10)/P̀ (cosη10)
.

(56)

We can now write the asymptotic solution of the system
(A7) (which we denote as c̃` and ã`) in the following form

c̃` = e−ξ2 c̃`+1 +b1,`P̀ (cosη20) ,

d̃` = e−ξ1 d̃`+1 +b2,`P̀ (cosη10) .
(57)

For a sufficiently large number ` = N (N can be equal to
infinity), solution (57) takes the form

c̃` =
N−`

∑
n=0

e−nξ2b1,`+nP̀ +n (cosη20) ,

d̃` =
N−`

∑
n=0

e−nξ1b2,`+nP̀ +n (cosη10) .

(58)

Analysis of the asymptotic expression (C4) shows that con-
stancy (in absolute value) of the ratio of two neighboring Leg-
endre polynomials P̀ /P̀ −1 is only possible if θi0 = 0 and
θi0 = π (repeated cycles are at θi0 = π p/q, where p and q
are integers).

Finally, we consider the case of point charges lying on the z
axis. In this case, cosηi0 = 1, P̀ (cosηi0)= 1, or cosηi0 =−1,
P̀ (cosηi0) = (−1)`, and the coefficients bi,` cease to depend
on ` and become constant. From Eq. (58) we obtain

c̃` = P̀ (cosη20) b1 lim
N→∞

N−`

∑
n=0

(cosη20)
n e−nξ2

=
b1

1− cosη20e−ξ2
P̀ (cosη20) ,

d̃` = P̀ (cosη10) b2 lim
N→∞

N−`

∑
n=0

(cosη10)
n e−nξ1

=
b2

1− cosη10e−ξ1
P̀ (cosη10) ,

(59)

and from Eq. (56) we obtain

b1 =
4q2

a(ε + ε2)

(coshξ2− cosη20)
3/2

eξ2 − cosη20
,

b2 =
4q1

a(ε + ε1)

(coshξ1− cosη10)
3/2

eξ1 − cosη10
.

(60)

These expressions show that for sufficiently large ` > Lmax,
the coefficients b1 and b2 do not depend on `.

For high multipole expansion terms of the total surface
charge shown in (35) we find

σ1,t p =
(coshξ1− cosη)3/2

4πa

∞

∑
`=Lmax

(2`+1) d̃`P̀ (cosη),

σ2,t p =
(coshξ2− cosη)3/2

4πa

∞

∑
`=Lmax

(2`+1) c̃`P̀ (cosη).

(61)
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Interaction between two dielectric particles 7

Using relations (C1) and (C3), from Eq. (61) we obtain

σ1,t p =
(coshξ1− cosη)3/2

4πa
b2

1− e−ξ1 cosη10

× 1
cosη10− cosη

{
2δ (cosη10− cosη)

+(L−1)
[
PL−1 (cosη10)PL (cosη)

−PL (cosη10)PL−1 (cosη)
]}
, (62)

σ2,t p =
(coshξ2− cosη)3/2

4πa
b1

1− e−ξ2 cosη20

× 1
cosη20− cosη

{
2δ (cosη20− cosη)

+(L−1)
[
PL−1 (cosη20)PL (cosη)

−PL (cosη20)PL−1 (cosη)
]}
. (63)

Taking the lower summation limit in (61) as 0 together with
relationship (C1) and accounting for the fact that the delta-
function δ (cosηi0− cosη) at cosηi0 6= cosη is equal to zero,
we find from (35) that:

σ1,t =
(coshξ1− cosη)3/2

4πa1 sinhξ1

×
∞

∑
`=0

(2`+1)
(

d̂`− d̃`
)

P̀ (cosη),

σ2,t =
(coshξ2− cosη)3/2

4πa2 sinhξ2

×
∞

∑
`=0

(2`+1)(ĉ`− c̃`) P̀ (cosη).

(64)

D. Electrostatic interaction force

The Maxwell tensor of tensions can be used39 to calculate
the electrostatic force applied to a dielectric body. In reference
to Fig. 1, we perform calculations of the electrostatic force for
a particle located on the positive side of the z axis, such that
the repulsion force due to the presence of a second particle is
positive and the attraction is negative

F =
∮
S

T1ndS, (65)

where

T1n =
ε

4π

(
EnE− 1

2
nE2

)∣∣
ξ=ξ1

≡ ε

4π

(
1
2
(
E2

n −E2
τ

)
n+EnEττ

)∣∣
ξ=ξ1

, (66)

En =
1

hξ

∂φ

∂ξ

∣∣
ξ=ξ1

, n =−eξ ;

Eτ =−
1

hη

∂φ

∂η

∣∣
ξ=ξ1

, τ = eη ;

e are orthonormal basis vectors. For Cartesian components of
the interaction force, Munirov and Filippov20 found

F1x =
ε

4

∞

∑
`=1

`(`+1)
[

D1
` (C`−1 +C`+1−2C`)

−C1
` (D`−1 +D`+1−2D`)

]
+

ε

8

∞

∑
`=2

`−1

∑
m=1

(`+m+1)!
(`−m−1)!

