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Audio-based AI classifiers show no evidence 
of improved COVID-19 screening over simple 
symptoms checkers

Harry Coppock1,2,15, George Nicholson1,3,4,15, Ivan Kiskin1,3,5,15, Vasiliki Koutra1,6, 
Kieran Baker    1,6, Jobie Budd    7,8, Richard Payne    9, Emma Karoune    1, 
David Hurley9, Alexander Titcomb9, Sabrina Egglestone9, 
Ana Tendero Cañadas9,10, Lorraine Butler9, Radka Jersakova1, Jonathon Mellor9, 
Selina Patel9,11, Tracey Thornley    12, Peter Diggle13, Sylvia Richardson1, 
Josef Packham9, Björn W. Schuller1,2,14, Davide Pigoli    1,6,16, Steven Gilmour1,6,16, 
Stephen Roberts1,3,16 & Chris Holmes    1,3,16 

Recent work has reported that respiratory audio-trained AI classifiers can 
accurately predict SARS-CoV-2 infection status. However, it has not yet been 
determined whether such model performance is driven by latent audio 
biomarkers with true causal links to SARS-CoV-2 infection or by confounding 
effects, such as recruitment bias, present in observational studies. Here we 
undertake a large-scale study of audio-based AI classifiers as part of the UK 
government’s pandemic response. We collect a dataset of audio recordings 
from 67,842 individuals, with linked metadata, of whom 23,514 had positive 
polymerase chain reaction tests for SARS-CoV-2. In an unadjusted analysis, 
similar to that in previous works, AI classifiers predict SARS-CoV-2 infection 
status with high accuracy (ROC–AUC = 0.846 [0.838–0.854]). However, 
after matching on measured confounders, such as self-reported symptoms, 
performance is much weaker (ROC–AUC = 0.619 [0.594–0.644]). Upon 
quantifying the utility of audio-based classifiers in practical settings, we 
find them to be outperformed by predictions on the basis of user-reported 
symptoms. We make best-practice recommendations for handling 
recruitment bias, and for assessing audio-based classifiers by their utility 
in relevant practical settings. Our work provides insights into the value 
of AI audio analysis and the importance of study design and treatment of 
confounders in AI-enabled diagnostics.

The coronavirus disease 2019 (COVID-19) pandemic has been esti-
mated by the World Health Organization (WHO) to have caused  
14.9 million excess deaths over the 2020–2021 period1. An accepted 
public health control measure for emerging infectious diseases is the 
isolation of infected individuals2. As COVID-19 transmission occurs 
in both symptomatic and asymptomatic cases3, especially prior to 

nationwide vaccination deployment, a scalable and accurate test for 
the infection is crucial to avoid general population quarantine.

This has sparked an intense interest in AI-based classifiers that use 
respiratory audio data to classify severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infection status (which we here refer to 
as COVID-19 status) via a digital screening tool that anyone with a 
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with a validated PCR test result, were transferred from existing T+T/
REACT records. Further audio-specific metadata were produced from 
the audio files after collection. The final dataset comprised 23,514 
COVID+ and 44,328 SARS-CoV-2 PCR-negative (COVID–) individuals. 
Figure 1 summarizes the dataset (a more detailed description of which 
is provided in Methods) and a full presentation can be found in the 
accompanying dataset paper23.

Defining the acoustic target for COVID-19 screening
If a practically effective acoustic signal were to exist in SARS-CoV-2- 
infected individuals’ respiratory sounds, we propose that it would have 
the following properties:

