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Abstract

We present an asymptotic and numerical study of the evolution of an
incoming wavefield which has a caustic close to a curve with an inflection
point. Our results reveal the emergence of a wavefield which resembles
that of a shadow boundary but has a maximum amplitude along the
tangent at the inflection point.

1 Introduction

In this brief paper we present an asymptotic and numerical study of a two-
dimensional wavefield with a caustic near the cubic curve y + 1

3γx
3 = 0 as x →

−∞ in the far field. The problem was introduced in [5] along with an explicit
integral representation in [5, (4.7)] for the wavefield in a small neighbourhood
of the origin, where the cubic has an inflection point and the caustic terminates.
Unfortunately, [5, (4.7)] contained some errors, but also gave little insight into
the outgoing field as x → +∞. This paper both corrects the errors in [5, (4.7)]
and provides a detailed asymptotic description and a numerical solution of the
outgoing wavefield.

The main rationale for this paper is that improved understanding of this
wavefield may give intuition about the far-field solution of the famous Popov in-
flection point problem, which describes the scattering of an incident whispering
gallery wavefield propagating along a concave portion of a scatterer boundary
when it reaches an inflection point of the boundary. This canonical problem,
which remains unsolved in closed form, has a lengthy history, the most recent
review of which is [7]. The Popov problem seeks a wavefield in the region
y > − 1

3γx
3 satisfying either a Dirichlet or Neumann boundary condition on

the curve y + 1
3γx

3 = 0, and tending to an Airy function close to this curve as
x → −∞. In this paper we consider the evolution of an Airy function wavefield
past the inflection point of the cubic in the absence of any boundary.

1



In §2 we introduce appropriate local curvilinear coordinates (S,N) based
on the cubic curve, and then derive a representation for the wavefield close to
the inflection point in the form of an integral involving a complicated phase
function of S and N , correcting [5, (4.7)]. We then consider the outgoing field
in the limit as S → ∞, which we show to have a transition between bright and
dark in the vicinity of the positive x-axis. In §3 we reformulate the solution in
terms of integrals studied in [4], which are appropriate for the numerical scheme
introduced in [3], allowing us to present a validation of the asymptotic analysis.
Finally, in §4 we offer some conclusions.

2 Asymptotic behaviour of the wavefield near
the inflection point

We align a two-dimensional Cartesian frame so that, for sufficiently small values
of x and y, the caustic has equation y + 1

3γx
3 = 0, x < 0, for some positive

constant γ. Local scalings on these coordinates, which both preserve this cubic
profile exactly and allow us to model wave propagation through the inflection
point at the origin are found to be x = k−1/5X, y = k−3/5Y , with X,Y =
O(1). One can then seek an approximate solution to the Helmholtz equation
(∆ + k2)ϕ = 0 of the form ϕ ∼ eikxÃ (X,Y ) as k → ∞, with Ã satisfying the
parabolic wave equation

∂2Ã

∂Y 2
+ 2i

∂Ã

∂X
= 0. (2.1)

An alternative approach, adopted and reviewed in [5], is to switch to local
curvilinear coordinates intrinsic to the curve y + 1

3γx
3 = 0 involving arc-length

s and normal distance n along and from it, respectively. It then follows that,
correct up to and including terms of O

(
k−1

)
as k → ∞,

x ∼ s+ γns2 − 1

10
γ2s5, y ∼ n− 1

3
γs3.

Thus, with the scalings s = k−1/5S, n = k−3/5N (|S|, |N | = O(1)) and seeking
an alternative local solution ϕ ∼ eiksA (S,N), we have that, to lowest order,

ikx = iks+ i

(
γNS2 − 1

10
γ2S5

)
,

Ã (X,Y ) = e−i(γNS2− 1
10γ

2S5)A (S,N) ,

X = S, Y = N − 1

3
γS3.

It then follows that (2.1) can be re-written in terms of S and N as(
∂2

∂N2
+ 2i

(
∂

∂S
+ γS2 ∂

∂N

))(
e−i(γNS2− 1

10γ
2S5)A (S,N)

)
= 0,

2



which leads to the Popov equation

∂2A

∂N2
+ 2i

∂A

∂S
+ 4γNSA = 0. (2.2)

In order to match with the incoming Airy function we require that

A ∼ 2π (−4γS)
1/3

Ai
[
(−4γS)

1/3
N
]
, S → −∞, (2.3)

where the first (−S)
1/3

term reflects the dependence of the incoming field on
the curvature of the associated caustic as S → −∞ and the constants in the
pre-factor multiplying the Airy function are inserted for later convenience. Since
the data is analytic, we expect the solution of (2.2) to be analytic for all S,N .

