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All protective and pathogenic immune and inflammatory responses rely heavily on

leukocyte migration and localization. Chemokines are secreted chemoattractants that

orchestrate the positioning and migration of leukocytes through concentration gradients.

The mechanisms underlying chemokine gradient establishment and control include

physical as well as biological phenomena. Mathematical models offer the potential to

both understand this complexity and suggest interventions tomodulate immune function.

Constructing models that have powerful predictive capability relies on experimental

data to estimate model parameters accurately, but even with a reductionist approach

most experiments include multiple cell types, competing interdependent processes and

considerable uncertainty. Therefore, we propose the use of reduced modeling and

experimental frameworks in complement, to minimize the number of parameters to be

estimated. We present a Bayesian optimization framework that accounts for advection

and diffusion of a chemokine surrogate and the chemokine CCL19, transport processes

that are known to contribute to the establishment of spatio-temporal chemokine

gradients. Three examples are provided that demonstrate the estimation of the governing

parameters as well as the underlying uncertainty. This study demonstrates how a

synergistic approach between experimental and computational modeling benefits from

the Bayesian approach to provide a robust analysis of chemokine transport. It provides

a building block for a larger research effort to gain holistic insight and generate novel and

testable hypotheses in chemokine biology and leukocyte trafficking.

Keywords: chemokine transport dynamics, microfluidic device, model validation, Bayesian parameter inference,

sequential Bayesian updating, MCMC methods, partial differential equations
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INTRODUCTION

The precisely orchestrated migration of leukocytes plays a key
role in all immune and inflammatory responses, including those
that take place in infectious diseases. Their guidance to key
destinations in tissues such as lymph nodes is coordinated by
a group of small, secreted proteins called chemokines. Despite
major recent advances in understanding chemokine functions
(1–3), it is not yet clear how chemokine gradients are formed,
maintained and regulated in tissues. A wide range of transport
and biological processes contribute to the establishment,
stabilization and regulation of chemokine gradients in interstitial
tissue. These include e.g. chemokine production by endothelial
cells in lymphatic vessels, chemokine diffusion and advection
via interstitial fluid flow, chemokine binding to the extracellular
matrix, scavenging of extracellular matrix-bound chemokine
by atypical chemokine receptors expressed by macrophages or
truncation of chemokines by dendritic cells. Dendritic cells
exhibit both chemotaxis (by migrating up gradients of soluble
chemokine) and haptotaxis (by migrating up immobilized
chemokine gradients). Chemokine truncation or scavenging
likely modifies the gradients as the leukocytes migrate, with
the potential to affect subsequent leukocyte migration. Multiple
cell types, competing interdependent processes and considerably
uncertainty in both animal and in vitro models make for a
system of such complexity that it cannot be understood using
experiments alone (4–6). Mathematical models in combination
with experiments can provide a way forward.

A full mathematical model represented by a system of partial

differential equations [based on the original models of Keller

and Segel (7)] accounting for all of the relevant processes
results in a very large number of parameters, most of which
have not been estimated from experiments. The predictive
power of such mathematical and computational models relies
critically on accurate estimates of these parameters. We have thus
formulated a strategy to systematically estimate the parameters
for the system. This requires the reduction of both mathematical
model and corresponding experimental set-up to limit the
number of parameters to be estimated at any one time. In
this paper we have chosen to focus only on the transport
processes associated with chemokine gradient formation. We
present an integrated pipeline demonstrating the use of an
advection-diffusion mathematical model in combination with
measured spatio-temporal chemokine concentration profiles
from microfluidic chambers in order to estimate the key
transport parameters underlying the formation, development
and establishment of chemokine gradients.

To provide a physiologically relevant environment for
quantifying chemokine concentration profiles, we have designed
a microfluidic chamber enabling the imaging and quantification
of the diffusion of fluorescently tagged molecules from sources
of low concentrations, similar to those measured in vivo
for chemokines of 10–100 nM (8). Microfluidic chambers
constructed of Polydimethylsiloxane (PDMS) provide a
functional framework for both experimentally forming
chemokine gradients and testing their effects on cultured
cells. The devices can be imaged microscopically in real time.

