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ABSTRACT

Condition-based maintenance is based on reliable and effective structural health
monitoring systems able to provide accurate information about the health condition of
a structure. Among the factors that influence the accuracy and reliability of such sys-
tems, the number and position of sensors stand out as key features. As a rule, the larger
the number of sensors, the more and better information can be obtained. However, a
practical solution is required to find a healthy balance between the cost of the mon-
itoring system and the adoption of the information that they provide as optimality. To
rigorously address such optimization problem and provide an optimal design of the mon-
itoring system, this paper proposes the use of the value of information and the expected
information gain. The methodology is illustrated using a stiffened plate-like structure
with a bounded damaged area, ultrasonic guided-waves as SHM technique, and different
sensor positioning strategies. The results reveal the value of information as a rational
index to provide optimal ultrasonic sensor configuration and rank different positioning
alternatives.

INTRODUCTION

Accurate and reliable condition-based maintenance relies on optimal sensor config-
urations of structural health monitoring (SHM) systems. Such configurations seek to
find an effective trade-off between cost and information. In general, extremely simple
configurations (low number of sensors) may lead to poor structural health information.
Oppositely, a relatively high level of information can be obtained if an impractical con-
figuration of sensors (i.e., involving a high number of sensors) is considered. To address
such a trade-off, the use of the value of information [1, 2] for the design and optimiza-
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tion of SHM systems and operational decisions has been widely proposed in the litera-
ture [3–7]. In this paper, the value of information is proposed in the context of ultrasonic
guided-wave based SHM to rigorously obtain the optimal sensor configuration.

The optimal sensor configuration has been partially addressed in the literature for
ultrasonic guided-waves. Thus, the area of coverage has been adopted to optimize the
sensor positions based on the properties of both sensors and structure [8–11]. Further,
several objective functions, e.g. based on the probability of detection, have been pro-
posed and addressed by heuristic algorithms such as genetic algorithms (GA), simulated
annealing, or particle swarm optimization [12–15]. However, these methodologies rely
on deterministic approaches, which may find certain limitations in the presence of un-
certainties. To account for such uncertainties, the optimal sensor configuration has also
been addressed using Bayesian approaches in applications other than ultrasonic guided-
waves. In these applications, the objective functions are defined in terms of probabilistic
metrics of the informativeness obtained from the sensors, such as the Kullback-Leibler
(KL) divergence, the Shannon-entropy, or the mutual information [16–20]. The main
conclusion drawn from these works is that the more sensors, the more informative SHM
configuration, hence showing that an additional criterion is desired to obtain an optimal
sensor configuration, i.e., including both position and number of sensors.

In this paper, a methodology based on value of information is proposed for optimal
number and position of sensors. First, the optimal sensor placement for damage local-
ization is addressed using the value of information and a greedy algorithm, whereby the
sensors are optimally placed stepwise based on [17]. As a result, the expected informa-
tion gain is obtained for each optimal sensor layout up to an absolute maximum number
of sensors. Then, the optimal sensor configuration is obtained by adopting a case spe-
cific inverse cost function depending on the number of sensors. A stiffened aluminum
plate-like structure with a bounded damage area is used to illustrate the methodology.
It is found that the use of geometrically unconstrained sensor configurations are more
informative using less number of sensors than linear arrays. This result implies that a
flexible sensor system is required to freely place the sensors along the structure. Ad-
ditionally, factors such as the costs stemming from the electronic components, power
consumption, and post-processing computational cost are minimized.

The details of the proposed approach are described in the following section. Next, a
case study is presented to illustrate the methdology. And finally, concluding remarks are
provided.

METHODOLOGY

The optimization approach based on value of information, which trades-off informa-
tion and cost, is presented in this section. Note that the optimization is addressed by
using an efficient robust Bayesian damage localization approach [21], instead of model-
based Bayesian damage identification and quantification methods [22] to reduce compu-
tational burden.

Optimal sensor configuration: value of information

The required balance between information and cost is rigorously addressed by us-



ing the value of information. In order for the benefit of measuring data to be quanti-
fied, the function b(n,θ) is defined as a function of the sensor configuration n and the
model parameters θ. Note that the sensor configuration n entails the definition of the
optimal sensor layout of the n sensors. In addition, such benefit function is proposed
to be proportional to an inverse of cost f(n) of each sensor configuration n and an-
other function g(θ), which accounts for the information gained by the system, such that
b(n,θ) ∝ f(n)g(θ). Note also that f(n) is case specific so it is defined according to
manufacturing or maintenance cost law of both the structure and the SHM system.

Next, the concept of maximum prior expected benefit B′, which is based on the prior
information of the model parameters p(θ) [23], is defined and used to obtain the initial
optimal sensor configuration n′

opt, as follows [3]:

B′ = Ep(θ)

[
b(n′

opt,θ)
]

n′
opt = argmax

n

∫
b(n,θ)p(θ)dθ (1)

Similarly, the maximum posterior expected benefit (PEB) B′′(D) [23], which is based
on the posterior distribution of the parameters given the data p(θ|D), is obtained as
follows [3]:

B′′(D) = Ep(θ|D)

[
b(n′′

opt,θ)
]

n′′
opt = argmax

n

∫
b(n,θ)p(θ|D)dθ (2)

where the conditioning on D is to denote that B′′ depends on the data obtained by the
sensors. Note that D can be obtained either from preliminary tests or simulations at the
design stage, since real data cannot generally be used at this stage. The Bayesian inverse
problem (BIP) of damage localization used to obtain both the prior p(θ) and posterior
p(θ|D) distributions, with a particular sensor configuration, is based on a robust hier-
archical framework, whose details of implementation can be found in [21]. Then, by
subtracting both mathematical expectations evaluated at their optimal sensor configura-
tions n′′

opt and n′
opt, the conditional value of information (CVI) on D is given by:

CVI(D) = B′′(D)−B′ (3)

Note that Equation (3) is defined for only one damage scenario, whereby the sensors
acquire the data D. In order to obtain the optimal sensor configuration for a hyper-set of
data D, the maximization of the expectation of the CVI over D is required, as follows:

VoI = Ep(D)[CVI(D)] (4)

where VoI denotes to value of information. Note that the computation of the last ex-
pectation requires the solution of the optimal sensor configuration for each of the data
D ∈ D and the expensive calculations of the evidence p(D) [23] for each simulated
data. A pre-posterior analysis, by using data generated by a model and samples com-
ing from the prior distribution of the model parameters, would be more appropriate at
the design level. However, for the purpose of illustrating the methodology, the data are
restricted here to one simulated damage scenario, leading to the use of CVI for optimal
sensor configuration. Finally, note that the sensor placement approach is based on a
greedy algorithm that adds sensors one by one as described in [17], however its position
is optimized using GA.



CASE STUDY

The case study proposed here illustrates the methodology using only one set of data,
corresponding to one scenario of damage. To this end, a Finite Element (FE) model
using Abaqus is created to synthetically simulate the propagation of the guided waves
over a stiffened panel such as the one depicted in Figure 1. The damage is simulated
using a 2mm×2mm hole situated at (-4.9, -1.9) cm (considering the origin at the center
of the plate) to obtain the scattered guided-waves (i.e., the set of data), whereby the
time of flight (ToF) is estimated and the damage localization is addressed. S4R (4-node
doubly curved thin or thick shell, reduced integration, hourglass control, finite membrane
strains) shell elements [24] with a mesh size of 0.5 mm are used, by which only anti-
symmetric modes are captured. The bay is 300mm×300mm and the stiffeners are made
of aluminum of 50mm of height. Both the plate and stiffeners have 2mm thickness and
the material properties correspond to the aluminum alloy 2024-T351 with a density of
2780 kg/m3, a Young’s modulus of 73.1 GPa and a Poisson ratio of 0.33. The guided
waves are generated using a 5 cycle sine tone burst centered at a frequency of 300 kHz
applied in the perpendicular direction at the center of the plate.

(a) Abaqus model. (b) Basic dimensions in mm.

Figure 1: Abaqus model of the stiffened panel in panel (a) and the corresponding dimen-
sions and position of the perpendicular stiffeners in panel (b).

All the BIPs, managed by the GA, provide the samples of the posterior distribution,
whereby the KL divergence and the quality of the sensor distribution is obtained by
its value. In addition, the BIPs are addressed by using the asymptotically independent
Markov sampling algorithm [25] with a threshold value γ = 1/2 and 10, 000 samples
per annealing level. More details of implementation of this BIP of damage localization
are provided in [21].

Three different sensor positioning strategies, i.e., (1) unconstrained open configu-
ration, (2) single linear array configuration, and (3) double linear array configuration,
are compared by using the value of information. As observed in Figure 2b, the open
configuration results to be the most valuable, followed by the double and single linear
array configurations, respectively. Thus, the optimal configurations involve 5 sensors
for the open configuration with a CVI(D) = 12.5281 [bits], 10 sensors for the single
array configuration with a CVI(D) = 9.0776 [bits], and 10 sensors for the double array
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Figure 2: Optimal sensor configurations obtained using the step inverse cost function
f(n) shown in (a). In (b), the PEB functions for the different configurations, i.e., open
configuration and 1 and 2 array configurations, are depicted. Then, panels (c) to (e) show
the resulting damage position reconstruction adopting the optimal sensor layouts using
the open configuration, 1 array and 2 array configurations, respectively.

configuration with a CVI(D) = 11.0081 [bits].
The reconstructions of the damage position corresponding to the three sensor con-

figurations are depicted through Figures 2c to 2e. According to these results, the open
configuration reconstructs the damage position remarkably accurate, followed by the
double array configuration. Finally, the most uncertain damage reconstruction is ob-
tained by the single array configuration. This can be explain since the BIP of damage
localization uses an ellipse-based model, whereby the intersections of the ellipses pro-
vide the damage position. If those intersections are almost perpendicular, the damage
position is accurately reconstructed, as in Figure 2c using the open configuration. How-
ever, the intersections of several ellipses close to each other lead to a more uncertain
reconstruction of the damage position, as can be observed in Figure 2d using the single
array configuration. Finally, Figure 3 depicts the optimal sensor layouts obtained with
the three positioning strategies, where both array sensor configurations overlap in the
upper zone of the damage.
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Figure 3: Optimal sensor distributions for the step inverse cost f(n). The colors repre-
sents the different sensor positioning strategies as follows: open configuration as green,
1 array configuration as red, 2 array configuration as blue. Gray dots represent the seach
space of possible sensor positions. Note that the optimal sensor location of the con-
figuration with 1 array and 2 arrays overlap in the upper zone of the damage which is
represented with a dark square.

CONCLUDING REMARKS

A novel framework to obtain the optimal sensor configuration based on the value
of information is proposed in this paper. A case study was proposed to illustrate the
methodology using synthetically generated ultrasonic data, considering a pre-design
stage whereby the data can only be simulated. The value of information has shown
efficiency in ranking several sensor positioning strategies, leading to geometrically un-
constrained distributions instead of linear array types of sensors layouts. However, the
main limitation of this approach is the computational cost required to compute the math-
ematical expectation over the hyper-set of data. Thus, a future extension of this work
would be the application of surrogate modeling techniques to alleviate the computational
burden required for calculating both the posterior distribution of the model parameters
and the evidence of the model.
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