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Interference in photons emitted from multiple atoms has been studied extensively. We show that a single
atom can induce interference in its emitted light when tunnelling in a double-well potential coupled to an optical
cavity. The phase in the cavity field interference can be modulated by the double-well spacing. By controlling
the coherent tunnelling, blockade of single-photon excitations is found in the destructive interference regime,
where super-Poissonian bunched light is generated. Furthermore, we show that the atomic flux of the coherent
tunnelling motion generates chiral cavity fields. The direction of the chirality oscillates for many cycles before
the decoherence of the atomic motion and the decay of the cavity photons. Our work opens new ways for
manipulating photons with controllable quantum states of atoms for quantum information applications.

Understanding and controlling interference in light scat-
tered from quantum emitters are crucial for achieving efficient
light-matter coupling and building versatile quantum informa-
tion devices. The quantum interference of radiation from two
coherently driven atoms can produce rich spatial structures of
nonclassical photon correlations [1–4]. Metasurfaces imple-
mented with arrays of atoms can be employed to control light
flow direction and manipulate photonic quantum states [5–8].
Engineering destructive interference between light and atomic
subradiant excitation states allows tailored light storage and
spectral narrowing [9–11] that has promising applications in
quantum information processing and metrology. In addition to
interference effects in free space, coupling atoms to an optical
cavity that enhances the atom-light interaction enables explo-
ration of collective radiation effects in the Tavis-Cummings
model for multi-atom systems [12–14].

Previous efforts have focused on the interference of emis-
sions from more than one emitter, including the Young’s
double-slit experiment with two ions [15], the measurement
of collective frequency shift in resonant light scattered by a
one-dimensional atomic array [16], observation of subradi-
ance in dense atomic ensembles [17], demonstration of a two-
dimensional atomic mirror [18], and measurements of the in-
terference of cavity light from multiple atoms [19–22]. In
these setups, the interference effect arises from the control-
lable mutual phase relations between spatially separated mul-
tiple atoms.

In this work, we ask a different question: whether a single
atom can emit light with an interference pattern when pre-
pared in a coherent superposition of different positions. The
question is intuitively appealing, but there are two opposing
arguments. One argument suggests that the optical fields emit-
ted simultaneously by the single atom from different positions
should interfere, while the other argument [23–25] states that
the emitted light becomes entangled with the atomic position
state and cannot interfere. To resolve this contradiction, we
demonstrate that the coherent tunnelling between the atomic
position states is the key to interference.

We present a new approach to manipulating and observ-
ing interference effects using only one atom. We consider an

atom trapped in a double-well potential and coupled to an op-
tical cavity as shown in Fig. 1(a). The coherent motion in
the double-well produces quantum interference on the cav-
ity field, resulting in a sinusoidal modulation of cavity emis-
sion as a function of the double-well spacing. The interfer-
ence contrast can be continuously tuned by the atom’s tun-
nelling amplitude. The atomic motion significantly influences
the photon correlations of the cavity emission and can yield
super-Poissonian bunched light near the destructive interfer-
ence. Furthermore, we show that the coherent tunnelling mo-
tion of the single atom can be used to steer the light prop-
agation direction, giving rise to persistent oscillations in the
cavity directional emissions with the intensity difference pro-
portional to the atomic flux in the double well. It also provides
a non-destructive approach to monitoring atomic dynamics
through cavity emission.

Our apparatus is shown in Fig. 1(a). We employ a ring-
shaped optical cavity that supports two counterpropagating
modes, denoted by the field operators âCW and âCCW for the
clockwise (CW) and counter-clockwise (CCW) directions, re-
spectively. The atom is driven by an external laser field that
couples two internal states |g⟩ and |e⟩ with Rabi frequency Ω

FIG. 1. (a) A single atom is confined in a double-well potential with
spacing d and tunnelling amplitude J. The atom couples to an optical
ring cavity with two counter-propagating modes, âCW and âCCW, and
is driven by an external light field with the Rabi frequency Ω. (b)
The driving field is detuned from the atomic resonance by ∆, and the
cavity modes by δ. The external states of the atom are denoted by |L⟩
and |R⟩.
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FIG. 2. The energy level diagram revealing the Z2 symmetry af-
ter transforming the external states from {|L⟩, |R⟩} to {|+⟩, |−⟩} basis
and the cavity fields from {âCW, âCCW} to {âS , âA} modes. The energy
splitting between |+⟩ and |−⟩ is 2J. The excited state |e⟩ is elimi-
nated in the dispersive regime. The H+ subspace is spanned by the
even-parity states, and H− by the odd-parity states. The âS -mode
is driven with the coupling strength Ωeff cos ϕ

2 (blue arrows) and the
âA-mode with Ωeff sin ϕ

2 (red arrows). The cavity decays of the âS

and âA modes are indicated by the blue and red wavy lines at the
rate κ, and do not change the external states |±⟩. However, the decay
of the âA-mode photons leads to the population transfer between the
subspaces H+ and H− at the rates Γ+ and Γ−, which are proportional
to the populations of |0S 1A−⟩ and |0S 1A+⟩ states, respectively. The
purple and green spirals connect the relevant decay lines from the
|1S 1A±⟩ states for illustration purposes.

as shown in Fig. 1(b). The detuning between the driving laser
and the atomic resonance is ∆ = ω−ωa, and the cavity detun-
ing is δ = ω − ωc. The atomic tunnelling amplitude between
the two wells is J. The atom-photon interaction depends on
not only the atom-cavity coupling g, but also a phase factor
eikz j where z j refers to the position of the atom along the cav-
ity axis, and k = ωc/c is the wave number of the cavity modes.
The external states of the atom are denoted by |L⟩ and |R⟩ cen-
tred at zL = −d/2 and zR = d/2 with d being the double-well
spacing. The spatial phase difference is given by ϕ = 2πd/λ.
The system is described by the Hamiltonian

Ĥ = −δ
(
â†CWâCW + â†CCWâCCW

)
− ∆σ̂+σ̂− + Ω

2
σ̂x

+ g

σ̂
+

∑

j=L,R

(
eiϕ j âCW + e−iϕ j âCCW

)
| j⟩⟨ j| + H.c.



