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Abstract 

Selective laser amygdalohippocampotomy (SLAH) is a minimally invasive surgical treatment for medial 

temporal lobe epilepsy. Visual field deficits (VFDs) are a significant potential complication. The 

objective of this study was to determine the relationship between VFDs and potential mechanisms of 

injury to the optic radiations and lateral geniculate nucleus. We performed a retrospective cross-

sectional analysis of 3 patients (5.2%) who developed persistent VFDs after SLAH within our larger 

series (N=58), 15 healthy individuals and 10 SLAH patients without visual complications. Diffusion 

tractography was used to evaluate laser catheter penetration of the optic radiations. Using a 

complementary approach, we evaluated evidence for focal microstructural tissue damage within the 

optic radiations and lateral geniculate nucleus. Over-ablation and potential heat radiation were 

assessed by quantifying ablation and choroidal fissure CSF volumes as well as energy deposited during 

SLAH. SLAH treatment parameters did not distinguish VFD patients. Atypically high overlap between 

the laser catheter and optic radiations was found in 1 / 3 VFD patients, and was accompanied by focal 

reductions in fractional anisotropy where the catheter entered the lateral occipital white matter. 

Surprisingly, lateral geniculate tissue diffusivity was abnormal following, but also preceding, SLAH in 

patients who subsequently developed a VFD (all p ≤ 0.005). In our series, vision-related complications 

following SLAH, which appear to occur less frequently than following open temporal lobe surgery, 

were not directly explained by SLAH treatment parameters. Instead, our data suggest that variations 

in lateral geniculate structure may influence susceptibility to indirect heat injury from trans-occipital 

SLAH. 
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1. Introduction 

Selective laser amygdalohippocampotomy (SLAH) is a recently developed minimally invasive surgical 

approach for the treatment of drug resistant temporal lobe epilepsy (TLE). SLAH aims to achieve 

ablation of epileptogenic structures within the medial temporal lobe (MTL) while reducing secondary 

damage to overlying cortical and white matter structures incurred during traditional “open” resection 

[1]. Emerging data indicate lower rates of decline in naming, object/face recognition and verbal 

memory following SLAH compared to open resections [2-6] (reviewed in [7]). 

Visual field deficits (VFDs) are a common complication of TLE surgery. After open resections, 

including anterior temporal lobectomy and selective amygdalo-hippocampectomy, measurable VFDs 

occur in approximately 75% of patients [8]. Incidence rates vary from 48-83% after classical anterior 

temporal lobectomy to 49-53% following selective approaches [8,9]. Post-operative inflammation and 

edema may contribute in the first few weeks following surgery [10]. However, persistent VFDs 

following open resections have historically been attributed to direct surgical damage to the anterior-

most fibers of the optic radiations (“Meyer’s loop”) [11]. Such damage commonly leads to a 

contralateral superior, frequently homonymous, subtotal-to-total quadrantanopia. Estimates of the 

anatomical course of Meyer’s loop, based on diffusion-weighted MRI tractography, have shown high 

accuracy in predicting surgical risks to the optic radiations in individual patients [12]. Intra-operative 

visualisation of tractography-derived optic radiation fibers, furthermore, substantially reduces the 

incidence of VFDs following open surgery [13]. 

In contrast, during SLAH an optical fiber is inserted into the hippocampus and amygdala by 

means of a narrow (1.6 mm) diameter catheter, commonly via a trans-occipital approach [14,15]. 

