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The problem of electrostatic interactions between colloidal particles in an electrolyte solution has
been solved within the Debye-Hückel approximation using the boundary condition of constant po-
tential. The model has been validated in two independent ways - by considering the limiting cases
obtained from DLVO theory and comparison with available experimental data. The presented
methodology provides the final part to complete theory of pairwise electrostatic interactions be-
tween spherical colloidal particles; one that embraces all possible chemical scenarios within the
boundary conditions of constant potential and constant charge.

1 Introduction
Understanding the effect of electrostatic forces is essential in the
context of soft matter science for a number of reasons. Electro-
static forces are responsible for the long range repulsive inter-
actions, which prevent dissolved particles from immediate co-
agulation in colloidal solutions.1 In contrast to van der Waals
forces driving short range attraction, they can be easily modi-
fied through surface properties of the interacting particles and
solvent additives.2 Crucially, no universal mathematically rigor-
ous theory of electrostatic interactions between colloidal particles
exist in the literature to date. The most widely used Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory contains a number of as-
sumptions and limitations,3,4 which can be highlighted with the
following example. If the surface potential on two identical par-
ticles is low (Φsurface < 25 mV), the electrostatic force between
them can be described within the Debye-Hückel approximation
as1,5

F = 2πκaε0kmΦ
2
surface exp [−κ (R−2a)] , (1)

where κ−1 is the characteristic decay length of the electrostatic
potential (i.e. Debye length), a is the radius of the particle, R
is the separation between particle centres, km is the dielectric
constant of the medium, and ε0 is the dielectric permittivity of
vacuum. Eq. (1) is accurate only for surface-to-surface separa-
tions exceeding one Debye length,1,6 and is derived from the
interaction energy between two charged plates using the Der-
jaguin approximation that accounts for a spherical geometry of
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the problem.4,5 A similar approach has been used to describe
the interaction between two surfaces of unequal but constant
potential,7 and a further modification was proposed by Carnie
and Chan, who combined the results of constant charge and con-
stant potential boundary conditions within the linearized Poisson-
Boltzmann (Debye-Hückel) model - charge regulation approach.8

This method was later modified for the non-linear Poisson-
Boltzmann model.9 Despite their flexibility all these methods are
strongly dependent on the accuracy of the Derjaguin approxima-
tion, which as stated, is based on finding the interaction energy
between two parallel plates and applying a factor which approxi-
mately describes the curvature of interacting surfaces.5

A rigorous model of pairwise electrostatic interactions in an
electrolyte solution has been previously developed within the
Debye-Hückel approximation,10,11 in which particle charge was
assumed constant and uniformly distributed over the surface.
The model provided good agreement with predictions obtained
by non-shielded models12,13 and with experimental data14 on
electrostatic interactions in colloids. However, the assumption of
constant surface charge density is not always valid. In this paper,
we consider a rigorous model for the electrostatic interactions be-
tween two spherical colloidal particles in an electrolyte solution,
where it is assumed that the potential on each particle remains
constant and independent of coordinates of a surface point.

The paper has the following structure. Applicability of both
constant potential and constant charge boundary conditions is
first discussed within the context of the experimental parame-
ters of particle size and electrolyte concentration. A rigorous
theory that implies an explicit spherical geometry without any
geometrical approximations is then introduced. Finally, the cal-
culated results are validated using two experimental data sets:
for poly(methyl methacrylate) (PMMA) spheres in hexadecane14
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and for a pair of polystyrene latex particles in an aqueous solu-
tion of KCl.2 A detailed analytical consideration of approximate
models for solving the electrostatic problem based on the above
model has been given previously by Filippov et al. 6

2 The criterion for choosing boundary con-
ditions

A criterion for using the boundary condition of either constant
charge or constant potential on the surface of a colloidal particle
can be introduced in the form of a dimensionless parameter:

ξ ≡ τchvc

d
, (2)

where τch is the characteristic relaxation time of surface charge
on colloidal particles, vc is the speed of their translational motion,
and d is the characteristic inter-particle distance over which the
surface charge or surface potential changes. If the particles are
fixed in space or the timescale of their interaction is much greater
than the characteristic relaxation time of surface charge then ξ �
1, and the boundary condition of constant potential should be
applied. In the opposite case, where ξ � 1, if the charging process
is much slower than the time of particle displacement through a
distance equivalent to its size, the surface charge is assumed to
be constant. Fig. 1 shows schematically the relation between the
characteristic time of particle charging and the characteristic time
of particle displacement for different values of the parameter ξ .