The Fourier transform procedure outlined in [5] may now be used to show
that the desired solution of (2.2) is

A =

∫ ∞

−∞
e−

i
2E dλ, (2.4)

where

E = S
(
λ+ γS2

)2 − 2γ

3

(
λ+ γS2

)
S3 +

1

5
γ2S5

+
8

15γ1/2

(
λ+ γS2

)5/2
+ 2Nλ;

here,
(
λ+ γS2

)1/2
is positive when λ + γS2 > 0 and equal to −i|λ+ γS2|1/2

when λ+ γS2 < 0, and the integral is taken just above the negative real λ axis
and along the positive λ axis. This equation corrects [5, (4.7)].

In order to deal with the branch point at λ = −γS2, it is convenient to write

A =

(∫ ∞

−γS2

+

∫ −γS2

−∞

)
e−

i
2E dλ = I+ + I− . (2.5)

This decomposition can be justified by deforming the integration path from one
along ℑλ > 0 and showing that the contribution from the region near λ = −γS2

is negligible as ℑλ ↓ 0. The remainder of this section will be based on (2.5).

2.1 The limit S → −∞

Noting that when S is large and negative,
(
λ+ γS2

)5/2
= −γ5/2S5

(
1 + λ

γS2

)5/2
,

we can expand E for large negative S in I+. This gives that E ∼ 2Nλ− λ3

6γS + . . .
and a formal asymptotic expansion shows that the leading term in I+ is∫ ∞

−γS2

e−i(Nλ− λ3

12γS )dλ,
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which, by putting λ = (−4γS)
1/3

τ , is asymptotic to

(−4γS)1/3
∫ ∞

−∞
e
−i

(
τ3

3 +(−4γS)1/3Nτ
)
dτ = 2π (−4γS)

1/3
Ai
(
(−4γS)

1/3
N
)

as S → −∞. Thus, since I− tends to zero as S → −∞, A matches with (2.3)
as expected. An estimate of the rate at which the Airy function is attained
for large values of −S would involve a complicated analysis which we will not
attempt in this paper.

2.2 The limit S → +∞
The situation is more interesting when S → +∞, when it is convenient to write
λ+ γS2 = −S2T for T ≥ 0 in I− so that

I− = S2eiΦ
∫ ∞

0

e
−S5

(
i
2 (T

2−2KT)+ 4

15γ1/2
T 5/2

)
dT. (2.6)

where Φ = γNS2 − γ2S5

10 and

K =
N

S3
− γ

3

is a measure of transverse distance from the x-axis. Similarly, writing λ+γS2 =
S2T for T ≥ 0 in I+ leads to

I+ = S2eiΦ
∫ ∞

0

e
− i

2S
5

(
T 2+2KT+ 8

15γ1/2
T 5/2

)
dT. (2.7)

2.2.1 K ≥ 0, K of O(S−2) or larger

We begin by considering I− which we see from (2.6) has a stationary phase
point at T = K. The contribution from this point to the value of the integral is
exponentially small as long as S2K ≫ 1 and, in this case, the main contribution
to I− comes from a region near T = 0 where T 5/2 is negligible to lowest order.
However the T 2 term in the exponent needs to be retained to ensure convergence
of the integral. Hence the leading term in the integral is∫ ∞

0

e−
i
2S

5(T 2−2KT) dT =
1

S5K

∫ ∞

0

ei(T̄− ϵ
2 T̄

2) dT̄ ,

where T̄ = S5KT and ϵ = 1
S5K2 . We now note that∫ ∞

0

ei(T̄− ϵ
2 T̄

2) dT̄ = lim
δ↓0

∫ ∞

0

e(i−δ)T̄

(
1− iϵT̄ 2

2
+ ...

)
dT̄

= lim
δ↓0

(
1

δ − i
− iϵ

(δ − i)3
+ ...

)
= i− ϵ+ ....
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The device of introducing the parameter δ is one way of deriving higher order
terms in asymptotic expansions of stationary phase integrals, as described in
[6]. It gives us the result that

I− ∼ eiΦ
i

S3K

(
1 +

i

S5K2
+ ...