×
[

Dm+1
`

(
Cm
`−1 +Cm

`+1−2Cm
`

)
+D−(m+1)

`

×
(
C−m
`−1 +C−m

`+1−2C−m
`

)
−Cm+1

`

(
Dm
`−1 +Dm

`+1−2Dm
`

)
−C−(m+1)

`

(
D−m
`−1 +D−m

`+1−2D−m
`

)]
, (67)

F1y =
ε

4

∞

∑
`=1

`(`+1)
[

D−1
` (C`−1 +C`+1−2C`)

−C−1
` (D`−1 +D`+1−2D`)

]
+

ε

8

∞

∑
`=2

`−1

∑
m=1

(`+m+1)!
(`−m−1)!

×

×
[

D−(m+1)
`

(
Cm
`−1 +Cm

`+1−2Cm
`

)
−Dm+1

`

×
(
C−m
`−1 +C−m

`+1−2C−m
`

)
−C−(m+1)

`

(
Dm
`−1 +Dm

`+1−2Dm
`

)
+Cm+1

`

(
D−m
`−1 +D−m

`+1−2D−m
`

)]
, (68)

F1z =
ε

4

∞

∑
`=0

`

∑
m=0

(2`+1)
(`+m)!
(`−m)!

(
Cm
` Dm

` +C−m
` D−m

`

)
−

− ε

4

∞

∑
`=0

`

∑
m=0

(`+m+1)!
(`−m)!

[(
Cm
` Dm

`+1 +C−m
` D−m

`+1

)
+
(
Cm
`+1Dm

` +C−m
`+1D−m

`

)]
. (69)

Here it is assumed that C−m
` =Cm

` and D−m
` = Dm

` for m = 0.
For the case of uniformly charged particles, only the z-

component of the electrostatic force is non-zero, as follows
from Eqs. (67)-(69), and has the following form

F1z =
ε

2

∞

∑
n=0

Cn
[
(2n+1)Dn− (n+1)Dn+1−nDn−1

]
≡

≡ ε

2

∞

∑
n=0

Dn
[
(2n+1)Cn− (n+1)Cn+1−nCn−1

]
. (70)

III. EXPERIMENTAL SECTION

As discussed in earlier publications16–18, observations on
the fragmentation patterns of multiply charged molecular
clusters have been undertaken on an apparatus that combines
a high resolution reversed geometry mass spectrometer (VG
Analytical ZAB-E) with a pulsed supersonic cluster source.
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Interaction between two dielectric particles 8

Neutral molecular clusters from each of the liquids were ion-
ized by 70 eV electrons and the ion beam extracted from the
ion source at a potential of between +5 and +7 kV into the
flight tube of the mass spectrometer. Doubly charged clus-
ter ions, Mn

2+, with values of n known to be close to the
Coulomb instability limit have been mass-selected using a
magnet, and the ionic products of Coulomb fission in the sec-
ond field-free region (2ffr) between the magnet and an elec-
trostatic analyser (ESA) were identified by scanning the volt-
age on the latter. This linked-scan procedure provides a mass-
analysed ion kinetic energy (MIKE) spectrum40, which can be
used to identify ionic fragments according to their laboratory-
frame kinetic energy. In addition, the energy spread in a peak
can be related to the centre-of-mass kinetic energy released
during Coulomb fission40; in effect, this is measure of the re-
pulsion experienced by the two positively charged ions as they
separate. To detect the principal charged fragment from the
fission of a doubly charged cluster, the ESA was scanned to
record ionic fragments with laboratory-frame kinetic energies
of between 5–7 and 10 keV. Within this energy range, there
are no background ion signals from other processes, such as
the loss of neutral molecules, which means the very weak sig-
nals that arise from Coulomb fission can be recorded without
interference. However, this approach does mean that only the
largest of the charged fragments is detected and therefore, the
size of the smaller fragment has to be inferred from mass and
charge balance.

Figure 2 gives an example of a kinetic energy spectrum
recorded following the Coulomb fission of [(H2O)37]2+, and
as noted above, the key measurement in these experiments is
the kinetic energy released as a consequence of Coulomb re-
pulsion between the two like-charged fragments as they sepa-
rate. Due to a combination of high kinetic energy release and
comparatively light mass, the peak profiles recorded from the
fragmentation of molecular dications show the presence of a
sequence of pronounced dish-shaped peak profiles16,17. These
arise from the preferential transmission of fragment ions that
are either strongly forward or backward scattered with respect
to the laboratory frame of reference. Whilst it is possible to
extract a value for the average kinetic energy release (KER)
from the full width at half maximum (FWHM) for each peak
assigned to a particular fission process40, this approach does
have limitations. It relies heavily on the quality of the experi-
mental data and is very sensitive to how accurately the width
(∆E) of a profile can be measured (KER is ∝ ∆E2)40; hence,
poor signal-to-noise levels on the edges of peaks can lead to
errors in KER values.

