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A B S T R A C T   

The Covid-19 pandemic has extremely affected the manufacturing supply chain (SC) highlighting the need to 
deploy dynamic capabilities (DCs) such as supply chain resilience (SCRes) that enable companies to react rapidly 
and exploit intangible assets to support long-term performance. Concurrent with the needs dictated by the 
pandemic, companies are faced with rapid technological development driven by Industry 4.0. Massive amounts 
of information lead to the need for effective ‘datafication’, where information is standardized and recorded 
through technologies such as the Internet-of-Things (IoT), and processed by others like Artificial Intelligence 
(AI). In the disruptive context, companies can remain competitive by turning the crisis into an opportunity for 
innovation and improving their performance. This study thus explores the impact of datafication, represented by 
IoT and AI implementation, on manufacturing SC performance and innovativeness and investigates the role of 
SCRes. Analyzing data collected from 311 Chinese manufacturing companies reveals that datafication positively 
influences supply chain innovativeness and performance, in which SCRes plays a mediating role. The finding 
contributes to the ongoing debate on how digital technologies can help organizations improve DCs and achieve 
competitive advantage. This research also encourages companies, particularly those in developing countries, to 
take full advantage of Industry 4.0 technologies.   

1. Introduction 

The Covid-19 pandemic unleashed profound and far-reaching con-
sequences both socially and economically. Despite concerted efforts by 
governments and businesses to limit the spread of the virus, its delete-
rious effect on the economy is expected to have long-term repercussions 
(Ahmed et al., 2023; Ardolino et al., 2022a; Chatterjee et al., 2022). 
Unlike some service operations (e.g., legal services, consultancy) which 
depend mainly on the information flow, manufacturing as a process 
where the effective flow of physical materials is a prerequisite for any 
value-adding activities. The Covid-19 outbreak prompted local govern-
ments to implement strict measures, including lockdowns and closures, 
which have severely limited the availability of labor, materials, and 
consumables and led to widespread shutdowns of factories and distri-
bution facilities (Paul and Chowdhury, 2020; Pathy and Rahimian, 
2023). Moreover, the implementation of contagion-limiting practices, 
such as social distancing and remote work, has also resulted in opera-
tional challenges, work schedule adjustments, and spatial 

reorganization (Ardolino et al., 2022b). Furthermore, the Covid-19 
epidemic has significantly impacted consumption and demand trends 
and consumer behavior, challenging the planning of production pro-
cesses (Diaz-Elsayed et al., 2020). Consequently, an urgent task for the 
manufacturing supply chain is to respond quickly and appropriately to 
the change caused by the disruption and maintain performance. 

Frequent disruptions occurred in recent years have made the 
imperative to develop capabilities that enable a responsive and resilient 
manufacturing supply chain more urgent. Referred to as ’supply chain 
resilience’ (SCRes) in the supply chain management (SCM) literature, 
this capability is considered crucial for organizations to adapt to changes 
and recover from damage in a timely manner (Christopher and Peck, 
2004; Owida et al., 2022; Ribeiro and Barbosa-Povoa, 2018; de Sa et al., 
2023). The ability of manufacturing companies to implement SCRes 
strategies is vital for their survival and achievement, particularly in 
unstable environments. It ensures that they can sustain adequate per-
formance levels over short-, medium-, and long-term periods (Belhadi 
et al., 2021; Owida et al., 2022; Rahman et al., 2022). SCRes can be 
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considered a type of dynamic capability (DC) (Kähkönen et al., 2021; 
Belhadi et al., 2022a), namely an ability to integrate, build and recon-
figure the competencies to address changes (Teece et al., 1997). There 
has been much debate in literature on the crucial role of SCRes in coping 
with disruptive events such as the Covid-19 pandemic (Ozdemir et al., 
2022; Queiroz et al., 2022a; Belhadi et al., 2021; Ivanov, 2020). How-
ever, although the pandemic has strongly affected the manufacturing 
supply chain, literature concerning DCs in the wider context of the SC, in 
particular SCRes, is still scarce (Ivanov, 2021; Kähkönen et al., 2021; 
Rahman et al., 2022). 

Developing SCRes is by no means an easy task. Fortunately, indus-
trial digital solutions empowered by modern digital technologies have 
brought hope (Agrawal et al., 2020; Ivanov, 2021; Gupta et al., 2022; 
Spieske and Birkel, 2021; Ardolino et al., 2022b). Digital technologies 
are found to enhance manufacturing SCRes, improving process effi-
ciency, productivity, and worker safety (Ardolino et al., 2022b. More-
over, the use of digital technologies supported with experience and 
knowledge can improve supply chain memory to achieve resilience 
(Alvarenga et al., 2023). For example, IoT can enhance adaptability to 
changes by offering solutions that are secure, affordable, and capable of 
scaling, whereas conventional systems might hinder such flexibility and 
adjustments (Kopanaki, 2022). In addition, IoT sensors facilitate in-
ventory management, traceability (Khan et al., 2022; Kayikci et al., 
2022) and automate purchasing processes to maintain standard stock 
levels, reducing supply chain costs (Wu et al., 2020; Alsudani et al., 
2023). When physical contact is limited, digital solutions can also enable 
distant operations, process mechanization, self-regulated machine per-
formance, and a potential decrease in on-site staff in manufacturing 
operations (Ardolino et al., 2022a; Kamal, 2020). Also, Artificial Intel-
ligence (AI) techniques such as machine learning and agent-based sys-
tems are crucial in supporting SCRes due to the large amount of data 
generated across supply chains that needs to be utilized (Belhadi et al., 
2022). AI-powered image analysis can help monitor product quality and 
detect defects in manufacturing, reducing human supervision require-
ment and mitigating the risk of contagion (Di Vaio et al., 2020). More-
over, AI technologies have facilitated the development of novel methods 
in the supply chain, such as predictive analytics for risk assessment, 
machine learning algorithms to adapt to fluctuating market dynamics, 
and intelligent automation to increase efficiency, which all contribute to 
enhanced supply chain resilience (Ivanov, 2023, Zamani et al., 2022; 
Belhadi et al., 2022b). 

The power of digital solutions to support manufacturers to cope with 
crises comes from digital technologies’ ability to collect and analyze vast 
amounts of data accurately and efficiently. This process has been 
conceptualized in existing literature as “datafication,” defined as the 
process of gathering, organizing, quantifying, and analyzing informa-
tion to create knowledge and enhance economic value (Mayer- 
Schönberger and Cukier, 2013). Effective datafication is fundamental 
for the manufacturing supply chain as it supports the strategic actions of 
navigating disruptions and ensuring operational continuity (Bag et al., 
2021; Mageto, 2021). In addition, it can assist businesses to maintain the 
flow of information and resources when coping with physical distur-
bances in the SC, enabling them to react to disruptions and restore op-
erations timely (Yu et al., 2018). Despite the potential role datafication 
plays in the SC, existing literature on datafication reveals a persistent 
gap, as evidenced by Jones (2019), indicating the absence of a consistent 
and widely applicable operationalization of datafication. This limitation 
has hindered empirical advancements and impeded comprehensive 
understanding within the field (Holtzhausen, 2016). Our study aspires to 
bridge this gap by proposing an empirical operationalization of data-
fication based on its processes and functionalities of digital technologies. 
Specifically, we use the implementation of IoT (for data generation and 
collection) and AI (for data analysis and sensemaking) to represent the 
extent of datafication, which is further justified in the next section. 

The ultimately purpose of manufacturing supply chains deploying 
datafication and developing SCRes is to maintain and improve 

performance in various environmental conditions. Supply chain per-
formance (SCP) is a widely applied indicator in SCM literature to mea-
sure the overall efficiency and effectiveness of the SC during a certain 
period (Bahrami et al., 2022). SCP typically includes operational in-
dicators such as speediness, sufficiency, on time delivery, and customer 
service of the supply chain (Gu et al., 2021). Existing studies show that 
inter-organizational and intra-organizational ICT use (Zhang et al., 
2016), climate change risk (Er Kara et al., 2021) and lean six sigma 
practices (Selvaraju et al., 2019) are positively related to SCP. In fact, in 
turbulent times, organizations tend to adopt a cautious approach, 
prioritizing the preservation of their operations as measured by these 
basic aspects over investing in riskier endeavors such as exploratory 
innovations (Visser and Scheepers, 2021). However, at the same time, 
the long-lasting adverse effects of the pandemic necessitate that busi-
nesses deploy strategies for the short-, medium-, and long-term by 
embracing innovative solutions that can transform crises into value- 
creating opportunities (Hopkins, 2021). Given innovation’s impor-
tance for organizational success and the macro-economic growth (Wong 
and Ngai, 2022), our study regards both SCP and supply chain innova-
tiveness (SCI), typically measured by a SC’s ability to introduce new 
products, services and processes (Panayides and Lun, 2009), as potential 
outcomes of datafication and SCRes in the short- and long-run. 

