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Abstract

Condition-based maintenance critically relies on efficient and reliable structural health monitoring systems, where the

number, position and type of sensors are determined according to rational and principled criteria. This paper proposes

the use of the value of information and the relative expected information gain as optimality criteria to determine

the best number and positions of sensors, respectively. The proposed methodology is general, but in this paper it

is specialized for ultrasonic guided-wave optimal system configuration. Two case studies are used to illustrate the

suitability of the proposed methodology in providing the optimal sensor configuration of an ultrasonic guided-wave

based structural health monitoring system. The results confirm the value of information as an efficient and rational

index to compare among different sensor positioning strategies, while accounting for the underlying modeling and

measurement uncertainties. As key contribution, a novel framework that trades-off between amount and cost of

information is provided. The results show that geometrically unconstrained sensor configurations are preferred, since

they provide a healthier balance between the amount of information and the benefit of such information.

Keywords: Optimal sensor configuration, Value of information, Bayesian inverse problem, Ultrasound, Time of

flight, SHM

1. Introduction1

Recent advances in structural health monitoring (SHM) are enabling a progressive transition from scheduled pre-2

ventive maintenance to condition-based predictive maintenance in safety-critical industries such as the aerospace3

industry [1, 2]. These maintenance activities have a profound impact not only on safety but also on cost, since the ser-4

vice needs to be suspended during inspection and maintenance. Therefore, higher reliability, availability, and lower5

operation and maintenance costs are desired outcomes of condition-based maintenance, which highly relies on the6

amount, coverage, and accuracy of the SHM data. Theoretically, an infinitely reliable system would require an infinite7

amount of information; however such a theoretical rule finds an exception in practice when features related to the8
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Nomenclature

b(·) benefit function

B′ maximum prior expected benefit

B′′ maximum posterior expected benefit

BIP Bayesian inverse problem

BEIG benefit of the expected information gain

CVI conditional value of information

C sensor spatial configuration

D(k) mean of the hyper-robust model for the k-th
sensor

D set of data D(k) for all the sensors

D (k) signal acquired in the k-th sensor

e error term in ToF model

E Young’s modulus

EVI Expected value of information

f (n) inverse cost function

KL(·‖·) Kullback-Leibler divergence

n′opt optimal configuration under the prior ex-
pected benefit

n′′opt optimal configuration under the posterior ex-
pected benefit

N space of potential configurations

ns maximum potential number of sensors

N Gaussian distribution

P(·) probability

p(·) probability density function

PEB posterior expected benefit

RCI relative cost of implementation

ToF(a−s)
D measured ToF between actuator a and sen-

sor s

ToF(a−s)
M modeled ToF between actuator a and sensor

s

U uniform distribution

γ threshold parameter for AIMS algorithm

γp performance index of the sensor configura-
tion

εη error of damage reconstruction

ν Poisson ratio

ρ density

ΘΘΘ set of possible values of the parameters in the
BIP

θθθ set of ToF model parameters

complexity of the monitoring system such as the cost or the weight, are taken into consideration. The latter suggests9

a trade-off between reliability and complexity for SHM design that needs to be assessed rigorously for optimal SHM10

functionality. In the particular case of ultrasonic guided-wave based SHM, the aforementioned trade-off is especially11

relevant since uncertainty factors such as sensor noise, material property uncertainties, and variations in the acquisition12

and generation equipment, are well-known sources of complexity which limit the monitoring functionality. For this13

reason, several authors have recently adopted the concept of value of information [3, 4] to investigate optimal SHM14

designs based on a healthy and principled balance between the amount and the benefit of the monitoring information.15

For example, the value of information has been adopted to address the maintenance decision optimization in [5, 6] by16

using SHM data [7, 8], reliability methods [9], and influence diagrams [10]. Besides, it has also been used to assess17

the value of SHM systems based on structural risks, integrity management, service life costs, pre-posterior analysis,18

and Bayesian decision theory [11–14]. In the context of optimal sensor placement, the value of information has been19

adopted to optimize spatially distributed systems, which allow for information propagation [15], although with known20

modularity issues [16]. However, none of these contributions to date has focused on ultrasonic guided-wave based21
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SHM, precisely where the benefits of this decision-theoretic concept can be fully exploited due to the high reliance of22

ultrasonic information on both the number and position of the sensors.23

In the context of ultrasonic SHM systems design, several approaches have been proposed in the literature to op-24

timize the number of piezoelectric (PZT) sensors and/or their locations in plate-like structures in both active and25

passive sensing diagnosis using ultrasonic guided-waves. Passive sensing diagnosis techniques consider an arbitrary26

number of sensors in listening-mode which capture sudden changes in the structure, such as impacts or crack growth.27

Alternatively, active sensing diagnosis techniques consider the interaction of the sensors with the structure by means28

of emission and reception of guided waves. In both cases, several attempts have been proposed to optimize the29

SHM performance (number of sensors and location) through optimization methods such as artificial neural networks30

combined with (1) genetic algorithms [17–20], whose efficiency has been improved by using the trilateration tech-31

nique [21], (2) simulated annealing to achieve complete coverage and discrimination [22], and (3) particle swarm32

optimization [23]. Alternatively, the optimization has been addressed by the use of performance indexes such as33

the probability of detection [24–27] and the maximization of the area of coverage [28–31], whereby the ultrasonic34

guided-wave properties and geometrical complexities are taken into account, as well as features like the influence of35

faulty sensors [32]. The vast majority of these approaches rely on deterministic assumptions, and hence do not account36

for the inherent uncertainties associated with ultrasound-based SHM, such as signal noise and uncertain material and37

ultrasonic parameters. These uncertainties propagate across different models leading to uncertainty in the damage38

reconstruction, which needs to be quantified for a rigorous optimal sensor location assessment.39