To improve the accuracy of energy release measurements,
a method for calculating peak profiles proposed by Beynon
and co-workers41,42 has been adopted in the form of a Monte
Carlo simulation17. From random values for the kinetic en-
ergy release, centre-of-mass velocities for the fragments are
calculated on the assumption that, in the centre of mass frame,
the scattering of ions is equally probable in all direction.
These velocities are then transformed to the laboratory-frame
as two components, vz, which determines whether or not a
fragment ion will pass through the final slit on the mass spec-
trometer, and vxy, which determines how rapidly a fragment

FIG. 2. An example of a kinetic energy spectrum recorded following
the Coulomb fission of [(H2O)37]2+ (figures are the number, n, of
water molecules in the smallest ion fragment (H2O)nOH+).

ion will pass through the electrostatic analyzer and reach the
detector18,41. Since the position in the flight tube where fis-
sion occurs also influences the probability of an ion pass-
ing through the final slit, it is assumed that ions have equal
probability of fragmenting at all positions along the 2ffr. A
total of 106 simulations were run for each set of conditions
and for those ions calculated to have reached the detector,
their centre-of-mass kinetic energies were transformed into a
laboratory-frame peak profile. The simulation of peak profiles
was found to be sensitive to two centre-of-mass kinetic energy
variables: the minimum kinetic energy, Emin, which primarily
contributes to the centre of a profile and the maximum allowed
kinetic energy, Emax, which determines the width of the pro-
file and the separation between the wings. The results shown
in Fig. 2 were all calculated using Emin = 0.7 eV together with
a uniform spread in kinetic energies up to Emax = 1.1 eV;
from visual inspection these values are probably accurate to
±0.05 eV. The calculated average kinetic energy (KER) is
0.89 eV. The most significant results from these experiments
are the values determined for Emax, as these represent the max-
imum repulsion energy experienced by singly charged frag-
ments as they separate. In terms of the calculated interaction
energies, Emax should be less than or equal to the height of a
Coulomb barrier. A value for Emax less than the height of a
particular barrier is possible if some of the kinetic energy is
assumed to have been dissipated into internal energy as the
fragments separate. Such behaviour would result in the evap-
oration of single molecules and further scatter the fragment
ions, leading to an in-filling of the dish shaped peak profiles.

A series of measurements have been taken for six sepa-
rate molecular systems, and these fragmentation processes are
summarised in Table I. In each case a single fragmentation
step is taken to be representative of all the profiles measured
for a particular, mass-selected molecular dication. Although
there are subtle differences between profiles, the accuracy of
both the measurements and the simulations do not warrant fur-
ther detail. For several examples, kinetic energy data for the
same molecular system have been recorded using measure-
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Interaction between two dielectric particles 9

ments undertaken at two ion source potentials, 5 kV and either
6 or 7 kV, and in each case the peak profiles could be accu-
rately simulated using the Emin and Emax information given in
Table II.

IV. NUMERICAL RESULTS, COMPARISON WITH
EXPERIMENT, AND DISCUSSION

Table II presents experimental data from measurements on
the kinetic energy associated with Coulomb fission of dou-
bly ionised clusters, together with computational predictions
for the corresponding electrostatic interaction energy barriers.
Also shown are the dielectric permittivities of the fluids form-
ing the molecular clusters and the sizes of the fragments into
which the clusters decay. The latter have been determined
from the masses and densities of the fluids concerned. Pairs
of particles are subsequently identified by the numbers given
in the first column of Table I.

The reduced electrostatic interaction force between two
particles has been calculated as a function of surface-to-
surface separation and has been scaled by the Coulomb inter-
action force between two point charges located at the centre-
to-centre inter-particle distance R. Five variants are consid-
ered which differ in the type and location of the surface free
charge: variant I with the homogeneous distribution of surface
charge and variants II-V with the δ -charges located along the
z-axis as shown in Fig. 3.

Figures 4(a)-(d) show the reduced electrostatic force cal-
culated, with reference to Table I, for pairs of charged parti-
cles involved in the following fragmentation processes 1 (ben-
zene), 9 (acetonitrile), 11 (water), and 12 (water). These cases
differ in the dielectric permittivities of the particles (the cor-
responding liquids) and the sizes of fragmented pairs. Note
that in the case of a uniform distribution of surface charge
(variant I) no attraction between fragments is observed at
all surface-to-surface separation distances if the fragments
have low dielectric permittivities, such as benzene (see Fig-
ure 4(a)), and/or the fragments are not too dissimilar in size,
as in process 12 (see Figure 4(d)). For variant I, at very short
separation distances of L≈ 10−2 nm (L = R−a1−a2) the at-
traction between fragments increases with the increase in the
ratio of fragment radii a1/a2. Comparison of Figures 4(b) and
4(c) shows the stronger attraction in process 9 (a1/a2=1.60)
than in process 11 (a1/a2=1.39).

It was found in20 that generally the dependence of the in-
teraction force on the charges and radii of particles can be
described by the following formula:

Fz = ε
q1q2

a1a2
f
(

q1

q2
,

a1

a2
,

L2

a1a2
,

ε1

ε
,

ε2

ε

)
, (71)

where f is an unknown function of these arguments, which
varies from 1 for large separation distances, L, to 0 at the max-
imum point of the interaction potential. According to this for-
mula, for a pair of identical molecules with constant charges
the interaction force increases, at large separations, if the ra-
dius of one particle (a2) is decreased whilst keeping the radius

FIG. 3. Four considered cases of the δ -charge location as defined
by the polar angles θ10 and θ20. Variant II: θ10 = 0 and θ20 = π;
variant III: θ10 = θ20 = 0; variant IV: θ10 = π and θ20 = 0; variant
V: θ10 = θ20 = π

.

of another particle (a1) constant. However, at short separa-
tions, the increase in the ratio of particle radii leads to stronger
attractive charge-induced polarisation forces thus making the
effect of particles sizes on the interaction energy barrier dif-
ficult to predict. These considerations are supported by data
presented in Table II showing that with an increase in the ratio
of particle radii, a1/a2, the height of the barrier (the value of
U max) decreases in pairs 4 and 5, 6 and 8, 9 and 10, but goes
up in pairs 1 and 2, 11 and 12 (note that in the latter pair both
radii are changed).