− J (|L⟩⟨R| + |R⟩⟨L|) ,

(1)

where σ̂± and σ̂x are the Pauli operators associated to |g⟩ and
|e⟩, and ϕL = −ϕ/2, ϕR = ϕ/2. Due to the atomic spontaneous
emission (rate γ) and the cavity decay (rate κ), the evolution of
the total density matrix follows the Lindblad master equation,
ρ̇ = −i[Ĥ, ρ] + γD[σ̂−]ρ + κD[âCW]ρ + κD[âCCW]ρ, where
D[L̂]ρ = L̂ρL̂† − 1

2 {L̂†L̂, ρ}.
We notice that the Hamiltonian (1) has a Z2 symmetry,

which can be better understood if we transform the atomic

FIG. 3. Steady-state solutions to the cavity photon numbers with
a single atom trapped in a double well driven on cavity resonance
(δ = 0). The cavity photon number, ntot, shows sinusoidal modula-
tions as function of the double-well spacing denoted by ϕ = 2πd/λ,
normalized by the photon number n0 of an atom trapped in a fixed
position. The interference contrast increases with J/κ. The solid
lines are the analytical results according to Eq. (3), and the points
are the numerical solutions to the master equation. Other parameters
are (γ,∆, κ, g,Ω) = (10, 200, 1, 0.5, 20), which are also applied to the
rest of this work.

external state from the localized basis {|L⟩, |R⟩} to the ex-
tended basis {|+⟩ = (|L⟩ + |R⟩)/√2, |−⟩ = (|L⟩ − |R⟩)/√2},
and the cavity fields from the âCW, âCCW modes to âS =

(âCW + âCCW)/
√

2 and âA = −i(âCW − âCCW)/
√

2. The total
photon number ntot is conserved in both representations, such
that ntot = ⟨â†CWâCW⟩+⟨â†CCWâCCW⟩ = ⟨â†S âS ⟩+⟨â†AâA⟩. In this
paper we focus on the dispersive regime where g,Ω ≪ |∆| and
the excited state |e⟩ is adiabatically eliminated. The Hamilto-
nian of Eq. (1) is simplified to Heff = HS + HA − Jσ̂z

ext with

HS = −δâ†S âS +
Ωeff

2
cos

ϕ

2

(
â†S + âS

)
, (2a)

HA = −δâ†AâA +
Ωeff

2
sin

ϕ

2

(
â†A + âA

)
σ̂x

ext, (2b)

where σ̂x
ext = |+⟩⟨−| + |−⟩⟨+|, σ̂z

ext = |+⟩⟨+| − |−⟩⟨−|, and
Ωeff =

√
2gΩ/∆. The second term, HA, is similar to the quan-

tum Rabi model [26, 27]. The Z2 symmetry of Heff is re-
vealed by the parity operator Π̂ = exp(iπâ†AâA)σ̂z

ext, which sat-
isfies [Π̂,Heff] = 0. Therefore, one can decompose the Hilbert
space of Heff into two subspaces according to the parity of the
states, H = H+ ⊕H−. Figure 2 shows the lowest 12 states
categorized by the parity. For example, |0S , 0A,+⟩ ∈ H+ and
|0S , 1A,+⟩ ∈ H−. While Heff conserves the parity, the dissi-
pation of âA-mode photon leads to the incoherent population
transfer between H+ and H− with the respective rates Γ+ and
Γ− calculated below.

Using Heff expressed in âS and âA basis [Eq. (2)], we calcu-
late the total cavity photon number ntot of the steady state (see
Supplemental Materials, SM) as

ntot ≃ n0

(
cos2 ϕ

2
+

1
1 + 4J2/(δ2 + κ2/4)

sin2 ϕ

2

)
, (3)
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where n0 = 2 × |gΩ/(2∆)/(δ + iκ/2)|2 is for an atom in a fixed
position. The first term in Eq. (3) is the photon number of
the âS -mode driven by |0S 0A±⟩ ↔ |1S 0A±⟩ with the transition
amplitude Ωeff cos ϕ

2 . The second term is the âA-mode driven
by |0S 0A±⟩ ↔ |0S 1A∓⟩with the transition amplitudeΩeff sin ϕ

2
and the detuning ±2J.

Figure 3 shows the sinusoidal modulation of the cavity pho-
ton number ntot as a function of the double-well spacing on
the cavity resonance (δ = 0). The ntot interference contrast
increases with J. When J = 0, the photon number is inde-
pendent of ϕ (ntot = n0), which agrees with the statement that
the emitted light is entangled with the atomic position state so
there is no interference effect [23–25]. In the limit J → ∞, ntot
approaches to n0 cos2 ϕ

2 . This can be understood by the level
diagram of Fig. 2. When 2J ≫ κ/2, the generation of the
âA-mode photon is suppressed so the cavity field is dominated
by the âS -mode, resulting in the interference pattern which is
proportional to cos2 ϕ

2 . From a complementary perspective,
the light emitted by the atom at the position |L⟩ is stored in
the cavity over time ∼ 1/κ. After the tunnelling time ∼ 1/J,
the atom emits light from the position |R⟩. The two light fields
can interfere if the tunnelling time is shorter than the cavity
decay time (1/J ≪ 1/κ).

The interference induced by the atomic tunnelling has a
strong effect on the cavity photon statistics, which can be char-
acterized by the second-order correlation function, g(2)(τ) =
⟨â†â†(τ)â(τ)â⟩/⟨â†â⟩2, with â being either âCW or âCCW. We
find that the analytical solution of g(2)(τ) is the same for the
two modes and reads (see SM)

g(2)(τ) = 1 +
[
1 +

(
1 +

16J2

κ2

)
cot2

ϕ

2

]−2

×
(

16J2

κ2 e−κτ +
8J
κ

e−κτ/2 sin 2Jτ
)
.