Several Bayesian probabilistic approaches for optimal sensor configuration have been proposed in the literature,40

but for applications other than guided-wave based SHM. For example, the position and/or the number of sensors in41

structural systems have been optimized by making use of model-based Bayesian inverse problems (BIPs) and proba-42

bilistic metrics such as (1) the Shannon-entropy of the posterior distribution [33–37], (2) the Kullback-Leibler (KL)43

divergence between the prior and posterior distributions [38–42], or (3) the mutual information [43]. In analogous44

applications, a Bayesian experimental design approach has been proposed, which provides a case-specific utility func-45

tion, such as the KL divergence [44], whereby the maximization of its probabilistic expectation provides the optimal46

experimental design [45]. As a general comment, these methods provide rigorous criteria for optimal sensor configu-47

ration from an information-theoretic point of view, so that the more sensors the more information gained and the better48

damage identification. Note that some of these approaches, which focus on the selection of the correlated prediction49

error models, not only allow the accountability of uncertainties but also provide indications of the optimal number50

of sensors [36]. However, in practice, decision-theoretic instead of information-theoretic criteria would be preferred,51

where important variables such as the cost of the monitoring system can be rigorously taken into consideration for52

optimal SHM system design.53

In this paper, a novel and generic methodology for optimal sensor configuration in ultrasonic guided-wave based54

SHM is provided. To take rigorously into account both information gain and cost-related benefits while accounting55

for the underlying modeling and measurement uncertainties, the expected value of information is proposed as an op-56
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timality criterion. The value of information is defined as the difference between the maximum prior and posterior57

expected benefits [8], and here it is proposed to be used as an objective function for obtaining the optimal number of58

sensors. In particular, different sensor configurations with an increasing number of sensors are proposed according to59

a forward sequential sensor placement [35] algorithm. Then, the optimal sensor position for each of these configu-60

rations is determined by maximizing the information gained between the prior and the posterior PDF of the damage61

identification parameters (e.g., damage position). The computation of the information gain is carried out using a dam-62

age localization model based on a robust Bayesian methodology proposed by the authors in [46]. Next, the expected63

value of information for each of the optimally-located sensor configurations is obtained, so that the optimal config-64

uration is chosen as the one which maximizes the value of information. The methodology is illustrated using two65

case studies for two different plate-like structures, namely (1) a flat aluminium panel and (2) an aeronautical hat-type66

stiffened aluminum plate. The optimal sensor configuration is obtained considering the prior information about the67

possible damage occurrence within a particular bounded area, whereby the data is simulated by using a time of flight68

model [47]. Then, the effectiveness of the optimal sensor configuration is tested in a particular damage scenario by69

simulating the structures in Abaqus and reconstructing the damage using the robust Bayesian damage localization70

methodology provided in [46]. In general, the results show the efficiency of the proposed methodology in obtaining71

the optimal number and position of sensors, in comparison with pure information based approaches. In particular,72

the results reveal that non geometrically constrained configurations are preferred from a value of information point of73

view, since they provide the best trade-off between amount of information and benefit of such information.74

The remainder of the paper is organized as follows. Section 2 describes the proposed optimization methodology75

based on the value of information and the fundamentals of Bayesian damage localization. Section 3 illustrates the76

methodology through two case studies for two different plate-like structures. A discussion is provided in Section 4 to77

investigate the influence of the parameters involved in the optimization result and to provide insight on the extensibility78

of the proposed approach. Finally, Section 5 provides concluding remarks.79

2. Methodology80

2.1. Optimal sensor configuration based on value of information81

In this section, a methodology based on the concept of value of information [3, 4] is proposed to assess the82

optimal number of sensors for an ultrasound-based SHM system. In general terms, the value of information quantifies83

the increment of benefit as a consequence of the information gain about a set of uncertain model parameters θθθ (e.g.84

damage location parameters) when data D are taken into account.85

In mathematical terms, let N = {1, . . . ,n, . . .} denote a set of potential sensor configurations and86

b(n,θθθ) : N×Rnθθθ → R a benefit function for the n-th sensor configuration, given a set of updatable model param-87

eters θθθ ∈ ΘΘΘ ⊂ Rnθθθ . Note that the n-th sensor configuration implies a layout of n sensors. Let us also denote by88

p(θθθ) and p(θθθ |D) the prior and posterior PDFs of the parameters θθθ , respectively, with D being the dataset. In this89

4



paper, b(n,θθθ) is defined as the product of a normalized inverse cost function (e.g. from economic or manufacturing90

cost sources) f (n) : N→ [0,1] and the information gain between the current and prior PDF of model parameters, as91

follows:92

b(n,θθθ) = f (n)
(

α + log2

[
π(θθθ ,D)

p(θθθ)

])
(1)

where p(θθθ) is the prior PDF of model parameters θθθ , π(θθθ ,D) is to denote the current PDF of θθθ , which could be93

either the prior or the posterior PDFs depending on the availability of the dataset D, and log2[π(θθθ |D)/p(θθθ)] is the94

information gain between the aforementioned PDFs in terms of bits. In Equation (1), the inverse cost function f (n)95

can be defined as a generally decreasing and dimensionless function, which gives a measure on how much benefit in96

terms of cost savings a particular configuration of n sensors provides. The constant α > 0 introduced in Equation (1) is97

to represent the basic state of information assumed in the system such that it makes b(n,θθθ) = α f (n) when π(θθθ ,D) =98

p(θθθ), which happens when there is no learning about θθθ from data D and therefore the benefit directly equals to the99

cost savings.100

Next, the concept of maximum prior expected benefit B′, obtained from the adoption of the optimal configuration101

n′opt ∈N, is defined as follows [8]:102

B′ = Ep(θθθ)
[
b(n′opt ,θθθ)

]
← n′opt = argmax

n∈N

∫
b(n,θθθ)p(θθθ)dθθθ (2)

Analogously, the maximum posterior expected benefit (PEB) B′′(D) can be obtained as [8]:103

B′′(D) = Ep(θθθ |D)

[
b(n′′opt ,θθθ)

]
← n′′opt = argmax

n∈N

∫
b(n,θθθ)p(θθθ |D)dθθθ (3)

where the conditioning on D is to denote that B′′ depends on the data obtained through the PZT sensors. Finally, by104

subtracting both mathematical expectations, the conditional value of information (CVI) given D is defined as:105