Based on the above discussions, despite the importance of data-
fication in the SC, how it affects SCI and SCP remains less clear (Flens-
burg and Lomborg, 2021; Arunachalam et al., 2018; Kache and Seuring, 
2017). Furthermore, the scientific literature generally investigates 
SCRes as the final outcome of the application of digital technologies 
(Leoni et al., 2022; Nayal et al., 2023; Cui et al., 2023), however, the 
possibility of how enhanced SCRes capability can affect the performance 
and innovative of the manufacturing supply chain remains an under- 
investigated issue. Therefore, our study aims to address the following 
research questions (RQs): 

RQ1: How does datafication affect SCI and SCP under the circumstance 
of a major disruption? 
RQ2: What is the role of SCRes in the relationship between datafication 
and SCI and SCP? 

To shed light on these questions, we draw upon the Dynamic Capa-
bilities Theory (DCT) and the extant literature on SCM to develop a 
conceptual framework, and empirically validate it through a large-scale 
survey with Chinese manufacturing enterprises. Our study aims to offer 
novel insights to existing literature in several ways. First, based on 
existing conceptualization, our study operationalizes datafication 
empirically using two representative digital technologies for data crea-
tion and analysis, IoT and AI. This operationalization captures the 
essence of processes involved in datafication and serves as the founda-
tion for understanding the role datafication plays in supply chains in 
turbulent environments. Second, our study provides empirical evidence 
on how datafication affects the performance and innovativeness of the 
manufacturing supply chain in the context of Covid-19. More impor-
tantly, we reveal the mediating role of SCRes capability. We showcase 
that SCRes is not merely an intangible outcome of successful data-
fication, but also serves as a bridging factor between datafication and 
more tangible outcomes such as SCP and SCI. Third, our discourse is 
placed within the DCT, acknowledging that businesses operate in ever- 
changing environments that necessitate resilient strategies, under-
scored by real-world experiences during the disruptive Covid-19 
pandemic which shook global economic activities. Our results extend 
the use of DCT beyond the organizational boundary to the wider context 
of the SC. The remaining paper is organized as follows. Section 2 pre-
sents the theoretical background of the study, followed by Section 3 
where hypotheses and the conceptual model are developed. Section 4 
introduces the method, and Section 5 illustrates the results of data 
analysis. The key findings are discussed with reference to prior studies in 
Section 6. Section 7 concludes the paper by summarizing the 
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contributions and limitations of the study and opportunities for future 
research. 

2. Theoretical background 

2.1. Datafication 

Data has become a vital capital driving organizational innovations 
(Sadowski, 2019). A data-driven culture is a crucial intangible asset to 
make effective use of data for decision-making in the SC (Gupta and 
George, 2016). Indeed, decision-making quality influences the global 
performance of the SC and decision-making based on empirical evidence 
rather than instincts ensures greater opportunities for improvement of 
business performance (Awan et al., 2021). 

According to Mayer-Schönberger and Cukier (2013), datafication 
encompasses the structured processes of recording and quantifying 
different types of data for value-generating purposes, including stan-
dardization, typification, customization and optimization. It can also be 
seen as a technological process characterized by three founding aspects, 
namely, dematerialization, liquefaction and density (Lycett, 2013). 
Dematerialization emphasizes the capacity to disentangle a resource’s 
informational component and its use in context from the physical world. 
Liquification follows dematerialization, where information is readily 
manipulated to unbundle the previously physically connected resources 
and activity sets. As the result of the value generation process, density is 
the optimal combination of resources mobilized for a certain environ-
ment, at a given time and location. While dematerialization provides the 
conceptual basis for data generation and collection, liquification and 
density, enabled by analytics, is the key to exploiting the value of data 
through analysis and sense-making. The result of analytics can be 
incorporated into complex organizational decision-making processes 
and empower value-driven actions. In this way, datafication becomes a 
true sense-making process driven by information technology (Lycett, 
2013). 

To delineate the processes of datafication, this study divides them 
into two macro-processes encompassing the above-mentioned concepts: 
‘data generation and collection’ and ‘data analysis and sensemaking’. To 
carry out these two macro-processes effectively, companies strategically 
adopt various digital technologies to keep abreast of datafication for 
better decision-making (Fan et al., 2015). Based on the functionalities of 
digital technologies, our study uses two representative technologies 
proven to create a synergic system for datafication, namely: IoT for data 
generation and collection, and AI for data analysis and sensemaking 
(Tzafestas et al., 2018; Kuzlu et al., 2021; Manavalan and Jayakrishna, 
2019; Kumar et al., 2022). Fig. 1 illustrates the conceptual framework of 
the datafication process with the roles IoT and AI play, and the expected 
benefits to the implementing organization. 

2.2. Operationalization of datafication: IoT and AI 

Datafication has been well conceptualized in literature without a 
generally accepted operationalization. As mentioned above, our oper-
ationalization reflects the different processes and technologies involved 
in datafication. In fact, the use of multiple technologies in organizations 

has received much attention in the scientific literature recently, which 
has made valuable contributions to pressing issues such as sustainability 
(Lei et al., 2023; Liu et al., 2023), quality inspection (Sundaram and 
Zeid, 2023), knowledge management in the enterprises (Leoni et al., 
2022; Zhang et al., 2022), and smart farming (Alves et al., 2023). It is 
evident that IoT and AI have been widely applied for the effective 
management of data especially in the manufacturing SC (Singh et al., 
2023; Javaid et al., 2022), and it is appropriate to operationalize data-
fication using these technologies. 

The Internet of Things (IoT) is the intricate interconnection of 
sensing and actuating devices, facilitating information collecting and 
sharing across platforms via a unified framework. This fosters a cohesive 
operational paradigm and drives innovative applications. The synergy 
between systems is achieved through seamless integration of extensive 
sensing, advanced data analytics, and efficient information representa-
tion, supported by IoT tools create data by efficiently tracking and 
tracing products and shipments, providing real-time data on the location 
of goods, their storage conditions and arrival time (Katsaliaki et al., 
2021; Muñuzuri et al., 2020; Nozari and Nahr, 2022). It can also be 
applied to inventory management to enhance accuracy and reduce 
human involvement by tracking product flow via RFIDs, supply chain- 
based sensory networks and bar codes (Fan et al., 2015; Khan et al., 
2022; Fang and Chen, 2022) enhanced transparency and resilience 
(Siriwardhana et al., 2020). Recently, digital solutions for process pro-
duction and decision-making to accomplish energy efficiency, output 
optimization, and economically viable manufacturing have become a 
prominent research area. A comprehensive literature review by Tan 
et al. (2023) summarizes the current state of research on scheduling 
practices in the manufacturing industry within an IoT environment. It is 
agreed that IoT tools play a pivotal role in generating and recording big 
data, which serve as valuable input parameters for data analyzing 
technologies such as AI (Queiroz et al., 2021; Saravanan et al., 2022; Bi 
et al., 2023). 

AI is currently one of the most widely applied technologies for data- 
driven decision-making for organizations (Baryannis et al., 2019; 
Ramirez-Asis et al., 2022). Ahmed et al. (2023) emphasized the para-
mount importance of real-time tracking of SC activities through IoT as 
the primary AI-based imperative for enhancing the survivability of 
manufacturing SCs. Younis et al. (2022) conducted a systematic litera-
ture review on AI, machine learning (ML), and SCM, revealing the 
benefits of digital solutions in reducing the bullwhip effect and 
enhancing efficiency. In contexts characterized by sudden fluctuations 
in demand patterns, SCs struggle to achieve adequate service level 
agreements with customers (Modgil et al., 2022). Thanks to the pre-
diction capabilities of AI-based technologies, it is possible to make as-
sumptions about how future events might affect SC operations 
(Pournader et al., 2021; Ganesh and Kalpana, 2022; Shah et al., 2023; 
Jauhar et al., 2023). 

2.3. Supply chain innovativeness and performance 

In the digital era, innovations are intricately linked to the corporate 
social networks, which encompass diverse interactions with stake-
holders (Bhatti et al., 2022). Leveraging digital technologies, companies 

Fig. 1. Conceptual framework.  
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can gather substantial volumes of data through their own operations and 
social interactions, utilizing this information to make well-informed 
decisions regarding innovation (Bahrami et al., 2022; Chatterjee et al., 
2022; Haefner et al., 2021). In this vein, SCI is considered as “a change 
(incremental or radical) within the supply chain network, supply chain 
technology or supply chain processes (or combinations of these) that can 
take place in a company function, within a company, in an industry or a 
SC to enhance new value creation for the stakeholder” (Arlbjørn et al., 
2011, p. 8). SCI enables firms to strategically address and surpass the 
demand for enhanced competitiveness in the increasingly dynamic 
landscape, to achieve which data-driven decision-making and actions 
are crucial (Orlando et al., 2022; Feng et al., 2022; Hopkins, 2021). 