Fig. 1 Relation between the characteristic time of particle charging, τch,
and the characteristic time of particle displacement, d/vc, for different
values of the parameter ξ determining the choice of boundary condition
for the electrostatic problem (constant charge or constant potential).

To quantify the criterion defined by Eq. (2), these param-
eters have been estimated for the solutions of sodium di-2-
ethylhexylsulfosuccinate (AOT) in hexadecane and KCl in wa-
ter. An electrolyte solution is a conductor, therefore, the sur-
face potential of particles becomes equal during the Maxwell time
scale15

τch ≡ τM =
ε0km

ς
, (3)

where ς is the conductivity of solution. Numerical simula-
tions6,11,16,17 show that the characteristic length for the varia-
tion of charge at constant potential and the variation of potential
at constant charges is defined by the particle radius a; therefore,

we can set d = a. For vc equal to the velocity of thermal motion of
a colloidal particle, vc = (8kBT/(πmc))

1/2 with mc = 4πρa3/3 (ρ

is the density of the particle) we obtain

ξ =
ε0km

πςa5/2

√
6kBT

ρ
. (4)

Fig. 2 shows typical dependencies of the selection parameter ξ on
the particle at the room temperature T = 298.15 K for (a) PMMA
particles (ρ = 1180 kg/m3) suspended in AOT/hexadecane solu-
tions and (b) polystyrene latex particles (ρ = 1005 kg/m3) in NaCl
aqueous solutions. The values of conductivity (at different salt
concentrations) for AOT/hexadecane and KCl/water have been
taken from refs. 14 and 18, respectively. It can be seen that in the
concentrated solutions the constant potential condition should be
applied for almost all values of particle radius, whereas for small
particles (a� 1 µm) and/or for dilute solutions (≤ 10−2 mM) the
constant charge condition should be valid.

3 Methodology

When charged particles are sufficiently far apart that they can be
considered isolated, each particle acquires a potential correspond-
ing to a zero net current of positive and negative ions (so-called
floating potential), thus achieving thermodynamic equilibrium.
Provided the particle is uniformly charged the surrounding elec-
tric potential does not exhibit any angular dependence, and at
low surface potential (less than 25 mV) it can be described by a
linearized Poisson-Boltzmann relationship

∆Φout = κ
2
Φout, (5)

where Φout is the electric potential outside the particle and κ−1

is the Debye length. Eq. (5) is a particular case of the Helmholtz
equation, and for the case of spherical symmetry a solution has
the following form19,20

Φout = Ã0
K1/2 (κr)
√

κr
, (6)

where Ã0 is a constant coefficient, K1/2 (κr) is a modified Bessel
function of the third kind and r is a radial coordinate with an
origin at the centre of the particle. Introducing A0,i ≡

√
π

2
Ã0,i
κ

we
obtain

Φout =
A0

r
exp(−κr) . (7)

The coefficients A0,i can be found from the boundary condition
for the electric field, namely

−km
∂Φout

∂ r

∣∣∣∣
r=a+0

=
σ

ε0
, (8)

where σ is the surface charge density. Integrating Eq. (8) over
the particle surface yields:

A0 =
Qexp(κa)

4πε0km (1+κa)
, (9)
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Fig. 2 The selection parameter ξ as a function of the particle radius a for two types of colloidal particles suspended in electrolyte solutions at different
molar concentrations of electrolyte at T = 298.15 K: (a) PMMA particles (ρ = 1180 kg/m3) in AOT/hexadecane solution and (b) polystyrene latex particles
(ρ = 1005 kg/m3) in KCl/water solution. Points denoted by ‘F’ correspond to the experimental data considered in section 5.

where Q =
∮

σds is the total charge on the particle. Hence, the
surface potential takes the following form:

Φsurface ≡Φout (a) =
Q

4πε0kma(1+κa)
. (10)

Within the Debye-Hückel approximation, at screening lengths
comparable to the particle radius, i.e. κa� 1, Eq. (10) can be
simplified to the Graham equation as follows:1

σ =
1+κa

a
ε0kmΦsurface ≈ ε0kmκΦsurface. (11)

Note that Eq. (11) provides a relationship between surface charge
and surface potential for an isolated particle.

a1
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θ2

R
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Fig. 3 A general geometry representation of the problem of two interact-
ing, dissimilar colloidal particles in an electrolyte solution with a dielectric
constant km and a Debye length of κ−1. Dielectric constants, surface
charges, and the radii of particles 1 and 2 are denoted as k1, Q1, a1, and
k2, Q2, a2, respectively.

According to the model developed previously for two interact-
ing particles10,11 (see Fig. 3) the total potential at the boundary
of the i-th sphere (i = 1,2) is given by

Φout (ãi,µi)≡Φout,i (ãi,µi)+Φout, j (ãi,µi)

=
∞

∑
n=0

[
An,i

Kn+1/2(ãi)√
ãi

+
∞

∑
l=0

bnl
(
ãi, R̃

)
Al, j

]
Pn (µi),

(12)

where ãi = κai, R̃ = κR, An,i and Al, j are constant coefficients
that can be found from boundary conditions, bnl

(
ãi, R̃

)
are the re-

expansion coefficients of Φout, j (ãi,µi) defined bellow, Pn (µi) are
Legendre polynomials, µi = cosθi, and j = 3− i. Therefore, the

boundary condition for constant surface potential takes the form:

∞

∑
n=0

[
An,i

Kn+1/2 (ãi)√
ãi

+
∞

∑
l=0

bnl
(
ãi, R̃

)
Al, j

]
Pn (µi) = Φsurface,i, (13)

and the coefficients are defined as follows:10,11

bnl
(
ã, R̃
)
= (2l−1)!!

∞

∑
m=0

l
∑

k=0
(−1)k l!

k!(l−k)!

×Ωl+m+1/2(ã,R̃)
R̃k ãl−k

k
∑

l=0
λkl

m
∑

ν=0
γmlν pν+l,n,

(14)

where

Ωl+1/2
(
ã, R̃
)
=
√

2π

(
l +

1
2

) Kl+1/2
(
R̃
)

R̃1/2

Il+1/2 (ã)

ã1/2
, (15)

Il+1/2 (ã) are modified Bessel functions of the first kind, λkl and
γmli are the expansion coefficients of Legendre and Gegenbauer
polynomials in terms of µν , respectively, and pν+l,n are the co-
efficients of µν expansion in terms of Legendre polynomials (for
more details, see refs. 10, 11). Eq. (13) can be rewritten in linear
form:

An,i
Kn+1/2 (ãi)√

ãi
+

∞

∑
l=0

bnl
(
ãi, R̃

)
Al, j = Φsurface,iδn,0. (16)

The interaction force acting on each sphere can then be calculated
using the Maxwell stress tensor and is expressed as follows:10,11

F1z = 4πε0km
∞

∑
n=1

n
(2n−1)(2n+1)

× [Ξn−1− (n−1)Ψn−1] [Ξn +(n+1)Ψn] ,
(17)

where

Ξn = An,i
nKn+1/2(ã1)−ã1Kn+3/2(ã1)

ã1/2
1

+ ã1
∞

∑
l=0

Al. j
∂bnl(ã1,R̃)

∂ ã1
,

Ψn = An,i
Kn+1/2(ã1)√

ã1
+

∞

∑
l=0

bnl
(
ã1, R̃

)
Al, j.