�P1: Caused by COVID-19. COVID-19 is well known to cause 
symptoms (such as a new continuous cough) that can be read-
ily self-screened by individuals in the general population. The 
acoustic target would likewise be linked causally to COVID-19 and 
would therefore be more likely to generalize to other contexts and 
populations than non-causal associations.
�P2: Not self-identifiable. The acoustic target would not directly 
represent self-identifiable symptoms that can be self-identified 
effectively by individuals in the general population. This is because: 
(1) it is more straightforward to measure self-identifiable symp-
toms directly using a questionnaire, rather than measuring them 
indirectly via audio; and (2) as we explain below, self-identifiable 
symptoms can affect enrolment and may therefore be strongly 
non-causally associated with COVID-19 in enrolled subpopulations.
�P3: Enables high-utility COVID-19 screening. For an audio-based 
classifier to perform strongly in practical settings, it should pos-
sess high sensitivity and specificity, corresponding to an acoustic 
signal that would be detectable in high and low proportions of 
individuals who are COVID+ and COVID–, respectively. We formalize 
the mathematical relationship linking expected utility, sensitivity 
and specificity in equation (1) (see Methods).

Characterizing and controlling recruitment bias
In audio-based COVID-19 classification, results can be highly sensitive to 
the characteristics of the enrolled population. Our study’s recruitment 
protocol is subject to enrolment bias because the vast majority of indi-
viduals in pillar 2 of the UK government’s NHS T+T programme25 were PCR 
tested as a direct consequence of reporting symptoms (see Methods).  
Figure 1e,f display our participants’ symptom profiles, stratified by 
COVID-19 infection status. Figure 2a presents the joint distribution 
of COVID-19 status and binary symptoms status as ‘symptoms-based 
enrolment’, in contrast to Fig. 2b, which presents ‘general population 
enrolment’ on the basis of random sampling from a general population 
with 2% COVID+ prevalence. Note that the dependence between binary 
symptoms status and COVID-19 is stronger under symptoms-based 
enrolment (population correlation coefficient ρ = 0.66) than general 
population enrolment (ρ = 0.15).

We will discuss three simplified recruitment processes to illus-
trate the effects of different types of enrolment protocol. These are 
illustrated in Fig. 3 using the probabilistic framework of directed and 
undirected graphical models (a good introduction to which can be 
found in chapters 10 and 19 of ref. 26). As defined above, our goal is to 
train a classifier capable of predicting COVID-19 via its latent acoustic 
signature. We explain below how this requires the classifier predictions 
to be conditionally dependent on the latent COVID signature given 
self-reported symptoms, denoted by the red edge in Fig. 3ciii under a 
matched recruitment protocol; however the corresponding edges are 
missing under the other recruitment protocols in Fig. 3aiii and Fig. 3biii.

First consider our simplified causal model of symptoms-based 
recruitment (Fig. 3ai). Enrolment is jointly influenced by COVID-19 
status, self-reported symptoms and factors such as age and gender 
(Extended Data Fig. 1 shows a detailed Bayesian knowledge graph of the 

smartphone or computer can use4–18. In our review, as of July 2022, we 
found 93 published papers that reported evidence for the potential of 
audio-based COVID-19 classification. Of these 93 papers, 75 report an 
area under the curve (AUC) (or F1) of over 0.75, whereas 44 report a per-
formance of above 0.90. Extended Data Table 1 summarizes nine highly 
cited datasets and their corresponding classification performance.

Despite these encouraging results, concerns remain that the pre-
diction models may not be transferable to real-world settings11,15,18–21. 
In some cases, data quality may be lowered by, for example, sampling 
biases, lack of verification of participants’ COVID-19 status, a long delay 
between infection and audio recording, or small numbers of individuals 
who are SARS-CoV-2 reverse transcription polymerase chain reaction 
(PCR)-positive (COVID+)21. Akin to findings in AI radiographic COVID-19 
detection22, concerns centre around whether the learnt audio features 
are unique audio biomarkers caused by COVID-19 in the infected indi-
vidual, or are due to other confounding signals.

Here we analyse the largest PCR-validated dataset collected so 
far in the field of audio-based COVID-19 screening (ABCS). We design 
and specify an analysis plan in advance to investigate whether using 
audio-based classifiers can improve the accuracy of COVID-19 screen-
ing over using self-reported symptoms.