At the same time, we look at the operational performance of the 
supply chain through SCP, which encompasses the evaluation of how 
effectively and efficiently goods, materials, and information move 
through the processes within a SC, from suppliers to end customers. It 
evaluates the capacity of the SC to satisfy customer needs by ensuring 
product availability and prompt delivery (Gu et al., 2021). In the 
manufacturing SC, fluctuating market demands and growing competi-
tive pressures are growing threats to maintaining SCP that require more 
creative and effective solutions (Ozdemir et al., 2022). In this study, we 
include both SCI and SCP as potential outcomes of datafication against 
the background of a major disruption, aiming to capture the maintaining 
of existing value and new value creation mechanisms that can be 
brought by digital transformation. 

2.4. Dynamic capabilities theory 

The DCT is rooted in the criticism and extenuation of the resource- 
based view (RBV) (Barney, 1991). Scholars have argued that RBV 
cannot be applied to dynamic markets where market players are not 
always distinguishable, market boundaries are not clear and changes 
often occur (Eisenhardt and Martin, 2000). Under such circumstances, 
the DCT proposes that business organizations engage in market 
competition based on new value creation strategies developed from 
inimitable, rare, valuable, and irreplaceable resources (Teece et al., 
1997). According to the DCT, an organization is a dynamic system made 
up of resources, procedures, and activities (Gruchmann and Seuring, 
2018). To quickly respond and adapt to changes from disruptive threats, 
organizations need to create or enhance dynamic capabilities (DCs) 
through adjusting their processes and resource base (Eisenhardt and 
Martin, 2000). The micro foundations of any DC should therefore 
include sensing, seizing and reconfiguring capabilities (Teece, 2007). 
Beyond the organizational level, the SC is a complicated system where 
DCs are needed to address internal dynamics and environmental 
changes (Fan and Stevenson, 2018). Therefore, even though the DCT is 
mainly applied at the organizational level, it is well suitable for assessing 
performance of the SC (Defee and Fugate, 2010; Ponomarov and Hol-
comb, 2009). 

The emergence of Covid-19 intensifies the ever-changing environ-
ment where businesses are required to work together, combine, and 
rearrange both internal and external resources and abilities to minimize 
interruptions and disruptions (Ambulkar et al., 2015). Indeed, the DCT 
specifically emphasizes innovation and value creation (Katkalo et al., 
2010) and is particularly relevant to our research questions and context 
as value creation and innovativeness often stem from adapting to 
changes in the external environment (Teece, 2007; Ellonen et al., 2009). 
Thus, the DCT is a suitable theoretical framework to examine how SCI 
and SCP can be enhanced by DCs in volatile market environments. 

2.5. Supply chain resilience as a dynamic capability 

SCRes is considered a form of DC and the DCT is increasingly 
embraced as the theoretical foundation of SCRes-related studies due to 
its power to help organizations cope with unavoidable risk factors, react 
to unexpected SC disruptions (Dubey et al., 2020; Ruel and El Baz, 2021; 

Silva et al., 2023; Belhadi et al., 2022a; Rahman et al., 2022; Brusset and 
Teller, 2017; Zamani et al., 2022), and cushion impacts from various 
sources(Ozdemir et al., 2022; Orlando et al., 2022). 

The concept of resilience capability was first introduced by Lengnick- 
Hall et al. (2011), which explained how the capability equips an orga-
nization to react to destabilizing incidents that may pose a risk to its 
continued existence. In the supply chain context, SCRes, defined as 
capability of a system to return to its initial state or transition to a novel 
and more desirable state after being influenced by an external event, 
empowers businesses to identify risks proactively prior to unforeseen 
occurrences and cope with changes effectively (Christopher and Peck, 
2004; Wieland and Durach, 2021). Chowdhury and Quaddus (2017) 
formulated a three-tiered SCRes framework based on the DCT, including 
supply chain design quality along with proactive and reactive abilities. 
SCRes focuses on the prompt foresight of risks, suitable gathering and 
utilization of resources, and the rearrangement of SC assets during 
emergencies. This capability aids in preserving a competitive edge and 
stable performance standards in an unpredictable setting, which builds 
on the micro foundations of DCs (Zhao et al., 2023). 

The adoption of DCT as a theoretical basis to ground the performance 
implication of SCRes is quite diffused in scientific literature. For 
instance, Zhao et al. (2023) formulated a theoretical structure that 
demonstrates how supply chain digitalization promotes SCRes, subse-
quently impacting SCP, based on the DCT. Hamidu et al. (2023) adopted 
the same approach to investigate the effects of supply chain disruption 
on SCRes and SCP. Therefore, DCT is an appropriate lens through which 
the antecedents and outcomes of SCRes are examined. 

3. Hypothesis development 

3.1. Datafication and SCI and SCP 

Based on the above, datafication is operationalized based on pro-
cesses of data generation and collection, and data analysis and sense-
making, using two representative technologies, IoT and AI. Datafication 
provides massive amounts of data resources and data-driven insights, 
which are crucial for innovativeness and performance of the 
manufacturing SC (Mention et al., 2019). As Harapko (2021) points out, 
as a sector heavily disrupted by the Covid-19 pandemic, the future of the 
manufacturing SC lies in digitalization. Specifically, IoT is capable of 
real-time monitoring in the SC (Weber, 2009), which enables real-time 
data capture and resolve information gaps that could cause mis-
alignments in manufacturing SCs (Ping et al., 2018). The real-time data 
gathered through IoT technologies help track SC processes, improve the 
collaboration and coordination among resources (Mishra et al., 2016). 
Rich data and a sharing environment serve as an important condition for 
the manufacturing SC to identify problems swiftly and develop novel 
solutions (Ben-Daya et al., 2019). 

On the other hand, IoT implementation can improve SC visibility and 
predictive ability through efficiently capturing real-time data, which is 
recognized by most manufacturers to be the priority for the post-Covid 
period (Harapko, 2021). IoT enables the monitoring of goods and the 
assessment of crucial metrics throughout the entire SC which improves 
the operations efficiency and risk management strategies (Birkel and 
Hartmann, 2020; Lee et al., 2022; Haghnegahdar et al., 2022). It has 
been demonstrated that data generated through IoT can provide un-
precedented visibility across the entire SC, enabling early detection and 
response to both internal and external issues. For instance, Yuvaraj and 
Sangeetha (2016) integrated RFID with GPS technology to enable 
remote tracking and monitoring of goods. In addition, Hu et al. (2023) 
proposed an intelligent vaccine SC management system that in-
corporates IoT, machine learning and blockchain to achieve real-time 
monitoring of vaccine status. Furthermore, Mantravadi et al. (2023) 
proposed a framework for smart factory capabilities, based on Industrial 
Internet of Things (IIoT) connected manufacturing execution systems 
(MES) to enhance flexibility in manufacturing SCs. Based on the 
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confirmed and proposed role IoT can play in the manufacturing SC, we 
propose that: 

H1: IoT positively affects SCI. 
H2: IoT positively affects SCP. 

AI is another facet of datafication, which has been extensively 
adopted by manufacturers driven by the rapidly growing amount of data 
and its complexity (Sharma et al., 2022). AI technologies can better 
manage data flows in the SC (Baryannis et al., 2019) and help gain 
augmented knowledge from the external environment (Dubey et al., 
2021). Moayedikia et al (2020) implemented AI in simulation modelling 
to improve decision-making through advanced perception of system 
behaviors. Furthermore, AI facilitated administrators to identify and 
anticipate disruptions that influence system operations and supported 
with system restoration in a more data-driven and responsive manner 
(Abedinnia et al., 2017; Sharma et al., 2022; Dey et al., 2023). There-
fore, the adoption of AI-based technologies has the potential to accel-
erate decision-making by facilitating the development of new solutions 
(Wamba et al., 2020; Bhargava et al., 2022). Manufacturing SCs with 
integrated AI applications are in a better position to innovate due to the 
knowledge advantage AI technologies can offer (Modgil et al., 2022). 

At the same time, AI encompasses numerous adaptive and self- 
learning techniques, which can deal with multiple data resources and 
provide the SC with the capability to be self-adaptive and more agile 
(Modgil et al., 2022; Baryannis et al., 2019). The utilization of AI in 
decision-making for SC optimization can be categorized into optimiza-
tion algorithms, expert decision systems, planning and scheduling 
methods, as well as simulation techniques (Pournader et al., 2021; 
Belhadi et al., 2022a). These techniques have been demonstrated to 
address various operational and SC optimization challenges (Kehayov 
et al., 2022; Moayedikia et al., 2020; Saghaei et al., 2020). Therefore, 
when faced with disruptions, SCs with higher AI adoption tend to be less 
affected and more likely to maintain the overall performance as they 
already have mitigation strategies in place enabled by accurate and 
timely sensemaking of data (Dubey et al., 2021; Leoni et al., 2022). 
Thus, we hypothesize that: 

H3: AI positively affects SCI. 
H4: AI positively affects SCP. 