Consequently, no surgical access corridor is created through inferolateral temporal tissue, avoiding 

resection or retraction of ventral optic radiation fibers in the anterior temporal lobe. In several early 

series, approximately 11% of patients nonetheless experience VFDs following SLAH (range: 4.8 – 20%) 

[1,14-19]. 
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Multiple mechanisms for VFDs have been proposed. It has been speculated that injury to the 

lateral geniculate nucleus (LGN) might arise directly through catheter misplacement [14,17], or 

indirectly by thermal injury [17]  or cytotoxic edema [17,19] associated with the laser catheter route 

and power utilised. A second proposed mechanism is transection or ablation of the posterior optic 

radiations by the laser catheter [18]. Evidence that SLAH induces long-lasting disruption of optic 

radiation white matter microstructure, however, is currently lacking, while damage sufficient to affect 

vision is thought unlikely based on the small diameter of the catheter [20]. Finally, VFDs may reflect a 

combination of direct and thermal injury, including to anterior optic radiation fibres overlying the 

postero-lateral aspect of the amygdala or lateral to the inferior temporal horn. 

Here, we investigated these hypothesized mechanisms in 3 among 58 consecutive patients 

who developed de novo visual symptoms and had >12 months follow-up after SLAH. We acquired 

longitudinal pre-, intra- and post-operative imaging data in VFD patients for comparison against both 

healthy controls and SLAH patients who did not develop visual symptoms. Our aims were to determine 

whether patients who experienced VFDs after SLAH share a common mechanism of injury enabling 

procedural adaptations to minimise VFDs following SLAH. 

 

2. Materials and Methods 

2.1 Participants 

We retrospectively reviewed a cohort of 58 patients who underwent SLAH at Emory University 

Hospital between July 1, 2011 and June 30, 2016, to identify patients reporting new visual symptoms 

following treatment. We recently described the 1-year surgical outcomes of this cohort [1], among 

whom 5 visual complications were recorded. In one patient, symptoms were transient and visual fields 

normal on confrontational testing at clinical follow-up. A second patient reported inconsistent 

subjective visual complaints, but no objective deficit was found and complaints resolved by the 1-year 

follow-up. The remaining 3 patients (5.2%, Cases A-C) were recorded as having incurred an objective 

and persistent VFD. 
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 Case A had undergone a previous procedure which resulted in ablation of the right 

parahippocampal gyrus (but not the hippocampus), prior to taking part in this study [1,14]. When this 

failed to provide seizure control, a second procedure was performed to ablate the right hippocampus, 

which resulted in an unexpected near complete persistent left homonymous hemianopsia. This was 

the first patient in the study and no pre-ablation imaging data were collected. Cases B and C 

experienced a right superior quadrantanopsia after undergoing singular left SLAH procedures. In both 

cases, initial visual symptoms improved but continued over the 1-year post-operative interval. The 

degree of VFD was confirmed through Humphrey visual field assessments in Cases A and B 

(Supplementary Fig. S1). Case C did not undergo a formal neuro-ophthalmological examination. 

 A group of 15 healthy controls (HC, mean age 35.7 years, range: 18 - 54, 2 men) was included 

for normative values. Inclusion criteria were: aged 18 years and over, speaking English as their first 

language. HCs were excluded if they had a history of substance abuse or any neurological or psychiatric 

illness. 

 A second ‘surgical control’ (SC) group was included to establish typical variations in optic 

radiation parameters before and following SLAH. The SC patients had undergone the same SLAH 

procedure for medial TLE but did not self-report visual deterioration. Out of the larger group of SLAH 

patients, all those who had matched pre- and post-operative diffusion MRI data, acquired on the same 

scanner as the VFD patients, were selected for the SC group. Ten patients met these criteria (5 men, 

5 women, mean age: 42.2 years, range: 18 - 67 years). 

All patients underwent a comprehensive epilepsy evaluation by a multidisciplinary clinical 

team, which included MRI, extended video telemetry, inpatient video-EEG, 18-fluorodeoxyglucose 

positron emission tomography, neuropsychological testing, functional MRI for language and memory 

evaluation, and, where indicated, Wada testing and invasive electroencephalographic recordings. 

