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Here we demonstrate that tensor network techniques — originally devised for the analysis of
quantum many-body problems — are well suited for the detailed study of rare event statistics
in kinetically constrained models (KCMs). As concrete examples we consider the Fredrickson-
Andersen and East models, two paradigmatic KCMs relevant to the modelling of glasses. We show
how variational matrix product states allow to numerically approximate — systematically and with
high accuracy — the leading eigenstates of the tilted dynamical generators which encode the large
deviation statistics of the dynamics. Via this approach we can study system sizes beyond what
is possible with other methods, allowing us to characterise in detail the finite size scaling of the
trajectory-space phase transition of these models, the behaviour of spectral gaps, and the spatial
structure and “entanglement” properties of dynamical phases. We discuss the broader implications
of our results.

Introduction.– Dynamics equipped with local kinetic
constraints provides a general mechanism for slow coop-
erative relaxation [1–4]. Kinetically constrained models
(KCMs) — of which the Fredrickson-Andersen (FA) [2]
and East [3] facilitated spin models are the simplest ex-
ponents — give many insights into the nature of glass
forming systems, in particular by showing that systems
with simple thermodynamics can have rich, spatially fluc-
tuating and slow dynamics [5]. (For reviews on the glass
transition see [6–8], and on KCMs see [9–11].) Beyond
glasses, classical KCMs (and related deterministic models
[12–16]) are relevant to the problem of operator spread-
ing in quantum systems [17–24] and to non-equilibrium
dynamics of ensembles of Rydberg atoms [25–27], while
quantum KCMs provide a template for complex non-
equilibrium dynamics under unitary evolution in the ab-
sence of disorder [28–31].

To characterise dynamics it is natural to study ensem-
bles of stochastic trajectories, just like one does in equi-
librium statistical mechanics with ensembles of configu-
rations. For long-times one can then apply the meth-
ods of dynamical large deviations (LDs) [32] to compute
quantities that play the role of thermodynamic potentials
for the dynamics. For the case of KCMs such “thermo-
dynamics of trajectories” [33] reveals the existence of a
first-order phase transition in the space of trajectories
between active and inactive dynamical phases, indicative
of a singular change in atypical dynamical fluctuations
[34, 35]. Many other systems have been now shown to
have similar LD transitions, see e.g. [36–45].

The standard way of accessing LD statistics of a dy-
namical observable is by computing its scaled cumu-
lant generating function (SCGF) — see below for defi-
nitions — from the largest eigenvalue of an appropriate

deformation, or tilting, of the generator of the dynamics
[11, 32, 36]. Except for the handful of non-trivial cases in
which it can be calculated exactly [16, 37], obtaining the
SCGF by diagonalising the tilted generator is only pos-
sible for small system sizes. To access the LD behaviour
for larger sizes one has to resort to numerical methods
for sampling rare trajectories based on splitting/cloning,
importance sampling or optimal control [38, 46–52].

Here we show how to use variational matrix product
states (MPS) to compute numerically with high accuracy
(and precise control on errors) the SCGFs and the lead-
ing eigenstates of tilted generators by exploiting their
similarity to quantum Hamiltonians, for larger systems
than those accessible with other methods. We study in
detail the FA and East models, focusing on the finite size
scaling of their active-inactive phase transitions and the
spatial structure of the dynamical phases. While in cer-
tain special cases MPS can be used to obtain exact LD
statistics, such as in simple exclusion processes [53–57],
hard core brownian particles [58], and certain cellular
automata [16], the systematic application of numerical
MPS methods to stochastic lattice systems has been lim-
ited [59]. Our results for KCMs — together with the re-
cent ones [60] for simple exclusion processes — show the
potential of numerical tensor network methods for the
detailed study of fluctuations in stochastic dynamics.