3.2. The mediating role of SCRes 

In addition to the direct effect on SCI and SCP, datafication tech-
nologies are expected to have intangible benefits in the form of an 
important SC DC, SCRes. According to the DCT, DCs are the real source 
of organizational competitive advantage, and they can be built through 
effective organizational learning (Bingham et al., 2015; Ambrosini and 

Bowman, 2009; Ambrosini et al., 2009, which is increasingly enabled by 
digital tools (Mention et al., 2019; Warner and Wäger, 2019). In this 
research, SCRes is considered as a DC that helps the SC effectively 
adapting, responding, and recovering from disruptions, and improving 
financial and market performance (Yang and Hsu, 2018). IoT and AI 
have the potential to support SCRes through enhancing flexibility and 
responsiveness of the SC to mitigate disruptions. The information pro-
vided by IoT provides the condition for data-driven decision-making 
(Mishra et al., 2016), allowing the improvement of flexibility, adap-
tivity, agility and responsiveness of the SC to cope with market uncer-
tainty (Winkelhaus and Grosse, 2020). As AI makes it easier for the SC to 
identify areas of disruption (Wamba et al., 2020), quick and effective 
actions can be taken and SCRes strengthened as a result. In summary, 
datafication can help firms improve their SC visibility, strengthen the 
ability of short-term predictions, and devise better control mechanisms 
and adaptive systems through collecting and making sense of big data, 
leading to stronger SCRes capability (Ralston and Blackhurst, 2020). 

With the support of strong SCRes, when confronted with un-
certainties and disruptions, organizations and SCs have extra capacity to 
engage in exploratory activities such as innovations. Innovation is a 
quest into the unknown, and it involves taking risks, searching, probing, 
and re-probing of opportunities, which requires strong resource 
commitment (Hopkins, 2021). Innovation in the SC cannot be exempt 
from the involvement of digital technologies capable of bringing im-
provements, as well as innovativeness in products, processes and ser-
vices to customers capable of increasing customer satisfaction (Seo et al., 
2014). Therefore, SCRes encourages information exchange, knowledge 
sharing, and provides financial foundation and a supporting climate for 
innovation. 

Literature also shows that SCRes plays a fundamental role in 
reducing contingencies and maintaining SCP (Yu et al., 2019; Belhadi 
et al., 2021; Harapko, 2021). Pettit et al. (2010) argue that SCRes has a 
positive effect on the competitiveness and financial performance of 
manufacturing firms. Furthermore, SCRes has been found to improve the 
level of customer service of manufacturers (Srinivasan and Swink, 
2018). According to Scholten et al. (2020), a resilient SC ensures agility, 
responsiveness, and visibility with respect to changing customer needs 
to maintain high performance. Therefore, the literature trend highlights 
the positive effect of SCRes on SCI and SCP, and we can assume that: 

H5: SCRes mediates the relationship between a) IoT and SCI, b) IoT 
and SCP, c) AI and SCI, and d) AI and SCP. 

Fig. 2 illustrates the conceptual model and hypotheses. 

Fig. 2. Research model and hypotheses.  
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4. Method 

4.1. Context and data collection 

To validate the proposed research model, a survey-based quantita-
tive approach was employed. The Chinese manufacturing sector was 
targeted for three main reasons. Firstly, China is known as the world 
factory, whose manufacturing sector accounted for nearly one third of 
the world manufacturing output, according to pre-pandemic statistics 
(The World Bank, 2021). During the Covid-19 pandemic, while the 
sector was affected by shrinking external demand, sub-sectors such as 
healthcare manufacturing continued to operate at full capacity and be 
the world’s biggest PPE supplier (Bradsher, 2020). Given its scale and 
contribution to the world economy and welfare, the sustainable devel-
opment of the Chinese manufacturing sector requires more attention 
from academic researchers and practitioners. Secondly, the sector is 
currently undergoing digital transformation, where successful data-
fication serves as the basis (Fernández-Rovira et al., 2021). From a 
broader perspective, the national economy is projected to upgrade 
through integrating the digital economy and the real industry (Li et al., 
2022). However, the process is still at its infancy, and most manufac-
turers, especially small and micro ones, still lack a clear understanding 
and plan regarding how digitalization goals can be achieved (Eloot, 
2018). Therefore, our study provides timely guidance on how manu-
facturers can realise successful datafication. Thirdly, the Chinese 
manufacturing sector has long been known for low cost, and this 
competitive advantage is not sustainable and being lost to countries 
where cost of labour and materials is even lower (Bai, 2022). Therefore, 
urgent industrial upgrade enabled by innovation is needed. While the 
increased uncertainty and the associated stress and anxiety during tur-
bulent times often forces organizations to be safe and cautious and re-
duces their motivations to innovate (Visser and Scheepers, 2021), our 
study focuses on SCI as an important way that can change the current 
geopolitical situation where countries fight for a shrinking pie and 
power new growth (Yang et al., 2020). Due to these reasons, the Chinese 
manufacturing sector serves as an optimal context for our study. 

A web survey was adopted to collect data. Web surveys, compared to 
traditional paper-based surveys, offer a wide range of advantages to 
both researchers and respondents, including cost- and time-efficiency, as 
well as avoiding interviewer bias as the need for manual transfer of data 
is eliminated (Couper, 2000; Dillman et al., 2014). We surveys are also 
advantageous in terms of avoiding missing values in responses when all 
questions are set as compulsory. Data collection commenced in August 
2021, through collaboration with a reputable Chinese consultancy firm 
known for its extensive industrial resources. We limited respondents to 
Operations, Supply chain, or IT managers from a random sample of 
1,235 manufacturing companies across mainland China. Initially, an 
invitation letter was sent to these companies, explaining purpose of this 
study. Within 10 weeks, with two reminders, 820 manufacturing com-
panies responded positively, indicating their interest in participating in 
the survey. Subsequently, emails containing the link to the survey and 
clear instructions were sent to these 820 companies. After an additional 
eight weeks, with another two polite reminders, 311 valid responses 
were obtained from the manufacturing firms, giving us a response rate of 

Table 1 
construct measures.  

Construct and measurement 
items 

Factor 
loading 

VIF Source 

Artificial intelligence (AI) (Cronbach’s α = 0.845, AVE = 0.617, CR = 0.890) 
AI1-We possess the infrastructure 

and skilled resources to apply AI 
information processing systems.  

0.816  1.899 Belhadi et al., (2021) 

AI2-We use AI techniques to 
forecast and predict 
environmental behaviour.  

0.746  1.585 

AI3-We develop statistical, self- 
learning, and prediction using AI 
techniques.  

0.803  1.879 

AI4-We use AI techniques at all 
levels of the supply chain.  

0.772  1.689 

AI5-We use AI outcomes in a 
shared way to inform supply 
chain decision-making.  

0.790  1.790 

Internet of Things (IoT) (Cronbach’s α = 0.838, AVE = 0.607, CR = 0.885) 
IoT1-We use automatic capture 

technology to monitor and track 
supply chain processes.  

0.789  1.758 De Vass et al., (2018) 

IoT2- We apply sensors and collect 
data on supply chain activities, 
processes, and their impact on 
the environment.  

0.754  1.620 

IoT3-We use the IoT to help 
remotely monitor supply chain 
processes.  

0.783  1.791 

IoT4-We use real-time information 
to optimize supply chain 
processes.  

0.804  1.806 

IoT5-We leverage IoT big data 
analytics to make strategic and 
tactical decisions.  

0.762  1.637 

Supply chain resilience (SCRes) (Cronbach’s α = 0.775, AVE = 0.598, CR = 0.856) 
SCRes1- Our firm’s supply chain 

can quickly return to its original 
state after being disrupted.  

0.763  1.514 Wong et al., (2020); 
Gölgeci and 
Kuivalainen (2020) 

SCRes2- Our firm’s supply chain 
has the ability to maintain a 
desired level of connectedness 
among its members at the time of 
disruption.  

0.729  1.385 

SCRes3- Our firm’s supply chain 
has the ability to maintain a 
desired level of control over 
structure and function at the 
time of disruption.  

0.821  1.720 

SCRes4- Our firm’s supply chain 
has the knowledge to recover 
from disruptions and unexpected 
events.  

0.776  1.517 

Supply chain innovativeness (SCI) (Cronbach’s α = 0.819, AVE = 0.580, CR =
0.874) 

SCI1- We frequently try out new 
ideas in the supply chain 
context.  

0.803  1.827 Panayides and Lun, 
(2009) 

SCI2- We seek out new ways to do 
things in our supply chain.  

0.768  1.700 

SCI3- We are creative in the 
methods of operation in the 
supply chain.  