(4)

The equal-time correlation g(2)(0) of the cavity emission is
plotted in Fig. 4(a) as a function of ϕ, showing strong photon
bunching near the destructive interference ϕ = π. The peak
value of g(2)(0) at ϕ = π increases quadratically with J/κ as
shown in Fig. 4(b). At the destructive interference, the tran-
sition amplitudes of the âS -mode [the blue arrows in Fig. 2]
are cancelled out as Ωeff cos ϕ

2 = 0, and only the âA-mode
photons are generated as Ωeff sin ϕ

2 = Ωeff . The level diagram
is simplified to Fig. 4(c). When 2J ≫ κ/2, the one-photon
excitations (|0A⟩ → |1A⟩) are far off-resonant and hence sup-
pressed, while the simultaneous excitations of two photons
(|0A⟩ → |1A⟩ → |2A⟩) are on-resonant, resulting in the photon-
pair generation and huge photon bunching. The correlation
g(2)(τ) displays a temporal oscillation with the frequency 2J
due to the cavity detuning from the |0A±⟩ → |1A∓⟩ transitions
as shown in Fig. 4(d).

Having studied the steady-state cavity interference and the
photon correlations, we next examine the dynamical evolu-
tion of the cavity field before reaching the equilibrium. As
the atom tunnels within the double well, directional emissions
from the cavity can be generated, which oscillate at the tun-

(a)

(b) (d)

(c)

FIG. 4. Second-order correlation functions of the cavity emission
at δ = 0. (a) g(2)(0) as functions of ϕ for different values of J/κ in-
dicating transitions from Poissonian near ϕ = 0 to super-Poissonian
near ϕ = π. (b) The maximum values of g(2)(0) at ϕ = π compared
with g(2)(0) = 1 + 16J2/κ2 (solid black line). (c) The level diagram
for ϕ = π. The âS -mode photons in Fig. 2 are not excited due to the
destructive interference hence not shown. The single-photon excita-
tions of âA-mode are detuned by ±2J, which lead to the photon-pair
generation and the photon bunching effect. (d) g(2)(τ) at ϕ = π for dif-
ferent values of J/κ shows stronger oscillation amplitudes for larger
tunnelling J. The oscillation frequency is 2J and the damping rate is
given by κ. In (a,b,d), the points are the numerical simulation results
and the solid lines are the analytical solutions Eq. (4).

nelling frequency J as depicted in Fig. 5(a). On the other
hand, the backaction of the cavity field gives rise to the deco-
herence of the atomic tunnelling motion. If the tunnelling fre-
quency J is large compared to the decoherence rate Γ (which
will be derived later), the instantaneous cavity fields adiabat-
ically follow the external state of the atom described by the
reduced density matrix ρext(t). To understand the physical pic-
ture, we examine the cavity fields in the mean-field approxi-
mation as αµ = ⟨âµ⟩, where âµ is either CW/CCW mode, or
âS /âA-mode. In the adiabatic approximation (see SM)

αS =
Ωeff

2
2

δ + iκ/2
cos

ϕ

2
, (5a)

αA =
Ωeff

2

(
ρ+−ext(t)

δ − 2J + iκ/2
+

ρ−+ext(t)
δ + 2J + iκ/2

)
sin

ϕ

2
. (5b)

At the early time t ≪ 1/Γ before the tunnelling motion deco-
heres, ρext(t) ≈ 1

2 (|+⟩⟨+| + |−⟩⟨−| + e2iJt |+⟩⟨−| + e−2iJt |−⟩⟨+|).
Substituting ρext(t) to Eq. (5), the evolution of αCW/CCW traces
an ellipse in the phase space as shown in Fig. 5(b). When
ϕ = π/2 and δ = −J, the amplitude |αS | is comparable to |αA|
therefore |αCW| can be very different from |αCCW|, resulting in
directional emissions. When ϕ = π, however, αS = 0 there-
fore the two fields have the same amplitudes but the opposite
phases, αCW = −αCCW. We define the cavity chirality as

∆n/n0 = (nCW − nCCW)/n0, (6)
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(c)

(b)(a)

FIG. 5. Cavity chiral fields induced by the atomic motion. (a) The
CW (red arrow) and CCW (blue arrow) modes are shown at differ-
ent times of the atomic tunnelling motion for ϕ = π/2. When the
atom is in the superposition states 1√

2
(|L⟩ ± i|R⟩) with the maximum

tunnelling flux, the cavity fields have different intensities for the CW
and CCW modes. (b) A sketch of the instantaneous cavity fields in
the phase space for ϕ = π/2 and ϕ = π, where α = ⟨â⟩. The CW
(red) and CCW (blue) modes are constructed by the âS - (black) and
âA- (green) modes according to αCW/CCW = (αS ± iαA)/

√
2. The âS -

mode is time-independent, while the âA-mode rotates at a frequency
of 2J. The green dashed ellipses represent the trajectories of αCW and
αCCW. When ϕ = π/2, the magnitudes of αCW and αCCW oscillate at
the frequency of 2J. When ϕ = π, αS = 0 therefore |αCW| = |αCCW|.
The circled numbers correspond to the time steps in (a). (c) Numer-
ical results of the dynamical evolution of ∆n/n0 = (nCW − nCCW)/n0

(solid magenta lines) and the atomic population difference between
the left and right wells, ρL − ρR (dashed green lines). Both the cavity
field chirality and the atomic position oscillate at a frequency 2J.
Their phase difference is π/2. When the double-well spacing in-
creases from ϕ = π/5 to ϕ = 4π/5, the decoherence rate Γ of the
atomic tunnelling increases due to the backaction of the cavity light,
resulting in the damping of the chiral cavity emissions. In the numer-
ical simulations, the initial state of the atom is |L⟩ with −δ = J = 5κ.

where nCW/CCW =
1
2 ⟨(âS ± iâA)†(âS ± iâA)⟩ = 1

2 [nS + nA(t)] ±
Im[αSα

∗
A(t)] (see SM). From Eq. (5)-(6), ∆n/n0 ∝ sin ϕ Imρ+−ext

when κ ≪ |δ±2J|. Notice that Imρ+−ext = Im⟨L|ρext|R⟩ indicates
the atomic flux of the tunnelling motion from |L⟩ to |R⟩ in
the double well. In Fig. 5(a), at Jt = 0 and π/2, the atomic
flux is zero hence both the CW and CCW modes have the
same photon numbers. At Jt = π/4 and 3π/4, the atomic flux

reaches the maximum value resulting in the cavity directional
emission. Figure 5(c) shows the dynamical evolution of ∆n/n0
compared with the population difference in the double well,
ρL − ρR, for different values of ϕ.