They feature a central hydrogel region lined by trapezoidal posts,
which separate it from fluid channels into which chemokines are
pumped. Previous designs have featured a space for deployment
of extracellular matrix (ECM) bounded on either side by
channels through which fluids containing cytokines can be
pumped (9). Pressure differences across the hydrogel can be
modulated to generate and control advection. The fluid velocity
field across the hydrogel and diffusivity of chemokines within it
need to be precisely known for model specification.

The purpose of this paper is to build a Bayesian framework
that enables the estimation of these model parameters
incorporating an assessment of the uncertainty in parameter
estimation. In contrast to the classical frequentist inference
approach, Bayesian methodology treats experimental data
as a fixed quantity and parameters as random variables
drawn from a probability distribution. This allows us to
determine the probability of the parameters taking certain
values given the observed data. Within this framework, we
are able to incorporate prior knowledge about the probability
distribution of the parameters which can then be updated
through experimental observations. In addition, it allows for
the assessment of the reliability of the parameter estimate
through quantification of the uncertainty. This is a robust
alternative to the traditional frequentist approach which
deals with a single “best-fit” and confidence intervals based
on potentially unrealistic assumptions in real experimental
settings. Employing the Bayesian paradigm also facilitates
the design of further experiments by demonstrating which
experimental parameters have the greatest uncertainty. The
suggested framework is validated by analyzing three datasets
(hereafter referred to as DextranI and DextranII and CCL19),
which capture the development of gradients of Dextran and
CCL19 in microfluidic chambers.

MATERIALS AND METHODS

Experimental Set-Up
The experimental data in this paper were obtained by
microscopy imaging of Dextran and CCL19 transport in a
polydimethylsiloxane (PDMS) microfluidic chip (Figure 1A).
This chip enables the observation of the transport of fluorescently
tagged solutes through a porous hydrogel (10). Here, the solutes
were 10 kDa Dextran (ThermoFisher Sci., U.K.), which is of a
similar molecular weight as the chemokines CCL19 and CCL21,
and the chemokine CCL19 (Almac, U.K.). Both were labeled with
the fluorophore Alexa R© 647 at one fluorophore per diffusing
molecule and the hydrogel is collagen type I (Corning, U.S.A.)
at 2.0 mg/mL. The fluorescent solution was supplied to an open-
ended channel on one side of the hydrogel by means of a syringe
mounted on a precision linear displacement mechanism (World
Precision Instruments, model AL4002X). It was transported
orthogonally to the supply flow direction into the hydrogel and
was washed away by phosphate-buffered saline (PBS) on the
opposite side of the hydrogel channel (Figure 1B). Dextran was
supplied at a concentration of 100 nmoles/L, which is within
the range of the concentration of bound CCL21 in lymph nodes
in vivo and CCL19 was supplied at 25 nmoles/L, which is
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also within its concentration range in lymph nodes (8). The
fluorescent intensity across the hydrogel was recorded at intervals
of 30 or 120 s from an initial state of no fluorescence and
averaged orthogonally using Fiji (11) with a custom Matlab code
(MathWorks, Inc., U.S.A.). The fluorescence was also recorded
across the source and sink fluid channels (Figure 1B) to provide
boundary conditions for the posterior analysis.

The Mathematical Advection-Diffusion
Model
In this experimental set-up, the distance between the source and
buffer (sink) of the microfluidic device (depicted in Figure 1B),
is much larger than the gap between the trapezoidal structures at
the side of each channel. Thus, wemodel the transport of Dextran
and CCL19 in a one-dimensional domain 0 < x < d denoting
the concentration of the solute by C(x, t) where x indicates the
distance between the source and buffer with time denoted by
t > 0. We assume that the supply of the solute at the source is
approximately uniform along the channel, so that longitudinal
variations are neglected. The transport of Dextran and CCL19
can, therefore, be described mathematically by the 1D unsteady
advection-diffusion equation,

∂C

∂t
= D

∂2C

∂x2
− u

∂C

∂x
, 0 < x < d, (1)

where D is the effective diffusivity (assumed uniform in the
hydrogel) and u is the uniform advection velocity in the x
direction, referred to as “advection” for the rest of the paper.
Initial conditions for the concentration are extracted from the
experimental data such that:

C (x, t0) = C0(x). (2)

We apply the following boundary conditions at the source
and buffer:

C (0, t) = Cs(t) and C
(

d, t
)

= Cb (t) , (3)

with Cs(t) and Cb (t) specifying the measured time-varying
concentration of solute (Dextran and CCL19) at the source and
buffer, respectively. We solve Equations (1 − 3) numerically
using a finite difference scheme. Central differences are used
to discretize the diffusive terms of the equations and second-
order upwinding is used for the advective terms. Time-stepping
is performed using the implicit Euler method.