0.752  1.559 

SCI4- We often introduce new 
ways of servicing the supply 
chain.  

0.758  1.593 

SCI5- Our new process 
introduction in the supply chain 
has increased over the last 5 
years.  

0.726  1.523 

Supply chain performance (SCP) (Cronbach’s α = 0.782, AVE = 0.604, CR =
0.859) 

SCP1- We are satisfied with the 
speediness of the supply chain 
process.  

0.804  1.669 Gu et al., (2021)  

Table 1 (continued ) 

Construct and measurement 
items 

Factor 
loading 

VIF Source 

SCP2- Based on our knowledge of 
the supply chain process, we 
think that it is efficient.  

0.759  1.528 

SCP3- Our supply chain has an 
outstanding on-time delivery 
record.  

0.785  1.521 

SCP4- Our supply chain provides 
high-level customer services.  

0.759  1.476  
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38 %, which is considered acceptable (Dillman et al., 2014). Due to the 
use of web survey where all questions were set compulsory, there was no 
missing data in the returned responses as the respondent would not be 
able to submit the response if they left any question unanswered. 

4.2. Survey instrument 

The survey instrument was developed based on well-established 
measurement scales from existing literature. The implementation of AI 
technology was measured by 5 items adapted from Belhadi et al. (2021), 
including the infrastructure and skills of applying AI, the use of AI for 
forecasting environmental changes, the development of statistical, self- 
learning for AI implementation, the application of AI across the SC, and 
the use of AI in shared decision-making in the SC. Another dimension of 
datafication, IoT implementation, was measure based on De Vass et al. 
(2018). Questions covered the use of automatic capture technology in 
the SC; the use of sensors for data collection in the SC; the use of IoT to 
monitor SC processes remotely; the use of real-time information for SC 
process optimization; and the use of IoT big data analytics in decision- 
making. Items measuring SCRes were adapted from Wong et al. 
(2020), including the SC’s ability to rapidly move back to the original 
state of operations after being disrupted, the level of connectedness 
among SC members during disruptions, the level of control over SC 
structure during disruptions, and the SC’s knowledge to recover from 
unexpected events. To measure SCI, 5 items were developed based on 
Panayides and Lun (2009), capturing the extent to which the firm’s SC 
introduces new products, develops new ways of doing things, establishes 
new methods of operations, pilots new ways of servicing, as well as how 
new introductions have increased in the past 5 years. Lastly, SCP was 
measured using 4 items from Gu et al. (2021), including the SC’s 
speediness, sufficiency, on time delivery, and customer service. A 5- 
point Likert scale was applied to all questions where 1 indicates 

strongly disagree and 5 strongly agree. 
Two factors, company size (employee number) and age (total num-

ber of operating years), were included as control variables. As literature 
suggests, older and bigger businesses tend to enjoy extra resources than 
their smaller and younger counterparts (Gu et al., 2021), and are 
therefore more capable of investing in datafication and achieve higher 
performance. Therefore, the potential effect of both factors was 
controlled. Table 1 presents all constructs and their measurement items. 

4.3. Common method bias (CMB) and non-response bias (NRB) 

The unit of analysis in this study is the manufacturing organization. 
Considering that data collection was done through a single informant in 
every analytical entity, we conducted both procedural and statistical 
remedies to prevent and deal with the issue of CMB (Podsakoff et al., 
2003). Ahead of the survey, a team of academics and experts (eight in 
total) was invited to review the content of the questionnaire and slight 
adjustments were made to ensure precise and accurate expression of 
items (Hair et al., 2014). Their suggestions were incorporated into the 
final survey. This allowed for clarification of some questions and items. 
In addition, as data collection took place in China, three multilingual 
academics back-translated the survey to confirm that the initial English 
version and the issued version in Chinese were identical in meaning. 
Regarding statistical remedies, we performed Harman’s single factor 
test, the most commonly employed method of checking for CMB (Pod-
sakoff et al., 2003). An un-rotated EFA was run with every eigenvalue- 
containing variable higher than 1. Results showed a total of 4 compo-
nents, with the first one accounting for 37.380 % of the overall variation, 
lower than the 50 % variance threshold (Podsakoff et al., 2003). 
Therefore, CMB has limited effect on our study. 

To verify whether NRB existed, we compared late and early re-
spondents on firm characteristics to see whether they differed signifi-
cantly (Armstrong and Overton, 1977). Paired t-test was conducted for 
key demographic variables. The comparison between the initial 50 re-
ported responses and the concluding 50 revealed p values of 0.558 for 
company location, 0.349 for firm age, 0.084 and 0.162 for firm size 
(measured by employee number and annual turnover respectively), and 
0.290 for ownership type. The results indicate no significant difference 
between early and late responses across the assessed demographic fac-
tors. Therefore, NRB does not present a severe threat to the reliability 
and generalizability of the outcomes of our research. 

4.4. Data analysis 

Partial least squares-structural equation modelling (PLS-SEM) was 
carried out to analyse the survey data and test the research hypotheses. 
In particular, the complex interrelationships between variables have 
been scrutinized using the software SmartPLS 3.0. According to Hair 
et al. (2014), exploratory models that seek to build theory instead of 
assessing existing theories are recommended to use PLS-SEM. Although 
our research model is supported by a well-established theory, the DCT, 
this study is still largely explorative as both antecedents (i.e., data-
fication) and outcomes (i.e., SCI and SCP) of a key DC (i.e., SCRes) are 
included, and this combination has not been validated in prior studies. 
Therefore, the use of PLS-SEM is considered appropriate for our study. 
We followed the general two-step procedure of PLS-SEM: 1) assessment 
of the measurement model, and 2) assessment of the structural model 
(Hair et al., 2019). 

5. Results 

5.1. Preliminary analysis 

Preliminary analysis of the data shows that our sample is well rep-
resented. As can be seen in Table 2, the sample covers various 
manufacturing subsectors, and distributes across different size, age and 

Table 2 
summary of sample demographics.  

Manufacturing sub-sectors Frequency Percentage (%) 

Dedicated and general-purpose equipment 35 11.25 
Chemical raw materials and chemical products 16 5.14 
Construction materials and furniture 28 9.00 
Rubber and plastic products 9 2.89 
Electronic and electrical equipment 70 22.51 
Textile and apparel 25 8.04 
Metal products, machinery and equipment 83 26.69 
Food, tobacco, alcohol and beverages 22 7.07 
Pharmaceutical products 16 5.14 
Others 7 2.25 
Company age Frequency Percentage (%) 
>20 years 61 19.61 
16–20 years 68 21.86 
11–15 years 72 23.15 
6–10 years 80 25.72 
1–5 years 30 9.65 
Company size (No. of employees) Frequency Percentage (%) 
>3000 48 15.43 
2001–3000 24 7.72 
1001–2000 32 10.29 
301–1000 133 42.77 
21–300 72 23.15 
<20 2 0.06 
Company size (Annual turnover million CNY) Frequency Percentage (%) 
>300 71 22.83 
100–300 56 18.01 
50–100 88 28.30 
10–50 65 20.90 
5–10 24 7.72 
<5 7 2.25 
Ownership Frequency Percentage (%) 
State-owned 66 21.22 
Private 173 55.63 
Foreign 16 5.14 
Joint venture 56 18.01  
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ownership groups. This provides a good basis for the subsequent data 
analysis. 

5.2. Measurement model assessment 

According to Hair et al. (2019), indicator loadings should be checked 
as the initial phase of reflective measurement model assessment. All 
assessment variables’ standardized factor loadings, as shown in Table 2, 
are higher than 0.708, which means that the item explains more than 50 
% of the indicator’s variance and provides satisfactory item reliability. 
Following this, constructs’ internal consistency and dependability were 
evaluated. As shown in Table 2, all composite reliability (CR) values are 
between 0.8 and 0.9, and Cronbach’s α coefficients are above the sug-
gested threshold of 0.7, indicating strong construct internal consistency 
and reliability. 

The convergent validity of constructs was examined as the third step 
of the measurement model assessment. As Table 2 shows, the average 
variance extracted (AVE) values of all constructs are higher than the 
threshold of 0.5, indicating acceptable convergent validity. Discrimi-
nant validity, or how a construct is empirically different from other 
constructs in the structural model, was assessed as the last step using the 

Fornell-Larcker criterion and the heterotrait-monotrait (HTMT) ratio 
(Fornell and Larcker, 1981; Hair et al., 2019), displayed in Tables 3 and 
4. As each construct’s AVE value is larger than its squared correlations 
with other constructs, the Fornell-Larcker criterion is fully fulfilled. 
Moreover, all HTMT values are under the suggested level of 0.9, indi-
cating that constructs in the model are not conceptually similar. In sum, 
the assessment of the measurement model generated satisfactory results, 
providing a solid foundation for the structural model assessment. 