FA and East models.– The FA [2] and East [3] models
are defined in terms of binary variables, {ni = 0, 1}Ni=1,
on the sites of a one dimensional lattice of size N , with
single-spin flip dynamics subject to a kinetic constraint
such that a spin can flip up (with rate c) or down (with
rate 1 − c) only if either nearest neighbour is in the up
state (FA model) or only if the leftmost nearest neighbour
is in the up state (East model). The generators for the
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FIG. 1: Finite size scaling of trajectory transition in the East model. (a) SCGF θ(s)/N as a function of s
at c = 0.2 for system sizes N = 20 to 200, showing the (extrapolated) crossing of the first two eigenvalues of −Hs.
The dotted line corresponds to linear response, and the dot-dashed lines to the asymptotic values θ(s→∞) = −c.
(b) Dynamical susceptibilities, χ(s) = θ′′(s), exhibit a peak at sc(N) that gets sharper with N . For s > sc(N) we

find an almost universal behavior χ ∝ s−γ with γ ≈ 1.4. (c) sc(N) as a function of N for N ∈ [20, 400] and various
equilibrium concentrations c. The data is compatible with limN→∞ sc(N)→ 0, but sc appears to scale as

sc(N) ∝ N−α with α > 1 (full lines are power-law fits; for comparison we also show fits to a/N + b/N2, dashed). (d)
The scaling exponents α (blue diamonds) and fitting parameters b/a (red squares) as a function of c. The departure

from 1/N scaling (dotted-dashed) appears to be more pronounced the lower the c is. (e) Rate functions ϕ(k) for
N ∈ [20, 200] at c = 0.5 (left) and c = 0.05 (right). Dashed lines correspond to Poisson distributions with average

〈k〉 = −θ′(0)/N . For the analogous results for the FA model see [61].

corresponding continuous time Markov chains are [9–11]

WFA,East =
∑
i

CFA,East
i

[
cσ+
i + (1− c)σ−i

−c(1− ni)− (1− c)ni] , (1)

where σ±i flips the site i up/down, and CFAi = ni−1+ni+1

or CEast
i = ni−1 are the kinetic constraints for the FA

and East models. The master equation is ∂t|P 〉 = W |P 〉,
where |P 〉 is the probability vector over configurations.

We consider open boundary conditions, which corre-
sponds to setting n0 = nN+1 = 0 in Eq. (1). This
is computationally convenient for the MPS method we
use and does not affect the physics we study (see discus-
sion in [61]). Due to the kinetic constraints configuration
space can be disconnected, and we consider the dynamics
within the largest ergodic component: the set of all con-
figurations with at least one up site for the FA, and all
the configurations with fixed n1 = 1 for the East model.

The above dynamics has stationary distribution |Peq〉
given by a projection of the product state |c〉⊗N , where
|c〉 = (1 − c)|0〉 + c|1〉, into the relevant ergodic compo-
nent,

|PFA
eq 〉 = [|c〉⊗N − (1− c)N |0〉⊗N ]/[1− (1− c)N ], (2)

|PEast
eq 〉 = |1〉 ⊗ |c〉⊗N−1, (3)

corresponding to the equilibrium distribution with en-
ergy E =

∑
i ni at inverse temperature ln(1− c)/c.

Dynamical LDs and tilted generators.– As tra-
jectory observable we consider the dynamical activity
[34, 36, 62, 63], given by the total number of configuration

changes K(ωt) (i.e., number of spin flips) in a trajectory
ωt of time extent t. For large t, its probabilityobeys a
LD principle, Pt(K) = 〈δ[K(ωt)−K]〉 ≈ e−tϕ(K/t), where
ϕ(x) is the LD rate function [32]. The corresponding mo-
ment generating function ZT (s) = 〈e−sK(ωt)〉 also obeys
a LD principle, ZT (s) ≈ etθ(s), where θ(s) is the scaled
cumulant generating function (SCGF), whose derivatives
at s = 0 give the cumulants of K (scaled by t) [32].
The LD functions are connected by a Legendre trans-
form, θ(s) = −mink [sk + ϕ(k)] [32] and play the role of
thermodynamic potentials for trajectories.

The SCGF can be obtained from the largest eigen-
value of a tilted generator, Ws [32]. For the case of the
dynamical activity, the tilt corresponds to multiplying
the off-diagonal terms of W by a factor e−s [34, 36].
Since the dynamics obeys detailed balance, the gener-
ators can be made Hermitian by a similarity transfor-
mation which is independent of s [35]. That is, if we
define Hs = −Q−1WsQ, where Q is a diagonal matrix
with elements 〈n|Q|n〉 = (1 − c)N/2[c/(1 − c)]

∑
i ni/2 in

the configuration basis {|n〉}, we get

HFA,East
s = −

∑
i

CFA,East
i (4)

×
[
e−s
√
c(1− c)σxi − c(1− ni)− (1− c)ni

]
.