If the point charges located on the surfaces face one an-
other (variant IV), all pairs experience repulsion. If the point
charges are located on opposite sides (variant II), the inter-
action at very short distances is at its weakest and, for suffi-
ciently large values of the dielectric permittivity, the interac-
tion force is very close in value to the case of a uniform distri-
bution of surface charge (Figs. 4(b)-(d)). For an arrangement
of δ -point charges localised on the same side of the particles
(either on the right as in variant III or on the left as in variant
V) a repulsive barrier becomes attractive for all pairs at short
separation.

For pairs of particles involved in fragmentation processes
1 (benzene) and 9 (acetonitrile), the dependence of the elec-
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Interaction between two dielectric particles 10

TABLE I. Fragmentation processes considered in this study.
No. molecular cluster Process
1 benzene [(C6H6)24]

2+→ (C6H6)15
++(C6H6)9

+

2 benzene [(C6H6)22]
2+→ (C6H6)15

++(C6H6)7
+

3 tetrahydrofuran (THF) [(C4H8O)25]
2+→ (C4H8O)15

++(C4H8)10
+

4 pyridine [(C5H5N)18]
2+→ (C5H5N)12

++(C5H5N)6
+

5 pyridine [(C5H5N)17]
2+→ (C5H5N)11

++(C5H5N)6
+

6 ammonia [(NH3)53]
2+→ (NH3)40H++(NH3)12NH2

+

7 ammonia [(NH3)53]
2+→ (NH3)38H++(NH3)13NH2

+

8 ammonia [(NH3)53H2]
2+→ (NH3)41H++(NH3)12H+

9 acetonitrile [(CH3CN)31]
2+→ (CH3CN)25

++(CH3CN)6
+

10 acetonitrile [(CH3CN)29]
2+→ (CH3CN)23

++(CH3CN)6
+

11 water [(H2O)37]
2+→ (H2O)27H++(H2O)9OH+

12 water [(H2O)38]
2+→ (H2O)25H++(H2O)12OH+

TABLE II. Centre-of-mass kinetic energy data extracted from simulations of peak profiles similar to those shown in Fig.2: Emin and Emax are,
respectively, the minimum and maximum kinetic energies used in the simulations; also given are the derived average values of kinetic energy
release, KER. The calculated maximum of the electrostatic interaction energy, Umax, is presented in column I-V for variants I-V of the surface
free charge distribution or localization. Umax for the uniformly distributed free charge is included in column I. If Umax is reached at the shortest
inter-particle separation distance its value is highlighted in bold.

No. Emin/eV Emax/eV KER/eV a1/nm a2/nm ε1 = ε2 Umax/eV
I II III IV V

1 0.60 0.90 0.74 0.81 0.68 2.28 0.917 0.572 0.715 47.507 0.832
2 0.60 0.90 0.74 0.81 0.63 2.28 0.946 0.591 0.718 47.586 0.892
3 0.50 1.00 0.73 0.78 0.68 7.58 0.893 0.728 0.779 7.233 0.849
4 0.60 0.90 0.74 0.73 0.58 12.40 0.973 0.852 0.865 3.640 0.976
5 0.60 0.90 0.74 0.71 0.58 12.40 0.992 0.868 0.886 3.662 0.985
6 0.60 1.00 0.79 0.73 0.50 25.00 0.990 0.925 0.913 1.767 1.052
7 0.60 1.00 0.79 0.71 0.51 25.00 1.011 0.944 0.932 1.787 1.057
8 0.50 1.00 0.73 0.74 0.50 25.00 0.978 0.914 0.902 1.755 1.045
9 0.50 1.00 0.73 0.80 0.50 37.50 0.905 0.865 0.854 1.283 0.980
10 0.50 1.00 0.73 0.78 0.50 37.50 0.926 0.885 0.874 1.307 0.996
11 0.70 1.10 0.89 0.57 0.41 80.37 1.241 1.214 1.203 1.364 1.283
12 0.70 1.10 0.89 0.56 0.45 80.37 1.235 1.207 1.199 1.355 1.255

trostatic interaction energy on the surface-to-surface separa-
tion is shown in Fig. 5, and values for the Coulomb barriers
(Umax) are summarised in Table II. If the electrostatic inter-
action energy passes through a maximum as the separation
distance decreases (as, for example, in variants III and V), its
value is shown in Table II in normal font, however, if the
maximum value for the interaction energy is reached at the
shortest separation distance it is highlighted in bold.