)
, S → +∞, S2K ≫ 1, (2.8)

and it can also be used to obtain higher order corrections for the estimates we
will derive in the rest of this paper.

The result corresponding to (2.8) for I+ can be read off by replacing K by
−K and it tells us that A = I+ + I− = o(S−8K−3) when S → +∞ with K ≥ 0
and S2K ≫ 1.

None of these results applies when K is of O(S−2) or smaller. In this regime,
we write K = S−2K̂ and T = S−2t, so that

I− = eiΦ
∫ ∞

0

e
−S i

2 (t
2−2K̂t)− 4

15γ1/2
t5/2

dt. (2.9)

The dominant contribution as S → +∞ now comes from the stationary-phase
point at t = K̂ and we soon find I− is given by

I− ∼ eiΦ
(
2π

S

)1/2

e

(
iSK̂2

2 − 4K̂5/2

15γ1/2
− iπ

4

)
. (2.10)

Moreover, the use of the regularisation leading to (2.8) reveals that the next
order term in the stationary phase expansion of I− is of relative order S−1.
However, there is also a contribution from the end point t = 0, which can be

estimated as in (2.8) to give a leading order term e−iΦ

iSK̂
. This can be shown to

cancel with a corresponding term in I+ in which there is no stationary phase con-
tribution. Hence we conclude that, with an expected relative error of O(S−1),

|A| ∼
(
2π

S

)1/2

e

(
− 4K̂5/2

15γ1/2

)
(2.11)

as S → +∞ with K ≥ 0 and K̂ = O(1).
We note that the derivation of (2.10) from (2.9) involves the assumption

that the stationary phase point K̂ is sufficiently far from the origin that K̂ ≫
O(S−1/2). We will examine the region where K̂ = O(S−1/2) shortly.

2.2.2 K ≤ 0, |K| of O(S−2) or larger

The calculations above can be repeated to show that the contributions to both
I+ and I− near T = 0 cancel at least to leading order as S → +∞. Hence we
need only consider I+, which has a stationary phase contribution.

It is now more convenient to write λ+ γS2 = S2τ2 so that

I+ = 2S2eiΦ
∫ ∞

0

e−
i
2S

5g(τ) τ dτ, (2.12)
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where

g(τ) = 2Kτ2 + τ4 +
8

15γ1/2
τ5. (2.13)

Hence there is always one stationary phase point in τ > 0, τ = τ0(K) say, which
is the positive root of

K + τ0
2 +

2

3γ1/2
τ0

3 = 0 (2.14)

and is such that τ0(0) = 0 and τ0 = O(|K|1/3) as K → −∞. The leading order
term in the expansion of the integral in (2.12) is thus

e−
iπ
4 τ0e

− i
2S

5g(τ0)

(
4π

S5g′′(τ0)

)1/2

, (2.15)

where g′′ (τ0) = 8τ0
2
(
1 + τ0

γ1/2

)
. Hence

|A| ∼
√

2π

S(1 + τ0
γ1/2 )

, S → +∞, K < 0, (2.16)

and so, as K ↑ 0, |A| ∼
√
2π

S1/2 , which is equal to (2.11) when K̂ = 0. However, the
comments made after (2.11) apply equally to the derivation of (2.15) which only
holds if S5/2τ0 ≫ 1, and we will describe the inner layer when K = O(S−5/2)
in the next subsection.

Meanwhile we note that the results (2.11) and (2.16) indicate that the far-
field as S → +∞ is dominated by the region in which K is negative and of
O(1). Plots of the numerical evaluation of A will be given in the next section
and comparison will be made with (2.11) and (2.16).

2.2.3 K = O(S−5/2)

In this region, the sign of K is no longer important and we will simply consider
(2.7) and (2.6) when K = S−5/2K̄. Writing T = S−5/2t̄ then, to leading order
as S → +∞,

I+ ∼ eiΦS−1/2

∫ ∞

0

e−it̄2/2−iK̄t̄ dt̄

∼ eiΦS−1/2eiK̄
2/2

∫ ∞

K̄

e−iv2/2 dv (2.17)

where v = K̄ + t̄. Repeating the exercise for I− gives

I− ∼ eiΦS−1/2eiK̄
2/2

∫ ∞

−K̄

e−iv2/2 dv (2.18)

and hence

I+ + I− ∼ S−1/2eiΦ+iK̄2/2

∫ ∞

−∞
e−iv2/2 dv =

√
2πS−1/2eiΦ+iK̄2/2−iπ/4. (2.19)
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Figure 1: Plot of |A| as a function of S and N , along with the curve K = 0, i.e.
the cubic N − γ

3S
3 = 0, for γ = 4/9.