5.3. Structural model assessment 

We utilized AMOS software for a comprehensive model analysis. The 
fitness values obtained from various indices (RMSEA = 0.04, RMR =
0.06, GFI = 0.92, AGFI = 0.90, NFI = 0.90, CFI = 0.97) consistently 
reside within the recommended acceptable ranges (Kline, 2023; Mac-
Callum et al., 1996; Tabachnick et al., 2013; West et al., 2012; Dia-
mantopoulos and Siguaw, 2000). This alignment underscores the 
model’s congruence with the survey data and its commendable fitness. 

Before testing the structural relationships, it is also important to 
check for collinearity and make sure it does not affect the regression 
results. As all VIF values are less than 3 (Table 2), multicollinearity is not 
a serious concern. The structural model was then assessed through the 

Table 3 
Fornell-Larcker criterion results.   

AI IoT SCI SCP SCRes 

AI  0.786     
IoT  0.562  0.779    
SCI  0.559  0.564  0.762   
SCP  0.604  0.604  0.642  0.777  
SCRes  0.541  0.568  0.560  0.654  0.773  

Table 4 
HTMT results.   

AI IoT SCI SCP SCRes 

AI      
IoT  0.668     
SCI  0.668  0.680    
SCP  0.742  0.742  0.802   
SCRes  0.667  0.704  0.7  0.838   

Table 5 
results of direct effects.  

Structural path β t-value p-value f2 Remarks 

H1  IoT SCI  0.369  4.655  0.000  0.158 Supported 
H2  IoT SCP  0.387  4.434  0.000  0.193 Supported 
H3  AI SCI  0.353  5.374  0.000  0.145 Supported 
H4  AI SCP  0.387  5.404  0.000  0.192 Supported 
AGE SCI  0.006  0.114  0.910  0.000  
AGE SCP  0.002  0.033  0.973  0.000  
SIZE SCI  0.087  1.480  0.139  0.008  
SIZE SCP  0.018  0.327  0.744  0.000   

Fig. 3. Structural model results for direct effects (*p < 0.05, **p < 0.01, ***p < 0.001).  

Table 6 
results of mediation effects.  

Structural path β t-value p-value Remarks 

H5a IoT → SCRes → SCI  0.101  3.285  0.001 Supported 
H5b IoT → SCRes → SCP  0.144  3.610  0.000 Supported 
H5c AI → SCRes → SCI  0.085  2.645  0.008 Supported 
H5d AI → SCRes → SCP  0.121  3.329  0.001 Supported  

Table 7 
Summary of direct, indirect and total effects.   

SCRes SCI SCP 

IoT    
Total effect 0.386*** 

(4.485) 
0.367*** 
(4.582) 

0.387*** 
(4.461) 

Direct effect 0.386 
(4.485) 

0.266*** 
(3.295) 

0.243** 
(2.867) 

Indirect effect – 0.101*** 
(3.285) 

0.144*** 
(3.610) 

AI    
Total effect 0.324*** 

(3.792) 
0.355*** 
(5.563) 

0.387*** 
(5.437) 

Direct effect 0.324*** 
(3.792) 

0.270*** 
(4.905) 

0.267*** 
(4.303) 

Indirect effect – 0.085** 
(2.645) 

0.121*** 
(3.329) 

SCRes    
Total effect  0.261*** 

(4.148) 
0.372*** 
(5.968) 

Direct effect  0.261*** 
(4.148) 

0.372*** 
(4.148) 

Indirect effect – – –  
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coefficient of determination (R2), the blindfolding-based cross-validated 
redundancy measure Q2, and the statistical significance and relevance of 
the path coefficients (Hair et al., 2019). R2 is a measurement of the 
model’s explanatory performance (Rigdon, 2012), and values of 0.75, 
0.50, and 0.25 show significant, medium, and low levels of in-sample 

predictive power (Henseler et al., 2009). In our study, the R2 values 
for SCI, SCP, and SCRes are 0.446, 0.550, and 0.394, showing the 
model’s middling explanatory ability. 

The Q2 value, a measure of the predictive accuracy of PLS route 
modelling, incorporates elements of out-of-sample prediction and in- 
sample explanatory power, with values greater than 0, 0.25, and 0.50 
indicating the model’s low, medium, and high predictive relevance 
(Hair et al., 2019). The Q2 values for SCI, SCP, and SCRes, respectively, 
are 0.250, 0.321, and 0.230, showing medium to high degrees of pre-
dictive accuracy. 

We conducted a bias-corrected and accelerated (BCa) bootstrapping 
algorithm with 311 cases and 5,000 subsamples to test the proposed 
effects. Results of the direct effects, as presented in Table 5 and Fig. 3, 
reveal no significant effect of the control variables (age and size) on the 
dependent variables, SCI and SCP. The regression coefficients (β) and 
associated t-values and p-values for both control variables show no 
statistical significance. These findings indicate that variations in age and 
company size do not influence the observed relationships between the 

Fig. 4. Structural model results for mediation (*p < 0.05, **p < 0.01, ***p < 0.001).  

Table I 
Evaluation of nonlinear effects.   

Original sample (O) Sample mean (M) Standard deviation (STDEV) T statistics P value Ramsey’s RESET 

QE (AI) -> SCP  0.015  0.018  0.045  0.328  0.743 F (2, 305) = 0.163, P = 0.849 
QE (IoT) -> SCP  0.044  0.046  0.049  0.892  0.373 
QE (SCRes) -> SCP  0.007  0.005  0.045  0.148  0.883 
QE (AI) -> SCI  0.035  0.036  0.046  0.758  0.448 
QE (IoT) -> SCI  − 0.008  − 0.008  0.041  0.206  0.837 F (2, 305) = 0.628, P = 0.534 
QE (SCRes) -> SCI  0.035  0.031  0.048  0.737  0.461 
QE (AI) -> SCRes  0.036  0.041  0.047  0.768  0.443 
QE (IoT) -> SCRes  0.021  0.023  0.039  0.542  0.588  

Table II 
Evaluation of unobserved heterogeneity through FIMIX-PLS.  

Criteria Number of segments  

1 2 3 4 5 

AIC (Akaike’s information criterion) 2081.306  1884.04  1853.386  1820.17  1792.21 
AIC3 (modified AIC with Factor 3) 2092.306  1907.04  1888.386  1867.17  1851.21 
AIC4 (modified AIC with Factor 4) 2103.306  1930.04  1923.386  1914.17  1910.21 
BIC (Bayesian information criterion) 2122.443  1970.055  1984.279  1995.94  2012.858 
CAIC (consistent AIC) 2133.443  1993.055  2019.279  2042.94  2071.858 
HQ (Hannan-Quinn criterion) 2097.749  1918.422  1905.706  1890.428  1880.406 
MDL5 (minimum description length with factor 5) 2374.994  2498.116  2787.85  3075.021  3367.449 
LnL (LogLikelihood) − 1029.653  − 919.02  − 891.693  − 863.085  ¡837.105 
EN (normed entropy statistic) 0  0.557  0.505  0.507  0.584 
NFI (non-fuzzy index) 0  0.631  0.504  0.487  0.535 
NEC (normalized entropy criterion) 0  137.823  153.801  153.392  129.405  

Table III 
Evaluation of Endogeneity Bias via Durbin and Wu-Hausman Tests.  

Relationship Durban and Wu-Hausman Conclusion 

IoT- SCI 0.3709n.s No bias present 
IoT-SCP 0.9323n.s No bias present 
IoT-SCRes 0.6686n.s No bias present 
AI- SCI 0.2346n.s No bias present 
AI-SCP 0.7991n.s No bias present 
AI-SCRes 0.8765n.s No bias present 
SCRes- SCI 0.3614n.s No bias present 
SCRes-SCP 0.9953n.s No bias present 

Note(s): n.s = not significant. 
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variables. As to the main effects, it is evident that the implementation of 
IoT is positively related to SCI (β = 0.369, t = 4.655, p = 0.000) and SCP 
(β = 0.387, t = 4.434, p = 0.000), supporting H1 and H2. In terms of AI, 
results suggest that it positively relates to both SCI (β = 0.353, t = 5.374, 
p = 0.000) and SCP (β = 0.387, t = 5.404, p = 0.000), and H3 and H4 are 
also supported. 