To establish why there is a switch in electrostatic behaviour
from repulsion to attraction in particles carrying the same sign
of charge, we consider the distribution of total surface charge
at short separation distances L. Figure 6 presents the case for a
uniform distribution of free surface charge at L = 10−1 nm for
pairs of particles involved in fragmentation processes 1 and
9. It can clearly be seen that for the charged clusters involved
in process 1 (benzene, low dielectric constant of ε = 2.28)
the density of the total surface charge is positive at all angles
(i.e. everywhere on the surface of the fragments), such that
for this pair, attraction is not observed at any of the separation
distances under consideration. However, for the pair involved
in process 9 (acetonitrile, ε = 37.5), a significant fraction of
negative total surface charge is accumulated on the larger par-

ticle in proximity to the second particle. It is the interaction
between this negative charge and the neighbouring particle,
which has positive total charge density everywhere on its sur-
face, that leads to attraction between the cationic fragments.

For cases where each particle has a δ -like positive point
free charge, the distributions of total surface charge at L =
10−1 nm for fragmentation processes 1 and 9 for variants II
and IV are shown in Fig. 7, and for variants III and V are
shown in Fig. 8. From these plots the following interesting
observations can be made.

• In variant II, the surface point charges are furthest apart,
and for low values of ε1 and ε2 the sign of the total
surface charge is positive at all angles, therefore, in
Fig. 4(a) we do not observe any attraction. If the in-
teracting particles have high values of ε1 and ε2, neg-
ative charge is acquired on that part of the surface of
the larger particle that is closest to the second particle,
therefore, in Fig. 4(b) we observe attraction at short sep-
aration distances.

• In variant IV, the positive point charges face one an-
other and no attraction is observed for any of the pairs,
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Interaction between two dielectric particles 11

(a) (b)

(c) (d)

FIG. 4. The reduced electrostatic force as a function of the surface-to-surface separation calculated for the pair of charged particles involved
in the fragmentation: (a) process 1 for [(C6H6)24]

2+ benzene cluster; (b) process 9 for [(CH3CN)31]
2+ acetonitrile cluster; (c) process 11 for

[(H2O)37]
2+ water cluster; and (d) process 12 for [(H2O)38]

2+ cluster, as shown in Table I. The calculated force is divided by the corresponding
Coulomb interaction force between two point charges. The curves are labeled by the variant number of the free charge distribution.

despite the fact that near the point charges there exists
an area of induced negative charge. This more delo-
calised region of negative charge resides at a greater
distance from the point charge of the neighbouring par-
ticle than the corresponding point charge, and the over-
all effect is that the negative charge only slightly weak-
ens any inter-particle repulsion. This effect leads to the
appearance of a clearly defined minimum in the depen-
dence of the electrostatic force on separation distance L
for high values of ε1 and ε2 (Figs. 4(b)-(d)). Note that in
fragmentation process 9, the total charge on the smaller
particle always remains positive.

• For the case of point charges facing the same direction,
to the right (variant III) or to the left (variant V), there is
for all pairs a strong attraction at short distances. Here,
negative charge can be induced on both particles, if the

values of ε1 and ε2 are sufficiently high. This is the
case shown in Fig. 8(b) for variant V, where the smaller
particle lies between the point charges,but it also applies
when either particle lies between the point charges.

• At the location of the point charge, an increase in the
density of total charge of the same sign as that of the
point charge is observed in almost all cases. The only
exception is variant IV where the point charges are at
the shortest separation from each other. In variant IV, if
the dielectric permittivities of the interacting particles
are small, the sign of the total charge (at the location
of the point charge) is opposite to the sign of the point
charge for both particles; if the dielectric permittivities
are large, this only occurs for the particle with larger
radius (see Fig.7(b)).
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Interaction between two dielectric particles 12

(a) (b)

FIG. 5. The electrostatic energy as a function of the surface-to-surface separation calculated for the pair of charged particles involved in
the fragmentation: (a) process 1 for [(C6H6)24]

2+ benzene cluster; and (b) process 9 for [(CH3CN)31]
2+ acetonitrile cluster. The curves are

labeled by the variant number of the free charge distribution.

FIG. 6. The total surface charge density as a function of the polar
angle θ1 or θ2 for the two particles located at L = 0.1 nm and having
the uniformly distributed free surface charge.

The latter statement refers to a rather unusual, and not self-
evident circumstance, which we will now consider in further
detail. We calculate the angular distribution of the total sur-
face charge for different values of inter-particle separation, L,
as shown in Figs. 9-11. For a uniform distribution of surface
free charge, the angular distribution of the total charge as a
function of inter-particle distance (Fig. 9) is well-known. We
only note that on the smaller particle, in the region closest
to the neighboring particle, an increase in the density of to-
tal charge of the same sign as the point charge is observed
(Fig. 9(b)).

Figures 10 and 11 show that at the location of the point

charge an increase in the density of total surface charge of the
same sign persists even at large inter-particle separation where
their mutual influence is negligible. Consider the case of a
single particle containing a point charge on its surface. From
Eq. (C9) in the limit of R→ a1 , the total charge distribution
on a sphere in the case of δ -localised charge is given by

σt,δ =
q

εa2
1

∞

∑
n=0

n(2n+1)(ε− ε1)

nε1 +(n+1)ε
Pn (cosθ) , (72)

where θ is the polar angle in spherical coordinates with a pole
at the centre of the dielectric sphere and an axis directed to the
point charge, i.e. the point charge is located at θ0 = 0. Using
Eq. (C1) we transform Eq. (72) to

σt,δ =
q
a2

1

ε1− ε

ε1 + ε

∞

∑
n=0

2n+1
nε1 +(n+1)ε

Pn (cosθ)

− 2q
εa2

1

ε1− ε

ε1 + ε
δ (cosθ0− cosθ) . (73)

We see from Eq. (73) that in the limit of θ → θ0 (note that for
θ0 6= θ , δ (cosθ0− cosθ) = 0 and Pn (cosθ) > 0 for all n at
θ < π/2) the sign of σt,δ is the same as the sign of q. This
explains the appearance of an additional contribution to the
total charge that has the same sign as the point charge close
by. From the last term on the r.h.s. of this expression it is
also evident that the environment reacts to the presence of the
surface point charge such that the “height” of the δ -function
decreases.