(18)

Substituting (16) and (18) into (17) gives Ψn = 0 which leads to
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a simplified equation for the electrostatic force:

Fes ≡ F1z = 4πε0km

∞

∑
n=1

n
(2n−1)(2n+1)

Ξn−1Ξn. (19)

In order to validate the obtained solution and show the physical
significance of the first two terms in Eq. (19), namely,

F1z = 4πε0km
1
3

Ξ0Ξ1, (20)

we consider two limiting cases corresponding to long and short
Debye lengths10,11 The surface charge distribution can be found
using the boundary condition on the normal component of the
electric field:

−kmκ
∂Φout (ãi,µi)

∂ ãi
=

σi (µi)

ε0
. (21)

Expansion of Eq. (21) in terms of Legendre polynomials immedi-
ately gives the angular distribution of surface charge density:

σi (cosθi) =−ε0kmκ

×
∞

∑
n=0

[
An,i

nKn+1/2(ãi)−ãiKn+3/2(ãi)

ã3/2
i

+
∞

∑
l=0

Al, j
∂bnl(ãi,R̃)

∂ ãi

]
Pn (cosθi) .

(22)
Integration of Eq. (22) over the surface of the particle yields a
total surface charge:

Qi
(
ãi, R̃

)
= 4πa2

i ε0kmκ

[
A0,i

K3/2 (ãi)

ã1/2
i

−
∞

∑
l=0

Al, j
∂b0l

(
ãi, R̃

)
∂ ãi

]
. (23)

4 Model verification

4.1 Long Debye length

This first case corresponds to Debye lengths that are much greater
than either the radius of a particle or the particle-particle separa-
tion: κai� κ (R−a1−a2)� 1. For small values of the argument,
modified Bessel functions of the first and third kind have the fol-
lowing approximate forms:20

Kn+1/2 (z) =
√

π

2z exp(−z)
n
∑

l=0

(n+l)!
l!(n−l)!(2z)l ,

In+1/2 (z)≈
√

2
π

zn+1/2

(2n+1)!! , z� 1.
(24)

The coefficients (14) are approximated as:10

b00 ≈
√

π

2
1
R̃ exp

(
−R̃
)
, b01 ≈

√
π

2
1+R̃
R̃2 exp

(
−R̃
)
,

b10 ≈ ã
√

π

2
1+R̃
R̃2 exp

(
−R̃
)
, b11 ≈ 0.

(25)

Substitution of Eq. (25) into the linear system, Eq. (16), gives:

A0,i ≈
√

2
π

ãi
e−ãi Φsurface,i,

A1,i ≈−
ã3

i
R̃2

1+R̃
1+ãi

exp
(
−R̃+ ãi

)
A0, j.

(26)

Combining (18), (20), (25), and (26) yields an equation for the
force that is well-known from DLVO theory:4–6

F1z ≈−4πε0kmã1ã2
1+ R̃

R̃2 Φsurface,1Φsurface,2 exp
(
−R̃+ ã1 + ã2

)
.

(27)

For two spheres of the same size, Eq. (27) together with Eq. (10)
yield an equation for the force between two small ions:1,5

F1z ≈−
Q1Q2

4πε0kmR2
(1+κR)exp [−κ (R−2a)]

1+2κa
. (28)

4.2 Short Debye length

This second case corresponds to both a short particle-particle sep-
aration and a short Debye length when compared to particle radii,
i.e., κai� κ (R−a1−a2)� 1. This case is particularly significant
for many experiments that involve micron sized colloidal particles
and salt concentrations in the region of 1 mM, where the Debye
length can equal several nm.2,21,22 Modified Bessel functions of
the first and third kind have the following asymptotic forms for
large values of the argument:20

Kn+1/2 (z)≈
√

π

2z exp(−z) ,

In+1/2 (z)≈
√

1
2πz exp(z) , z >> 1.

(29)

The coefficients in Eq. (14) then approximate as:

b00 ≈
√

π

2
exp(−R̃+ã)

2R̃ã , b01 ≈
√

π

2
3exp(−R̃+ã)

2R̃ã2 ,

b10 ≈
√

π

2
3exp(−R̃+ã)

2R̃ã , b11 ≈ 0.
(30)

Substitution of (30) into the linear system (16) gives:

A0,i ≈
√

2
π

ãi exp(ãi)Φsurface,i,

A1,i ≈− 3
2

exp(−R̃+2ãi)
R̃ A0, j.