The SCGF therefore corresponds to (minus) the ground
state energy of Hs, θ(s) = −EGS(s).

The relation between the ground state |Φs0〉 of the
tilted Hamiltonian, Hs|Φs0〉 = EGS(s)|Φs0〉, and the left
〈Ls| and right |Rs〉 leading eigenvectors of the tilted gen-
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FIG. 2: Structure of active phase. (a) Mean density 〈n〉s for s < 0 in the East model for c = 0.05 (shown as
function of −ν = es − 1). The plateau structure of the density is evident as compared to c = 0.5 in the inset. (b)
Same for the FA model, where the plateaus are absent. (c) Density profile of the ground state of Hs at ν = 0.081
(s = −0.0845) for the East model at c = 0.05 for sizes N = 20 (top) and 100 (bottom). (d) Density profiles across
the active phase of the East model for N = 20. (e) Extreme limit of the active phase, s→ −∞, in the East model.

On the left we show the rescaled θ̃(s = −∞)/N := esθ(s = −∞)/[N
√
c(1− c)] (black circles), 〈n〉s=−∞ (blue

squares) and 〈nx〉s=−∞ (green diamonds) for N ∈ [20, 400]. The lines are fits to a/N + b to extract the values in the
thermodynamic limit: limN→∞ θ(s = −∞)/N, 〈nx〉s=−∞, 〈n〉s=−∞ = 0.67, 0.82, 0.75. The right panels shows that

the density profile at s = −∞ is uniform, up to boundaries.

erator, Ws|Rs〉 = θ(s)|Rs〉, 〈Ls|Ws = 〈Ls|θ(s), is

|Φs0〉 =
∑
n

√
ln(s)rn(s) |n〉 (5)

where ln(s) = 〈Ls|n〉 and rn(s) = 〈n|Rs〉. The aim now
is to compute EGS(s) and |Φs0〉 for Eq. (4).

Variational MPS method.– For a lattice of N d-
dimensional quantum systems, a MPS [64] is a vector

|Ψ〉 =
∑d
i1,...iN=1 tr

(
Ai11 A

i2
2 . . . A

iN
N

)
|i1i2 . . . iN 〉, where

ik labels a local basis of the k−th subsystem, and each
Ak is a rank-3 tensor of dimensions d×D×D [65]. Such
a state is described by O(dND2) parameters. The bond
dimension D limits the entanglement of the state: in
an MPS of bond dimension D, for any subchain A, the
entanglement entropy (defined as SE = −TrAρA log ρA,
where ρA = TrN\A|Ψ〉〈Ψ| [66]) is upper-bounded by
SE ≤ 2 logD, independent of the subchain length.
Namely, MPS satisfy an entanglement area law [67], and
conform a hierarchy of increasingly entangled states, with
D = dN/2 sufficing to describe the whole Hilbert space.

Conversely, MPS can efficiently approximate states
that satisfy an area law [68], such as ground states of
gapped local Hamiltonians. They are the basis for nu-
merical methods like the density matrix renormalization
group algorithm [69] which can be seen as a variational
minimization of energy over MPS [70–74], by sequen-
tially optimizing a single tensor, while keeping the rest
constant, and iteratively sweeping until convergence [75].
We apply this strategy to find MPS approximations to
the ground state and first excitations of the Hamiltoni-
ans (4). In this case, d = 2 and the basis is {|n〉}. As
we show below, MPS with D � 2N provide accurate ap-
proximations for systems sizes at an order of magnitude
larger than those accessible by other methods [76].

FIG. 3: Entanglement. (a) Half-chain entanglement
entropy SE of the ground state of Hs as a function of s
for c = 0.5, 0.1, 0.05 in the East model at N = 200. (b)
SE for s < 0 for c = 0.1 at various sizes N . The peak is
correlated with the change in shape of the spectral gap

∆E of Hs shown in (c).