CVI(D) = B′′(D)−B′ (4)

Therefore, by substituting Equations (2), (3) and (1) in Equation (4), the CVI can be expressed as follows:106

CVI(D) =
∫

b(n′′opt ,θθθ)p(θθθ |D)dθθθ −
∫

b(n′opt ,θθθ)p(θθθ)dθθθ

=
∫

f (n′′opt)

(
α + log2

[
p(θθθ |D)

p(θθθ)

])
p(θθθ |D)dθθθ −

∫
f (n′opt)

(
α + log2

[
p(θθθ)
p(θθθ)︸ ︷︷ ︸
=1

])
p(θθθ)dθθθ

= α
∫

f (n′′opt)p(θθθ |D)dθθθ +
∫

f (n′′opt) log2

[
p(θθθ |D)

p(θθθ)

]
p(θθθ |D)dθθθ −α

∫
f (n′opt)p(θθθ)dθθθ

(5)

Note from the last equation that the inverse cost function is independent of the uncertain parameters θθθ , therefore107
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Equation (5) can be reorganized as follows:108

CVI(D) = α f (n′′opt)
∫

p(θθθ |D)dθθθ︸ ︷︷ ︸
=1

+ f (n′′opt)
∫

log2

[
p(θθθ |D)

p(θθθ)

]
p(θθθ |D)dθθθ︸ ︷︷ ︸

KL(p(θθθ |D)‖p(θθθ))

−α f (n′opt)
∫

p(θθθ)dθθθ︸ ︷︷ ︸
=1

(6)

which finally leads to109

CVI(D) = f (n′′opt)KL(p(θθθ |D)‖p(θθθ))︸ ︷︷ ︸
BEIG

−α
[

f (n′opt)− f (n′′opt)
]︸ ︷︷ ︸

RCI

(7)

where KL(p(θθθ |D)‖p(θθθ)) denotes the Kullback-Leibler divergence between the posterior and prior PDF of the uncer-110

tain parameters θθθ . In the last equation, the term f (n′′opt)KL(p(θθθ |D)‖p(θθθ)) can be understood as the benefit of the111

expected information gain (BEIG), which is always a non-negative value, i.e. BEIG ∈ R+
0 . The second part of Equa-112

tion (7) can be understood as the relative cost of implementation (RCI), since it accounts for the difference between113

the cost savings of implementing the optimal sensor configuration before and after considering the information from114

data D. Note that, in practice, not adding any SHM system (n = 0) is cheaper than adding it by strictly considering115

economical factors, due to sensors and hardware costs saving, among others. Therefore, the RCI is positive under116

the assumption that f (n) is decreasing, i.e. n′opt < n′′opt hence f (n′opt) > f (n′′opt) as exemplified in Figure 1. Observe117

also that the non-negative constant α defined in Equation (1) avoids the prior expected benefit (Equation (2)) becom-118

ing zero, and therefore simpler configurations will be preferred under non-informative (i.e. prior equals posterior)119

scenarios. In addition, the value of α is defined so that both terms, i.e., BEIG and RCI, are comparable under all120

possible scenarios, even when the system is not very informative, so that neither one of the RCI nor the BEIG terms121

individually drives the optimization problem. This interpretation of Equation (7) suggests that the CVI conveys a122

trade-off between the global benefit of establishing a particular SHM configuration and the cost of actually imple-123

menting it. The CVI also provides a decision making index that ranks different strategies considering their suitability124

in performance and cost. The interpretation of Equation (7) is illustrated with two hypothetical examples below.125

Example 1. Let us assume a non-informative SHM system where the posterior PDF is virtually equal to the prior126

PDF, such that the optimal number of sensors in prior and posterior states are the same, i.e. n′opt = n′′opt and thus127

f (n′opt) = f (n′′opt), hence RCI = 0. Moreover, since the SHM system is non-informative, the expected information128

gain equals zero, and therefore the BEIG equals zero as well. In this extreme example, given that CVI = 0, no129

decision about adding or removing sensors could be made based on the current information, hence no change with130

respect to the prior configuration would be required. Figure 2a depicts this example.131

Example 2. Let us assume a non-informative SHM system such that the optimal number of sensors when data are132

acquired are n′′opt = n′opt/2. In this example, half of the sensor network in the prior or initial state, i.e., n′opt/2, are133

placed opposite to each other in the plate, as depicted in Figure 2b. In this situation, let us assume that the posterior134

information captured by the system is equivalent to the prior information, hence the expected information gain (KL135

divergence) equals zero, thus BEIG also equals zero. Henceforth, the RCI term turns negative since f (n′opt)< f (n′′opt),136
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Figure 1: Example of functions of (a) information gain, (b) dimensionless inverse of cost, and (c) final combination of both functions as an example
of Equation (4). It can be observed in (a) that problems that constantly gain information when the number of sensors increases, can be converted
into a normal optimization problem (like in (c)) by the introduction of a dimensionless cost function (b).
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Figure 2: Graphical representation of Examples 1 and 2 about the influence of using the proposed CVI-based formulation in the decision of number
of sensors. For Example 1, no action would be taken, thus the prior distribution of sensors would be maintained. For Example 2, even when the
BEIG= 0, the proposed CVI> 0 formulation supports the option with a smaller number of sensors. Dashed circles represent the sensors in the
opposite side of the plate.

which leads to CVI > 0. This hypothetical example shows that the proposed formulation propitiates simpler and137

cheaper SHM systems under non-informative scenarios.138

2.1.1. Expected value of information139

The CVI criterion presented above formulates the optimization problem for a particular set of data D, i.e., it im-140

plicitly implies that damage is located at a particular position. However, in practice, the optimal sensor configuration141

problem requires addressing a large enough set of damage scenarios, hence a space of datasets D 3 D instead of a142

particular D needs to be considered. Note that at the design stage, experimental data are not typically available and143
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therefore the data are simulated using a model and prior knowledge of the model parameters. Thus, a mathematical144

expectation is applied to Equation (7) to obtain the expected value of information (EVI) over the space of datasets D,145

as follows:146

EVI =
∫
D

[
f (n′′opt)KL(p(θθθ |D)‖p(θθθ))