Our contribution is as follows:

�– We collect a respiratory acoustic dataset of 67,842 individuals 
with linked PCR test outcomes, including 23,514 who tested posi-
tive for COVID-19. This is, to the best of our knowledge, the largest 
PCR-validated dataset collected of its kind so far23.
�– We fit a range of AI classifiers and observe strong COVID-19 pre-
dictive performance (receiver operating charateristic area under 
the curve (ROC–AUC) = 0.85), as has been reported in past studies, 
for example refs. 4–18; however, when controlling for measured 
confounders by matching, only a small amount of residual pre-
dictive variation remains (ROC–AUC = 0.62), some of which we 
attribute to unmeasured confounders.
�– We find the COVID-19 predictive performance and practical 
utility of audio-based AI classifiers—as applied in simulated real-
istic settings—to be no better than classification on the basis of 
self-reported symptoms; we replicate this finding by fitting our 
classifiers in an external dataset.
�– These results suggest that audio-based classifiers learn to pre-
dict COVID-19 via self-reported symptoms and potentially other 
confounders. Study recruitment on the basis of self-screened 
symptoms seems to be an important driver of this effect.
�– We provide best-practice recommendations on how to address 
this problem in future studies.
�– Our dataset and code-base is publicly available to enable repro-
ducibility of results and to encourage further research into res-
piratory audio analysis and bias mitigation in high-dimensional, 
over-parameterized settings23.

Our work is timely in highlighting the need for careful construction 
of machine learning evaluation procedures, aimed at yielding repre-
sentative performance metrics. The important lessons from this case 
study on the effects of confounding extend across many applications 
in AI—where biases are often hard to spot and difficult to control for.

Results
Study design
This study invited volunteers from the Real-time Assessment of 
Community Transmission (REACT) programme and the National 
Health Service (NHS) Test-and-Trace (T+T) service to participate 
between March 2021 and March 2022 on an opt-in basis. Volunteers 
were directed to the ‘Speak up and help beat coronavirus’ web page24, 
where they were instructed to provide audio recordings of four res-
piratory audio modalities. Demographic and health metadata, along 
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recruitment process). Collecting data only from enrolled individuals is, 
in effect, conditioning on ei = 1 at the enrolment node in Fig. 3ai. As the 
enrolment node has directed edges incoming from both COVID-19 sta-
tus and self-reported symptoms (that is, it is a collider node), condition-
ing on it induces a non-causal dependence between its parent nodes (in 
addition to the causal dependence of symptoms on COVID-19 status). 
Figure 3aii displays the moralized undirected graph implied by Fig. 3ai,  
conditional on enrolment, with the strong COVID-19-to-symptoms 
dependence represented by a thick line illustratively labelled ρ = 0.66 
with reference to Fig. 2a. By contrast, Fig. 3bi is conditional on random 
enrolment and does not introduce any additional non-causal associa-
tion between COVID-19 status and self-reported symptoms.

If a study’s enrolment bias is unaddressed and shared across both 
training and held-out test sets, a classifier that seems to perform well 
may not generalize to other datasets20,21. This is due to two effects: first, 
the classifier may learn to predict using confounding variables that are 
not causally related to COVID-19 but are associated due to their influ-
ence on enrolment (for example, gender, age or symptoms unrelated 
to COVID-19); second, even symptoms that are truly causally related to 
COVID-19, such as a new continuous cough, may exhibit inflated associa-
tion with COVID-19 in the enrolled cohort due to their influence on enrol-
ment (illustrated by the thick edges labelled ρ = 0.66 in Fig. 3aii,aiii).

As well as leading to poor generalizability, audible character-
istics that are non-causally but strongly associated with COVID-19 
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Fig. 1 | Demographic statistics of collected dataset. a,b, Geographical  
locations of COVID positive (a) and negative (b) PCR-confirmed  
participants. Colour bar units are individual participant count.  
c, % 100×#negativeparticipants at location#negativeparticipants in total − 100×#positive participants at location#positive participants in total  Colour bar  
units are the difference between percentage points. d, Cumulative count of the 
number of participants partaking in the study. e,f, The 21 most common 
combinations of symptoms for COVID positive (e) and negative (f) participants, 

