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A new hierarchical model predictive controller for au-
tonomous vehicle steering control is presented. The con-
troller generates a path of shortest distance by determining
lateral coordinates on a longitudinal grid, while respecting
road bounds. This path is then parameterized by arc length
before being optimized to restrict the normal acceleration
values along the trajectory’s arc length. The optimized tra-
jectory is then tracked using a nonlinear model predictive
control scheme using a bicycle plant model to calculate an
optimal steering angle for the tires.

The proposed controller is evaluated in simulation dur-
ing a double-lane-change maneuver, where it generates and
tracks a reference trajectory while observing the road bound-
aries and acceleration limits. Its performance is compared to
a controller without path optimization, along with another
that uses a smooth, predetermined, reference path instead of
creating its own initial reference.

It is shown that the proposed controller improves the
tracking compared to a controller without path optimization,
with a four-times reduction in average lateral tracking error.
The average lateral acceleration is also reduced by 6%. The
controller also maintains the tracking performance of a con-
troller that uses a smooth reference path, while showing a
much greater flexibility due to its ability to create its own
initial reference path rather than having to follow a predeter-
mined trajectory.

1 Introduction
Autonomous driving technology has become an increas-

ingly popular research topic [1], in both academic and in-
dustrial environments. Efforts have primarily focused on

∗Corresponding author.

environment detection, path planning and vehicle control.
For control of the lateral response of the vehicle, research
has focused both on conventional methods of lateral con-
trol such as Active Front Steering (AFS), either as a driver
aid [2], or as an autonomous implementation, along with new
techniques made possible using additional actuators. Direct
Yaw-moment Control (DYC) [3] via either differential brak-
ing or active torque distribution to manipulate the longitudi-
nal force of individual tires, is one such example of a con-
trol technique that is able to achieve more control authority
by utilizing longitudinal tire forces, in a manner that is not
achievable by human drivers.

To successfully implement autonomous vehicle behav-
ior such as AFS, a control methodology which can handle
complex, time-varying constraints and is adaptable to vary-
ing system parameters and passenger preferences in the prob-
lem definition is required. Model Predictive Control (MPC)
is one such method [4, 5], as the use of optimization allows
constraints to be actively considered in the design of the con-
troller. MPC has many applications in automotive contexts,
see [6] for examples. It has been shown to be effective at
controlling Multi-Agent Systems [7], highlighting its utility
in autonomous driving, where a fleet of vehicles communi-
cate with one another to control and optimize their collective
behavior.

In particular, nonlinear MPC [8, 9] allows for the use of
higher-fidelity plant models, that give a more accurate por-
trayal of vehicle behavior. It allows for the inclusion of non-
linear constraints into the control problem, allowing for the
diverse types of constraints present in autonomous driving,
such as acceleration and road constraints, to be formulated
explicitly into the problem formulation. This provides for the
intuitive inclusion and modification of constraints, allowing
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for the control designer to change the dynamic performance
to suit the personal preferences of passengers or specific be-
haviors of the autonomous vehicle.

It has always been a concern however, that due to the na-
ture of MPC solving an optimization routine online and in-
the-loop, that it is computationally expensive and prohibits
its application to controllers needing operating frequencies
of one cycle per second (Hz) and greater. From a compu-
tational complexity point of view, the value of the preview
horizon is particularly important [10], so it is beneficial to
use as small a value as possible, yet the preview horizon has
a significant effect on both controller performance and sta-
bility.

A way of reducing the preview horizon while maintain-
ing both stability and performance is therefore vital. Hier-
archical multilayer control [11] is such a method and has
been used in several scenarios related to vehicle dynamics
and autonomous driving functionality [12, 13]. The upper
level controls the slower dynamics of the system in consider-
ation; specifying a trajectory for the lower levels to follow by
using a large value for the preview horizon. The lower level
uses a higher frequency to control the faster acting dynamics
within the system allowing it to calculate the optimal control
action over a shorter timescale.

Utilizing different prediction horizon lengths provides
some stability to the control problem. The high-level control
has an awareness of potential events long before they come
into consideration by the low-level controller. This allows
for the upper level reference generator to provide a revised
trajectory, which mitigates difficult scenarios, such as sudden
step changes to road bounds, for the lower level to track. This
is done before the lower level controller, which incorporates
dynamics that are more complex, must optimize the control
variables to traverse a difficult scenario.

There are several reasons why a hierarchical framework
is an attractive control methodology for complex tasks such
as path planning and active steering control; it allows for
the logical splitting of the control task into separate, discrete
modules. Additionally, the hierarchical control framework is
analogous to those that exist to model human driver behav-
ior [14,15]. The ability to split the different control tasks, so
that they can be addressed separately, is also beneficial as it
simplifies the control approach.

In [12] a two-tier control framework is presented con-
sisting of path optimization, where a reference trajectory for
the vehicle’s lateral displacement and yaw angle, generated
via trigonometric functions, is optimized to ensure that the
paths normal acceleration does not exceed a specified limit.
This optimal path is then passed to a nonlinear model predic-
tive controller, which calculates an optimal steering angle to
track the target lateral displacement and yaw angle. This con-
troller was evaluated on a simulation vehicle in a low friction
environment during a double-lane-change maneuver. The
controller did not constrain the lateral displacement, which
limited its application to highway environments. It also re-
quired a pre-determined reference trajectory to be provided,
which limits it to pre-existing scenarios.