Patients had either radiological evidence of unilateral hippocampal atrophy or normal clinical MRI 

with MTL hypometabolism. All patients had scalp and/or invasive electroencephalographic evidence 

of seizures implicating the ipsilateral MTL. Patients who had prior open resections, additional 
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confounding pathology (e.g. head trauma, encephalitis) or MRI abnormalities other than mesial 

temporal sclerosis were excluded from the SC group. Participant data are presented in Table 1.  

 

2.2 Surgical procedure 

The SLAH procedure was performed under general anaesthesia using the VisualaseTM system 

(Medtronic, Lewiston, CO) as described previously [14]. In brief, a 1.6mm laser cooling catheter was 

implanted using either a MRI-guided trajectory frame or a standard stereotactic head frame. An 

intraoperative volumetric T1-weighted scan was acquired to confirm the accurate positioning of the 

catheter along the planned trajectory from the lateral occipital cortex through the length of the 

hippocampus at the level of the hippocampal body. Using real-time thermal maps generated on the 

VisualaseTM workstation, a 15W 980nm wavelength diode laser was used to perform a first ablation 

anteriorly. Additional ablative pulses were then delivered at 8 – 10mm intervals by retracting the optic 

fiber posteriorly along the length of the hippocampus until a complete ablation was evidenced on 

diffusion-weighted, FLAIR, and post-gadolinium contrast T1-weighted sequences. For additional 

details, see Supplementary materials.  

 

2.3 MRI acquisition 

Baseline and 1-year follow-up MRI data were acquired on a 3-Tesla Siemens Trio MRI. Diffusion MRI 

data were acquired along 64 non-colinear directions at a b-value of 1000 s/mm2 and a 2 x 2 x 2mm 

voxel size. A high resolution T1-weighted anatomical scan was acquired for co-registration of the 

diffusion data. For MRI acquisition parameters and pre-processing steps, see Supplementary 

materials. 

 

2.4 Analyses 
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We performed 5 analyses, exploring previously proposed evidence for transection of the optic 

radiations [18], thermal injury to the optic radiations [16,17], or injury to the LGN. Further technical 

details for each step are reported in the Supplementary materials. 

 

2.4.1 Optic radiations injury load 

To estimate optic radiations ‘injury load’, we reconstructed the optic radiations in each hemisphere in 

each participant through probabilistic tractography using the FMRIB Software Library (FSL). Next, the 

trajectory of the laser catheter was manually traced on the intra-operatively acquired structural image 

(Fig. 1a) available for 9 of 10 SC patients and both VFD patients with pre- and intraoperative data. For 

each patient, the laser catheter mask was registered to their pre-operative structural image to 

calculate the volume (mm3) and percentage of overlap between the catheter and the pre-SLAH 

tractography-generated optic radiations. To exclude the possibility that larger surgical volumes, 

encompassing the optic radiations, accounted for the occurrence of VFDs, the ablation zone volume 

was also manually delineated on the peri-ablation post-gadolinium contrast T1-weighted scan. The 

ablation zone was defined as all voxels showing post-contrast enhancement, including all of the 

enhancing ring but excluding choroid plexus when possible (Fig. 1a). 

 

2.4.2 Tract Based Spatial Statistics 

To test for focal disruptions within the optic radiations, we quantified fractional anisotropy (FA), 

indexing white matter tissue microstructure [21], using voxel-wise statistical analyses implemented in 

Tract Based Spatial Statistics (TBSS). Between-group comparisons of FA were performed using the 

conventional TBSS processing pipeline, and constrained to the optic radiations using masks from the 

Jülich histological atlas. In order to examine FA changes ipsilateral and contralateral to the side of 

seizure onset / SLAH, the hemispheres of patients with right TLE were flipped to standardise the 

treatment hemisphere to the left across all patients. 

 



Voets et al.   Visual field deficits following SLAH 

 8 

2.4.3 Choroidal fissure CSF volumes 

To quantify choroidal fissure CSF volume, we created a region of interest on the template MNI brain, 

using anatomical landmarks to define the temporal part of the choroidal fissure (Fig. 3). The number 

of voxels within this ROI on each individual’s structural was converted into CSF volume (mm3), 

adjusted for intracranial volume. 