Results. Finite size scaling of active-inactive tra-
jectory transition.– The key property of KCMs like the
FA and East is their first-order phase transition between
an active phase for s < 0 and inactive dynamical phase
at s > 0 [34, 35], manifested in a first-order singularity in
the SCGF in the limit of N →∞. Like for all phase tran-
sitions, to characterise the transition and its associated
fluctuations, it is necessary to understand how the singu-
larity is approached as the system size increases. Theo-
retical and numerical considerations [77–79] suggest that
for finite N the (rounded) transition occurs at sc(N) > 0
(i.e. typical dynamics, s = 0, is perturbatively connected
to the active phase), and sc(N) → 0+ as 1/N . These
predictions can be tested with our MPS method.

Figure 1(a) shows (minus) the energy density
−EGS(s)/N = θ(s)/N of the MPS solution as a function
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of s for the East model (see [61] for the corresponding
results for the FA model). The transition at sc(N) oc-
curs where the two branches cross. The leftmost branch
is linear in s and proportional to N , corresponding to the
linear response for s & 0 (grey dashed line). The right-
most branch is nonlinear, connecting the regime at s & 0
to the asymptotic θ(∞) = −c.

The corresponding susceptibility χs = θ′′(s)/N shows
a diverging peak at sc(N), see Fig. 1(b) [76]. From its
peak we can estimate the location of sc(N). We find
a departure from the expected 1/N scaling. Figure 1(c)
shows that sc(N) can be fit to a power law, sc(N) ∝ N−α
with α > 1 throughout. Figure 1(d) shows the depen-
dence of the exponent α with c (blue symbols, left axis).
The departure from 1/N in the fit becomes more pro-
nounced with decreasing c. An alternative interpretation
is that the discrepancy with 1/N scaling is due to sub-
leading corrections in 1/N . This possibility is tested in
Fig. 1(c) (dashed lines). The dependence with c of the
fitting parameters a and b is shown in Fig. 1(d) (red sym-
bols, right axis). While both explanations appear equally
plausible, the departure from 1/N in the data is evident,
and demonstrates the power of the MPS for obtaining
precise results in the vicinity of the phase transition.

The transition at sc is associated with large fluc-
tuations of the activity in the dynamics generated by
Eq. (1), manifested in a non-Gaussian activity distribu-
tion. Figure 1(e) shows the LD rate function, ϕ(K/t) =
limt→∞ t−1 logPt(K), for different systems sizes. The
broadening with N is as expected for a first order tran-
sition [34, 35]. For more details on the finite size scal-
ing analysis including comparison with the predictions of
Ref. [77] see [61].

Structure of active phase.– While both models have
similar active-inactive transitions, their active phases dif-
fer. Figures 2(a,b) show the average density of excita-

tions, 〈n〉s = N−1
∑N
i=1〈Φs0|ni|Φs0〉, in the MPS that

approximates the ground state of Hs for s < 0. In
the East model and for small c, 〈n〉s shows a series of
plateaus as s becomes more negative. These plateaus are
absent in the FA model at the same c, Fig. 2(b), and
also when the equilibrium concentration c is high, see in-
sets to Figs. 2(a,b). These detailed results from our MPS
method confirm the predictions of Ref. [80]

Figures 2(c,d) show the spatial structure of the active
phase of the East model. In Fig. 2(c) we give the density
profile at s = −0.0845 (ν = 0.081) corresponding to the
plateau in Fig. 2(a) with density 〈n〉s ≈ 1/3: the state
is anticorrelated in space, with an occupied site followed
by two nearly empty ones. This is evident in the N = 20
case, shown in the figure, while for N = 100 we also
observe a longer ranged modulation of this pattern [76].
The spatial modulation is present throughout the s < 0
phase, as shown in Fig. 2(d). The spatial structure of the
inactive state is absent in the FA model, see [61].

While the extreme inactive limit, s → ∞, of the
East model is very simple (since |Φ∞0〉 = |10 . . . 0〉), the
extreme active limit, s → −∞, is highly non-trivial.
In this limit we find that a MPS of D ∼ O(10) is
enough to obtain a very precise approximation to the
ground state over the whole range of sizes computed,
N ∈ [20, 400]. We can then extrapolate to N →∞. We
obtain, Fig. 2(e), for the limiting SCGF of the East model
limN→∞ lims→−∞ esθE(s)/[N

√
c(1− c)] ≈ 0.6687, with

densities limN→∞〈n〉−∞ ≈ 0.754 and limN→∞〈nx〉−∞ ≈
0.824 (where nx is the “transverse” magnetisation, 2nx =

1−N−1
∑N
i=1 σ

x
i ). The right panel of Fig. 2(e) shows that

the spatial modulation at negative but finite s is absent
at s → −∞ [81]. The FA model behaves in a similar
manner in this limit, see [61].