The backaction of the cavity field gives rise to the deco-
herence of the atomic tunnelling motion. To calculate the
decoherence rate Γ, we obtain the master equation for the
atomic external state ρ̇ext ≈ −i[−Jσ̂z

ext, ρext] + (Γ+D[σ̂+ext] +
Γ−D[σ̂−ext])ρext (see SM). The dissipator D[σ̂+ext] describes
the incoherent population transfer from the subspace H+ to
H−, and similarly D[σ̂−ext] the transfer from H− to H+, as
shown in Fig. 2. The respective rates are given by Γ± =
κΩ2

eff/4[(δ∓2J)2+κ2/4]−1 sin2 ϕ
2 , which correspond to the cav-

ity photon generation as κnA(t) = Γ+ρ++ext(t) + Γ−ρ
−−
ext(t). With

the initial state being ρext(0) = |L⟩⟨L|, the reduced density ma-
trix of the external state evolves as ρ−+ext = e−Γt/2ei2Jt, where
Γ = Γ++Γ− is modulated by sin2 ϕ

2 . As shown in Fig. 5(c), the
decoherence is faster for ϕ ≈ π than ϕ ≈ 0. In the dispersive
regime, Γ is several orders smaller than κ and J, which allows
for many cycles of the oscillation before the decoherence of
the atomic motion and the leakage of the cavity photons.

In summary, we have demonstrated that a single atom can
induce interference effects in light by studying a minimal
model comprising one atom tunnelling in a double-well po-
tential coupled to an optical ring cavity. The atom’s coher-
ent tunnelling gives rise to cavity field interference, photon-
pair generation, and directional emission. This work can be
readily extended in various directions. First, we can expand
our analysis beyond the scenario where the chiral cavity fields
adiabatically follow the atomic tunnelling motion. By explor-
ing the regime where the light fields substantially modify the
tunnelling frequency, we can investigate the entanglement be-
tween the atomic motional state and the chiral emission. Sec-
ond, both the atomic motional states in the double well and the
cavity chiral photons can be utilized to encode qubits. Their
entanglement allows for new gate operation schemes and our
apparatus may serve as quantum nodes in cavity-based quan-
tum networks. Furthermore, our current minimal model of
a single atom in the double well can be extended to multi-
ple atoms tunnelling in a lattice. Cavity emission can pro-
vide non-destructive measurements of atomic collective mo-
tion, such as Bloch oscillation, superfluid-Mott insulator tran-
sition, and self-organization.
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Barbut, and A. Browaeys, Collective Shift in Resonant Light
Scattering by a One-Dimensional Atomic Chain, Phys. Rev.
Lett. 124, 253602 (2020).

[17] G. Ferioli, A. Glicenstein, L. Henriet, I. Ferrier-Barbut, and
A. Browaeys, Storage and Release of Subradiant Excitations in
a Dense Atomic Cloud, Phys. Rev. X 11, 021031 (2021).

[18] J. Rui, D. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher, D. M.
Stamper-Kurn, C. Gross, and I. Bloch, A subradiant optical mir-
ror formed by a single structured atomic layer, Nature 583, 369
(2020).

[19] R. Reimann, W. Alt, T. Kampschulte, T. Macha,
L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede,
Cavity-Modified Collective Rayleigh Scattering of Two Atoms,
Phys. Rev. Lett. 114, 023601 (2015).

[20] A. Neuzner, M. Körber, O. Morin, S. Ritter, and G. Rempe,
Interference and dynamics of light from a distance-controlled
atom pair in an optical cavity, Nat. Photonics 10, 303 (2016).

[21] M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K.
Thompson, Superradiance on the millihertz linewidth strontium
clock transition, Sci. Adv. 2, e1601231 (2016).

[22] J. Kim, D. Yang, S.-h. Oh, and K. An, Coherent single-atom
superradiance, Science 359, 662 (2018).

[23] C. Cohen-Tannoudji, F. Bardou, and A. Aspect, Review on
fundamental processes in laser cooling, in Laser Spectrosc. X,
edited by M. Ducloy, E. Giacobino, and G. Camy (World Sci-
entific, Font-Romeu, France, 1992) pp. 3–14.

[24] D. Braun and J. Martin, Spontaneous emission from a two-level
atom tunneling in a double-well potential, Phys. Rev. A 77,
032102 (2008).

[25] F. Damanet, D. Braun, and J. Martin, Cooperative spontaneous
emission from indistinguishable atoms in arbitrary motional
quantum states, Phys. Rev. A 94, 033838 (2016).

[26] D. Braak, Integrability of the Rabi Model, Phys. Rev. Lett. 107,
100401 (2011).

[27] Q.-H. Chen, C. Wang, S. He, T. Liu, and K.-L. Wang, Exact
solvability of the quantum Rabi model using Bogoliubov oper-
ators, Phys. Rev. A 86, 023822 (2012).