 

2.4.4 LGN tissue microstructure measurements 

Potential indirect injury to the LGN was assessed by measuring microstructural diffusion parameters 

within the LGN. We used the Jülich probabilistic histology atlas to define objective LGN masks for each 

hemisphere separately (Fig. 4) and extract, in each individual, the average FA, radial diffusivity (RD, 

thought to reflect myelination) and axial diffusivity (AD, a marker of axonal integrity and / or gliosis) 

[22]. Values were averaged across the two hemispheres in healthy controls to enable comparisons of 

changes in the LGN ipsilateral vs contralateral to SLAH in patients. 

 

2.4.5 SLAH parameters 

The SLAH ablation parameters were available for 2 of 3 VFD patients and 8 of 10 SC patients. For each 

available dataset, we calculated the energy (Joules) deposited to the treated locations by multiplying 

the power (Watts) and the duration (seconds) of each ablation (Supplementary Materials). 

 

2.5 Statistical analyses 

Statistical analyses were performed using SPSS v25 (IBM®). Shapiro-Wilk tests revealed some diffusion 

and volume measurements did not meet assumptions of normality, therefore, data were Box-Cox 

transformed prior to group-level analyses. Age, total ablation volumes, optic radiation injury 

parameters and choroidal fissure CSF volumes were compared using independent samples t-tests. 

Multivariate analyses of co-variance (MANCOVAs), co-varying for age, were used to compare LGN 

diffusion variables and SLAH laser settings. Multivariate test results are reported before and after 
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Bonferroni correction for multiple comparisons. P-values ≤ 0.05 were considered statistically 

significant. 

Voxel-wise analyses of diffusion parameters within TBSS were performed through 

nonparametric permutation testing using the FSL tool ‘randomise’. Between-group comparisons (5000 

permutations) were performed using unpaired t-tests. Threshold-free cluster enhancement was used 

to identify clusters on the skeleton with p-values  0.05 (family-wise error corrected for multiple 

comparisons, FWER). 

 To assess abnormalities in each individual VFD patient, we determined whether the values in 

individual VFD patients were greater than 2 standard deviations (SD) from the mean observed in each 

control group (HC / SC). 

 

3. Results 

Age did not differ between the 3 VFD patients and the control groups (HC: t (df 16) = -1.9, p = 0.07; 

SC: t (df 11) = -0.78, p = 0.45). Ablation volumes also did not differ between SC (mean: 7204 ± 1822 

mm3) and VFD patients (mean: 6319 ± 164 mm3) (t (10) = 1.40, p = 0.19) (Table 1, Fig. 1c). 

 

3.1 Optic radiations injury load 

The volume of optic radiations intersected by laser catheter did not differ between the 2 VFD patients 

with preoperative diffusion data (mean: 16 ± 22.6 mm3) and the SC group (mean: 6.1 ± 8.0 mm3, t (9) 

= -1.18, p = 0.27). There was also no difference in the percentage of optic radiation fibres affected by 

the catheter trajectory (<1% in both groups, t (9) = 1.04, p = 0.33) (Supplementary Table S1). At the 

individual level, however, the optic radiation lesion load in Case C (32 mm3) was abnormally high 

relative to the SC group (Fig. 1d). For completeness, we ruled out overlap between the ablation zone 

and the probabilistic tractography-reconstructed optic radiations as a potential contributor to VFDs. 

No overlap was found (mean overlap in VFD patients: 0mm, mean overlap in SC: 2.4mm, range 0 – 

20mm). 
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3.2 Tract-Based Spatial Statistics 

At the group level, SC patients showed bilaterally reduced FA relative to HC throughout the optic 

radiations following SLAH (ipsilateral permutation p-value = 0.002, contralateral p = 0.004, FWER)(Fig. 