ordered along the x-axis by total number of participants displaying that 
particular combination of symptoms. Symptoms are ordered along the y-axis 
according to total number of participants displaying at least that symptom at the 
time of recording. g, Schematic detailing the two recruitment sources for the 
study and the filtration steps applied to yield the final dataset. h, Dataset splits in 
participant numbers.
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can obscure any COVID-19 acoustic signature that may exist. This 
is illustrated in Fig. 3aiii, where the association between classifier 
prediction and SARS-CoV-2 status is mediated by symptoms instead 
of via a targeted latent COVID acoustic signature (that is, there are no 
edges corresponding to the red edge seen in Fig. 3ciii). Even in the case 
of randomized enrolment from the general population, a classifier 
may learn to predict SARS-CoV-2 status via self-reported symptoms, 
as opposed to via a latent COVID-19 acoustic signature, as illustrated 
in Fig. 3biii (again, a lack of red edge indicates that classifier predic-
tions are conditionally independent of latent acoustic signature given 
self-reported symptoms).

Here, our goal is to build a classifier whose association with  
COVID-19 is mediated by an acoustic signature with the three proper-
ties defined above. We use the established epidemiological method-
ology known as matching27, whereby study enrolment balances the 
number of COVID+ and COVID– participants having each combination 
of potentially audible measured confounding variables. This has 
the effect of inducing independence between COVID-19 and these 
confounders in the matched population, as shown in Fig. 3cii. The 
classifier is then constrained to predict COVID-19 status either via  
the latent COVID-19 acoustic signature (via the red edge in Fig. 3ciii), 
or via unmeasured confounders.

Primary analyses
Pre-specified analysis plan. We designed and fixed a pre-specified 
analysis plan to increase the replicability of conclusions28. As part of 
this advance planning, we detailed the analyses to be conducted and 
generated the test/validate/train data splits through subsampling of 
the full dataset. The design of these splits is detailed in the Methods, 
with sample sizes listed in Fig. 1h.

Audio-based COVID-19 prediction performance. Table 1 presents our 
study’s COVID-19 prediction performance across nine train/validate/
test splits, four modalities and three models: Self-Supervised Audio 
Spectrogram Transformer (SSAST), Bayesian neural networks (BNNs) 
and an openSMILE–support vector machine (SVM). The SSAST and 
BNN classifiers consistently outperform the baseline SVM, and the best 
prediction is achieved with the sentence modality. Reported results are 
for the SSAST performance on the sentence modality, unless stated oth-
erwise. Under the randomized data split, the SSAST classifier achieves a 
high COVID-19 predictive accuracy of ROC–AUC = 0.846 [0.838–0.854]. 
We hypothesize that this strong predictive accuracy is mainly attribut-
able to enrolment on the basis of self-reported symptoms, and explore 
this further in confirmatory analyses below.

When we control for enrolment bias by matching on age, gender 
and self-reported symptoms, predictive accuracy drops to a consistently 
low level of ROC–AUC = 0.619 [0.594–0.644] in the matched test set, and 

ROC–AUC = 0.621 [0.605–0.637] in the longitudinal matched test set—
that is, a temporally out-of-distribution test set consisting of only sub-
missions after 29 November 2021 (both trained on the standard training 
set). When training instead on our matched training set, we see a minor 
improvement in the matched test set (ROC–AUC = 0.635 [0.610–0.660]), 
and, by contrast, a slight decrease in prediction accuracy in the longi-
tudinal matched test set (ROC–AUC = 0.604 [0.588–0.620]). Figure 4  
illustrates these different experimental settings and the corresponding 
classification performance. A cluster analysis is also performed on the 
SSAST learnt representations (detailed in Supplementary Note 2) visu-
ally demonstrating the effect of decoupling measured confounders and 
COVID-19 status. To explore whether classifier performance might be 
higher in some matched groups than in others, we calculated ROC–AUC 
within matched strata (Extended Data Fig. 2), observing the estimates 
and confidence intervals to be consistent with a homogeneously low 
predictive score of ROC–AUC = 0.62 across strata.