Integration of Mathematical Model and
Experimental Data in a Bayesian
Framework
A key objective of this study is to quantify the parameters
of diffusivity and advection from the available concentration
profiles at each time step (Figures 2A,B). Estimation of model
parameters consists of evaluating those values of the parameters
which maximize the ability of the model (Figure 2C) to capture
the experimentally observed concentration profiles (Figure 2B).
We also aim to provide robust, quantitative information on
the uncertainty associated with the estimated parameter values
(Figure 3).

Experimentally Measured Initial and Boundary

Conditions Incorporated in the Model
The crucial first step was to extract concentration profiles at each
time point (Figure 2B) from time-lapse image data (Figure 2A)
using Fiji (11). They were averaged over 300µm orthogonal to
the main direction of diffusion and assimilated to fluorophore
concentration using an assumption of proportionality between
both values. The gray-scale profiles in the dataset at the first time
step were used to determine the initial condition (Equation 2)
for the mathematical model and the averaged gray-scale values
closest to the source and buffer (sink) were used to generate
the two boundary conditions (Equation 3) required for the
mathematical model. However, the spatial grid and numerical
time steps used to solve the discretized model equation do not
necessarily coincide with the data points extracted from the
imaging data. Therefore, it is convenient to find continuous
approximations of the initial and boundary conditions from
experimental data. We used linear interpolation for the initial
conditions and fitted polynomials for the boundary conditions.
Then, these are sampled at the relevant grid points and time
steps used in the numerical method to provide the initial and
boundary conditions for the model simulations. For each dataset,
we evaluated polynomial fits for a range of orders and in each
case we chose the lowest-order polynomial that gave a suitable
qualitative fit to the experimental data.

For DextranI and DextranII, the initial conditions are derived
from the experimental data at t0 = 120 s (Figures 4A,C); for
CCL19 they are derived from the data at t0 = 0 s (Figure 4E).
The time-varying boundary conditions are given by 5th order
polynomials for DextranI (Figure 4B) and 7th order polynomials
for DextranII and CCL19 (Figures 4D,F).

The Bayesian Paradigm
The main idea underlying the fitting of the model to data
is to identify the parameters that best describe the observed
concentration profiles (Figures 2B,C). If one were to use a
traditional frequentist approach, the best estimates for the model
parameters are those for which model and data outputs match
as closely as possible, based on some objective function such
as the sum of squared differences in the widely used “least
squares” optimization technique. The frequentist approach
asks the question—given a particular set of model parameters
how well do the model solutions fit the experimental data?
The Bayesian approach turns this question around: given the
experimental data, what are the model parameters that best
fit the observations? In addition, assessment of goodness-of-
fit using frequentist approaches relies only on considering
whether the data lie within some confidence intervals (with an
underlying assumption that the model parameter estimates have
an asymptotic Normal distribution). In contrast, the Bayesian
approach enables the assignment of a probability distribution
to the model parameters (which may or may not be a Normal
distribution) and a quantification of the uncertainty associated
with the fit (12).

We, therefore, adopt the Bayesian paradigm which enables us
to (i) directly and satisfactorily assess the estimates of the model
parameters given the observations already made in experiments
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FIGURE 1 | (A) Schematic representation of the polydimethylsiloxane (PDMS) microfluidic chip used for obtaining the experimental data. (B) Enlarged representation

of the imaged hydrogel section between two open-ended channels. The Dextran diffuses from the one open-ended channel (source) to the other open-ended channel

(buffer) and the fluorescent intensity across the distance x, with 0 ≤ x ≤ d, between the source and buffer (sink) fluid channels is recorded at fixed time steps. Based

on the design of Farahat et al. (9).