https://doi.org/10.1103/PhysRevLett.54.1802
https://doi.org/10.1103/PhysRevLett.54.1802
https://doi.org/10.1103/PhysRevA.64.063801
https://doi.org/10.1103/PhysRevA.64.063801
https://doi.org/10.1103/PhysRevA.84.023805
https://doi.org/10.1103/PhysRevLett.124.063603
https://doi.org/10.1103/PhysRevLett.122.093601
https://doi.org/10.1038/s41567-020-0845-5
https://doi.org/10.1038/s41567-020-0845-5
https://doi.org/10.1103/PRXQuantum.2.040362
https://doi.org/10.1103/PhysRevLett.128.113601
https://doi.org/10.1103/PhysRevLett.117.243601
https://doi.org/10.1103/PhysRevLett.117.243601
https://doi.org/10.1103/PhysRevX.7.031024
https://doi.org/10.1103/PhysRevLett.125.263601
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1103/PhysRevLett.70.2359
https://doi.org/10.1103/PhysRevLett.70.2359
https://doi.org/10.1103/PhysRevLett.124.253602
https://doi.org/10.1103/PhysRevLett.124.253602
https://doi.org/10.1103/PhysRevX.11.021031
https://doi.org/10.1038/s41586-020-2463-x
https://doi.org/10.1038/s41586-020-2463-x
https://doi.org/10.1103/PhysRevLett.114.023601
https://doi.org/10.1038/nphoton.2016.19
https://doi.org/10.1126/sciadv.1601231
https://doi.org/10.1126/science.aar2179
https://doi.org/10.1142/9789814538190
https://doi.org/10.1103/PhysRevA.77.032102
https://doi.org/10.1103/PhysRevA.77.032102
https://doi.org/10.1103/PhysRevA.94.033838
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevA.86.023822


Supplemental Materials for
“Quantum Interference of Cavity Light Induced by a Single Atom in Double Well”

Yijia Zhou,1 Xinwei Li,1 Weibin Li,2 and Hao Zhang1

1Graduate School of China Academy of Engineering Physics, Beijing 100193, China
2School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems,

The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
(Dated: June 12, 2023)

I. Analytical solutions of the photon fields in the dispersive regime

The original Hamiltonian of the cavity QED system with a single atom coupled with two propagating cavity modes and
trapped in a double-well potential under rotating frame is

H = −δ
(
â†CWâCW + â†CCWâCCW

)
− ∆ |e⟩⟨e| + Ω

2
σ̂x − J (|L⟩⟨R| + |R⟩⟨L|)

+ g
{[(

eikCW·rL âCW + eikCW·rR âCCW

)
|L⟩⟨L| +

(
eikCCW·rL âCW + eikCCW·rR âCCW

)
|R⟩⟨R|

]
σ̂+ + H.c.

}
,

(1)

where the external state |L⟩ and |R⟩ denotes the atmoic position which is along the z-axis, such that rL/R = (0, 0, zL/R). The
wave vector of the CW and CCW modes are kCW = (0, 0, k) and kCCW = (0, 0,−k) near the double well, respectively. Due
to translational symmetry, it is convenient to define kzL = −ϕ/2 and kzR = ϕ/2, and the double-well spacing is denoted by
d = ϕ/(2π)λ, with λ being the wavelength of the cavity fields. The atomic decay and photon loss can be described by Lindblad
master equation,

∂

∂t
ρ = −i[H, ρ] + γD[σ̂−]ρ + κD[âCW]ρ + κD[âCCW]ρ, (2)

whereD[L̂]ρ = L̂ρL̂† − 1
2 {L̂†L̂, ρ}. Our numerical simulations are based on the time integration of Eq. (2).

The dispersive regime is valid when the atomic detuning is far bigger than the atomic and photonic dissipation rates and
the atom-light interaction strength, ∆ ≫ γ, κ, g, such that the atomic internal state can reach equilibrium faster than other time
scales. In this situation, the original Hamiltonian can be simplified by adiabatic elimination. First of all, it is convenient to use
the superposed photon modes as described in the main text,

âS =
1√
2

(âCW + âCCW) ,

âA =
−i√

2
(âCW − âCCW) ,

(3)

which automatically gaurantees thatD[âCW]+D[âCCW] = D[âS ]+D[âA]. The atomic external states should also be symmetrized
as

|+⟩ = 1√
2

(|L⟩ + |R⟩) ,

|−⟩ = 1√
2

(|L⟩ − |R⟩) .
(4)

Then, the tunnelling term reads Hext = −Jσ̂z
ext, with the Pauli matrices for the external states being σ̂z

ext = |+⟩⟨+| − |−⟩⟨−| and
σ̂x

ext = |+⟩⟨−| + |−⟩⟨+|. Then, we rewrite the original master equation [Eq. (2)] as

∂

∂t
ρ = −i

[(
Hg,nH + He,nH

)
ρ − ρ

(
Hg,nH + He,nH

)†] − i
[
V + V†, ρ

]
+ γσ̂−ρσ̂+ + κâCWρâ†CW + κâCCWρâ†CCW, (5)
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where

Hg,nH = −
(
δ + i

κ

2

) (
â†S âS + â†AâA

)
− Jσ̂z

ext,

He,nH = −
(
∆ + i

γ

2

)
|e⟩⟨e| ,

V =
(
gÂ† +

Ω

2

)
σ̂−,

Â =
(
e−iϕ/2âCW + eiϕ/2âCCW

)
|L⟩⟨L| +

(
eiϕ/2âCW + e−iϕ/2âCCW

)
|R⟩⟨R|

=
√

2
(
cos

ϕ

2
âS + sin

ϕ

2
âAσ̂

x
ext

)
.

(6)

Finally, the excited state |e⟩ can be eliminated resulting in the effective Hamiltonian and dissipator [1]

Heff,nH = Hg,nH − V
1

He,nH
V†

= Hg,nH +
1

∆ + iγ/2

[
g2Â†Â +

gΩ
2

(
Â† + Â

)
+
Ω2

4

]
,

L̂eff = σ̂
− 1

He,nH
V† = − gÂ + Ω2

∆ + iγ/2
|g⟩⟨g| .

(7)

In the dispersive regime, ⟨Â†Â⟩ ≪ Re⟨Â⟩, which allows us to neglect the Â†Â term in Eq. (7) and keep the linear terms only. The
decay rate of the dissipator L̂eff is in the order of γ(g2⟨Â†Â⟩ + Ω2)/∆2, which, in the dispersive regime, is much smaller than the
decay rate of the cavity photon, κ, so L̂eff can be neglected as well as the corresponding imaginary part of Heff,nH. Therefore, the
original master equation [Eq. (2)] can be simplified as

∂

∂t
ρ = −i[Heff , ρ] + κD[âS ]ρ + κD[âA]ρ, (8)

with

Heff = HS + HA − Jσ̂z
ext,

HS = −δâ†S âS +
Ωeff

2
cos

ϕ

2

(
â†S + âS

)
,

HA = −δâ†AâA +
Ωeff

2
sin

ϕ

2

(
â†A + âA

)
σ̂x

ext.