V. CONCLUDING REMARKS

A general solution to the problem of calculating the electro-
static interaction between particles with inhomogeneous dis-
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Interaction between two dielectric particles 13

(a) (b)

FIG. 7. The total surface charge density as a function of the polar angle θ1 or θ2 for the two particles separated by L = 0.1 nm shown for the
case when each particle has a δ -like positive point free charge located at θ10 = 0 and θ20 = π , respectively (variant II), and at θ10 = π and
θ20 = 0 (variant IV): (a) fragmentation process 1 (benzene, ε = 2.28) and (b) fragmentation process 9 (acetonitrile, ε = 37.5).

(a) (b)

FIG. 8. The total surface charge density as a function of the polar angle θ1 or θ2 for the two particles separated by L = 0.1 nm shown for
the case when each particle has a δ -like positive point free charge located at θ10 = θ20 = 0 (variant III) and θ10 = θ20 = π (variant V): (a)
fragmentation process 1 (benzene, ε = 2.28) and (b) fragmentation process 9 (acetonitrile, ε = 37.5).

tributions of free surface charge has been presented and com-
pared with the more established case of a uniform distribution
of free surface charge. Point charges on each of the parti-
cles have been described by a δ -function of angular variables,
and electrostatic energy barriers have been calculated over the
range of particle-particle distances, 10−2 ≤ L ≤ 103 nm, re-
gions where the effects of induced interactions are found to
be at their greatest. When compared with results for a uni-
form distribution of charge, the calculations reported in Ta-
ble II show that the exact location of the point charge has a
marked influence on the value of any Coulomb barrier in the
electrostatic energy. These barriers can affect the behaviour

of charged particles in two ways: first, there is the coales-
cence of charged particles and which of the particle orienta-
tions offers the most facile pathway to facilitate that process.
A second aspect to the work concerns the fragmentation of
multiply charged particles and here the barrier will contribute
to the process of charge separation. In this work we have ad-
dressed the latter topic with examples taken from the frag-
mentation of dication molecular clusters. As has been dis-
cussed in earlier publications on the fragmentation of dica-
tion clusters,16–18 there are other contributions to the energy
barrier experienced by a dication at the onset to fragmenta-
tion, and these will come from the breaking of physical and/or
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Interaction between two dielectric particles 14

(a) (b)

FIG. 9. The total surface charge density on the larger particle (a) and the smaller particle (b) as a function of the polar angle θ1 or θ2 and the
surface-to-surface separation distance L for the fragmentation process 9 (acetonitrile, ε = 37.5). Free charge is uniformly distributed on the
surface of each particle.

(a) (b)

FIG. 10. The total surface charge density on the larger particle (a) and the smaller particle (b) as a function of the polar angle θ1 or θ2 and
the surface-to-surface separation distance L for the fragmentation process 1 (benzene, ε = 2.28). Each particle has a δ -like positive point free
charge located at θ10 = θ20 = 0 (variant III).

chemical bonds, which in the examples given will most prob-
ably take the form of either van der Waals or hydrogen bond
interactions. The calculations discussed here are only con-
cerned with events taking place after these bonds have been
broken and the individual particles start to separate; at that
point they are subject to the influence of a purely repulsive
Coulomb interaction, which depending on how polarizable the
particle are, can be moderated by the effects of short-range,
attractive charge-induced multipole interactions.

Accurate experimental measurements of the Coulomb bar-
rier in the form of values for the kinetic energy release follow-
ing charge separation have been presented for six molecular
dications. Table II summarises these data together with cal-
culated values of the barrier for different surface locations of

the two point charges as the particles separate (columns II-V).
Also given are barriers calculated for a uniform distribution
of free surface charge. As noted earlier, these calculated bar-
rier heights are to be compared with experimental results de-
termined for Emax, which represent maxima in the Coulomb
energy as recorded from peak profiles of the type shown in
Fig. 2; the value of Emax should be less than or equal to Umax.
As can be seen from Table II, for weakly polarisable clusters
composed of either benzene or THF molecules, this latter re-
quirement is most closely met with a uniform distribution of
surface charge (variant I). As ε increases in value, the point
charge orientation θ10 = θ20 = π (variant V) becomes a real-
istic alternative, particularly when the±0.05 eV experimental
error limit is taken into consideration. However, for the most
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Interaction between two dielectric particles 15

(a) (b)

FIG. 11. The total surface charge density on the larger particle (a) and the smaller particle (b) as a function of the polar angle θ1 or θ2 and the
surface-to-surface separation distance L for the fragmentation process 9 (acetonitrile, ε = 37.5). Each particle has a δ -like positive point free
charge located at θ10 = θ20 = 0 (variant III).

polar of the clusters (water), almost any of the variants could
be appropriate. One reason for the change in behaviour is that
the charge could become localised in the form of a proton or
similar charge carrier,43 and for at least two of the systems,
(H2O)2+

n and (NH3)2+
n , this is a distinct possibility.