In this paper, a Hierarchical Model Predictive Control

Fig. 1. The vehicle model shown in the global XY coordinate frame

(HMPC) framework is presented that extends the model pre-
sented in [12] with two key aspects of functionality, during
constant speed scenarios. A third control module is added,
termed the Path Generation Module (PGM), at the start of
the optimization scheme, to generate an initial path without
the need to specify one via the composition of trigonometric
functions. The path is then parameterized by arc length so
that it can be addressed in the time domain.

This combination of path generation, path optimization
and vehicle control was chosen as it is analogous to the
model proposed by Michon [16, 17] for a driver’s model of
the driving task. In this model, driving is split into high-level
strategic planning, more immediate tactical driving and the
low-level control of the vehicle.

Road bounds are also included in the control problem to
ensure that the vehicle is still within the safe sections of the
road. In this paper, it is assumed that the upper and lower lat-
eral bounds are supplied to and utilized by each layer of the
hierarchical controller, after being detected and determined
via an appropriate method, such as via LIDAR or a computer
vision system (see, for example, [18, 19]).

The second stage is the Path Optimization Module
(POM) then constrains the normal acceleration of the tra-
jectory, via path curvature, as in [12]. To accommodate the
nature of the PGM, the POM calculates a yaw angle for a
single steered axle vehicle to track. When calculating the
yaw angle, it penalizes excessively large values of yaw an-
gle which helps with stability in certain scenarios, such as
highway driving.

The final stage of the controller uses a nonlinear vehicle
model to track this reference trajectory by manipulating the
steer angle of the front tires. Evaluation of the controller is
completed using a simulation model of an autonomous ve-
hicle completing a double-lane-change maneuver in MAT-
LAB [20] at two longitudinal speeds.

The paper is structured as follows. In Section 2 the vehi-
cle models used by the controller and for the simulated vehi-
cle are presented. Section 3 details the controller methodol-
ogy and implementation used in this paper. Finally, Section
4 describes the driving maneuver used to evaluate the con-
troller performance, along with the simulation results.
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2 Vehicle model

A five state nonlinear bicycle model is utilized in the
simulations. The lateral and yaw acceleration of the vehicle
is modelled along with the lateral and longitudinal displace-
ment in a global reference frame for coordinate tracking. It
is assumed for the analysis that the vehicle is travelling at a
constant longitudinal speed u. Because of this, the normal
force acting upon the tires is modelled as the vehicle’s static
weight distribution. Due to the tire model’s nonlinear depen-
dence on normal load, the vehicle model assumes two tires
at each axle, each with half the axle load acting upon it.

Therefore, the state vector of the system is zzz =
( v, ωz, ψ, X , Y )T . The lateral velocity of the vehicle in its lo-
cal reference frame is denoted as v, while ψ is the yaw angle
of the vehicle defined as the rotation angle between the local
and global longitudinal axes. Its derivative is ωz, the vehi-
cle’s yaw rate. X and Y are the global coordinates of the ve-
hicle’s center of mass. The system of differential equations
that describe the vehicle’s motion is denoted by:

żzz = fff (zzz,uuu) (1)

where uuu is the control input vector, which for this imple-
mentation is simply the steer angle of the front tires, δ. An
emboldened function denotes that it returns a vector value;
otherwise, the function returns a scalar value.

The lateral and yaw acceleration of the vehicle body is
given by the following equations:

v̇ =
2
m

(
Fyf +Fyr

)
−ωzu

ω̇z =
2
I

(
aFyf−bFyr

) (2)

The force terms in (2), calculated for a single tire on an axle,
are given by referring the forces calculated by the Magic Tire
Formula (MTF) [21] to the body-fixed coordinate frame. For
the front tire the terms are referred from the tires coordinate
frame to the body fixed coordinate frame, see Figure 1,

Fyf = Fcf cosδ, (3)

where the tire-fixed cornering term, Fcf, is obtained by the
MTF. As there is no steer angle acting upon the rear tires,
Fyr = Fcr. The MTF requires the calculation of the lateral
slip angle, α, which is given for the front and rear tires as:

tanαf =
(v+aωz)cosδ−usinδ

(v+aωz)sinδ+ucosδ
, tanαr =

v−bωz

u
.

(4)
The global longitudinal and lateral coordinates are computed

Table 1. Parameter values used by the vehicle models and Pacejka
Magic Tire Formula

Parameter Value Units

m 2050 kg

I 3344 kg·m2

a 1.1 m

b 1.4 m

σ 0.3 m

MTF Parameters

B -11.5 -

C 1.35 -

E -0.85 -

by the integration of the following equations:

Ẋ = ucosψ− vsinψ, Ẏ = usinψ+ vcosψ (5)

This vehicle model outlined above is used in Section 3.4 as
the prediction model, where the integration in time is per-
formed using the forward Euler method with a fixed time-
step. The parameter values used in the model are shown in
Table 1.