(9)

The effective Rabi frequency Ωeff =
√

2gΩ∆/(∆2 + γ2/4) ≈ √2gΩ/∆.
Here we note that if one omits the external state, Eq. (8)-(9) can be used to describe the single atom trapped in a single-

well. Considering the Heisenberg equations of the photon field operators, i∂tâS = −(δ + iκ/2)âS +
Ωeff

2 cos ϕ
2 and i∂tâA =

−(δ + iκ/2)âA +
Ωeff

2 sin ϕ
2 , one can obtain the photon numbers of the steady state

n0 = |αS |2 + |αA|2 =
∣∣∣∣∣
Ωeff

2
1

δ + iκ/2

∣∣∣∣∣
2

, (10)

with αS = ⟨âS ⟩ = Ωeff
2

1
δ+iκ/2 cos ϕ

2 and αA = ⟨âA⟩ = Ωeff
2

1
δ+iκ/2 sin ϕ

2 .
However, if the atomic motion is included, the âA-mode cavity field is different from the ordinary bosonic field, because

creating an A-mode photon flips the external state. Specifically, the Heisenberg equation of âA becomes i∂tâA = −(δ+ iκ/2)âA +
Ωeff

2 sin ϕ
2 σ̂

x
ext. Now, σ̂x

ext oscillates at the frequency ∼ 2J, which precludes the quasistatic condition by letting ∂tâA = 0. To
resolve this problem, we notice that the transitions of |nA,+⟩ → |(n− 1)A,−⟩ or |nA,−⟩ → |(n− 1)A,+⟩ can be triggered by âAσ̂

−
ext

and âAσ̂
+
ext, respectively. Therefore, we consider the Heisenberg equations of âS , âAσ̂

+
ext and âAσ̂

−
ext that read

i
∂

∂t
âS = −

(
δ + i

κ

2

)
âS +

Ωeff

2
cos

ϕ

2
,

i
∂

∂t
âAσ̂

+
ext = −

(
δ + 2J + i

κ

2

)
âAσ̂

+
ext +

Ωeff

2
sin

ϕ

2

[
σ̂+extσ̂

−
ext −

(
âA + â†A

)
âAσ̂

z
ext

]
,

i
∂

∂t
âAσ̂

−
ext = −

(
δ − 2J + i

κ

2

)
âAσ̂

−
ext +

Ωeff

2
sin

ϕ

2

[
σ̂−extσ̂

+
ext +

(
âA + â†A

)
âAσ̂

z
ext

]
.

(11)
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Then, one can let the left-hand-side equal to 0 for the quasistatic solutions for the given external state, because the evolution rate
of σ̂z

ext, as well as σ̂±extσ̂
∓
ext, is in the order of Γ ≪ J (see below). In the dispersive regime, the photon number is small, and we

can further neglect the normal order terms with multiple âA terms on the right-hand-side. Therefore, the adiabatic elimination
can be carried out by taking the quantum expectation values of Eq. (11) that yields

⟨âS ⟩ ≈ Ωeff/2
δ + iκ/2

cos
ϕ

2
,

〈
âAσ̂

+
ext

〉 ≈ Ωeff/2
δ + 2J + iκ/2

sin
ϕ

2
〈
σ̂+extσ̂

−
ext

〉
,

〈
âAσ̂

−
ext

〉 ≈ Ωeff/2
δ − 2J + iκ/2

sin
ϕ

2
〈
σ̂−extσ̂

+
ext

〉
.

(12)

We introduce the reduced density matrix of the external state, ρext = Trph[ρ], and ρ++ext =
〈
σ̂−extσ̂

+
ext

〉
, ρ−−ext =

〈
σ̂+extσ̂

−
ext

〉
, ρ+−ext =〈

σ̂+ext
〉
, ρ−+ext =

〈
σ̂−ext

〉
. Based on Eq. (12), one can use the substitution

âS → Ωeff/2
δ + iκ/2

cos
ϕ

2
,

âA → Ωeff/2
δ + 2J + iκ/2

sin
ϕ

2
←−̂
σ−ext +

Ωeff/2
δ − 2J + iκ/2

sin
ϕ

2
←−̂
σ+ext,

(13)

where←−σ refers to that the operator is applied on the right side of the other operators. With this substitution and using the identity
σ̂−extσ̂

+
ext + σ̂

+
extσ̂

−
ext = I, the complex light fields of the âS - and âA-modes are given by

αS =
Ωeff/2
δ + iκ/2

cos
ϕ

2
,

αA =
〈
âA

(
σ̂−extσ̂

+
ext + σ̂

+
extσ̂

−
ext

)〉

=
Ωeff/2

δ + 2J + iκ/2
sin

ϕ

2
〈
σ̂−ext

〉
+

Ωeff/2
δ − 2J + iκ/2

sin
ϕ

2
〈
σ̂+ext

〉
.

(14)

The photon numbers yield

nS =

∣∣∣∣∣
Ωeff/2
δ + iκ/2

cos
ϕ

2

∣∣∣∣∣
2

,

nA =
〈
â†A

(
σ̂+extσ̂

−
ext + σ̂

−
extσ̂

+
ext

)
âA

〉

=

∣∣∣∣∣
Ωeff/2

δ + 2J + iκ/2
sin

ϕ

2

∣∣∣∣∣
2 〈
σ̂+extσ̂

−
ext

〉
+

∣∣∣∣∣
Ωeff/2

δ − 2J + iκ/2
sin

ϕ

2

∣∣∣∣∣
2 〈
σ̂−extσ̂

+
ext

〉
.