]
p(D)dD−

∫
D

α[ f (n′opt)− f (n′′opt)]p(D)dD (8)

Observe that the first term of Equation (8) involves a double multidimensional integral that cannot be solved ana-147

lytically in most of the cases. Therefore, it is numerically approximated using the Monte Carlo (MC) method as148

follows [38, 41, 48]:149

EVI≈ f (n′′opt)
1

Nout

Nout

∑
m=1

[
log2 p(D(m)|θθθ (m))− log2

(
1

Nin

Nin

∑
k=1

p(D(m)|θθθ (k))

)]
−α[ f (n′opt)− f (n′′opt)] (9)

where θθθ (m) is a sample drawn from the prior distribution p(θθθ) and D(m) is a sample dataset drawn from the likelihood150

distribution p(D|θθθ = θθθ (m)) (refer to Equation (12) below). Thus, Equation (9) is adopted here as optimality criterion151

to obtain the optimal sensor configuration considering an area of possible damage locations. Further implementation152

details of the EVI criterion and the adopted search algorithm are provided hereinafter in Section 2.3.153

2.2. Optimal sensor placement: Bayesian damage localization154

The previous section presented a rational fitness function to obtain the optimal number of sensors using the155

EVI, which requires updated information about the model parameters (e.g. damage coordinates) given a particular156

dataset D(m) =D. This section describes the fundamentals of the Bayesian inverse problem whereby model parameters157

are estimated.158

The problem of damage localization is addressed by a model-based BIP using an ellipse-based time-of-flight (ToF)159

model [47], which was previously published by the authors in [46]. The ToF is an ultrasonic signal feature widely160

adopted by both practitioners and researchers due to its efficiency in providing information about material properties161

and damage localization by post-processing scattered signals. To estimate the ToF from scattered signals, several time-162

frequency (TF) representation techniques are available in the literature [49–52]. In this work, a recently published163

hyper-robust approach is adopted to obtain a robust ToF estimate resulting from using not just a particular TF model164

class based on modeler’s choice, but an overall set of candidate models according to their relative plausibility [46].165

In particular, given a TF model, the ToF can be obtained as the difference between the time to receive the first166

energy peak of the excitation signal and the one from the scattered signal. From a theoretical point of view, the ToF167

information of the scattered signals can be obtained as follows [53]:168

ToF(a−s) =

√
(Xd−Xa)

2 +(Yd−Ya)
2

Va−d
+

√
(Xd−Xs)

2 +(Yd−Ys)
2

Vd−s
(10)

where (Xd ,Yd) ∈ R2 are the coordinates of the damage position, (Xa,Ya) ∈ R2 are the actuator transducer coordi-169
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nates, (Xs,Ys) ∈ R2 are the coordinates of one particular sensor transducer, and Va−d and Vd−s are the wave propa-170

gation velocities of the actuator-damage and damage-sensor paths, respectively1. From this standpoint, the unknown171

model parameters of interest are θθθ = {Xd ,Yd ,V} so, under the assumption of perfect sensor, if an exact value of172

θθθ ∗ is known, then the measured ToF and the modeled one using Equation (10) would be identical; mathematically:173

ToF(a−s)
D ≡ ToF(a−s)

M (θθθ ∗). However, in practice there are uncertainties due to signal measurement errors, partially174

unknown material properties, and the uncertainty about the validity of the ToF model itself, which make the last iden-175

tity seldom observed in real-world scenarios. Thus, a more appropriate and rigorous approach involves assuming the176

existence of these modeling uncertainties and quantifying them, as follows:177

ToF(a−s)
D = ToF(a−s)

M (θθθ)+ e (11)

where e ∈ R is an error term enclosing the uncertainty which accounts for the discrepancy between ToF(a−s)
M and178

ToF(a−s)
D . By the Principle of Maximum Information Entropy [54, 55], this error term can be conservatively assumed179

to be modeled as a zero-mean Gaussian distribution with standard deviation σe ∈ R. Thus, Equation (11) can be180

rewritten probabilistically as:181

p
(

ToF(a−s)
D |θθθ

)
=
(
2πσ2

e
)− 1

2 exp

−1
2

(
ToF(a−s)

D −ToF(a−s)
M (θθθ)

σe

)2
 (12)

which provides a probabilistic measure about the similarity between ToF(a−s)
D and ToF(a−s)

M (θθθ) for a particular value182

of θθθ . The last equation is commonly known as the likelihood function for model parameter θθθ .183

Nevertheless, our interest precisely lies in the reciprocal information, i.e., to determine the values of θθθ among the184

set of values ΘΘΘ ⊂ Rnθθθ which lead to models that more likely satisfy the ideal identity ToF(a−s)
D ≡ ToF(a−s)

M (θθθ). This185

inverse problem can be formulated by Bayes’ Theorem [56, 57], as:186

p(θθθ |D) =
p(D|θθθ)p(θθθ)

p(D)
(13)

where D = {D(1), . . . ,D(k), . . . ,D(n)} is the set of ToF data corresponding to the set of n sensors and a spatial config-187

uration2 C n, p(θθθ) is the prior PDF of the model parameters, and p(D|θθθ) is the likelihood function for the set of data188

D. Assuming stochastic independence of the measurements, the likelihood p(D|θθθ) can be expressed probabilistically189

as p(D|θθθ) = ∏
n
k=1 p(D(k)|θθθ), where each factor p(D(k)|θθθ) is given by Equation (12). Finally, the term p(D) refers to190

the evidence [54] of the data under the model specified by θθθ . This term, which acts as a normalizing constant within191

the Bayes’ theorem, can be bypassed through sampling using Markov Chain Monte Carlo (MCMC) methods [58].192

1Note that these velocities are the same under the assumption of isotropic materials and damage concentrated within a bounded region, where
V =Va−d =Vd−s.