2.1 Tire transience
The tire forces calculated via the MTF are steady-state

approximations that assume a tire’s slip angle is instantly
reached. If the steer angle of the tire varies rapidly, such
as in an active steering application using a piecewise con-
stant input, then this assumption is not representative of the
behavior. A first order tire transience is added to the vehicle
model to characterize the lag in the tire force:

α̇ =
u
σ
(αs−α) (6)

where αs is the static tire slip, as calculated via (4) and α

is now the apparent slip angle, used to calculate the lateral
tire force in the MTF. σ is the relaxation length of the tire.
This augmented system of equations, fff tt(zzztt ,uuu), is used as
the simulation model, with the state vector zzz extended to in-
clude the apparent slip angle for both the front and rear axles.

3 Control methodology
The proposed hierarchical structure splits the control

task into three separate modules composed of: path genera-
tion, path optimization and vehicle control modules (see the
schematic in Figure 2). The first module generates a static
path as a first approximation for the vehicle to track.
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Fig. 2. The hierarchical framework used by the controller, with the
interaction with the vehicle plant shown. PGM, POM, VCM denote
the Path Generation, Path Optimization and Vehicle Control Modules,
respectively

This path is then taken by the trajectory optimization
routine in which the path is altered to ensure that specified
lateral acceleration constraints are not exceeded. The final
module is responsible for vehicle control, where it tracks the
optimised reference path and tracks them by optimising the
steer angle of the vehicle’s front axle.

The system is designed with the assumption that each
control module has a different call rate, allowing for the path
generation module to have a longer computation time due to
the much larger preview horizon than that used by the path
planner and trajectory optimization routines. For the current
analysis, the computational delay is omitted to simplify the
analysis, and because this delay is highly dependent on the
hardware on which the controller is implemented.

There are existing techniques, however, to study the ef-
fect on performance and stability of a time delay [22] and
how to account for it [8]. The lack of a computational de-
lay allows the presented controller to react more quickly to
changes in the environment, making it possible to take cor-
rective action more quickly as well as reducing the predic-
tion model error. For the results presented, this assumption
has negligible impact as there are no sudden changes in the
simulated environment.

3.1 Hierarchical structure
The individual modules of the controller have differ-

ent control frequencies. Therefore the hierarchical control
framework, which is responsible for coordinating its mod-
ules, must call the individual controllers at different time
steps. Call ratios are defined, which determine how many
times a subordinate module is called for a single call to its
parent module. As there are three controllers in three sepa-
rate tiers of the hierarchy, there are two call ratios, ρ1 which
determines how many times the path optimization module is
called for single call to the path planning module, and ρ2 de-
termines how many times the vehicle controller is called for
every trajectory optimization call:

ρ1 =
∆Tpg

∆Tpo
, ρ2 =

∆Tpo

∆Tvc
(7)

where ∆T is the call period, with the subscripts ’pg’, ’po’,
’vc’, denoting the Path Generation, Path Optimization and
Vehicle Control modules, respectively.

3.1.1 Choosing the preview horizons
One key design choice, critical for both the performance

and stability of the hierarchical system, is the preview hori-
zon value chosen for each of the three control modules [8].
For both performance and stability, values as large as possi-
ble are desirable. However, increasing the preview horizon
increases the computational complexity dramatically [10].

Therefore, there is a compromise to be made when
choosing the preview horizon and no analytical method for
determining it. Instead, rules-of-thumb are employed along
with manual tuning of values based upon a given scenario
[23].

Several conditions must be met that guide the choice of
preview horizons for the hierarchical framework. The most
important one is to ensure that the reference trajectory pro-
vided to a subordinate controller is at least as long as that of
the parent controller:

Tpg ≥ Tpo ≥ Tvc, (8)

where Tpg, Tpo, Tvc represent how far the path generation,
path optimization and vehicle control modules predict into
the future respectively. The next factor to consider is that
the PGM works in the spatial domain, so one can write the
preview horizon constraint between the path generation and
optimization modules as:

spg ≥ spo, (9)

where these values denote the final displacement values over
a single given prediction. The problem is that the arc length
generated by the PGM is not fixed, as the lateral coordinates
are the optimization variables. It is assumed that for the driv-
ing scenarios considered, the average lateral step size, ∆Ȳ ,
chosen by the POM is much smaller than the fixed longitu-
dinal step size, ∆X (∆Ỹ � ∆X). A value, ε > 0, is given so
that when using the following expression:

spg = Npg

√
∆X2 + ε (10)

for an approximation of the arc length of the PGM path, Eq.
(10) holds. ∆X is chosen to be the distance travelled by the
vehicle over the fixed time-step ∆t, used by both the POM
and VCM:

∆X = u∆t, (11)

so that the PGM is capable of reacting to different road envi-
ronments and the displacement values spg, spo are both func-
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tions of the vehicles longitudinal speed, as well as ensuring,
for sensible values of ε, Eq. (9) holds.

For the relationship between the POM and VCM the
constraint Npo ≥ Nvc ensures that the second inequality in
Eq. (8) holds, as they both utilize the same fixed time step.
The values are then chosen to provide stability to the system.

3.2 Geometric path generation
The PGM creates the initial reference path for the POM

by generating a set of Npg Y -coordinate values, denoted YYY pg,
based upon a longitudinal grid with equal step size, ∆X , cre-
ating a set of Npg Cartesian coordinate pairs (XXXpg,YYY pg). At
each X-coordinate the road limits are defined by an upper
and lower bound resulting in two vectors, YYY ub and YYY lb, that
represent bound constraints on the absolute lateral displace-
ment. The controller must therefore determine a coordinate
between these limits at each X-coordinate.