(31)

Combining (18), (20) and (31) yields:

F1z ≈−4πε0km
ã1ã2

R̃
Φsurface,1Φsurface,2 exp

(
−R̃+ ã1 + ã2

)
. (32)

For two identical spheres, Eq. (32) becomes the well-known equa-
tion based on the Derjaguin approximation:1,5

F1z ≈−2πκaε0kmΦ
2
surface exp [−κ (R−2a)] . (33)

It is interesting to note that in the limit κai� κ (R−a1−a2)� 1,
Eqs. (27) and (28) reduce to Eqs. (32) and (33) respectively.

5 Experimental verification
An examination of these two limiting cases clearly demonstrates
that Eq. (19) provides a theoretical description for the behaviour
of dielectric particles in an electrolyte solution, under conditions
which embrace a wide range of experimental conditions. As a
further test for the model, comparisons have been made with two
experimental studies. The first comparison is with force measure-
ments taken from optical trap experiments on polymer particles
by Sainis et al.14 and the second study examines force measure-
ments taken from cantilever experiment on polystyrene particles
by Montes et al.2

5.1 Long Debye length – Sainis et al. 14

These experiments have been performed on pairs of poly-
methylmethacrylate (PMMA) spheres of radius 600 nm held in
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Fig. 4 Electrostatic force between two identical PMMA particles of ra-
dius 600 nm in hexadecane (km = 2.06) with 1 mM of AOT. The sym-
bols are the experimental data. The solid line represents the fitted force
calculated within the present model, Eq. (19), and the dashed line cor-
responds to the force calculated from DLVO theory (27) with the same
fitting parameters: Debye length κ−1 = 5 µm and the particle surface po-
tential Φsurface = 80 mV. The embedded plot shows the relative difference
between the exact and approximated force.
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Fig. 5 Surface charge distribution on a PMMA sphere of radius 600 nm
in hexadecane with 1 mM of AOT at zero surface-to-surface separation
in relation to the surface charge density of an isolated particle.

an optical trap in the presence of a nonpolar solvent (hexade-
cane) and a charge control agent (AOT). The electrostatic force
has been measured for different molar concentrations of AOT
equating to different values of particle charge and Debye length.
According to Fig. 2a, at AOT concentration 1 mM the boundary
conditions of constant charge should be used as it was done in
ref. 10. However, the boundary conditions of constant potential
are applied here to demonstrate the effect of boundary conditions
on fitting parameters and the difference between the results of

the presented model and DLVO theory. Comparison between the
experimental data and forces calculated using both Eq. (19) and
Eq. (27) (DLVO theory), are shown in Fig. 4. The Debye length
κ−1 = 5 µm and the particle potential Φsurface = 80 mV (corre-
sponding to a total surface charge Q = 80 e) have been taken in
order to fit the force given by Eq. (19) to the experimental data;
those same parameters have then been used in Eq. (27). The
discrepancy between the two force calculations is plotted as a
percentage in the insert to Fig. 4. It can be seen that differences
between the two forces becomes very evident at separations of
about the Debye length and that at the point of contact, they
two results differ by almost 200%. Unlike the constant charge
case,10 where the discrepancy is caused by polarization effects
at short separation (outside the range of experimental measure-
ments), the constant potential boundary condition implies two
effects: first, in accordance with Eq. (22), surface charge is redis-
tributed as the inter-particle separation changes; second, the total
charge also changes with inter-particle separation as described by
Eq. (23). Fig. 5 shows the surface charge distribution at the point
of contact plotted as a ratio to the surface charge density of an
isolated particle as calculated from Eq. (11). The charge redis-
tribution is caused by the equilibrium ionic flux and the process
of dissociation and recombination of surface groups on a parti-
cle. As a consequence of using Eq. (19), both fitting parameters
(κ−1 = 5 µm, Q = 80 e) are different from those (κ−1 = 7 µm,
Q = 63 e) found by Sainis et al.14 in their fit to the electrostatic
force using the DLVO model; Eq. (27).
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Fig. 6 Force in a symmetric system involving particles of radius 0.97 µm
at pH 3.0 and a KCl concentration of 1 mM. Points are experimental
data and the solid line is the force calculated from Eq. (35) and (19), the
dashed line is the force from DLVO theory calculated from Eq. (35) and
(32) with the same fitting parameters: the Debye length is κ−1 = 6.9 nm,
the particle surface potential is Φsur f ace = 14 mV. The embedded plot
shows the relative difference between the exact and approximated force.