FIGURE 2 | Schematic of the integrated pipeline for the estimation of transport parameters from the available experimental data. The data-based concentration

profiles (B) at different time steps are extracted from raw images (A) using the image processing package Fiji. Sets of transport parameters of diffusion and advection

enable the model simulations to generate concentration profiles at each time step (C). The Bayesian inference approach is employed in order to determine this set of

the candidate model parameters that best describes the experimental data by minimizing the discrepancy between the data-based (B) and model-based (C)

concentration profiles at each time step.

and (ii) quantify the uncertainty of our estimates in a consistent,

sound and intuitive probabilistic manner (13, 14). In order to fit

the model described in Equation (1) to the fluorescence images at

each time step, we assume additive Gaussian noise ε, independent
for the experimental observations at each time step, with mean

zero and standard deviation σ , i.e. ε ∼ N(0, σ 2), so that:

C (x, t) = C (x, t) + ε, (4)

where C (x, t) indicates the model-based concentration and
C (x, t) denotes the experimental data-based concentration at
position x and time t.

Thus, at each time step both transport parameters of
diffusivity D and advection u are considered random variables
and our prior beliefs about them are formulated into probability
distributions, referred to as prior distributions (Figure 3A).
Based on Bayes’ theorem, the experimental data are used
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FIGURE 3 | (A) Schematic of the essentials for employing a Bayesian approach in inferring transport parameters from experimental data. In the Bayesian paradigm,

both transport parameters of diffusivity D and advection u are considered random variables and our prior knowledge of them is summarized into probability

distributions, the prior distributions. The experimental data are used to update our prior beliefs about the transport parameters and lead to estimates of the transport

parameters which include our data-informed knowledge in the posterior distributions. (B) Initially, we assume no prior knowledge about the transport parameter and

thus we assign a vague (non-informative) prior distribution to it. Performing a Bayesian parameter analysis, we end up with a non-uniform posterior distribution which

not only allows for a point estimate of the parameter but also provides a quantification of the uncertainty associated with it.

to improve upon our prior belief by multiplying the prior
distribution for each of the transport parameters by the
likelihood, which describes the probability of a specific
parameter value describing the observed data (Figure 3B) (15).
After normalizing, this leads to the posterior distribution
π

(

θ
∣

∣data
)

, i.e.,

π
(

θ
∣

∣data
)

=
π(data|θ)π(θ)

∫

θ
π(data|θ)π(θ)dθ

∝π
(

data
∣

∣θ
)

π(θ) , for θ ∈{D, u} , (5)

where π(θ) signifies the prior distribution and π(data|θ)
indicates the likelihood for each of the model transport
parameters, i.e. the diffusivity D and advection u. However,
in this study the uncertainty inherent in the experimental
data, primarily caused by random error and its associated
sources, was not measured directly in the observations and
therefore the standard deviation σ of the noise ε also
had to be estimated. This leads to the updated version of
Equation (5), i.e.

π
(

θ
∣

∣data
)

=
π(data|θ)π(θ)

∫

θ
π(data|θ)π(θ)dθ

∝ π
(

data
∣

∣θ
)

π (θ) , for θ ∈ {D, u, σ } .

(6)

Sequential Bayesian Inference of the Model

Parameters
In order to accommodate the additional information provided
by concentration profiles at different time points, we employ
a sequential Bayesian approach. At the first time step, we
assume no prior knowledge for the transport parameters of
diffusivity D (mm2/s) and advection u (mm/s), while for the
fluorescence imaging experimental noise some prior knowledge
can be assumed. Specifically, at the start we assign a non-
informative uniform prior distribution to both non-negative
parameters of diffusivity D and advection u (Figure 3B) with
0 and 1 as their lower and upper bounds respectively, and a
folded Normal distribution with mean zero (Half-Normal) to
the non-negative standard deviation σ (arbitrary units based on
fluorescence intensity). Thus, for the first time step:

D ∼ π1 (D) = U (0, 1) , (7)

u ∼ π1 (u) = U (0, 1) (8)

and

σ ∼ π1 (σ ) , with σ =

∣

∣

∣
σ

′
∣

∣

∣
and σ

′

∼ N (0, 1) . (9)

By updating the prior distributions π1 (θ) through the likelihood
function, which incorporates the information from the
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FIGURE 4 | (A) The initial conditions for the model simulations extracted from DextranI (A), DextranII (C) and CCL19 (E) through piecewise linear interpolation of the

experimental concentration profile at each point along the channel of width 0.91mm at the initial time t0 = 120 s for DextranI and DextranII and along the channel of

width 0.496mm at the initial time t0 = 0 s for CCL19. The concentration at the boundaries of the channel (the source and the buffer) was derived from DextranI (B),

DextranII (D) and CCL19 (F) (data points marked with crosses) by fitting polynomials of degree 5, 7 and 7 respectively (solid lines) to experimental data before being

used as input to the model simulations.

experimental data E1 =
{

C (xi, t = t1) : 0 ≤ xi ≤ d
}

at the
discrete points xi at t = t1, Equation (6) leads to the posterior
distribution π1 (θ |E1) which summarizes the information for
each parameter θ ∈ {D, u, σ } at the first time step, i.e.