The PGM is designed to generate a spatial path which
minimizes the total distance travelled between the initial and
final X-coordinates. This assumes that if a vehicle was trav-
elling along a path of low or zero curvature, which as an
example, is true for motorway driving, then travelling in a
straight line is the optimal behavior, and a lane change is
only made to avoid a slower moving vehicle ahead.

To accomplish this, the optimization routine calculates
Npg lateral steps ∆YYY , which represent the lateral step between
adjacent Y -coordinates. The absolute lateral position, YYY pg, is
then calculated componentwise as:

Ypg,i+1 = Ypg,i +∆Yi, ∀i = 1, . . . ,Npg, Y0 = Ỹ0 (12)

Where Ỹ0 is the initial measured lateral position of the ve-
hicle at the start of the optimization problem. In this paper,
the value is taken from the state vector zzz of the simulation
model.

The bound constraints included in the optimization rou-
tine have a safety margin, Ysm, included when determining
the optimization bounds to account for vehicle width, which
reduces the apparent feasible space available to the path plan-
ner.

The resulting optimization problem, which finds the op-
timal reference path by choosing the vector of lateral step-
sizes ∆Y, at time t = i can be written as:

minimise
∆Y

t+Npg

∑
i=t+1

∆Y 2
i (13a)

subject to Ypg,i = Ypg,i−1 +∆Yi, (13b)
Ylb,i +Ysm ≤Ypg,i ≤ Yub,i−Ysm (13c)

The optimal initial reference path generated by the PGM is
then calculated by Eq. (12), using the vector ∆YYY ∗ that repre-
sent the optimal solution to the optimization problem. This
problem is of Quadratic Programming (QP) form with in-
equality constraints, for which there are fast solution meth-

ods for both large (sparse) and small optimization problems
[24].

3.2.1 Path parameterization
In the POM, the XXXpg and YYY pg variables that make up the

geometric path are addressed separately. In order to do this,
the PGM module parameterizes the path coordinates so that
they are functions of the path’s arc length.

The continuous path that is assumed to connect coor-
dinate pairs, p, is approximated via straight-line segments,
with pi denoting the (X , Y ) coordinates at the i-th time-step.
From that, the displacement between the points pi and pi−1,
denoted ∆si is given by:

∆si =
√

∆X2 +∆Y 2
i , ∀i = 1, . . . ,Npg (14)

where ∆X is the fixed step-size utilized in the PGM module
and ∆Yi is the lateral step-size between pi and pi−1 which
can be taken from the solution of the optimization problem
defined in Eq. (13). The vector containing the absolute dis-
placement values from the initial point of the path up to the
point at the preview horizon can be calculated elementwise
as:

si = si−1 +∆si, ∀i = 1, . . . ,Npg, s0 = 0 (15)

This set of displacement values, which are monotonically in-
creasing, can now be used to parametrize the XXXpg and YYY pg
coordinate pairs, which are denoted XXXpg(sss) and YYY pg(sss).

So that the PGM coordinates can be tracked in the time
domain, a time-based interpolation vector, denoted ŝss, is re-
quired. As this paper considers constant longitudinal speed
scenarios and, assuming that the lateral velocity is of a much
smaller magnitude, this interpolation vector are calculated
elementwise as:

ŝi = ŝi−1 +u∆t, ∀i = 1, . . . ,Npo, ŝ0 = 0 (16)

where ∆t is the time-step of the VCM. The resulting vector
allows for the interpolation of the vector YYY pg at any time-step
up until Npo using ŝss as the interpolation vector. Linear inter-
polation is then used to create the initial reference trajectory
for the path optimization.

3.3 Path optimization
The POM attempts to match the parametrized XXXpg(sss)

and YYY pg(sss), while considering kinematic and dynamic fac-
tors affecting the reference path generation problem. It does
this by assuming that the vehicle is a point mass travelling
along the reference spatial path. The path coordinates from
the PGM are modified so that the acceleration component
perpendicular to the optimized path does not exceed speci-
fied limits.
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Fig. 3. The point mass model used in the path optimization scheme.
The solid straight lines show the assumptions used to calculate path
length and curvature of the assumed continuous path (dashed line).
The filled dots are the location of a reference path (X ,Y ) pair at a
single time-step

Along with a reference displacement, the path optimiza-
tion module also determines a yaw reference profile for the
vehicle control module to track. Following [25], where the
optimal yaw angle is tangential to the reference path, the yaw
reference is calculated as:

ψ
r = arctan

(
∆Y
∆X

)
(17)

Where ∆X and ∆Y are the finite differences of the X
and Y values. A penalty to the yaw magnitude is included
in the POM to encourage the module to return a path that is
smooth and does not have excessively large deviations. This
can occur due to the PGM returning a path that consists of
straight lines between changes in road bounds.

The normal acceleration is calculated as the centripetal
acceleration of a point mass travelling along a path with cur-
vature, κ, at a tangential velocity, u (see Figure 3). An ap-
proximation of the path curvature is calculated using finite
difference approximations for the first and second derivatives
of the X and Y coordinates with respect to time. The curva-
ture at the jth time-step is given by:

κ j =
∆X j∆

2Yj−∆Yj∆
2X j

(∆X j
2 +∆Yj

2)
3
2

(18)

where ∆X ,∆Y and ∆2X ,∆2Y denote the first and second
backward finite differences for the X(t) and Y (t) coordinates,
which are calculated by backward finite differences. Using
the backwards finite difference method, it is possible to ac-
count for the data points that are lost via the finite difference
method, with data from the previous time-step.