5.2 Short Debye length – Montes Ruiz-Cabello et al. 2

In their experimental study of the electrostatic force between
pairs of charged latex particles, Montes Ruiz-Cabello et al. 2

recorded data at different pH values and KCl salt concentrations
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Fig. 7 Surface charge distribution on a polystyrene latex sphere of radius
0.97 µm in water with 1 mM of KCl, a pH of 3.0 and at 3 nm surface-to-
surface separation in relation to the surface charge density on an isolated
particle.

for particles with radii of 0.97, 0.51 and 1.50 µm. Fig. 2b reveals
that at salt concentration 1 mM the boundary conditions of con-
stant potential should be applied for particle radii greater than
0.1 µm. For this second validation of the model, data taken for
the particle radius of 0.97 µm have been chosen as their surface
potential is below the thermal energy and, therefore, the Debye-
Hückel approach is applicable. In addition to the electrostatic
contribution to the force, the van der Waals force has also been
taken into account, as given by Montes et al.2 using the Derjaguin
approximation:1,5

FvdW =− a1a2

a1 +a2

H

6(R−a1−a2)
2 , (34)

where H = 4.0×1021 J is the Hamaker constant determined from
force profiles. Therefore, the resulting force takes the following
form:

Ftotal = Fes +FvdW. (35)

Here Fes is the electrostatic force calculated either from Eq. (19)
or from its approximation, Eq. (32), and FvdW is the van der Waals
force calculated from Eq. (34). We consider the symmetric case of
two identical particles. A comparison between the experimental
data and the force calculated using Eq. (35) is shown in Fig. 6.
The potential is set to be equal to 14 mV which equates to the
ζ -potential,2 and the Debye length has been calculated from:23

κ
2 =

2NAe2I
ε0kmkBT

, (36)

where NA is the Avogadro constant, e is the elementary charge,
I is the ionic strength, kB is the Boltzmann constant, and T is
the temperature of the solution. For the given conditions, i.e. KCl
and HCl concentrations (at pH = 3.0) 1 mM and T = 298.25 K, the
Debye length is approximately 6.9 nm. The results show that at
inter-particle separations exceeding the Debye length the experi-

mental results are correctly described within the present model
(Eq. (19)). The discrepancy between the force from Eq. (19)
and its approximation from DLVO theory (Eq. (32)) can reach up
to 100% at close separations, and a difference of less than 10%
starts at distances of 2-3 Debye lengths. Fig. 7 shows the surface
charge distribution at the point of contact in relation to the sur-
face charge density on an isolated particle (Eq. (11)). Unlike the
case for long Debye lengths, the strong screening effect leads to
a very narrow area of charge non-uniformity close to the second
particle.

6 Conclusion
The electrostatic problem for two colloidal particles in an elec-
trolyte solution has been solved within the Debye-Hückel approx-
imation using the boundary condition of constant potential. This
condition generally corresponds to Debye lengths much less than
particle size and high concentrations of electrolyte. The force is
expressed as an infinite series, and as part of the validation pro-
cess, it is shown that limiting forms of the first two terms yield
known literature expressions for sphere-sphere interactions. It is
also shown that the present methodology can be used to inter-
pret current data taken from experiments on colloids for a range
of different solvent conditions. The results yield accurate fitting
parameters of charge and the screening length, and show how
existing approximations fails at short inter-particle distances.

When taken together with a model previously developed for
constant surface charge, this new theory, based on a rigorous
solution to the electrostatic problem for two spheres in an elec-
trolyte solution, provides a unified approach to the understanding
of pairwise electrostatic interactions between spherical colloidal
particles. It is shown to be a good alternative to the constant
regulation approximation as the latter introduces an additional
parameter for charge regulation and relies on the Derjaguin geo-
metric approximation. Finally, the methodology provides a strong
link between colloidal systems, dusty plasmas and other complex
arrangements involving charged particles.24
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