2b). The VFD patients showed focally reduced ipsilateral FA compared to HCs (p = 0.036), but did not 

differ when compared to SLAH patients without VFDs. When considered individually, one VFD patient 

(Case C) had abnormally low FA values on the operated side compared to HC and SC ranges 

(Supplementary Table S1). The abnormal values localised to the lateral occipital white matter directly 

adjacent to the trajectory along which the catheter was inserted (Fig. 2c). Examination of the pre-

surgical diffusion data confirmed that this focal disruption emerged only after SLAH. 

 

3.3 CSF volumes 

Baseline (pre-SLAH) choroidal fissure CSF volumes in the ablated hemisphere were not significantly 

different between groups (mean SC: 613.5 ± 126.9 vs. mean VFD: 606.8 ± 127, t (10) = 0.069, p = 

0.95)(Supplementary Table S2). At the individual level, the choroidal fissure CSF volumes for both VFD 

patients with available baseline data remained within normal ranges (Fig. 3). 

 

3.4 LGN diffusion parameters 

To test for LGN thermal injury, we evaluated diffusion parameters (FA, RD, AD) within the LGN as 

markers of tissue microstructure. Post-SLAH diffusion parameters differed between groups both in 

the ipsilateral LGN (F (6,46) = 17.03, p < 0.001) and the contralateral LGN (F (6,46) = 2.83, p = 0.020) 

(Table 2). Post-hoc analyses revealed reduced ipsilateral RD values in the 3 VFD patients following 

SLAH when compared to both the HC (F (1) = 18.8, p = 0.001) and SC groups (F (1) = 23.47, p = 0.001) 

(Fig. 4). Bilateral RD differences remained significant after Bonferroni-correction for comparison of 3 

diffusion parameters (all p < 0.003). 
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Because abnormalities in diffusion parameters were observed bilaterally, and are therefore 

difficult to ascribe to unilateral SLAH, we investigated if LGN diffusion parameters in the available VFD 

patients (n = 2) differed already at baseline (pre-ablation). Indeed, pre-operative LGN diffusion 

parameters showed a significant effect of group (ipsilateral: F (6,44) = 8.57, p < 0.001; contralateral F 

(6,44) = 5.68, p < 0.001). Post-hoc analyses showed that patients who would subsequently go on to 

develop a VFD following SLAH had lower RD values prior to treatment than patients who did not 

(ipsilateral, F (1) = 14.11, p = 0.005); contralateral, (F (1) = 17.96, p = 0.001); the SC group did not differ 

from HC. All baseline findings remain significant after Bonferroni-correction for 3 comparisons (all p < 

0.015). 

At the single subject level, all VFD patients had abnormally low RD values ipsilateral to SLAH 

compared to the normal ranges (Table 2). These RD abnormalities were also present at baseline in 

both cases with available pre-operative diffusion data (Cases B & C), and did not change between the 

pre and post-operative time-points in these two cases. 

 

3.5 SLAH parameters 

Finally, the amount of SLAH energy deposited as a whole or within medial temporal lobe sub-regions 

did not differ between the VFD patients (n = 2) and SC patients (n = 8) with available data (F (4,5) = 

1.74, p = 0.28)(Supplementary Table S2). The SLAH settings for individual VFD patients were among 

the lowest of all patients, contradicting the hypothesis of greater energy deposition leading to VFD 

(Supplementary Fig. S3). 