As path curvature is the inverse of radius of curvature,
the vehicle’s lateral acceleration is given as the centripetal
acceleration of the point mass travelling along the arc length:

an,j = κ j ·u2 (19)

So far, the model outlined for the POM is not constrained by

inertia effects and so is free to vary the path displacement as
quickly as possible so long as inertia and displacement con-
straints are obeyed. This can result in a path that is not real-
izable by the VCM controller. To restrict the optimal path to
a set that is more easily tracked by the VCM, the step-size in
lateral acceleration is constrained in the POM problem for-
mulation via limiting the step-size between normal accelera-
tion values calculated at each time-step.

The optimization problem solved at t = j can be formu-
lated as:

minimise
ZZZpo

J =
t+Npo

∑
j=t+1

∥∥zzz j− zzzr
j
∥∥2

QQQpo
(20a)

subject to u2
∆t2 = (Xpo,j−Xpo, j−1)

2 +(Ypo,j−Ypo, j−1)
2,

(20b)

ŶYY lb(XXXpo)≤YYY po ≤ ŶYY ub(XXXpo), (20c)
−ān ≤aaan ≤ ān, (20d)

−∆an ≤ an,j−an,j−1 ≤ ∆an, (20e)
(Xk−2,Xk−1,Xk) = (X̄k−2, X̄k−1, X̄k), (20f)
(Yk−2,Yk−1,Yk) = (Ȳk−2,Ȳk−1,Ȳk) (20g)

Where ZZZpo =
(
zzzpo,t+1, . . . ,zzzpo,t+Npo

)
is the sequence of

reference trajectories generated by the POM to optimize the
cost function Eq. (20), with zzzT

po,j = (X j,Yj,ψ j) and zzzr
j are the

corresponding reference values provided by the PGM. ‖xxx‖2
MMM ,

as seen in Eq. (20), denotes the square of the weighted matrix
norm xxxT MMMxxx. Equation (20b) constrains the re-planned coor-
dinates to ensure that the distance between two adjacent co-
ordinates is equal to the distance travelled by the point mass
model when moving at the fixed longitudinal speed, u, over
the interval of a single time-step, ∆t.

To calculate the lower and upper bound terms in Eq.
(20c), linear interpolation is used. The optimized coordinates
XXXpo are used as the interpolation vector to interpolate the up-
per and lower bounds based upon the original fixed XXXpg grid
generated by the path planning module.

Equations (20f) and (20g) specify the additional data
variables that must be provided to the optimization routine
for the calculation of path curvature. The variables with over-
bars denote that they are taken from the vehicle plant itself.

3.4 Vehicle control
The task of the Vehicle Control Module (VCM) is to

calculate an optimal control sequence for the vehicle plant
when called at time k. The VCM attempts to track the refer-
ence coordinates supplied to it by manipulating the internal
plant model’s steering angle, up to preview horizon Nvc. The
plant model that is utilized is taken as the vehicle model in
Section 2. The continuous time model is discretized using
the forward Euler method:

zzzk+1 = zzzk +∆t · żzzk

żzzk = fff (zzzk,uuuk)
(21)
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The lateral acceleration is constrained, as was the nor-
mal acceleration of the point mass model. The lateral accel-
eration is given by:

ay = v̇+ωzu (22)

In the optimization routine, the lateral acceleration is calcu-
lated from the state and rate vectors in Eq. (21) at every time
step up to the preview horizon. The optimization scheme
constrains these predicted values between upper and lower
bounds.

Therefore the VCM solves the following optimization
problem at t = k:

minimise
u

J =
t+Nvc

∑
k=t+1

‖zzzk− zzzr
k‖

2
QQQvc

+‖uuuk−1‖2
RRRvc

+‖∆uuuk−1‖2
SSSvc

(23a)

subject to zzzk = zzzk−1 +∆t · fff (zzzk−1,uuuk−1),
(23b)

∆uuuk−1 = uuuk−1−uuuk−2, (23c)

u2
∆t2 = (Xvc,k−Xvc,k−1)

2 +(Yvc,k−Yvc,k−1)
2,

(23d)

−ūuu≤ uuuk−1 ≤ ūuu, (23e)

−∆uuu≤ ∆uuuk−1 ≤ ∆uuu, (23f)

ŶYY lb(XXXvc)� YYY vc � ŶYY ub(XXXvc), (23g)
−āy ≤ ay ≤ āy (23h)

Where u=
(
uuut , . . . ,uuut+Nvc−1

)
is the sequence of optimal con-

trol vector inputs applied to the system, which for this appli-
cation is the steer angle of the front tires. Like in Eq. (20c),
interpolation is used in Eq.. (23g) to obtain the upper and
lower bounds at each predicted (Xvc,k,Yvc,k) point.

3.5 Summary of the control tasks
To conclude the control methodology section, a sum-

mary of the steps taken by the hierarchical controller is given
below:

1. The geometric path generation module generates a set of
Npg YYY pg coordinates based on a uniformly spaced vector
of XXXpg coordinates.