D ∼ π1 (D|E1) , (10)

u ∼ π1 (u|E1) , (11)

and

σ ∼ π1 (σ |E1) . (12)

At every subsequent time step n, with n ≥ 2, our knowledge
of the parameter of diffusivity D, which is a characteristic
quantity of the solute, is mathematically formulated in the prior
distribution πn(θ) at the current time step n but it is also included
in the posterior distribution πn−1 (θ |En−1) at the previous time

step n − 1. We also assign a uniform prior distribution to
advection u, which denotes the advection velocity, as we did for
the first time step. Therefore, with the available experimental
data En−1 =

{

C (xi, t = tn−1) : 0 ≤ xi ≤ d
}

at t = tn−1 we start
afresh and write:

D ∼ πn (D) = πn−1 (D|En−1) (13)

and

u ∼ πn (u) = U (0, 1) , (14)

so that Equation (6) yields the following posterior distributions:

D ∼ πn (D|En) , (15)

and

u ∼ πn (u|En) . (16)
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FIGURE 5 | (A) DextranI: The posterior distributions for the diffusivity D (mm2/s), the advection u (mm/s) and the standard deviation σ (arbitrary units (a.u.) based on

fluorescence intensity) shown for t = 600 s and t = 2,640 s. (B) The model-based concentration profiles C (x, t) with the median value of the resulting posterior

distribution for each of the parameters as well as the data-based concentration profiles C (x, t) plotted every 120 s from 240 s to 2,640 s; the two concentration

profiles annotated with an arrow correspond to those profiles resulting from the median values of the parameters whose posterior distributions are shown in (A).

While the above holds for the parameter analysis of DextranII
and CCL19 throughout the experiment, in the analysis of
DextranI for time step n, with 2 ≤ n ≤ 6, in order to
overcome the issue of parameter identifiability, we assign

the posterior distribution at time step n − 1 as the prior
distribution at time step n for the parameter of advection, i.e.,
u ∼ πn (u) = πn−1 (u|En−1). Then, for any subsequent time step
n, with n ≥ 7, Equations (14) and (16) hold, as explained above.
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FIGURE 6 | (A) DextranI: The estimated median values resulting from the posterior distribution for the diffusivity D (mm2/s) plotted against time every 120 s from 240

s to 2,640 s. (B) The estimated median values resulting from the posterior distribution for the advection u (mm/s) plotted against time every 120 s from 240 s to 2,640

s. (C) The estimated median values resulting from the posterior distribution for the standard deviation σ (arbitrary units (a.u.) based on fluorescence intensity) plotted

against time every 120 s from 240 s to 2,640 s.

Since the noise in the fluorescence images was not measured
directly, the prior distribution πn(σ ) at any subsequent time step
n for the standard deviation σ is given by:

σ ∼ πn (σ ), with σ =

∣

∣

∣
σ

′
∣

∣

∣
and σ

′

∼ N (0, 1) , (17)

which gives rise to the following posterior distribution:

σ ∼ πn (σ |En) , (18)

where En indicate the available experimental concentration data
at time tn. At the first time step, as described above, the initial
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FIGURE 7 | (A) The fitted gamma distributions to the posterior distributions of

diffusivity D (mm2/s) at the different time points of DextranI. (B) The fitted

gamma distributions to the posterior distributions of advection u (mm/s) at the

different time points of DextranI.

conditions are extracted from the data. For any subsequent time
step n ≥ 2, the initial conditions are updated using the values of
the model parameters estimated through the sequential Bayesian
approach which leads to a model-based concentration profile
C (x, t = tn−1) , at time t = tn− 1.