Confirmatory analyses and validation
The additional predictive value of ABCS. Audio-based classifiers can 
be useful in practice if they deliver improved performance relative to 
classifiers that are based on self-identifiable symptoms. Moreover, it 
is beneficial to assess the performance of ABCS classifiers in test sets 
reflecting the application of the testing protocol in a real-life setting. 
Here we generate a general population test set, through balanced 
subsampling, without replacement from our combined standard 
and longitudinal test sets, to capture the age/gender/symptoms/
COVID-19 profile of the general population during the pandemic. 
Specifically, the proportion of symptomatic individuals is set to 65% 
in the COVID+ subgroup29, compared with a setting of either (10%, 
20%, 30%) symptomatic individuals in the COVID– subgroup; the 
age distribution is constrained to be the same in both COVID+ and 
COVID– subgroups; and with males/females balanced in a 1:1 ratio in 
each COVID+/COVID– subgroup. We benchmark the COVID-19 pre-
dictive performance of the audio-based SSAST classifier against the 
performance attainable through random forest (RF) classifiers trained 
on self-identifiable symptoms and demographic data (a ‘symptoms’ 
RF classifier). In the benchmarking we also include an RF classifier, 
which takes as inputs the audio-based SSAST probabilistic outputs 
alongside self-identifiable symptoms and demographic data (‘symp-
toms + audio’ RF classifier). Training for all three classifiers is per-
formed in our standard training set. The resulting ROC curves are 
shown in Fig. 5a–c. Focusing on the general population with 20% of 
COVID– symptomatic in Fig. 5b, the combined symptoms + audio RF 
classifier (ROC–AUC = 0.787 [0.772–0.801], 95% DeLong CI) offers a 
significant (P = 9.7 × 10−11, DeLong test) but small increase in predictive 
accuracy over the symptoms RF classifier (ROC–AUC = 0.757 [0.743–
0.771], 95% DeLong CI), which in turn yields a less significant increase 

Symptoms-based enrolment

Predict COVID from
binary symptoms

ρ = 0.66
MI = 0.26

Sensitivity = 0.96
Speci�city = 0.73

AUC = 0.85

General population enrolment

Predict COVID from
binary symptoms

ρ = 0.15
MI = 0.01

Sensitivity = 0.65
Speci�city = 0.80

AUC = 0.73

COVID+ COVID– COVID+ COVID– COVID+ COVID–

Symptomatic 33.4% 17.5%
Asymptomatic 1.3% 47.8%

Symptomatic 1.3% 19.6%
Asymptomatic 0.7% 78.4%

Symptomatic 46.5% 46.5%
Asymptomatic 3.5% 3.5%

Matched enrolmenta b c

Predict COVID from
binary symptoms

ρ = 0
MI = 0

Sensitivity = 0.93
Speci�city = 0.07

AUC = 0.50

Fig. 2 | Illustrative tables relating symptoms status with COVID-19 status. 
 a, Symptoms-based enrolment, where individuals who are COVID+ are preferentially 
recruited on the basis of symptoms (percentages are calculated from the entire 
sample of individuals recruited into this study). b, General population enrolment on 
the basis of random sampling from an illustrative general population with a COVID-19 
prevalence of 2%, where symptomatic individuals make up 20% and 65% of COVID– 

and COVID+ subpopulations, respectively. c, Matched enrolment, where the number 
of individuals who are COVID– and COVID+ is the same for each particular symptoms 
profile within the symptomatic and asymptomatic subgroups (percentages shown 
are for the matched test set in the current study). For each type of enrolment, the 
diagnostic accuracies of the resulting symptoms-only COVID-19 classifier are shown 
below the table: ρ, mutual information (MI), sensitivity, specificity and AUC.
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in ROC–AUC compared with the audio-only classifier (P = 0.0033) 
(ROC–AUC = 0.733 [0.717–0.748], 95% DeLong CI).