2The conditioning on C n has been omitted from p(θθθ |D) given that it is intrinsically contained in D, since a particular configuration univocally
implies a dataset, i.e., C n→ D.
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Algorithm 1 Pseudo-code implementation of forward sequential search algorithm for geometrically unconstrained
sensor configurations.

1: Preamble Define ns . {number of possible sensor locations}; Define ns,max . {maximum number of sensors
locations considered in the optimization};

2: Algorithm
3: n′opt ← argmaxn f (n) . {Optimal number of sensors under prior information}
4: {{θθθ (m,h)}N

m=1}Nset
h=1 ∼ p(θθθ) . {Nset sets of N = Nout = Nin samples drawn from the prior PDF}

5: {{D(m,h)}N
m=1}Nset

h=1 ∼ p(D|θθθ = θθθ (·,h)) . {Nset sets of N = Nout = Nin samples drawn from the likelihood PDF}
6: C← /0 . {Initialize an empty vector of optimal sensors placement}
7: for n := 1 to ns,max do . {Forward sequential sensor loop}
8: for i := 1 to ns do . {Exhaustive search}
9: C n← C n−1∪C i . {Define C n by concatenating the previous configuration to the i-th sensor}

10: Obtain J(C n) . {Evaluate the objective function according to Equation (14)}
11: end for
12: Return: C n

opt and J(C n
opt) . {Optimal sensor layout and its corresponding objective function value}

13: C← C n
opt . {Store the n-th optimal sensor location for the next iteration}

14: end for
15: n′′opt ← argmaxn J(C) . {Optimal number of sensors under posterior information}

2.3. Algorithmic implementation193

In this section, a forward sequential algorithm is used to solve the optimal sensor configuration problem over194

two main variables: (1) number and (2) position of the sensors, as proposed by [35, 36]. Therefore, the algorithm195

provides the optimal number of sensors n′′opt and their optimal spatial configuration C n
opt , whereby the EVI is finally196

obtained. In this algorithm, the optimal sensor placement problem is proposed to be solved through an exhaustive197

search methodology, which is performed by exploring all the possible sensor locations within a discrete grid, given198

that a relatively small search space is considered. The objective function J(C n) : N→R for the optimization problem199

is given by the average of the EVI (Equation (9)) for each spatial configuration C n, as follows:200

J(C n) = f (n)
1

Nset

Nset

∑
h=1

{
1

Nout

Nout

∑
m=1

[
log2 p(D(m,h)|θθθ (m,h),C

n)− log2

(
1

Nin

Nin

∑
k=1

p(D(m,h)|θθθ (k,h),C
n)

)]}
−

−α[ f (n′opt)− f (n)]

(14)

where C n is the sensor configuration variable that controls which sensors are active, their location, and therefore what201

ToF data D are used to calculate J(C n). To efficiently address the expectation of the KL divergence (recall Eq. (9)), we202

reuse the Nout = Nin prior samples in both the inner and outer sums of Equation (14) at the cost of a small increment203

in the bias of the estimator [38, 41]. Nevertheless, the computation of the KL divergence implies a numerical error204

inversely proportional to the number of samples, leading to stochastic uncertainty in the value of the KL divergence.205

To reduce such stochasticity, the objective function is averaged over Nset sets of samples for each configuration C n,206

as shown in Equation (14).207

Furthermore, note that n′opt in Equation (14) is obtained using Equation (2) and that the independence of the prior208
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expected benefit on the sensor configuration makes it only dependent on the inverse cost function. Thus, n′opt implies209

the most economically beneficial amount of sensors given that f (n) is decreasing, regardless of their position.210
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Figure 3: Illustration of sensor positioning strategies for 1 and 2 arrays. In panel (a), 1 array configurations where one master sensor is optimally
placed, while the slave sensors are automatically placed next the master. Panel (b) depicts the case of 2 arrays of sensors, where the first array is
optimally placed and its position stored to search then the optimal position of the second one.

Furthermore, observe that the search of the optimal number of sensors implies a heavy computational problem in-211

volving ns!/n!(ns−n)! potential configurations to be explored. For example, for ns = 40 possible sensor locations and212

n = 5 sensors, the number of possible configurations would be 40!/5!35! = 658,008. To avoid such computational213

complexity, several strategies can be applied to reduce the search space. In this work, the forward sequential search214

approach [35] is adopted, as shown in Algorithm 1, consisting of running an exhaustive search for one individual215

sensor (e.g., n) having stored the optimal locations of the previous n−1 sensors, thus limiting the search space. Fol-216

lowing this methodology, the total number of configurations reduces to n(2ns−n+1)/2. Taking the same numerical217

example with ns = 40 and n = 5, the number of possible configurations would be 5(80− 5+ 1)/2 = 190 instead of218

658,008 using the former method. Note that a suboptimal configuration is expected to be obtained, since the sequen-219

tial search method does not necessarily provide the global optimal solution. However, the suboptimal configuration220

can be assumed to be effective and robust [59, 60].221

From this standpoint, it is important to remark that Algorithm 1 provides a methodology to obtain geometrically222

unconstrained (“open”) optimal sensor configurations. However, these may find a limitation in practice when instal-223

lation issues such as the routing of the wires are taken into account. Therefore, more practical sensor configurations224

constrained to linear arrays of sensors [61, 62] are typically preferred for their ease of installation and maintenance.225

These sensor configurations using one or two arrays of sensors can be assessed by slightly modifying Algorithm 1 as226

follows: For one array of n sensors, only the n-th sensor (master) position is optimized, considering that the remaining227

n− 1 sensors (slave) are placed either on the left or right side of the master one, as depicted in Figure 3a. Note for228

this configuration the search space reduces as long as n increases. In case of two arrays of n sensors, the optimization229
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is carried out in two steps, (1) the first array of n/2 sensors is optimally placed, as explained before, and its position230

is stored, and (2) the optimal position of the second array of n/2 sensors is addressed considering the first one fixed,231

as shown in Figure 3b. The search space reduces even faster for two array configurations since only even numbers of232

sensors n are considered to form the two arrays.233

3. Case Studies234

The proposed methodology to obtain the optimal sensor configuration based on EVI is exemplified herein using235

two case studies. Section 3.1 illustrates the methodology for a square aluminum plate. Finally, Section 3.2 provides a236

comparison between open and array configurations for an aeronautical hat-type stiffened plate.237