Markov Chain Monte Carlo for Deriving the Posterior

Distributions of the Model Parameters
The normalizing constant appearing in the denominator in
Equation (5) is a multidimensional integral that can be
cumbersome to determine analytically. Instead, simulation-
based methods can be used for deriving the posterior
distributions for each of the model parameters efficiently. In
this study, we use a Markov Chain Monte Carlo (MCMC)
algorithm (16) to efficiently generate samples from the posterior
distribution which is considered the target distribution in
our problem (17). We implement the widely-used random
walk Metropolis-Hastings Algorithm (18, 19). The algorithms
were implemented in the Python package PyMC which is
intended for probabilistic machine learning and Bayesian
stochastic modeling employing advanced Markov Chain Monte
Carlo and variational fitting algorithms (20) using a Dell

R720 with 2 x Intel(R) Xeon(R) E5-2665, 8-core processors
and 512 Gb RAM.

The Metropolis-Hastings algorithm draws samples from
the posterior distribution for each of the model parameters.
Thus, we are able to summarize the posterior distribution and
calculate the relevant statistical quantities of interest for each
of the inferred parameters. These statistics include the mean,
the median, the standard deviation and the Highest Posterior
Density (HPD) intervals, which are the credible intervals in our
Bayesian analysis.

At each time step n our prior knowledge for each transport
parameter was updated through the posterior distribution at
the previous time step n-1, as explained previously. However,
the probability density functions of the posterior distributions
resulting from the MCMC sampling are approximated well by
a gamma distribution Ŵ (α,β) , with the shape parameter α and
the rate parameter β evaluated as follows (21):

E (θ) =
α

β
(19)

and

Var (θ) =
α

β2
, (20)

with themean E (θ) and the varianceVar (θ) already known from
the Bayesian statistical analysis for each transport parameter θ ,
with θ ∈ {D, u} .

RESULTS

The results of the Bayesian parameter analysis provide us with
posterior distributions for each model parameter at each time
point. For DextranI, representative posterior distributions at t
= 600 s and t = 2,640 s are shown in Figure 5A, for DextranII
representative posteriors at t = 480 s and t = 1,440 s are depicted
in Figure 8A and for CCL19 representative posteriors at t =

60 s and t = 120 s are given in Figure 11A. These plots show
that the hereby presented analysis provides us not only with a
single point estimate (the median values of the distributions)
for each model parameter at each time but also enables us to
quantify the uncertainty connected with each one of them. In
fact, at a single time point these plots can interpret graphically
all the summary statistics for each one of the inferred parameters
D, u, σ contained in the Supplementary Material Tables 1–3

for DextranI, Supplementary Material Tables 4–6 for DextranII
and Supplementary Material Tables 7–9 for CCL19. These
summary statistics include measures of location (mean,
median), measures of spread (standard deviation) as well
as measures of confidence that the value of a parameter as
estimated through its posterior distribution lies within a HPD
(Highest Posterior Density) interval with 95% probability.
Supplementary Material Tables 1–9 show that the values of
median and mean for the model parameters consistently lie
within the 95% HPD intervals at every time step. The Bayesian
parameter analysis performed in this study satisfies certain
convergence criteria (see Supplementary Material for results
related to convergence, mixing and autocorrelation) thus
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FIGURE 8 | (A) DextranII: The posterior distributions for the diffusivity D (mm2/s), the advection u (mm/s) and the standard deviation σ (arbitrary units (a.u.) based on

fluorescence intensity) shown for t = 480 s and t =1,440 s. (B) The model-based concentration profiles C (x, t) with the median value of the resulting posterior

distribution for each of the parameters as well as the data-based concentration profiles C (x, t) are plotted for each time step; the two concentration profiles annotated

with an arrow correspond to those profiles resulting from the median values of the parameters whose posterior distributions are shown in (A). The concentration

profiles at t = 720 s and t = 1,200 s are also annotated.

allowing for efficient sampling of the posterior distribution for
each model parameter at each time step.