2. The path is then parametrized based upon arc length.
3. The set of Npg coordinate pairs is passed to the re-

planning module. The controller then returns a reference
trajectory of length Npo for the vehicle control module.
The re-planning module is called ρ1 times for every path
planner call.

4. For each call to the vehicle control module, it selects
the relevant trajectory of length Nvc from the re-planner
trajectory. It tracks this reference trajectory by optimiz-
ing the steer angle of the nonlinear bicycle model front
wheels. The path planning controller is called ρ2 times
for every trajectory re-planner call.

Fig. 4. The double-lane-change maneuver course. Not to scale

Table 2. Dimensions of the course

Section 1 2 3 4 5

Length [m] 15 40 25 25 55

Width [m] 3.5 6.5 3.5 6.5 3.5

Offset [m] 0 0 3 0 0

4 Results
The vehicle controller is evaluated in simulation, per-

forming a double-lane-change maneuver. The course con-
sists of three straight line sections, with the middle section
offset by a distance of 3.5 m (see Figure 4). The longitudinal
distance is 150 m, with the individual section length’s shown
in Table 2.

To demonstrate the performance of the proposed hierar-
chical controller, it is compared against two other controllers
derived from it. For ease, the controllers shall be referred to
as controller A, controller B and controller C, with specifica-
tions as follows:

• Controller A: The hierarchical controller; with PGM,
POM and VCM,

• Controller B: A controller consisting of path generation
and active front steering, i.e. no active POM. The POM
for controller B simply returns parametrized values (by
arc length) of the PGM reference path.

• Controller C: The PGM is replaced by a smooth ref-
erence trajectory generator, created for the specific
double-lane-change maneuver.

The purpose of controller B is to demonstrate that the POM
performs a valuable function and that splitting the control
task into separate control layers is a worthwhile design goal,
even when there is a path provided by. Conversely, con-
troller C’s purpose is to demonstrate that the performance
of controller A is comparable to that of a specifically crafted,
continuously smooth reference trajectory, while being com-
pletely flexible to the driving scenario.

Table 3 shows the preview horizon and time period for
the three control modules. The values chosen for the module
time periods results in the call ratios ρ1 = 2 and ρ2 = 5. The
PGM preview horizon was chosen to comfortably cover the
majority of the scenario in a single optimisation call. This
is possible as it is a QP problem and so the execution time
of the controller is not a limiting factor. The values for the
POM and VCM were chosen to give stability to the controller
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(b) Parameterized coordinates of the path optimization module
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(c) The vehicle’s displacement throughout the simulation

Fig. 5. Trajectory generation, optimization and tracking during the double-lane-change maneuverer at 14 m/s. The physical road limits (solid
lines) and reduced bounds, including the lateral safety margin, (dashed lines) are also shown

Table 3. Controller prediction horizon values used for the simulation
runs

Module PGM POM VCM

Preview horizon, N 300 30 16

Time period, ∆T [s] 1 0.5 0.1

at both 14 m/s (31 mph) and 20 m/s (45 mph). Table 4 shows
the weighting values used by the three control variants, cho-
sen to give stability and adequate performance based on con-
troller, A determined during a trial-run of the lane change
scenario. Tables 5 and 6 show the values used as constraints
in the POM and VCM respectively.

4.1 Controller A simulation results
Figure 5(a) shows all sets of the Y-coordinates gener-

ated over the course of the maneuver; representing stage 1 of
the control scheme. As would be expected, the PGM gener-
ates straight line paths from the location of the vehicle when
the PGM is called and between the apexes of the constraint

Table 4. Controller weighting values

QQQPO diag(10,10,5)

QQQVC diag(10,10,250)

RRRVC 1

SSSVC 50

Table 5. Constraint values used in the path optimisation module

Parameter Value Units

ān 0.3 g

∆an 0.25 g/s

Table 6. Constraint values used in the vehicle control module

Parameter Value Units

āy 0.3 g

ūuu 6 ◦

∆uuun 5 ◦/s
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Fig. 6. The yaw trajectory of the simulation model at 14 m/s. The
reference yaw trajectory, provided by controller A at penultimate calls
ans used to calculate the RMS tracking error, are shown as points

bounds.
Figure 5(b) shows the effect the POM has on the PGMs

initial path. There are twice as many reference trajectories
in Figure 5(b) than Figure 5(a), matching the call ratio be-
tween the two modules. The POM smooths out the PGM
path around the apexes, where the road bounds change.

At 14 m/s (31 mph) the controller can closely track the
references provided to it. The effect of solving the path gen-
eration problem from the vehicle’s current location can be
observed in Figure 5(a), showing the primary benefit of the
hierarchical controller; the feasible reference path is always
in the close neighborhood of the vehicle.

Figure 5(c) shows the displacement of the simulation
vehicle and it can be observed that the simulation vehicle
sucessfully navigates the course at 14 m/s. Here the effect of
including bound constraints on the global lateral coordinates
can be observed. In [12], the path optimization minimizes
the vehicles lateral acceleration by reducing the maximum Y
value, i.e. straightening the reference path. In this scenario,
it is not possible to reduce the maximum lateral coordinate,
so instead, the POM increases the maximum lateral coordi-
nate value to ensure bound constraints, and acceleration con-
straints are satisfied.