 

4. Discussion 

Cause(s) under debate as an explanation for visual field deficits following SLAH include: 1) direct 

transection of optic radiations, 2) thermal ablation of optic radiations, and 3) thermal injury to the 

LGN related to low absorptive CSF concentrations or high levels of heat energy deposited. In our series, 

neither pre-treatment choroidal fissure CSF volume nor energy delivered to the MTL distinguished 
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patients who developed a VFD following SLAH from patients who did not. Instead, one patient had 

evidence of catheter-related damage to the optic radiations. Moreover, differences in LGN diffusivity 

distinguished all 3 VFD patients from surgical controls, and were evident prior to treatment. Although 

we did not uncover one consistent causative mechanism, our findings indicate that VFDs are not 

directly explained by SLAH treatment parameters; VFDs may have multiple causes and potentially 

reflect pre-existing susceptibility factors. 

VFDs are the most frequently cited complication of surgical treatments for epilepsy, including 

SLAH [1,14,16-19]. Based on the typical postero-lateral catheter insertion trajectory, SLAH poses a 

theoretical risk of damaging the posterior optic radiations [18]. Consistent with this notion, we 

observed overlap, albeit only 2%, between the laser catheter and optic radiations in one of our three 

patients who developed a VFD. In this patient, post-treatment white matter disruption, indexed 

through FA, co-localised with the catheter’s entry point into the lateral occipital lobe white matter. 

This patient experienced a right superior quandrantanopsia, consistent with injury to the posterior 

optic radiations. In contrast, several SLAH patients showed evidence of optic radiation transection 

without developing symptomatic VFDs. Another patient developed a homonymous hemianopsia 

without detectable optic radiation injury. Consequently, persisting VFDs can occur without 

accompanying evidence for long-term optic radiation disruption after SLAH. 

Misplacement of the laser catheter has been advanced as a potential alternative mechanism 

for visual complications [16]. In one patient (Case A), the initial trajectory of the catheter was 

suspected to have penetrated the LGN. The precise location of the LGN is challenging to identify on 

standard (T1/T2-weighted) structural scans. Instead, visualising the catheter trajectory in this patient 

relative to a probabilistic atlas highlighted potential ablation at the infero-lateral border of the LGN 

(Supplementary Fig. S2). Since we did not have pre-ablation imaging for this patient, we cannot 

determine if the patient’s post-operatively abnormal LGN diffusion parameters reflect a change 

indicative of direct injury. However, the patient’s post-ablation LGN values were similar to the other 
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2 VFD patients, and no abnormalities were observed in this patient’s optic radiation FA. Consequently, 

no clear-cut cause for their homonymous hemianopsia was identified. 

Alternatively to direct injury, the proximity of the LGN to the hippocampus makes it 

susceptible to indirect injury [14,17] through over-ablation, heat radiation [16] and/or cytotoxic 

edema [23]. However, total ablation volume did not differ between our VFD patients and our 

asymptomatic SLAH group. A previous study also concluded that VFD in their case report was not likely 

the result of a larger ablation [17]. Instead, the authors proposed that smaller choroidal fissure CSF 

volumes could reduce the protective effect (‘heat sink’) of CSF around the ablated hippocampus. We 

did not identify smaller pre-SLAH choroidal fissure CSF spaces among patients who developed VFDs 

compared to patients who did not. 

In contrast, a measure of LGN tissue microstructure - radial diffusivity (RD) - was abnormal 

bilaterally and predating SLAH in patients who developed VFDs. There is a 2 to 3-fold intra-individual 

difference in the size of the optic tract, LGN, optic radiation and area of the recipient primary visual 

cortex [24]. This variation raises the possibility that diffusivity differences in VFD patients may in part 

reflect a small LGN. Given the lack of LGN contrast in T1-weighted scans, our atlas-based LGN mask - 

when applied to data of patients with small LGNs - may have included more white matter adjacent to 

the LGN, or resulted in partial sampling of the adjacent pulvinar nucleus, which is pathologically 

damaged in some patients with chronic TLE [25]. Alternatively, an intriguing though speculative 

proposal is that pre-operative differences in LGN structure may heighten susceptibility to VFDs, for 

example by amplifying the effects of heat radiation within the LGN (which, however, did not show 

diffusivity change pre-to-post SLAH in our atlas-derived masks). To verify this hypothesis, imaging 

sequences (such as proton density) optimised to the LGN are needed. Further exploration of the 

potential relationship between LGN and CSF volumes, tissue heat dissipation and behavioral 

complications across a larger group of affected patients merits further examination. 