If we examine what a inhomogeneous charge distribution
might mean for the outcome of particle - particle collisions,
for example when patchy colloidal particle coalesce,35 then
under those circumstances pathways with the lowest energy
barriers might be expected to be more favourable. Using the
data in Table II as an illustration, it can again be seen that there
are differences depending on the dielectric constants of the
materials involved. For low values of ε , variant II offers the
lowest Coulomb barrier to coalescence, which bearing in mind
this figure is for the gas phase, will be of the order of a few
meV when the dielectric constant of any solvent is taken into
consideration. Once the dielectric constant of the particles has
a value of 25 or more, there is, as before, little to distinguish
between barriers presented by a uniform charge distribution
and variants II, III, and V. What might then influence events
is the ability of the short-range attractive barrier to hold the
particles in place.

Central to any discussion of charge orientation is the
timescale over which competing events take place. For par-
ticles moving apart following fragmentation, those events are
going to be the rotational period and the time taken for the
particles to separate to a distance where the Coulomb poten-
tial no longer has a significant influence. Taking values for
size, density and kinetic energy that are representative of the
clusters given in Table II, the rotational period is estimated to
be about 10−10 s, and the time taken to separate to a distance
of 10 nm is approximately 10−11 s; thus, starting with a partic-
ular charge orientation (any of variants II-V), this would not
be expected to change during the time taken for the particles
to separate.
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Appendix A: System of equations determining the expansion
coefficients of the electrostatic potential

From potential continuity conditions (5) we express the
coefficients A±m

` and B±m
` in C±m

` and D±m
` . Then, us-

ing conditions (6) and the properties of the associated Leg-
endre functions44, after simple algebra we obtain the fol-
lowing equations for determining the potential expansion
coefficients20:

−A±m
` y`−1 +C±m

` y`−B±m
` y`+1 = F

±m
` ,

`= 0,1, . . .∞, m = 0,1, . . . `, (A1)

where

y` =
(
C±m
` ,D±m

`

)T
,

A±m
` = (`−m)

×

(
(ε1− ε)e−(`−

1
2 )ξ1 (ε1 + ε)e(`−

1
2 )ξ1

(ε2 + ε)e(`−
1
2 )ξ2 (ε2− ε)e−(`−

1
2 )ξ2

)
, (A2)
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Interaction between two dielectric particles 16

(
C±m
`

)
11 = (ε− ε1)

× [sinhξ1− (2`+1)coshξ1]e−(`+
1
2 )ξ1 ,(

C±m
`

)
12 =

[
(ε− ε1)sinhξ1

+(2`+1)(ε + ε1)coshξ1
]
e(`+

1
2 )ξ1 ,(

C±m
`

)
21 =

[
(ε− ε2)sinhξ2

+(2`+1)(ε + ε2)coshξ2
]
e(`+

1
2 )ξ2 ,(

C±m
`

)
22 = (ε− ε2)

× [sinhξ2− (2`+1)coshξ2]e−(`+
1
2 )ξ2 ,

(A3)

B±m
` = (`+m+1)

×

(
(ε1− ε)e−(`+

3
2 )ξ1 (ε1 + ε)e(`+

3
2 )ξ1

(ε2 + ε)e(`+
3
2 )ξ2 (ε2− ε)e−(`+

3
2 )ξ2

)
, (A4)

and

F±m
` =

(
8πaσ̃

±m
1,` e−(`+

1
2 )ξ1

8πaσ̃
±m
2,` e−(`+

1
2 )ξ2

)
. (A5)

This series of equations is a system with a block three-
diagonal matrix.

Taking into account the fact that for ` = m from (A2) we
have A±m

` = 0 and putting yLmax = 0 for a sufficiently large
` = Lmax, we will reduce the system of equations (A1) to the
following form (N = Lmax−1)

C±m
m ym−B±m

m ym+1 = F
±m
m ,

−A±m
` y`−1 +C±m

` y`−B±m
` y`+1 = F

±m
` ,

−A±m
N yN−1 +C±m

N yN = F±m
N ,

`= m+1,m+2, . . . ,N−1.

(A6)

Equations (A6) are solved by using the matrix sweep
method48 for each given value m = 0,1,2, . . . ,N. The algo-
rithm of the matrix sweep method has the form48 (we omit the
“±m” superscripts; the “−1” superscript denotes the inverse
matrix):

αm+1 =C−1
m Bm, α`+1 = (C`−A`α`)

−1 B`,

`= m+1,m+2, . . . ,N−1;

βm+1 =C−1
m Fm, β`+1 = (C`−A`α`)

−1 (A`β`+F`) ,

`= m+1,m+2, . . . ,N;
yN = βN+1, y` = α`+1y`+1 +β`+1,

`= N−1,N−2, . . . ,m+1,m.