3.1. Sensor optimization in a square metallic plate238

This case study deals with the problem of optimal sensor configuration for a 30cm× 30cm× 0.2cm aluminum239

2024-T351 plate. The prior information of the model parameters θθθ is represented as uniform distributions for the240

damage position parameters (Xd ,Yd) and as a Gaussian distribution for the velocity V , as follows: p(Xd) =U (−6, 6),241

p(Yd) = U (−6, 6), and p(V ) = N (5400, 60), with position and wave velocity units expressed in [cm] and [m/s]242

respectively. Note that the origin of coordinates is located at the center of the plate and the wave propagation velocity243

refers to the symmetric-0 guided-wave mode at a frequency 300 kHz. To address the optimal sensor configuration, a244

grid of possible sensor locations is defined as two concentric squares of 12 cm and 18 cm of side respectively, resulting245

in a total of 40 possible locations. The area of possible damage occurrence is represented in blue color in Figure 4b.246

The actuator is considered to be fixed at the origin of coordinates, i.e., the center of the plate. The optimization is247

addressed by using Algorithm 1 with Nset = 1000 and Nout = Nin = 1000 (recall Eq. (14)).248

The results for this case study are shown in Figure 4. As evident from Figure 4a, J(C n
opt) reaches a global249

maximum using a configuration of 3 sensors, provided an inverse cost function f0(n) given by:250

f0(n) = 100/(n2 +100) (15)

The corresponding EVI value is 5.4875 [bits], adopting α = 1 in Equation (9), i.e., assuming that both the RCI and the251

information members in Equation (14) are equally important. The optimal sensor distribution for this configuration is252

shown in Figure 4b. Note that the optimal sensor positions (in red) result to be symmetric with respect to the center253

of the plate (where the actuator is located), and they are wholly contained within the inner square, i.e., closer to the254

area of possible damage occurrence.255

3.1.1. Verification of the optimal sensor configuration256

The performance of the optimal sensor configuration, as depicted in Figure 4b, is tested against simulated data257

for a specific damage within the area of possible damage occurrence. To this end, the plate is simulated in Abaqus258
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Figure 4: Estimator of the EVI (Eq. (14)) in panel (a) and the corresponding optimal sensor configuration with n′′opt = 3 sensors in (b), where the
possible sensor locations (gray dots) and the optimal locations (red dots) are shown. The blue area denotes the area of possible damage occurrence.

(Figure 5a) using C3D8R (8-node linear brick, reduced integration, hourglass control) solid elements [63] with mesh259

size 0.05 cm and mechanical properties ρ = 2780 kg/m3, E = 73.1 GPa, and ν = 0.33 (refer to the Nomenclature). The260

mesh size is determined so that at least 10 nodes are contained per wavelength, and the chosen time step is obtained261

so that a disturbance cannot propagate through a grid spacing during one time step [64, 65]. The simulated damage is262

represented as a square 0.2 cm×0.2 cm hole, centered at (3.5, 2.5)cm, considering the center of the plate as the origin263

of coordinates, as shown in Figure 5b. To simulate the wave propagation, an exciting force is applied at the center of264

the plate in the perpendicular direction, consisting of a 5 cycle sine tone burst centered at a frequency 300 kHz. The265

guided-waves are acquired at the three optimal sensor positions highlighted in red in Figure 4b and subtracted before266

and after damage to obtain the scattered signals. Then, the robust ToF estimation methodology previously developed267

in [46] is applied. The robust ToF data D = {D(1), · · · ,D(n)} obtained for each of the optimal sensors are then used268

as input data for the Bayesian damage localization problem described in Section 2.2, whereby the posterior PDFs of269

the model parameters θθθ = {Xd ,Yd ,V} are obtained. The prior knowledge of the model parameters is assumed to be270

equal to the one used for the optimization process, described in the Section 3.1. To numerically solve the Bayesian271

inverse problem of damage localization, the asymptotic independence Markov sampling (AIMS) algorithm [66, 67] is272

applied with a threshold value γ = 1/2, using 50,000 samples per annealing level, using a Gaussian PDF as proposal273

distribution, i.e. q(θ ′|θ) = N (θ ,σ), where σ is the standard deviation of the Metropolis-Hastings random walk. In274

this problem, σ is selected such that the acceptance rate lies within the suggested interval [0.2,0.4] [68–70].275

The posterior information of the damage parameters θθθ = {Xd ,Yd ,V} is illustrated in Figures 5c and 5d. It can be276

observed that the damage position is remarkably well reconstructed using the optimal sensor configuration. In contrast,277

the uncertainty of the reconstructed wave propagation velocity is higher as shown in Figure 5d. A larger variability of278
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Figure 5: Abaqus model in panel (a), dimensions of the plate and location of the simulated damage in panel (b), joint posterior distribution of
the damage coordinates with their associated probability densities in the color bar along with the center of the real damage represented by the
intersection of both dashed lines in panel (c), and the velocity reconstruction in panel (d).

the ToF data at the optimal sensors is identified as the reason for such relatively high uncertainty in the velocity, which279

may come from potential mode mixture issues between both anti-symmetric and symmetric 0 guided waves modes,280

namely A0 and S0 modes, respectively.281

3.2. Sensor optimization in aeronautical panel282

The aim of this case study is to investigate the applicability of the proposed methodology using a more com-283

plex and realistic structure. In particular, a 50cm× 50cm× 0.2cm plate with top-hat section stiffeners, commonly284

used in aeronautical structures, is adopted for this case study. Here, the origin of coordinates is located at the center285

of the left plate’s edge and the actuator is placed at the center of the plate, i.e., (25,0) [cm]. The prior informa-286

tion of the model parameters is given by p(Xd) = U (5, 45), p(Yd) = U (−10, 10), and p(V ) = N (2800, 60),287

with position and wave velocity units expressed in [cm] and [m/s] respectively. Note that the velocity prior288