Limitations of our study include the small sample size, reflecting the low incidence of VFDs in 

our series (3/58). Secondly, it is not standard practice to measure visual fields prior to treatment or in 
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asymptomatic patients, which might have identified pre-existing visual disturbances [26] exacerbated 

by SLAH. Finally, imaging patients 1 year following SLAH minimises over-estimation of VFDs resulting 

from transient inflammatory responses [27], but, conversely, we cannot exclude recovery of white 

matter parameters in the intervening year. Indeed, while Case A’s homonymous hemianopsia 

remained unchanged, Case B’s quadrantanopsia improved and Case C’s quadrantanopsia was 

constricting, though both persisted at 1 year. Serial longitudinal scans will be important to correlate 

white matter measures with potential symptom improvements in VFDs over time. 

 

5. Conclusion 

We performed to our knowledge the first comparison of mechanisms potentially associated with VFDs 

following SLAH. Diffusion imaging data support the possibility that direct injury to the optic radiations 

during catheter placement contributes to VFDs in some patients. This may warrant consideration of 

tractography during pre-operative planning, and the selection of trajectory may be a modifiable risk 

factor. In our cumulative experience, a hippocampal ablation trajectory that penetrates the 

hippocampal body from an inferior-to-superior path and avoids the ventricle and decreases the 

proximity of the fiber to the LGN, providing an additional margin of safety. However, additional 

mechanisms likely impact on visual outcomes after SLAH, since no measurable cause was found for 

the homonymous hemianopsia in one patient in whom the catheter may have abraded the LGN. 

Importantly, SLAH treatment parameters did not account for visual complications in our series. 

Instead, we propose that natural variability in the size of the LGN and related structures may anticipate 

visual complications following SLAH, potentially by lowering the threshold for heat injury either 

independently of, or cumulative with, other factors such as small choroidal fissure CSF volumes. 
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Fig 1. Ablation volumes and optic radiation injury load following SLAH. A. Example delineation of the 

ablation zone on the intraoperative post-gadolinium contrast scan (red mask) and laser catheter 

trajectory (yellow arrows). B. Representative patients with and without spatial overlap between the 

laser catheter trajectory (yellow) and the optic radiations (blue). The ablated zone in each patient is 

shown in red. Views are shown from the side (top) and from behind (below) to appreciate the 

trajectory of the catheter relative to the optic radiations. C. Total ablation volume was not larger in 

patients who developed a visual field deficit (VFD, n = 3) than in surgical control patients (SC, n = 9). 

The volume of intersection between the laser catheter trajectory and the pre-operative optic 

radiations was substantially greater in one VFD patient (Case C) than in SC patients (D.). 
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Fig 2. Optic tract-based voxel-wise fractional anisotropy in patients with and without visual field 

deficits. A. For Tract-Based Spatial Statistics analysis, every participant’s fractional anisotropy (FA) map 

was aligned to a standard template, from which a core white matter “skeleton” was created. B. Voxel-

wise analysis along the optic radiations identified reduced FA in all patients following selective laser 

amygdalahippocampotomy (SLAH), both with (n = 3) and without (n = 10) visual field deficits, when 

compared to healthy controls (HC, n = 15) (all p < 0.05). C. One patient (Case C) who developed a visual 

field defect showed focal FA reductions immediately adjacent to the laser catheter entry point. Other 

optic radiation voxels that overlapped with the laser catheter trajectory did not show reduced FA. 
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Fig 3. Pre-surgical choroidal fissure cerebrospinal fluid volumes. A. Cerebrospinal fluid (CSF) volumes 

in the choroidal fissure prior to selective laser amygdalohippocampotomy (SLAH) in a patient with low 

(top row) and a patient with high (bottom row) ipsilateral choroidal fissure CSF volume. B. Both 

patients (grey dots) and healthy controls (white dots) exhibited a wide range of CSF volumes. 