(A7)

When m = N, we have only one equation and the solution in
this case is: yN = C−1

N FN . When m = N − 1 we have two
equations:

C±m
N−1yN−1−B±m

N−1yN = F±m
N−1,

−A±m
N yN−1 +C±m

N yN = F±m
N

(A8)

and the solution in this case will be:

αN =C−1
N−1BN−1, βN =C−1

N−1FN−1,

βN+1 = (CN−ANαN)
−1 (ANβN +FN) ;

yN = βN+1, yN−1 = αNyN +βN .

(A9)

Appendix B: Alternative method of representing the point
charges on the surface of particles

Let us consider the case of point charges located on the sur-
faces of spheres at points with coordinates θi0 and ϕi0:

σi (θi,ϕ) = σi0δ (cosθi− cosθi0)δ (ϕ−ϕi0) . (B1)

The value of σi0 is determined by an integral over the surface
of the i-th particle (µi = cosθi):

qi =

2π∫
0

1∫
−1

σi (µi,ϕ)a2
i dµidϕ = a2

i σi0. (B2)

From Eqs. (B1) and (B2) we have

σi (θi,ϕ) =
qi

a2
i

δ (cosθi− cosθi0)δ (ϕ−ϕi0) . (B3)

Using the relation (C2) for the expansion coefficients of
Eq. (7) in spherical coordinates with a pole at the centre of
the i-th particle we find(

σm
i,n

σ
−m
i,n

)
=

qi

a2
i

2n+1
2π (1+δm0)

(n−m)!
(n+m)!

×Pm
n (cosθi0)

(
cosmϕi0
sinmϕi0

)
. (B4)

Then, from (9) and (10) we find expansion coefficients, which
are already represented in the bispherical coordinate system.

In the case of an axially symmetric arrangement of point
charges, we can proceed from the expression:

σi (θi) = σi0δ (cosθi− cosθi0) , (B5)

then σi0 are defined by expressions

qi =

2π∫
0

1∫
−1

σi (µi)a2
i dµidϕ = 2πa2

i σi0 (B6)

and we obtain

σi (θi) =
qi

2πa2
i

δ (cosθi− cosθi0) . (B7)

Finally, we use Eq. (C1) and for the expansion coefficients
of Eq. (7) in spherical coordinates with a pole at the centre of
the i-th particle we obtain

σi,n =
qi

4πa2
i
(2n+1)Pn (cosθi0) . (B8)

Note, that this relation can be obtained from Eq. (B4) by as-
suming m = 0. Furthermore, we find the required expansion
coefficients in the bispherical coordinate system from Eqs. (9)
and (13).

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
19

34
7



Interaction between two dielectric particles 17

Appendix C: Some relationships used in the paper

In this paper we use various relationships from the hand-
books cited below. Relationship (1.17.22)47

δ (x− y) =
∞

∑
`=0

(
`+ 1

2

)
P̀ (x) P̀ (y) . (C1)

Here and below, all absolute values of the arguments of Leg-
endre polynomials are less than or equal to one. Relationship
(1.17.25)47:

δ (x1− x2)δ (ϕ1−ϕ2) =
∞

∑
`=0

`

∑
m=0

2`+1
2π (1+δm0)

(`−m)!
(`+m)!

×Pm
` (x1)Pm

` (x2)cosm(ϕ1−ϕ2) , (C2)

Relationship (14.18.6)47

(x− y)
n

∑
`=0

(2`+1) P̀ (x)P̀ (y)

= (n+1)
[
Pn+1 (x)Pn (y)−Pn (x)Pn+1 (y)

]
, (C3)

Asymptotic expansion (8.10.7)49:

Pm
` (cosθ) =

Γ(`+m+1)
Γ(`+3/2)

(
1
2

π sinθ

)−1/2

× cos
[(

`+
1
2

)
θ − π

4
+

mπ

2

]
+O

(
1
`

)
, (C4)

Integrals of Legendre functions44,46

1∫
−1

Pm
n (x)Pm

` (x)dx =
2

2n+1
(n+m)!
(n−m)!

δnl (C5)

and

2π∫
0

cos2 (mϕ)dϕ = π (1+δm0) ,

2π∫
0

sin2 (mϕ)dϕ = π (1−δm0) ,

m = 0,1,2, . . . . (C6)

A solution to the electrostatic problem for a system con-
sisting of an uncharged dielectric ball and a point charge is
defined by the equations (see38, task no. 157):

φ =
q

εR

∞

∑
n=0

2n+1
nε1 +(n+1)ε

( r
R

)n
Pn (cosθ) , r < a1; (C7)

φ =
q

εR

∞

∑
n=0

[
n(ε− ε1)

nε1 +(n+1)ε

(a1

R

)n(a1

r

)n+1

+
q
ε

∞

∑
n=0

( r
R

)n
]

Pn (cosθ) , R > r > a1. (C8)

Here a1 is the ball’s radius, ε1 is the ball’s dielectric permit-
tivity, q is the point charge, ε is the dielectric permittivity of
the medium, R is the distance between the center of the ball
and the point charge, r and θ are the radius and polar angle
in spherical coordinates with a pole at the centre pf the ball
and an axes directed to the point charge. For the total charge
distribution on the ball from Eq. (31) we find

σ1,t =
q

εR2

∞

∑
n=0

(a1

R

)n−1 n(2n+1)(ε− ε1)

nε1 +(n+1)ε
Pn (cosθ) . (C9)
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