PDF is centered at 2800 m/s, which corresponds to the group velocity of the ultrasonic guided-wave mode A0289

at a frequency 300 kHz. The search space is represented by eight rows of 39 possible sensor locations at290

14



Y = {20.81,19.81,10.19,9.19,−9.19,−10.19,−19.81,−20.81} [cm], separated by 1 [cm] in the X direction, as291

depicted in Figure 6c using gray dots. The optimization is addressed considering Equation (14) with Nset = 100 sets292

of Nout = Nin = 1000 samples of the prior distribution.293
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Figure 6: Inverse cost function f1(n) in panel (a). In (b), the estimator of the EVI (Eq. (14)) for the different positioning configurations is depicted.
Panel (c) shows their corresponding optimal sensor layouts in green, red, blue, and gray dots for open configuration, one-array configuration, two-
array configuration, and search space, respectively. The blue rectangle represents the area of possible damage occurrence with uniform probability.

For this case study, a comparison between different sensor placement strategies, i.e., (1) non geometrically con-294

strained “open” configuration, (2) sensor positioning in 1 array, and (3) sensor positioning over 2 separated arrays, is295

carried out. Figure 6a depicts the adopted inverse cost function, whilst Figure 6b depicts the objective function output296

J(C n
opt) (recall Eq. (14)) as a function of the number of sensors and their respective optimal number of sensors for297

each type of configuration. The optimal number of sensors results to be n′′opt = 5 for both the open and the one-array298

configurations (EVI = 9.2874 [bits] and EVI = 7.3896 [bits], respectively), whereas the two-array configuration leads299

to 4 sensors (EVI = 9.0416 [bits]), assuming α = 10 to emphasize the cost over the relative gain of information. In300

view of Figure 6b, both the open configuration and the one using 2 arrays result to be the most valuable, and hence301
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the preferred ones under the EVI criterion. This ranking is also supported by the robust BEIG and RCI terms (Eq. (7)302

and (9)) in Table 1. In particular, observe that even when the RCI for the open configuration is higher than the RCI of303

the two-array configuration, the first one is preferred since it provides a relatively higher and robust BEIG.304

Table 1: Decomposition of EVI into the robust BEIG and RCI terms (Eq. (9)) for the three positioning strategies.

Configurations BEIG [bits] RCI [bits] EVI [bits] No sensors

Open config. 9.3774 0.0900 9.2874 5
One array 7.4796 0.0900 7.3896 5
Two arrays 9.1091 0.0675 9.0416 4

As a general comment, the open configuration is able to reconstruct the damage more accurately due to its flex-305

ibility. However, in real world engineering applications, factors such as the routing options of the cables introduce306

limitations and complexity that may prevent us from the use of sensor open configurations. Accordingly, the two-array307

configuration would be the preferred one based on the value of information criterion, as shown in Table 1. Finally,308

Figure 6c shows the optimal sensor layouts for each of the three positioning strategies.309

3.2.1. Verification of the optimal sensor configuration310

The resulting optimal sensor configurations in Section 3.2 are tested using a simulated damage scenario consider-311

ing a hole in the metallic plate. To this end, an Abaqus model, shown in Figure 7a, is developed to obtain the simulated312

guided waves whereby the robust ToF is estimated and the Bayesian damage localization is addressed. Here, the stiff-313

eners are assumed to be perfectly bonded to the base plate whereas the damage is simulated as a 0.2cm× 0.4cm314

hole located at (35.1, 3) cm, considering the origin of coordinates at the center of one plate’s edges, as shown in315

Figure 7b. S4R (4-node doubly curved thin or thick shell, reduced integration, hourglass control, finite membrane316

strains) shell elements [63] adopted with a mesh size of 0.05 cm; therefore, only anti-symmetric modes are captured,317

further simplifying the robust ToF identification since no mode mixture is expected to arise at a frequency 300 kHz.318

The guided waves are generated with a 5 cycle sine tone burst centered at the aforementioned frequency applied in319

the perpendicular direction at the center of the plate. The plate and stiffeners dimensions are depicted in Figure 7b.320

The material is aluminum 2024-T351, thus the mechanical properties (Young’s modulus E and Poisson ratio ν) are321

the specified for the previous case study in Section 3.1.1. The prior knowledge of the model parameters remains the322

same than the specified in Section 3.2.323

The reconstruction of the damage position corresponding to the optimal configurations is depicted in Figures 7c324

to 7e. As evident from the damage localization results, both the open configuration as well as the configuration325

with two arrays reconstruct the damage position remarkably well, while the configuration using one array provides326

higher uncertainty about the damage position. Note that the single array configuration would need comparatively more327

sensors than either the open or double array configurations to achieve the same level of accuracy. Such behavior is also328
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Figure 7: Abaqus model in (a) and dimensions in (b) of the aerospace panel. Panels (c) to (e) show the resulting damage position reconstruction
corresponding to the optimal configurations using the open, one-array and two-array configurations, respectively. The color bars indicate the
probability density of the joint distribution. Panel (f) represents the wave propagation velocity reconstruction. The irregularities of contour lines
in plots (c) to (e) could be improved using more AIMS samples at the cost of heavier computation. However they are shown to be enough for
illustration and validation purposes.
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supported by the wave velocity reconstructions observed in Figure 7f, where the posterior PDFs provided by the open329

and two-array configurations are more accurate (i.e. have less uncertainty) than the one with one-array configuration.330