We replicate these findings using an external dataset18, observing 
qualitatively similar results with a symptoms classifier (ROC–AUC = 0.79 
[0.71–0.87]) outperforming an SSAST audio-based classifier (ROC–
AUC = 0.68 [0.59–0.77]) in a general population test set simulated from 
the external test set18, in which 20% of the individuals who are COVID– are 
symptomatic. We observe similar results when comparing a symptoms 
classifier with our SSAST and Han and colleagues’ convolutional neural 
network (CNN) on the external test set directly18: symptoms classi-
fier ROC–AUC = 0.81 [0.76–0.86]; SSAST audio-based classifier ROC–
AUC = 0.68 [0.62–0.74]; CNN audio-based classifier18 ROC–AUC = 0.66 
[0.60–0.71] (see also Extended Data Fig. 3). The reported results for 

our SSAST and Han and colleagues’ CNN are for the ‘cough’ modality; 
however, we see similar results for both ‘breathing’ and ‘voice’.

Translating prediction accuracy into utility. To characterize the 
practical benefit of ABCS in any particular testing setting, we can spec-
ify the utility u ̂y,y of predicting ̂y ∈ {0, 1} for a random individual, in the 
targeted testing population, whose true COVID status is y ∈ {0, 1}, and 
calculate the per-test expected utility (EU) as

EU ≡ 𝔼𝔼𝔼utility|uuu,π, sensitivity, specificity]

= π [(u1,1 − u0,1) × sensitivity + u0,1]

+(1 − π) [(u0,0 − u1,0) × specificity + u1,0] ,

(1)
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Fig. 3 | Study enrolment influences capability of classifiers to learn a latent 
COVID acoustic signature. a–c, Our goal is to train a classifier whose predictions 
are conditionally dependent on the latent COVID acoustic signature given 
self-reported symptoms, as denoted by the red edge in ciii under matched 
enrolment. This edge is not present in aiii or biii because the classifier’s 
predictive ability is mediated by self-reported symptoms under symptoms-based 
and general population enrolment. Rows a–c present three different enrolment 
protocols, whereas columns (i)–(iii) show different types of graph; in the 
undirected graphs, shaded nodes are observed variables, while the edge 
thickness is used to illustrate the approximate strength of conditional 
dependence. a, Symptoms-based enrolment enforces a supervised sampling 

regime in which individuals who are COVID+ are preferentially recruited on the 
basis of symptoms shown (for example, Fig. 2a). b, Randomized enrolment 
performs a random sampling of individuals from the general population.  
c, Matched enrolment balances the number of COVID+ and COVID– individuals 
that share each particular symptoms profile; (i) Bayesian knowledge graphs 
displaying a simplified causal model; (ii) undirected conditional independence 
graphs implied by the directed graphs in (i) when we condition on enrolment 
(ei = 1); (iii) undirected conditional independence graphs, as in (ii), but now 
showing the trained acoustic classifier ̂h(xi) (trained to predict yi based on input 
xi) in lieu of the acoustic recording data xi.
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where π is the COVID-19 prevalence in the tested population (equation 
(1) is derived in the Methods). The EU is increasing in both sensitivity and 
specificity, with their relative weights depending on prevalence π and 
utility u. Note that it is not only π and u that are context-dependent: the 
sensitivity and specificity of any particular COVID-19-classifier depends 

on the characteristics of the targeted testing population, as illustrated 
by the effects of variation in the proportion of COVID– individuals that 
are symptomatic across Fig. 5a–c.