There are small constraint violations that occur on sev-
eral of the course apexes. These occur due to the way the
lateral coordinate constraints are enforced. In the interval be-
tween two discrete time-steps, there is no guarantee that the
vehicle will not violate the road bounds. It is therefore neces-
sary when choosing the lateral safety margin to factor in the
constraint violation that can occur between VCM time-steps,
along with the vehicles width.

Figure 6 shows the yaw profile of the simulation vehi-
cle along with the reference profile made up of the most
up-to-date value from the last POM call. The yaw profile
is tracked closely by vehicle, and at the end of the run, the
penalty on yaw deviation in the vehicle control module suc-
cessfully damps the vehicle trajectory to a straight line at the
end of the simulation run.

Figure 7 shows the lateral acceleration of the vehicle
and the corresponding steering input used to track the co-
ordinates. Figure 7(a), which shows the lateral acceleration,
shows the inclusion of a penalty on lateral acceleration in
the optimization cost function. The acceleration bounds im-
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(a) Lateral acceleration of simulation vehicle, control limits of ±0.3g
shown as dashed line
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(b) AFS input applied to the vehicle by controller A

Fig. 7. The hierarchical MPC controller is capable of navigating the
double-lane-change maneuverer at 14 m/s

posed on the VCM are not saturated by the simulation vehi-
cle. In this instance, this is caused by the differences in the
VCM’s prediction model and the simulation model, namely
the tire transience and the numerical integration method. The
VCM saturates the lateral acceleration limits, as it attempts
to track the lateral displacement reference as closely as pos-
sible.

4.1.1 High-speed run
The simulation manoeuvre is repeated, at a higher longi-

tudinal speed of 20 m/s, to show that the proposed controller
maintains its performance at higher speeds.

Figure 8(a) shows that the lateral displacement of con-
troller A at 20 m/s, with the road and controller bounds,
along with the reference trajectory. The vehicles displace-
ment looks similar, although there is an overshoot as the ve-
hicle returns to the initial lane. This overshoot occurs to de-
crease the path curvature, reducing the lateral acceleration.

Table 7 shows that at higher speeds, there is a slight
degradation in both maximum and RMS lateral tracking er-
rors, reflecting the increase in difficulty of tracking at higher
speeds.

Figure 8(b) shows that the hierarchical controller main-
tains good yaw tracking at the higher longitudinal speed. Al-
though the RMS tracking error is almost double the value
that it is at 14 m/s, the maximum tracking error is only in-
creased by 7% and the absolute value of the RMS error is
still more than adequate for automotive scenarios.

In Figure 8(c), it can be seen that the lateral acceleration
of the simulation vehicle exceeds the limits imposed on the
hierarchical controller, with a maximum acceleration of 0.37
g occurring during the simulation run. This excessive accel-
eration can be attributed to both the tire transience included
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Table 7. Controller A tracking errors for the low and high-speed sce-
narios

u Ymax YRMS ψmax ψRMS ay,RMS/g

[m/s] [cm] [cm] [deg] [deg] [−]

14 3.98 1.30 0.82 0.17 0.09

20 6.34 1.94 0.88 0.31 0.15

in the simulation model, and the more accurate numerical
integration scheme used in the simulation compared to the
MPC prediction model. This constraint violation is not pre-
dicted by the MPC controller and the simulation models re-
sponse appears to suggest that the rapidly switched steering
input has a significant effect on the common assumption that
steady state tire force values are appropriate in control syn-
thesis and evaluation of discrete-time steering controllers.

Table 7 shows the 67% increase in RMS lateral accel-
eration. Despite the fact that this is an average measure of
lateral acceleration, including the final two seconds during
which it is very low, this 67% increase is more than four
times smaller than the increase in centripetal acceleration
that might be naively expected due to the increase in lon-
gitudinal velocity, suggesting that the constraints effectively
change the dynamic behavior of the vehicle.

4.2 Comparison of controller performance
To provide a reference to the performance of controller

A, the simulation vehicle is guided through the double-lane-
change maneuver is done again with two derivative con-
trollers. Controller B does not perform the path optimization
routine, and instead supplies parameterized coordinates from
the initial PGM path for the VCM to track. The purpose of
this controller is to demonstrate the performance benefit of a
hierarchical architecture containing path optimization, both
from a tracking point of view, along with respect to constraint
satisfaction.

Controller C replaces the PGM of controller A with a
smooth reference trajectory, based on the longitudinal dis-
placement of the vehicle. The lateral displacement reference
is given by

Y r(X) =
∆y1

2
(1+ tanhz1)−

∆y2

2
(1+ tanhz2) (24)

where

z1(X) = α
X−Xs1

∆X1
− α

2
, z2(X) = α

X−Xs2

∆X2
− α

2
(25)

and α= 1.4, ∆X1 = 20, ∆X2 = 20, ∆Y1 = 4, ∆Y2 = 4.25, Xs1 =
24 and Ys2 = 71.25. These values were chosen by visually
fitting a curve to the feasible road space.