(15)

Therefore, we obtain the photon numbers of the CW and CCW modes,

nCW/CCW =
1
2

〈
(âS ± iâA)† (âS ± iâA)

〉
=

1
2

[
nS + nA ± i

(
α∗SαA − α∗AαS

)]

=
n0

2

[
cos2 ϕ

2
+ sin2 ϕ

2

(∣∣∣∣∣
δ + iκ/2

δ + 2J + iκ/2

∣∣∣∣∣
2

ρ−−ext +

∣∣∣∣∣
δ + iκ/2

δ − 2J + iκ/2

∣∣∣∣∣
2

ρ++ext

)
± Im

4Jδ sin ϕ
(δ + 2J + iκ/2)(δ − 2J − iκ/2)

ρ−+ext

]
.

(16)

II. Dynamics of the atomic motion influenced by the cavity photons

In order to obtain the effective master equation of the atomic motion, we eliminate the photonic excited states with the adiabatic
approximation. The âS -mode photons can be directly dropped out. In the dispersive regime, the âA-mode photon number can be
truncated at nA ⩽ 1, which results in 4 states, |nA,m⟩ ∈ {|0A,+⟩, |0A,−⟩, |1A,+⟩, |1A,−⟩}. The non-Hermitian Hamiltonian reads

HnH =



−J Ωeff
2 sin ϕ

2
J Ωeff

2 sin ϕ
2

Ωeff
2 sin ϕ

2 −J − δ − i κ2
Ωeff

2 sin ϕ
2 J − δ − i κ2


. (17)

The quantum jump operators include L̂− = |0A,+⟩⟨1A,−| and L̂+ = |0A,−⟩⟨1A,+| with rates both equal to κ. To perform
the adiabatic elimination, we introduce the projection operator P = |0A,+⟩⟨0A,+| + |0A,−⟩⟨0A,−| and Q = |1A,+⟩⟨1A,+| +
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|1A,−⟩⟨1A,−|. Noticing that PHnHP is already diagonalized, we define the interaction operators acting on each of the vacuum
states, Vl = |l⟩⟨l|HnHQ, with |l⟩ ∈ {|0A,+⟩, |0A,−⟩}. Then we obtain the effective non-Hermitian Hamiltonian and the dissipators
that read [1]

Hext,nH = PHnHP − V
∑

l

1
QHnHQ − El

V†l

= −
J − Ω

2
eff

4
sin2 ϕ

2
1

δ − 2J + iκ/2

 |0A,+⟩⟨0A,+| +
J +

Ω2
eff

4
sin2 ϕ

2
1

δ + 2J + iκ/2

 |0A,−⟩⟨0A,−| ,

L̂+,eff = |0A,−⟩⟨1A,−|
∑

l

1
QHnHQ − El

V†l = −
Ωeff

2
sin

ϕ

2
1

δ − 2J + iκ/2
|0A,−⟩⟨0A,+| ,

L̂−,eff = |0A,+⟩⟨1A,+|
∑

l

1
QHnHQ − El

V†l = −
Ωeff

2
sin

ϕ

2
1

δ + 2J + iκ/2
|0A,+⟩⟨0A,−| .

(18)

Therefore, we obtain the effective master equation of the atomic motion that reads

∂

∂t
ρext = −i[−J′σ̂z

ext, ρext] + Γ+D[σ̂+ext]ρext + Γ−D[σ̂−ext]ρext,

J′ = J +
1
2

(
Ωeff

2
sin

ϕ

2

)2

Re
[

1
δ + 2J + iκ/2

− 1
δ − 2J + iκ/2

]
,

Γ+ = κ
Ω2

eff

4
sin2 ϕ

2

(δ − 2J)2 + κ2/4
, Γ− = κ

Ω2
eff

4
sin2 ϕ

2

(δ + 2J)2 + κ2/4
.

(19)

The correction to the tunnelling rate is due to HA, which is a result of the optical potential. As shown in Fig. S1, we compare J′
and J with the same parameters as used in Fig. 4, and find that relative correction of the tunnelling rate is in the order of 10−5.
Therefore, we neglect the correction and the tunnelling rate is still equal to J. However, in the long-term evolution, the optical
potential will lead to a non-negligible phase shift for different conditions.

FIG. S1. The relative correction of the tunnelling rate due to the optical potential. The black line is the analytical results according to
Eq. (19), the red circles are numerical results obtained from Fig. 4 (main text) with different ϕ and fitted sinusoidally in the long-time regime
(Jt > 4500).

Then Eq. (19) gives birth to the semiclassical equation of the atomic motion (J ≈ J′, Γ = Γ+ + Γ−)

∂

∂t


⟨σ̂x⟩
⟨σ̂y⟩
⟨σ̂z⟩

 =

−Γ/2 −2J

2J −Γ/2
−Γ




⟨σ̂x⟩
⟨σ̂y⟩
⟨σ̂z⟩

 +


0
0

Γ− − Γ+

 , (20)

Let the initial state be |L⟩, ⟨σ̂x(0)⟩ = 1, ⟨σ̂y(0)⟩ = ⟨σ̂z(0)⟩ = 0, the solution reads

⟨σ̂x(t)⟩ = e−
Γ
2 t cos 2Jt,

⟨σ̂y(t)⟩ = e−
Γ
2 t sin 2Jt,

⟨σ̂z(t)⟩ = Γ− − Γ+
Γ

(
1 − e−Γt

)
.

(21)
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FIG. S2. Evolution of (a) the atomic population on |−⟩ = (|L⟩ − |R⟩)/√2 state and (b) the total cavity photon numbers, ntot(t). The double-well
spacing ϕ = π/4 (d = λ/2), and the initial state is |0, 0, L, g⟩. The scatters are numerical simulations based on the master equation for different
δ, and the dashed lines are analytical solutions according to Eq. (16). (c) The total relaxation rate, Γ = Γ+ + Γ−, in the long-time regime. The
black line is the analytical solution, Eq. (19), and the points are exponential fitting results of the numerical simulations of (×) atomic motion,
ρext(t), and (◦) photon numbers, ntot(t), respectively.