Entanglement.– The states at s 6= 0 have spatial cor-
relations absent in equilibrium (s = 0) and which varies
with s. This can be quantified via their entanglement
entropy, which together with other quantum information
measures can capture changes in dynamical behaviour
that might escape classical order parameters [82]. The
entanglement entropy is easily computed for a state in
MPS form. Figure 3(a) shows the half-chain SE of the
state |Φs0〉 as a function of s in the East model at size
N = 200. It is zero in the equilibrium state, cf. Eq. (3),
and very small in the inactive phase, where the leading
eigenvector is close to a product state of all sites empty
in the bulk. For s < 0 it shows interesting structure,
as expected from the spatial correlations of Fig. 2. In
Fig. 3(b) we notice that the maximum of SE does not
seem to scale with system size. Thus, in the language
of quantum many-body systems, the ground state ful-
fils an area law. This is also the case for other entropic
quantities [76], which justifies the accuracy of the MPS
approximation.

The peak in SE nevertheless is sensitive to changes in
the structure of the active phase. Fig. 3(c) shows the
corresponding gap between EGS(s) and the eigenvalue
of the first excited state: its s dependence changes at a
value of s located by the peak in SE . (Note also that the
gap is has no significant N dependence.) The maximum
of the entropy depends on the value of c, and we find
a larger peak for smaller values, corresponding to richer
structure in the active phase, see Fig. 3(a) and [76].

Even if the entanglement is low throughout the phase
diagram, cf. Fig. 3(a), this does not guarantee that the
variational method will easily find an MPS approxima-
tion. In fact, we find that both for the region close to the
phase transition at s = 0 and for the values of s where SE

shows a peak, cf. Fig. 3(a,b), the numerical convergence
is slower than would have been expected. We believe this
is a consequence of how the spectrum of the Hamiltonian
changes when approaching these regimes [76].

Discussion.– As we have shown here, the MPS methods
often employed in quantum many-body problems [74],
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are also well suited for the study of the dynamical gener-
ators of classical stochastic systems [12–16, 53–60]. We
focused on the LD statistics of KCMs such as the FA and
East models, and showed how variational MPS approxi-
mations allow to efficiently access system sizes which are
larger by an order of magnitude compared to previous
studies, thus providing detailed information about the
properties of the transitions in these models and the na-
ture of the dynamical phases. Note also that in contrast
to sampling methods such as cloning or TPS, our MPS
approach provides an accurate estimate of the leading
eigenvector, and thus of the full spatial statistics of the
various dynamical phases.

We foresee many other applications of tensor networks
in classical stochastic dynamics. Here we have focused
on dynamics with detailed balance, and thus with gener-
ators similar to Hermitian operators, but efficient MPS
algorithms also exist to find the “ground states” of non-
Hermitian operators [? ]. This suggest a natural ex-
tension to driven stochastic systems. Other applications
include the study of dynamical transitions that are con-
tinuous rather than first-order, and the study of systems
in dimension larger than one (for example via so-called
PEPs [? ]). More broadly, the crossover of ideas and
techniques between quantum many-body and classical
stochastics remains a fruitful area of investigation.
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[52] G. Ferré and H. Touchette, J. Stat. Phys. 172, 1525

(2018).
[53] B. Derrida and J. L. Lebowitz, Phys. Rev. Lett. 80, 209

(1998).
[54] J. de Gier and F. H. L. Essler, Phys. Rev. Lett. 107,

010602 (2011).
[55] A. Lazarescu and K. Mallick, Journal of Physics A: Math-

ematical and Theoretical 44, 315001 (2011).
[56] M. Gorissen, A. Lazarescu, K. Mallick, and C. Van-

derzande, Phys. Rev. Lett. 109, 170601 (2012).
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