4. Discussion331

4.1. On the case studies results332

The proposed methodology for optimal sensor configuration in ultrasonic guided-wave based SHM has been333

illustrated in Section 3 using two case studies. In particular, the optimal number and locations of sensors have been334

shown to be sensitive to the choice of a particular inverse cost function. Thus, a proper inverse cost definition is key for335

an accurate and efficient SHM design. This was an expected result as a consequence of using the value instead of the336

amount of information as the optimality criterion. Note that the definition of the inverse cost function depends on the337

manufacturing and maintenance costs derived from the SHM system, and thus it is case specific. For instance, if the338

cost increases linearly with the number of sensors, a linearly decreasing inverse cost function could be assumed to be339

appropriate. To further explore the dependence of the optimization results on the inverse cost function, the implications340

of using different inverse cost functions in the optimal number of sensors are discussed here. In particular, Figure 8341

shows two different but similar numerical inverse cost functions, namely f1(n) and f2(n), and their influence in the342

value of information curve with respect to the number of sensors for case study 1. As is evident from the results in343

Figures 8b and 8d, the optimal number of sensors varies from 5 to 9 sensors just by changing the inverse cost function344

from f1(n) to f2(n), respectively. This simple example reveals the significance of the inverse cost function in the345

optimal sensor configuration under the proposed methodology based on value of information.346

The importance of the definition of the inverse cost function f (n) is also revealed in case study 2. Figure 9347

summarizes the EVI (recall Eq. (9)) for each of the optimal configurations under the consideration of both f0(n)348

(recall Eq. (15)) and f1(n). As observed, the optimal solution under f1(n) provides higher EVI values, which is349

in agreement with the more accurate and efficient (i.e. using fewer sensors) damage reconstructions observed in350

Figures 7c to 7e. Observe also that the EVI not only enables a rational criterion for optimal sensor configuration, but351

also establishes a measure to compare between several candidate inverse cost functions.352

Nevertheless, this dependence upon the inverse cost function may arguably be seen as an additional complexity,353

which may lead to suboptimal results depending on priorities, e.g. whether or not the cost is more important than the354

amount of information gained. However, we show here that adopting the value instead of the amount of information355

provides a better identifiability of the optimal design point. This is manifested in Figure 10, where the KL divergence356

criterion is compared against the EVI criterion, taking the second case study using f0(n) and α = 10 as an example.357

As shown in the results, an optimal SHM design point would be barely identifiable using the amount of information358

criterion (Figure 10a) in view of the asymptotic behavior of the KL divergence. In contrast, the estimator of the359

EVI (i.e., J(C n
opt)) shown in Figure 10b reaches a globally identifiable optimum value, which greatly facilitates the360

optimization process.361
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Figure 8: Alternative inverse cost functions accounting for SHM systems using slots of 5 sensors (a) along with the resulting influence in the
optimal sensor configuration in (b). In (c), a different function which is continuous rather than discrete with a similar trend to (a) leads to a different
optimal sensor configuration in (d).

Note that the constant α included in Equation (1) plays an important role in modulating the EVI since it scales362

the relative cost component in Equation (9). However, in view of Figure 11a the rank between the candidate sensor363

positioning strategies results to be unaltered by this constant, where the EVI is calculated for α ∈ [0,1000] using f1(n)364

and the data obtained in case study 2. Conversely, α is shown to influence the optimal number of sensors, as observed365

in Figure 11b. In particular, n′′opt tends to decrease as long as α increases as a consequence of the increasing cost of366

sensors in the context of the trade-off between information and cost given by Equation (9).367

4.2. On the extensibility of the method368

The proposed methodology provides the optimal sensor configuration for a specific area of possible damage oc-369

currence based on a ToF model, which takes into account the position of sensors, actuators, damage, and the wave370

propagation velocity. Further, the resulting optimal configurations have proven efficiency in reconstructing the dam-371

age position. However, the ToF model lacks of advanced physics-related information such as the interaction of the372

ultrasonic guided-wave with the damage or the effect of attenuation in the localization in the damage. This prevents373
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Figure 10: Comparison between the robust KL divergence over the area of possible damage occurrence and the EVI criterion using f0(n).

the proposed methodology from considering advanced damage features other than the position, such as damage mode374

and extent (e.g., delamination in composites), and from providing an optimal sensor configuration considering them.375

In order to consider these advanced damage features, a more complex and physics-based wave propagation model376

such as the hybrid wave and finite element methods [71] is required. The use of these models in the design of the op-377

timal sensor configuration is still unfeasible due to their considerable computational cost. Therefore, the development378

of methods to alleviate such computational complexity, such as surrogate methods [72–76], constitutes a desirable379

extension of this work.380

Furthermore, note that the proposed method seeks the optimal sensor configuration, assuming that the actuators381

are fixed in the structure. However, the position and number of actuators play an important role in the optimization382

problem. Besides, the sequential sensor placement algorithm using an exhaustive search may find a limitation in383

practice when considering very large areas of possible damage occurrence. In this context, an ongoing extension of384

the proposed methodology is the consideration of both sensors and actuators in the optimization problem considering385
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Figure 11: Effect of α values in the EVI of each sensor configuration in (a) and its effect in the optimal number of sensors in (b).

large structures.386

5. Conclusions387

A novel optimal sensor configuration approach based on value of information is presented in this paper. The388

methodology is based on a Bayesian damage localization framework for optimal sensor placement, while the optimal389

number of sensors is obtained by assessing the expected value of information; thus, uncertainties coming from several390

sources are taken into consideration. The effectiveness in providing an optimal design point has been illustrated using391

two case studies considering both flat and stiffened plate structures, respectively. The following conclusions are drawn392

from this paper:393

• The proposed approach provides a value of information-based framework that trades-off the amount of infor-394

mation and the cost of monitoring, giving a globally identifiable optimal design point.395

• The open configuration provides the best damage reconstruction using the lower number of sensors due to its396

flexibility in positioning sensors freely over the structure;397

• Based on the results, the two-array configuration provides more accurate damage reconstructions using less398

number of sensors than the one-array configuration.399

• An accurate definition of the inverse cost function has been shown to be key for an unbiased optimal sensor400

configuration under the proposed methodology.401

Further research work is needed to address (1) the extensibility of the proposed method using a physics-based402

model instead of the time of flight one used here, (2) the efficiency of the method when considering the optimization403

of both actuators and sensors in large plate-like structures, and (3) the optimality of the inverse cost function in404

different specific cases.405
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