Results for the mediation effect assessment are presented in Table 6, 
Table 7 and Fig. 4. As shown, IoT (β = 0.386, t = 4.485, p = 0.000) and 
AI (β = 0.324, t = 3.792, p = 0.000) are positively related to SCRes with 
high significance. Meanwhile, SCRes positively relates to SCI (β = 0.261, 
t = 4.148, p = 0.000) and SCP (β = 0.372, t = 5.968, p = 0.000). The 
direct effects of IoT and AI on SCI and SCP remain significant after the 
mediator was added. The indirect path coefficients for IoT-SCRes-SCI 
and IoT-SCRes-SCP are 0.101 (t = 3.285, p = 0.001) and 0.144 (t =
3.610, p = 0.000), indicating that SCRes partially mediates the effect of 
IoT implementation on SCI and SCP. Meanwhile, the indirect path co-
efficients for AI-SCRes-SCI and AI-SCRes-SCP are 0.085 (t = 2.645, p =
0.008) and 0.121 (t = 3.329, p = 0.001), demonstrating a partial 
mediating role of SCRes in AI-SCI and AI-SCP links. In sum, H5a, b, c, 
d are all supported. 

5.4. Robustness test 

We followed Sarstedt et al., (2020) for structural model robustness 
checks. First, we checked if the model contains non-linear relationships 
through adding quadratic effects in the PLS-SEM model and Ramsey’s 
regression specification error test (RESET) (Wooldridge, 2016). The 
outcomes of this analysis, as illustrated in Table I in Appendix A, 
strongly endorse a linear association among variables in our model as all 
p values exceeding 0.05. 

We then checked if unobserved heterogeneity is present and affects 
the robustness of our result using the finite mixture PLS (FIMIX-PLS) 
approach, adhering to the multi-method framework by Sarstedt et al. 
(2017). According to Table II in Appendix A, Akaike’s information cri-
terion modified with factor 3 (AIC3) suggests a five-segment solution, 
while the consistent Akaike’s information criterion (CAIC) favors a two- 
segment solution. Additionally, modified AIC with factor 4 (AIC4) and 
Bayesian information criteria (BIC) propose alternative segment solu-
tions. Collectively, these analyses lack a definitive consensus on a spe-
cific segmentation solution, indicating that unobserved heterogeneity 
does not pose a threat to the reliability of our results. 

Potential endogeneity, stemming from the structural error correla-
tion between endogenous variables, can introduce bias to the structural 
model result (Queiroz et al., 2022a). To assess and address this, we 
conducted the Durban and Wu-Hausman test before evaluating the 
structural model, as per precedents in literature (e.g., de Sousa Jabbour 
et al., 2022). Finding no evidence of endogeneity, we further addressed 
this concern in the PLS-SEM model using the Gaussian copulas approach 
(Park and Gupta, 2012). Following Hult et al.’s (2018) guidance, we 
verified the non-normal distribution of endogenous variables (AI, IoT 
and SCRes) through Kolmogorov-Smirnov and Shapiro-Wilk tests (Sar-
stedt and Mooi, 2014), revealing non-normal distribution across all 
variables. Subsequently, bootstrapping analysis, as recommended by 
Hult et al. (2018), yielded no statistically significant copula terms. 
Therefore, we can conclude that endogeneity is not a significant concern 
in our study. Detailed results of these tests are presented in Table III and 
Table IV in Appendix A. 

Table IV 
Results of the Gaussian Copula Approach.    

Original sample 
(O) 

Sample mean 
(M) 

Standard 
deviation 

T statistics P values 

Gaussian copula of model 1 (endogenous variables; AI) GC (AI) -> SCP  0.094  0.101  0.159  0.593  0.553 
GC (AI) -> SCI  0.163  0.155  0.163  0.996  0.319 
GC (AI) -> SCRes  0.223  0.222  0.181  1.23  0.219 

Gaussian copula of model 2 (endogenous variables; IoT) GC (IoT) -> SCP  0.132  0.125  0.149  0.881  0.378 
GC (IoT) -> SCI  − 0.011  − 0.015  0.139  0.081  0.936 
GC (IoT) -> SCRes  0.091  0.087  0.14  0.655  0.512 

Gaussian copula of model 3 (endogenous variables; SCRes) GC (SCRes) ->
SCP  

− 0.012  0.027  0.248  0.048  0.961 

GC (SCRes) -> SCI  0.21  0.208  0.258  0.812  0.417 
Gaussian copula of model 4 (endogenous variables; AI, IoT) GC (AI) -> SCI  0.211  0.203  0.164  1.29  0.197 

GC (AI) -> SCP  0.025  0.042  0.159  0.156  0.876 
GC (AI) -> SCRes  0.214  0.214  0.195  1.1  0.271 
GC (IoT) -> SCI  − 0.086  − 0.087  0.139  0.615  0.539 
GC (IoT) -> SCP  0.123  0.11  0.154  0.797  0.426 
GC (IoT) -> SCRes  0.015  0.015  0.155  0.099  0.921 

Gaussian copula of model 5 (endogenous variables; AI, SCRes) GC (AI) -> SCI  0.114  0.1  0.141  0.803  0.422 
GC (AI) -> SCP  0.121  0.105  0.146  0.826  0.409 
GC (AI) -> SCRes  0.223  0.222  0.181  1.23  0.219 
GC (SCRes) -> SCI  0.147  0.159  0.251  0.584  0.559 
GC (SCRes) ->
SCP  

− 0.079  − 0.025  0.246  0.32  0.749 

Gaussian copula of model 6 (endogenous variables; IOT, SCRES) GC (SCRes) -> SCI  0.278  0.285  0.275  1.012  0.312 
GC (SCRes) ->
SCP  

− 0.141  − 0.074  0.266  0.531  0.595 

GC (IoT) -> SCI  − 0.09  − 0.1  0.141  0.638  0.523 
GC (IoT) -> SCP  0.172  0.142  0.156  1.101  0.271 
GC (IoT) -> SCRes  0.091  0.087  0.14  0.655  0.512 

Gaussian copula of model 7 (endogenous variables; AI, IOT, 
SCRES) 

GC (IoT) -> SCI  − 0.131  − 0.139  0.149  0.878  0.38 
GC (IoT) -> SCP  0.157  0.127  0.163  0.964  0.335 
GC (IoT) -> SCRes  0.015  0.015  0.155  0.099  0.921 
GC (SCRes) -> SCI  0.218  0.236  0.266  0.817  0.414 
GC (SCRes) ->
SCP  

− 0.164  − 0.091  0.262  0.626  0.531 

GC (AI) -> SCI  0.164  0.152  0.15  1.093  0.274 
GC (AI) -> SCP  0.06  0.058  0.148  0.407  0.684 
GC (AI) -> SCRes  0.214  0.214  0.195  1.1  0.271  
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6. Discussion 

6.1. Direct effect of datafication on SCI and SCP 

With increasing recognition of the importance of data, datafication, 
which refers to the process of transforming something into data, is 
considered a crucial element in successful digital transformation (Mejias 
and Couldry, 2019; Sadowski, 2019). Especially in more competitive 
and uncertain times, digital technology-supported collection and anal-
ysis of big data plays a crucial role in organizational and supply chain 
level decision-making (Fernández-Rovira et al., 2021). Result of our 
study confirms the positive effect datafication, as represented by the use 
of two digital technologies, IoT and AI, on the innovativeness and per-
formance of the manufacturing SC during a major disruption. IoT tools, 
such as RFID, foster innovation in sourcing by monitoring inventory and 
consumption levels and enabling real-time decision-making on pricing 
and inventory management strategies (Fan et al., 2015; Li and Li, 2017), 
which is particularly useful in case of sudden changes in the market. IoT 
platforms, the main application of Logistics 4.0, increases visibility and 
reduces error based on inventory inaccuracies (Winkelhaus and Grosse, 
2020). During the pandemic, this has particularly helped the 
manufacturing sector, especially the vaccine or medicine cold chain 
logistics (Halim et al., 2021). Our study therefore reinforces that SCI can 
only be achieved with timely and meaningful access to data and with an 
interconnection between sensing and actuating devices in platforms that 
allow data sharing by providing a common view, precisely what the IoT 
provides (Kalaitzi and Tsolakis, 2022). 

The acquisition and management of heterogeneous information 
provided by the IoT improves communications and cooperation across 
the manufacturing SC and confers greater trust between actors, leading 
to improved overall performance (Feng et al., 2022). Considering on- 
time delivery and customer satisfaction as performance, Tsang et al. 
(2021) proposes an IoT-based system architecture that collects real-time 
information including location and environmental monitoring. The data 
is processed with genetic algorithms to determine the quasi-optimal 
vehicle routing solutions to cope with accidents and unforeseen events 
during delivery and maintain the desired level of customer satisfaction. 
Therefore, in extremely uncertain environments such as the pandemic, 
IoT technologies can help maintain SC operations through data-driven 
decision-making. 

AI, another facet of datafication, is also found to contribute to SCI 
and SCP in our study. Haefner et al. (2021) show that AI systems can 
develop and generate innovative ideas. These systems can identify and 
evaluate information that can be channeled into the development of 
ideas and can then evaluate and select different creative or exploratory 
ideas. Likewise, they can identify and compare different problems or 
opportunities for new ideas generation. According to Dwivedi et al. 
(2021), AI overcomes some computational and creative limitations of 
humans, opening up new fields of application. Their study also reports 
data on the expected AI-driven innovation boost, namely the creation of 
133 million new jobs globally by 2022 and contributing 20 % of China’s 
GDP by 2030. Our study adds to this stream of literature by proving 
empirical evidence on how AI’s adoption in the organization offers 
wider benefits in terms of SCI. 