Thus the amplitude |A| in this region is independent of K̄ and matches with
(2.11) as K̄ → +∞ and with (2.16) as K̄ → −∞.

Even though the amplitude of the far-field solution can be described analyt-
ically, we have only worked to the lowest order when obtaining the asymptotic
expansions for A and this has resulted in A having discontinuous slope as a
function of K. We expect the solution of (2.2) to be analytic everywhere and
that the asymptotic approximation will become increasingly smooth when taken
to higher orders but, as mentioned after (2.8), this is a challenging task. Hence
it is helpful to compare these predictions with numerical calculations, which we
do in the next section.

3 Numerical validation

In this section we compare the asymptotic approximations obtained in the pre-
vious section with accurate numerical evaluations of the integral (2.4), obtained
using the PathFinder software [2]. This implements the algorithm described
in [3], which automates the numerical steepest descent method for oscillatory
integrals (see e.g. [1, §5]), automatically performing appropriate contour defor-
mations and dealing robustly with multiple coalescing stationary points.

To obtain an integral in a form amenable to evaluation using PathFinder,
which in its current form applies only to integrals with polynomial phase, we
apply a change of variable to rewrite (2.4) as

A(S,N) = −2ei(γNS2−γ2S5/10)Ã32(S,N − γS3/3), (3.1)
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Figure 2: The real part of the approximate Helmholtz equation solution
−2eikxÃ32(k

1/5x, k3/5y) for γ = 4/9 and k = 40.

(a) (b)

Figure 3: (a) Plot of |A| as a function of N for fixed S = −10 and γ = 4/9,
showing the agreement with (2.3). On this scale, the two curves are almost
indistinguishable. (b) Zoom of (a) for N ∈ [−10,−9].

where, adapting the notation of [4],

Ã32(X,Y ) =

∫
Γ32

tei(−Y t2−Xt4/2+4t5/(15γ1/2))dt, (3.2)

with Γ32 being any contour starting at t = ei9π/10∞ and ending at t = i∞. The
tilde on Ã32 is included to indicate that the integral A32 of [4] has been modified
to include a non-trivial amplitude function F (t) = t. We note that Ã32(X,Y )
solves the parabolic wave equation (2.1).

In Figure 1 we show a plot of |A| as a function of the curvilinear coordinates
S and N , and in Figure 2 we show the corresponding approximate Helmholtz
equation solution eiks(x,y)A(S(x, y), N(x, y)) as a function of the Cartesian co-
ordinates (x, y). In Figure 3 we plot |A| as a function of N on the line S = −10,
alongside the Airy function approximation (2.3). In Figure 4 we plot |A| as a
function of K̂ on the lines S = 5 and S = 10, accompanied by the approxi-
mations (2.11) (for K̂ > 0, |K̂| ≫ S−1/2), (2.16) (for K̂ < 0, |K̂| ≫ S−1/2),
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(a) S = 5 (b) S = 10

Figure 4: Plots of |A| as a function of K̂ = S2K = N
S − γ

3S
2 for S = 5 and

S = 10, and γ = 4/9, showing the comparison with (2.11) (for K̂ > 0), (2.16)
(for K̂ < 0) and (2.19) (for K̂ ≈ 0).

and (2.19) (for K̂ = O(S−1/2)). This reveals how, as S increases, the wavefield
evolves from a beam-like structure to become more like a shadow boundary.
In all comparisons we see excellent agreement between the asymptotics and
numerics.

4 Conclusions

Motivated by the Popov problem of finding the outgoing wavefield generated
by a whispering gallery wave as it approaches an inflection point, this paper
addresses the wavefield that emerges when an incoming Airy function wave is
centred on a curve whose curvature decreases to zero. An exact solution can
be found in terms of the complicated integral (2.4) whose integrand contains a
branch point. An asymptotic calculation using the stationary phase method re-
veals that the radiated field is strongest near the tangent at the inflection point
but, unlike a Gaussian beam, it has an asymmetric structure whose largest am-
plitude is attained near this tangent and eventually resembles a shadow bound-
ary. We have also computed the integral using the method of [3] after making
a change of variable so as to obtain a representation without branch points.
This has yielded wave profiles that compare favourably with the asymptotic
predictions.
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