Figure 8(d), shows that the lateral displacement of the

Table 8. Tracking errors for controllers B and C at 20 m/s

Controller Ymax YRMS ψmax ψRMS ay,RMS/g

[cm] [cm] [deg] [deg] [−]

B 22.33 7.98 3.58 0.90 0.16

C 8.14 2.22 1.28 0.34 0.15

vehicle when steered by controller B is similar to that of con-
troller A (Figure 5(c)), although Table 8 details the degrada-
tion in tracking performance measured via both RMS and
maximum deviation. There is a rather significant deviation
in the maximum lateral tracking error, being three and a half
times greater than controller A at 20 m/s. Part of the reason
for this is that as the POM is inactive, the reference path to
the VCM controller is only updated once every second com-
pared to the two times a second that the occurs in controllers
A and C due to the POM.

Figure 8(e) shows in greater clarity the effect of deacti-
vating the POM; as the POM takes no action to minimize the
second derivatives of their reference trajectory. This results
in large steps in the yaw trajectory, which is not physically
realizable, resulting in the comparatively poor yaw tracking
performance. As with controller A, the lateral acceleration
of the simulation vehicle exceeds the acceleration limit im-
posed by the controller, particularly when the vehicle begins
to return to the initial lane.

Figure 8(g) shows the lateral tracking performance of
controller C. As would be expected, the displacement of
the simulation vehicle, when tracking a smooth reference,
is smooth. Controller C produces a smooth yaw profile, with
good tracking performance. Table 8 shows that the trajectory
tracking performance is actually worse than controller A at
20 m/s (see Table 7). This is partly due to nature of the ref-
erence trajectory. For controller C, the reference trajectory
is a function of longitudinal displacement only, and there-
fore any tracking errors accumulate over time. For controller
A, this is not an issue as both the PGM and POM generate
reference trajectories from the vehicles location. This means
that the reference trajectory is generated so that it can be well
tracked.

An argument is made by Wang and Boyd in [10], which
is that with MPC optimization is used to find good con-
trol, rather than solving the optimization problem accurately.
Therefore, if MATLAB’s optimization solver ‘fmincon’ does
not find an optimal control sequence to solve the MPC opti-
mization problem to within the specified solution tolerances,
the suboptimal solution is still applied to the system as oth-
erwise. As can be observed by the results, this still results
in adequate tracking performance, and the lateral accelera-
tion constraints, along with the control input constraints are
always observed.

5 Conclusions
A hierarchical model predictive controller for an au-

tonomous double lane change maneuver has been presented.
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(b) Yaw tracking of controller A at 20 m/s
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(c) Lateral acceleration
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(d) Lateral tracking
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(e) Yaw tracking of controller B

0 2 4 6 8

t [s]

-0.3

-0.15

0

0.15

0.3

a
y
/g

 [
-]

(f) Lateral acceleration
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(g) Lateral tracking
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(h) Yaw tracking of controller C
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(i) Lateral acceleration

Fig. 8.

Using simple, fundamental information about the driving
scenario, the controller generates optimal steering values that
allowed the simulation vehicle to navigate the double-lane-
change course. The controller achieves this by generating a
reference trajectory in two stages: first generating a feasi-
ble geometric reference path between road bounds; this path
is then passed to the path optimization module, which op-
timizes it to ensure that the path curvature does not exceed
values that would cause high lateral acceleration values.

Once an optimal path has been calculated, it is passed
to the final stage of the controller. In this, a nonlinear MPC
scheme with a nonlinear model bicycle model as the system
plant is used to calculate the optimal front steer-angle. The
effectiveness of the controller was investigated via simula-
tion during a double-lane-change maneuver, and the effec-
tiveness of the POM was shown with controller A exhibiting
a greater than four-times reduction in the root mean square
lateral tracking error compared to controller B at 20 m/s. The
performance was also shown to be comparable to a controller
using a smooth initial reference trajectory, showing that the
flexibility of the PGM does not compromise dynamic per-
formance. The proposed controller is an example of the
flexibility of this extended hierarchical control framework.
The chosen implementations of the individual modules can

be changed independently of one another, enabling greater
flexibility in the range of applications for this framework.

Future work for this proposed framework includes ter-
minal constraint sets in addition to adequate preview hori-
zons to provide system stability. Investigating the capabili-
ties of the controller during different driving scenarios should
also be studied; particularly if the framework is extended to
allow for a varying longitudinal velocity.

Nomenclature
a Acceleration, distance from front axle to center of mass
b Distance from rear axle to center of mass
m Vehicle mass
I Vehicle’s yaw inertia
N Preview horizon in discrete steps
p Position point
s Displacement
T Prediction horizon in time domain
uuu Control vector
u Control vector sequence
u Longitudinal velocity in body-fixed coordinate frame
v Lateral velocity in body-fixed coordinate frame
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X Longitudinal displacement in global coordinate frame
Y Lateral displacement in global coordinate frame
zzz State vector
α Slip angle
δ Steer angle
κ Path curvature
σ Tire relaxation length
ωz Yaw velocity
ψ Yaw angle from global to local coordinate frame
ρ Call ratio
∆T Call period: interval between controller calls
∆t Discrete time-step

subscripts and superscripts
cf Cornering force from Magic Tire Formula
lf Longitudinal force from Magic Tire Formula
yf Front Tire force acting in the lateral direction of the local

coordinate frame
yr Rear Tire force acting in the lateral direction of the local

coordinate frame
lb Lower bound
ub Upper bound
f Front Tire
r Rear Tire, reference value for given variable
pg Path generation
po Path optimization
vc Vehicle Control
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