In order to evaluate the predictability of the model and its
ability to extract reliable values for the transport parameters,
we use summary statistics of the posterior distributions of the

estimated parameters as inputs into the mathematical model.
Although following the analysis of the available datasets the
median equals the mean of the posteriors for the vast majority
of the time steps, we choose the median in order to account for
the cases where the posterior distribution is skewed. The median
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FIGURE 9 | (A) DextranII: The estimated median values resulting from the

posterior distribution for the diffusivity D (mm2/s) are plotted against time

every 120 s from 240 s to 1,440 s. (B) The estimated median values resulting

from the posterior distribution for the advection u (mm/s) are plotted against

time every 120 s from 240 s to 1,440 s. (C) The estimated median values

resulting from the posterior distribution for the standard deviation σ (arbitrary

units (a.u.) based on fluorescence intensity) at each time step are plotted

against time every 120 s from 240 s to 1,440 s.

values for each of the parameter distributions are then substituted
in the mathematical model to simulate the concentration profiles
(red curves in Figure 5B for DextranI, Figure 8B for DextranII,
and Figure 11B for CCL19) corresponding to each time point
for which in vitro concentration profiles were extracted (blue
curves in Figure 5B for DextranI, Figure 8B for DextranII,
and Figure 11B for CCL19). Figures 5B, 8B, 11B show that
at each time step the inferred transport parameters lead to a
very good overall fit of the model consistently for all datasets.
While for DextranI and CCL19 the fit is excellent at all
time steps, some discrepancies between the data-based and the
model-based concentration profiles are more clearly detected
in DextranII at t = 720 s and t = 1,200 s (Figure 8B). The
difference at these time points is a result of the poor polynomial
fit to the boundary conditions at the corresponding time
points (Figure 4D).

FIGURE 10 | (A) The fitted gamma distributions to the posterior distributions

of diffusivity D (mm2/s) at the different time points of DextranII. (B) The fitted

gamma distributions to the posterior distributions of advection u (mm/s) at the

different time points of DextranII.

By fitting the model to experimental data at each time step
we are also able to estimate the variation of the transport
parameters over the course of the experiment (Figure 6
for DextranI, Figure 9 for DextranII and Figure 12 for
CCL19). The median values of diffusivity varied between
10−5mm2/s and 10−4 mm2/s (Figures 6A, 9A, 12A).
Based on the parameter estimation analysis, the advection
across hydrogel varies over time (Figures 6B, 9B, 12B)
due to limitations in the advection control in the
microfluidic chamber.

Finally, we show that the probability density functions of the
distributions are well approximated by a gamma distribution
at each time step as explained in the Markov Chain section
above. For all the datasets, Figure 7 (DextranI), Figure 10

(DextranII) and Figure 13 (CCL19) show the evolution of the
posterior distributions for the estimated transport parameters of
diffusivity and advection over the duration of the experiments.
The range of the distribution at later time steps changes, because
knowledge about the estimated parameter at the previous time
step is incorporated by informing the prior distribution for the
next time step. These figures also provide a sound argument
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FIGURE 11 | (A) CCL19: The posterior distributions for the diffusivity D (mm2/s), the advection u (mm/s) and the standard deviation σ (arbitrary units (a.u.) based on

fluorescence intensity) shown for t = 60 s and t =120 s. (B) The model-based concentration profiles C (x, t) with the median value of the resulting posterior

distribution for each of the parameters as well as the data-based concentration profiles C (x, t) are plotted for each time step; the two concentration profiles annotated

with an arrow correspond to those profiles resulting from the median values of the parameters whose posterior distributions are shown in (A).

to the above conclusion regarding the overall range of the
diffusivity and advection over time guaranteeing that they are not
distributed over multiple orders of magnitude.

DISCUSSION

This study illustrates a robust parameter estimation approach
that greatly facilitates the use of mathematical modeling in

extracting quantitative information about key mechanisms from
experimental data in chemokine biology. The inclusion of
biologically relevant parameters, including the statistically sound
evaluation of their experimental uncertainty and variability, is
crucial in modeling efforts to describe chemokine transport
phenomena. This truly enables the model equations to represent
the functional mechanisms in a manner that will appropriately
represent the in vivo reality.
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FIGURE 12 | (A) CCL19: The estimated median values resulting from the

posterior distribution for the diffusivity D (mm2/s) are plotted against time

every 30 s from 30 s to 120 s. (B) The estimated median values resulting from

the posterior distribution for the advection u (mm/s) are plotted against time

every 30 s from 30 s to 120 s. (C) The estimated median values resulting from

the posterior distribution for the standard deviation σ (arbitrary units (a.u.)

based on fluorescence intensity) at each time step are plotted against time

every 30 s from 30 s to 120 s.