Substituting Eq. (21) to Eq. (16), one obtains the analytical solutions of the instantaneous photon numbers. For steady state,
⟨σ̂x(∞)⟩ = ⟨σ̂y(∞)⟩ = 0, and

⟨σ̂z(∞)⟩ = Γ− − Γ+
Γ

=
−4δJ

δ2 + 4J2 + κ2/4
,

ntot = n0

(
cos2 ϕ

2
+

1
1 + 4J2/(δ2 + κ2/4)

sin2 ϕ

2

)
.

(22)

In Fig. S2(a,b), we present a comparison between the analytical solutions (solid lines) and numerical simulations (points). The
double-well spacing for the simulation is ϕ = π/4 (d = λ/2), the atom is initially in the |L⟩ state, and the cavity is set to vacuum.
We evaluate the saturation dynamics of the atomic tunnelling using ρ−−ext(t) and compare it with Eq. (21). Similarly, we compare
the photon numbers, ntot(t), with the adiabatic solution given in Eq. (16). The numerical and analytical solutions initially do not
match during the short-time dynamics of the internal states when κt < 10. However, after κt > 10, the analytical solutions can
accurately describe the numerical simulations. We observe that for δ < −2J, as J increases, the relaxation of the atomic motion
slows down. Moreover, the photon numbers experience longer quasistatic plateaux before equilibrium.

In Fig. S2(c), we have fitted ρext(t) and ntot(t) with an exponential function to obtain their relaxation rates compared to Eq. (21).
We observe that the numerical results agree well with the analytical solution, and the relaxation rates of the cavity photons and
atomic motion are similar, implying that the relaxation of the photons keeps pace with the atomic motion. When δ = ±2J, Γ
attains the maximum value of (gΩ/∆)2/(2κ) sin2 ϕ

2 due to the resonant coupling between |0A,±⟩ and |1A,∓⟩ states. This process
leads to rapid relaxation, similar to the sideband cooling mechanism observed in optomechanics and ion traps. If δ , ±2J,
we expect the atom to tunnel in the double well without significant decoherence, and the light fields to adiabatically follow the
atomic motion with oscillatory chirality.
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III. Photon correlation of the steady state

As discussed in the main text, one can separate the Hilbert space into two subspaces based on their parity. For the steady state,
the density matrix can be written as (under the basis of |nS , nA,m⟩)

ρss = P+|ψ+⟩⟨ψ+| + P−|ψ−⟩⟨ψ−|,
|ψ+⟩ ≈ c00+|00+⟩ + c10+|10+⟩ + c01−|01−⟩ + c20+|20+⟩ + c11−|11−⟩ + c02+|02+⟩,
|ψ−⟩ ≈ c00−|00−⟩ + c10−|10−⟩ + c01+|01+⟩ + c20−|20−⟩ + c11+|11+⟩ + c02−|02−⟩.

(23)

In the dispersive regime, the previous calculation shows that the coefficients are approximately

P± =
1
2

(
1 ∓ 4δJ

δ2 + 4J2 + κ2/4

)
c00+ = c00− ≈ 1 c10+ = c10− ≈ Ωeff

2
cos ϕ

2

δ + iκ/2

c01− ≈ Ωeff

2
sin ϕ

2

δ − 2J + iκ/2
c01+ ≈ Ωeff

2
sin ϕ

2

δ + 2J + iκ/2
c11− ≈ c10+c01− c11+ ≈ c10−c01+

c20+ = c20− ≈
√

2
Ωeff

2
cos ϕ

2

2δ + iκ
c10+ c02+ ≈

√
2
Ωeff

2
sin ϕ

2

2δ + iκ
c01− c02− ≈

√
2
Ωeff

2
sin ϕ

2

2δ + iκ
c01+

For the photon mode â, specifically, âCW = (âS + iâA)/
√

2 and âCCW = (âS − iâA)/
√

2, the second-order correlation is

g(2)(τ) =
Tr

[
âU(τ)âρssâ†U†(τ)â†

]

Tr
[
â†âρss

]2 . (24)

The evolution propagator represented in the manifold consisting zero- and single-excitation states reads

U(τ) ≈ eiJτ
[
|00+⟩⟨00 + | + e−iδτ−κτ/2 (|10+⟩⟨10 + | + |01+⟩⟨01 + |)

]

+ e−iJτ
[
|00−⟩⟨00 − | + e−iδτ−κτ/2 (|10−⟩⟨10 − | + |01−⟩⟨01 − |)

]

− Ωeff

2
cos

ϕ

2

[
e−iδτ−κτ/2 − 1
δ + iκ/2

eiJt |10+⟩⟨00 + | + e−iδτ−κτ/2 − 1
δ + iκ/2

e−iJτ|10−⟩⟨00 − | + H.c.
]

− Ωeff

2
sin

ϕ

2

[
e−i(δ+2J)τ−κτ/2 − 1
δ − 2J + iκ/2

eiJτ|01−⟩⟨00 + | + e−i(δ−2J)τ−κτ/2 − 1
δ + 2J + iκ/2

e−iJτ|01+⟩⟨00 − | + H.c.
]
.

(25)

The correlations of the CW and CCW modes are the same, which yields

g(2)(τ) =
(
1 +

4J2

δ2 + κ2/4

) [
1 +

(
1 +

4J2

δ2 + κ2/4

)
cot2

ϕ

2

]−2 
1
2

∣∣∣∣∣∣
(δ + iκ/2)e−2iJτ − 2Je−iδτ−κτ/2

δ + 2J + iκ/2
− δ − 2J + iκ/2

δ + iκ/2
cot2

ϕ

2

∣∣∣∣∣∣
2

+

1
2

∣∣∣∣∣∣
(δ + iκ/2)e2iJτ + 2Je−iδτ−κτ/2

δ − 2J + iκ/2
− δ + 2J + iκ/2

δ + iκ/2
cot2

ϕ

2

∣∣∣∣∣∣
2

+ 4 cot2
ϕ

2
cos2 Jτ

 .
(26)

For a simple case, let δ = 0, then the correlation function reads

g(2)(τ) = 1 +
[
1 +

(
1 +

4J2

κ2/4

)
cot2

ϕ

2

]−2 (
4J2

κ2/4
e−κτ +

4J
κ/2

e−κτ/2 sin 2Jτ
)
. (27)
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