Our finding also supports the widely agreed view that AI improves 
performance and enables multi-period planning that considers produc-
tion and inventory levels, shipping methods and times, and customer 
service. For example, AI helps to analyze real-time data from the SC to 
identify bottlenecks and mitigate potential risks (Ye et al., 2022). It 
helps companies to monitor the status of their suppliers during Covid-19 
and act in case of problems by selecting alternative suppliers that can 
ensure stability in the delivery of raw materials, so as not to jeopardize 
their performance towards the end customer. Also, the AI research 
stream focusing on the last mile delivery is growing rapidly since it is 
highly affected by the Covid-19 disruptive changes (Srinivas and Mar-
athe, 2021). AI can provide supporting tools, including optimized 

vehicle routing which calculates the most optimal delivery route, and 
data mining through predictive intelligence algorithms (Jucha, 2021). 

6.2. The mediating role of SCRes 

While discussing the positive effect of datafication on the innova-
tiveness and performance of the supply chain, the mechanism through 
which this is realized is worth noting. Our study finds that the improved 
dynamic capability of SCRes, serves as one of the underlying factors 
through which firms materialize the desired benefits of datafication. The 
result is consistent with existing studies such as Gani and Rahman 
(2022) which demonstrates a mediating role of SCRes in the supply 
chain capabilities -sustainable SCP link. 

A manufacturing firm adopting IoT and AI tools is able to manage 
and transform the various and numerous collected data into useful 
knowledge to deal with disruptions (Dolgui and Ivanov, 2020), which 
can circulate within the SC and strengthen SCRes. Effective datafication 
can enhance SC mapping by increasing SC visibility and resilience 
(Fertier et al., 2021; Oliveira-Dias et al., 2022). Furthermore, digital 
technologies such as AI, big data, and IoT can enable powerful predictive 
capabilities for developing platforms that guarantee high levels of 
automation in decision-making (Calatayud et al., 2018). For example, 
IoT deployment can help managing issues related to both overstock and 
stockouts in sectors such as the food SC (Njomane and Telukdarie, 
2022). That helps the development and deployment of digital solutions 
to enable flexible decisions to empower agile logistics and SCRes for 
smart production (Fertier et al., 2021). 

During the pandemic, firms are driven to engage in datafication and 
digital transformation to improve their SCRes and maintain operational 
performance (Belhadi et al., 2021). IoT and AI are crucial to identify 
potential areas of disruption, as effective datafication enables companies 
to collect and process information more efficiently, thus facilitating the 
orchestration of resources and processing of information and improving 
real-time coordination of SC processes (Xu et al., 2021). Datafication 
represents the technological base on which firms build SCRes, an 
indispensable capability in times of crisis (Ruel and El Baz, 2021; Fertier 
et al., 2021). 

SCRes enables companies to minimize the negative effects of dis-
ruptions, maintain business continuity, optimize resource use, and 
ensure delivery to customers without hindrance or excessive delays 
(Ambulkar et al., 2016; Queiroz et al., 2022b). In this respect, Liu et al. 
(2018) highlight the positive financial results deriving from the 
exploitation of SCRes, thanks to more quickly and effective responses to 
disruptions in comparison with competitors, higher market share, and 
enhanced goodwill and profitability. Consequently, SCRes has shown a 
direct positive impact on SCP by ensuring consistent service and stock 
availability and improving the ability to face various external threats 
(Liu and Lee, 2018; Liu et al., 2018). Moreover, SCRes enables better 
predictions concerning operational vulnerability with the consequent 
improvement of SCP (Chowdhury and Quaddus, 2017). 

7. Conclusions 

7.1. Theoretical contribution 

Our study makes two significant contributions to the literature. First, 
our study is among the earliest to operationalize the concept of data-
fication empirically. Flensburg and Lomborg (2021), through analyzing 
the state-of-the-art of datafication studies, point out the lack of quanti-
tative approaches. This is partially attributed to the lack of an agreed 
operationalization of datafication. Through an in-depth understanding 
of the macro-processes involved in datafication, we summarize them 
into data generation and collection, as well as data analysis and sense-
making. Based on the functionalities of digital technologies and the way 
they work around data, IoT and AI are selected to represent these two 
processes. Our approach to operationalizing datafication will inspire 
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future attempts for the same, and more importantly, pave the way for 
more empirical studies in the field and advance knowledge development 
on datafication and digital transformation. In addition, our study pro-
vides quantitative empirical evidence on how datafication can improve 
innovativeness and performance of the manufacturing SC against dis-
ruptions through nurturing an important DC, SCRes. 

In the context of datafication, our study then extends the DCT beyond 
the organizational boundary to the SC context. Researchers consider DCs 
as the cluster of capabilities which enable organizations to adjust their 
resource base to respond to environmental changes more effectively 
(Teece et al., 1997). Additionally, DCs enable a firm to use its resources 
to reconfigure its operational abilities and generate new capabilities, 
which provide a strategic advantage over other industry players (Beske 
et al., 2014). Coupling SCM and the DCT, our study proposes SCRes as a 
form of SC DC, and this combination broadens the theoretical conno-
tation of each other. In particular, the study’s exploration into the in-
fluence of SCRes on the interconnectedness between datafication and 
SCP and SCI has revealed novel insights within DCT and its application 
in SCM studies. Far from being simply an end result of successful data-
fication, SCRes emerges as a pivotal bridging factor that unites data-
fication with SCI and SCP. Our findings underscore the importance of 
SCRes in enhancing the synergy between data-driven technologies and 
strategic manufacturing processes, thereby opening new avenues for 
innovation and efficiency in the industry. 

7.2. Managerial implications 

This research also offers significant managerial implications for the 
manufacturing SC. According to a recent survey targeting at senior 
manufacturing supply chain executives by Ernst & Young, 72 % of 
manufacturers have been negatively impacted by the pandemic (Har-
apko, 2021). Recognizing the need for a more efficient, visible, resilient 
and sustainable manufacturing SC in the future, manufacturers have 
reached a consensus to develop a SC that is digital and autonomous. 
Consistent with this survey, our study highlights the critical managerial 
actions required to leverage digital technologies effectively and address 
the challenges arising from dynamic environments. First, our study 
emphasizes the strategic utilization of digital technologies for data-
fication, thereby strengthening the SCRes capability in the 
manufacturing sector. Through successful datafication, manufacturers 
can enhance the accuracy and transparency of their SCs, resulting in 
improved efficiency across the firm, supplier, distributor, and retailer 
nodes. The availability and precise analysis of data facilitate rapid 
responsiveness to disruptions. To achieve this, managers of 
manufacturing SCs are strongly encouraged to adopt understand the 
importance of data in their operations and select appropriate digital 
tools such as IoT and AI to harness big data. 

Second, new digital technologies, on the one hand, represent a huge 
opportunity for manufacturers to develop competitive advantages and 
improve efficiency, while on the other, require significant time and 
financial efforts in their implementation. Our research unveils the 
tangible and intangible benefits arising from datafication; however, it is 
also important to acknowledge the inherent risks, such as data breaches 
and security infringements, that may result from mismanagement. In 
addition, digitalization among manufacturing subsectors and between 
the upstream and downstream SC differs significantly, and is found 
particularly challenging for SMEs (Li, 2022). Therefore, we encourage 
manufacturing enterprises to develop skills (e.g., human resources, 
mindset change) for datafication and digital transformation, and nurture 
capabilities during the process for better outcomes. 

7.3. Limitations and future research 

Despite significant theoretical and practical contributions, our study 
has certain limitations. Specifically, we only considered two represen-
tative digital technologies, IoT and AI, to operationalize datafication 

based the macro-processes involved and these two technologies’ 
demonstrated ability to synergize and form a cohesive datafication 
system. As explained earlier, IoT represents data generation and 
collection, and AI processes the big data and makes sense of it for de-
cision making. However, Industry 4.0 is distinguished by swift techno-
logical progress. This surge in innovation has enabled manufacturers to 
access a plethora of digital technologies, including but not limited to 
cloud computing, blockchain, digital twins, additive manufacturing, 
virtual reality, and more. These technologies are intricately intertwined 
with the utilization of vast amounts of data in various different opera-
tional capacities. Therefore, future studies are encouraged to show a 
deeper understanding of datafication and the macro-processes, espe-
cially with respect to the context (e.g., manufacturing), and use different 
technologies to operationalize it. Furthermore, our research is limited to 
the manufacturing sector of a single country. To enhance the general-
izability of findings, further work should expand the research setting to 
encompass multiple countries and industries. 
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