The example of parameter estimation shown here
demonstrates an integrated pipeline for estimating key transport
parameters from in vitro data using a mechanistic advection-
diffusion model. The Bayesian framework not only produces
an overall good fit of the model to the experimental datasets
but it also allows for diffusivity and advection to be estimated
robustly. The resulting estimations of diffusivity for Dextran
varied between 10−5 and 10−4 mm2/s and were close to the
values of diffusivity predicted or measured in other ways. Indeed,
AL-Barati et al. (22) and Takanori et al. (23) measured the
diffusivity to range from 10−5 and 10−4 mm2/s depending
on the experimental conditions such as temperature. These
values are also close to the Stokes diffusivity. Regarding the
estimation of diffusivity of CCL19, these values are coherent
with the theoretical Stokes diffusivity of 1.3 x 10−4 mm2/s

FIGURE 13 | (A) The fitted gamma distributions to the posterior distributions

of diffusivity D (mm2/s) at the different time points of CCL19. (B) The fitted

gamma distributions to the posterior distributions of advection u (mm/s) at the

different time points of CCL19.

for A647-labeled CCL19 in water, calculated for an average
molecular weight of 11.5 kDa for the fluorescently labeled
chemokines (manufacturer batch documentation). The effective
diffusivity in porous media is expected to be up to an order
of magnitude lower than this estimated value. Similarly, the
order of magnitude of the advection velocity is 10−4 mm/s,
i.e. a Péclet number lower than 1. This corresponds to the
lower range of interstitial fluid velocities and is coherent with
the fact that these data were obtained in devices intended for
diffusive transport only. Because of the difficulty in balancing
the system pressures, there was some variability in the advection
velocity over time and this is captured by the parameter
estimation algorithm. Diffusivity should not vary with time, so
our estimates plateau out over time to the most representative
value. The observation of advection variation over time is used
in a feedback process for the refinement of the microfluidic
chamber design. Its design aim is to enable precise and constant
advection across the hydrogel, and the parameter estimations
performed here help identify sources of error in the advection
control strategy.
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Fluorescence image noise is assumed to be independent
for each time point, so it does not plateau. In addition,
there were no data available about the fluorescence imaging
experimental noise, which is quantifiable through the standard
deviation σ (arbitrary units based on fluorescence intensity)
as explained above and mathematically formulated in Equation
(4). Although experimental noise is not known a priori
(since we do not have multiple experimental repeats), our
methodology enables us to estimate it. This is because our
approach allows it to be treated as an extra parameter which
can be inferred in tandem with both transport parameters
successively throughout the duration of the experiment. The
fact that our estimate for the noise was nominally about
1% of the fluorescence signal indicates that the data are of
good quality.

This study also shows that Bayesian parameter analysis
provides accurate posterior inference for all the estimated
parameters at each time point during the course of the
experiment. The framework provides point estimates of the three
parameters of interest and assesses the uncertainty associated
with each one by quantifying the corresponding statistical
distribution. The resulting uncertainties in estimating diffusivity
and advection are most likely a result of spatial variability due to
hydrogel density variation and fluorescence imaging noise.

It is also worth noting that the initial and boundary conditions
for the model simulations are extracted from the experimental
data thus adding to the physical relevance of the estimated
parameters of mathematical models and the reliability of the
parameter inference approach itself. However, at certain time
steps in one of the datasets (DextranII) the polynomial fit to the
boundary condition fluorescence data was sufficiently poor to
create disagreement with themodel-based concentration profiles.
Spline interpolation may be used as an alternative to address
this issue.

The experimental set-up presented here is a prototype which
only accounts for transport phenomena without incorporating
binding kinetics. In future, the integrated pipeline for parameter
estimation will be expanded to more complex experiments which
also allow for binding kinetics, dynamic interactions between
physical, biological, biochemical processes and cellular uptake.
We will further perform experiments with different chemokines,
as this could provide a broader understanding of chemokine

gradient establishment and help stratify chemokines into relevant
groups with respect to their gradient forming characteristics.
This will also provide further support for the applicability
and scalability of this integrated pipeline, since a quantitative
understanding of a system with the complexity of chemokine
transport dynamics requires not only a series of reductionist
experimental approaches but also the ability to construct
mathematical models with powerful prediction capabilities. The
robust model parameter determination algorithm presented here
provides the necessary foundation for this combined approach
contributing to the emergence of a better knowledge base of
the chemokine system and leukocyte trafficking. Thus, predictive
modeling will provide invaluable insights into the potential
therapeutic benefits of modulating immune response.
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