However, both patients who developed a visual field deficit following SLAH (red triangles) showed CSF 

volumes within the normal range. 
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Fig 4. Diffusion microstructure parameters of the lateral geniculate nucleus. Left panel (A.) Lateral 

geniculate nucleus (LGN) region of interest masks (red) from the Jülich histological atlas. Right panel 

(B.) Diffusion parameters (fractional anisotropy, radial diffusivity, axial diffusivity) were from the LGN 

in healthy controls (HC) and patients undergoing selective laser amygdalohippocampotomy (SLAH). 

SLAH patients who experienced a visual field deficit (VFD) are plotted in red triangles alongside 

patients who did not experience a VFD (grey circles). Reduced radial diffusivity differentiated VFD 

patients from surgical controls without visual symptoms (ipsilateral LGN F (1) = 23.47, p = 0.001), and 

were already present prior to SLAH. 
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Table 1. Clinical and Demographic data. 

 Age 

(years) 

Gender 

 

Age at onset 

(years) 

Duration 

of 

epilepsy 

Clinical MRI Side of 

seizure 

onset / 

SLAH 

Ablation 

volume 

(mm3) 

Patient cases 

Case 

A 

44 F 36 8 Right 

hippocampal 

signal change 

(no atrophy)  

R 6302 

Case 

B 

43 M 40 3 Left MTS L 6490 

Case 

C 

65 F 5 60 Left MTS L 6164 

Surgical controls  

N=10 42.2 ± 

17.3 

 4 M, 6 F 12.3 ± 9.6 20 ± 

19.4 

8 MTS, 1 

signal change 

(no atrophy), 

1 normal MRI 

3 R, 7 L 7203 ± 

1823 

Healthy controls  

N=15 35.7 ± 

12.4 

2 M, 13 

F 

- - Normal - - 

 

Legend. MRI: Magnetic Resonance Imaging. SLAH: Selective Laser Amygdalohippocampotomy. MTS: 

Medial temporal sclerosis. 
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Table 2. Lateral Geniculate Nucleus diffusion parameters. 

 Post-ablation Pre-ablation 

Ipsi Contra Ipsi Contra 

RD AD RD AD RD AD RD AD 

HC 0.0008 ± 

0.00007 

0.0013 ± 

0.00009 

0.0008 ± 

0.00007 

0.0013 ± 

0.00009 

0.0008 ± 

0.0007 

0.0013 

± 

0.00009 

0.0008 ± 

0.0007 

0.0013 ± 

0.00009 

SC 0.0009 ± 

0.00012 

0.0014 ± 

0.00011 

0.0009 ± 

0.00019 

0.0015 ± 

0.00016 

0.0009 ± 

0.00013 

0.0014 

± 

0.00013 

0.0008 ± 

0.00017 

0.0014 ± 

0.00014 

Case 

A 

0.00066* 0.0014 0.00054 0.00126 - - - - 

Case 

B 

0.0005* 0.0013 0.00038* 0.0014 0.00046* 0.00128 0.00041* 0.00137 

Case 

C 

0.0006* 0.0019 0.00068 0.00043 0.0006* 0.0014 0.00048 0.0015 

 

Legend. Lateral geniculate Nucleus (LGN) diffusion MRI parameters in healthy controls (HC, n = 15), 

surgical controls (SC, n = 10) and patients who developed visual symptoms following ablation (n = 3). 

Mean values and standard deviations of radial diffusivity (RD) and axial diffusivity (AD) were sampled 

from histologically-defined (Jülich atlas) masks of the LGN. Individual VFD patient values greater than 

2SD from the control groups are indicated in bold font with an asterisk. 

 