Consider the following illustrative utility function, measured in 
units of the number of infections prevented:

Table 1 | Results detailing the performance of the SVM, SSAST and BNN models on the nine evaluation tasks for each of the 
four audio modalities: sentence, three coughs, cough and exhalation

Train Standard (9,379+ 16,518−) Match (2,599+ 2,599−) Random 
(20,000+  
37,665−)

Test Standard 
(3,820+ 7,301−)

Match 
(907+ 907−)

Long 
(10,315+ 20,509−)

Long match 
(2,098+ 2,098−)

Standard 
(3,820+ 7,301−)

Match 
(907+ 907−)

Long  
(10,315+  
20,509−)

Long  
match  
(2,098+  
2,098−)

Random  
(3,514+  
6,663−)

Sentence

SVM

UAR 0.669 0.566 0.699 0.570 0.658 0.567 0.646 0.579 0.721

ROC 0.732 0.596 0.766 0.591 0.714 0.600 0.693 0.597 0.796

PR 0.578 0.574 0.625 0.580 0.553 0.583 0.515 0.576 0.686

SSAST

UAR 0.733 0.594 0.739 0.583 0.692 0.602 0.666 0.572 0.763

ROC 0.800 0.619 0.818 0.621 0.760 0.635 0.732 0.604 0.846

PR 0.684 0.594 0.715 0.594 0.631 0.626 0.590 0.579 0.774

BNN

UAR 0.685 0.586 0.702 0.566 0.703 0.604 0.687 0.581 0.702

ROC 0.776 0.623 0.804 0.614 0.767 0.634 0.749 0.610 0.834

PR 0.645 0.613 0.689 0.593 0.634 0.629 0.619 0.593 0.752

Three 
coughs

SVM

UAR 0.669 0.555 0.694 0.541 0.635 0.539 0.639 0.550 0.713

ROC 0.727 0.568 0.759 0.558 0.684 0.560 0.688 0.568 0.782

PR 0.570 0.550 0.605 0.538 0.523 0.553 0.510 0.546 0.647

SSAST

UAR 0.681 0.555 0.696 0.551 0.652 0.546 0.662 0.555 0.725

ROC 0.750 0.577 0.781 0.569 0.714 0.571 0.723 0.568 0.809

PR 0.607 0.553 0.648 0.552 0.563 0.557 0.561 0.557 0.701

BNN

UAR 0.678 0.558 0.696 0.551 0.657 0.558 0.660 0.535 0.716

ROC 0.751 0.578 0.786 0.578 0.713 0.578 0.720 0.558 0.807

PR 0.601 0.550 0.647 0.556 0.551 0.554 0.563 0.551 0.691

Cough

SVM

UAR 0.648 0.536 0.685 0.540 0.633 0.541 0.638 0.538 0.695

ROC 0.712 0.544 0.748 0.550 0.687 0.559 0.692 0.559 0.763

PR 0.559 0.526 0.594 0.535 0.533 0.550 0.521 0.545 0.625

SSAST

UAR 0.681 0.545 0.690 0.541 0.638 0.528 0.640 0.543 0.702

ROC 0.742 0.561 0.768 0.559 0.692 0.552 0.692 0.560 0.790

PR 0.603 0.540 0.631 0.548 0.535 0.545 0.532 0.550 0.675

BNN

UAR 0.647 0.540 0.661 0.534 0.618 0.532 0.638 0.541 0.672

ROC 0.732 0.570 0.765 0.563 0.682 0.542 0.698 0.556 0.786

PR 0.581 0.556 0.621 0.549 0.511 0.526 0.522 0.541 0.678

Exhalation

SVM

UAR 0.600 0.523 0.639 0.544 0.587 0.528 0.585 0.529 0.653

ROC 0.646 0.555 0.690 0.559 0.618 0.541 0.621 0.550 0.712

PR 0.477 0.560 0.513 0.547 0.444 0.536 0.431 0.543 0.566

SSAST

UAR 0.649 0.553 0.663 0.558 0.593 0.531 0.588 0.531 0.660

ROC 0.701 0.581 0.725 0.580 0.653 0.552 0.644 0.556 0.750

PR 0.563 0.578 0.575 0.561 0.496 0.548 0.473 0.549 0.634

BNN

UAR 0.576 0.529 0.581 0.526 0.603 0.525 0.601 0.541 0.608

ROC 0.683 0.569 0.722 0.578 0.679 0.570 0.675 0.567 0.744

PR 0.539 0.581 0.573 0.563 0.519 0.573 0.507 0.551 0.620

The metrics corresponding to the highest performance for each of the 18 (evaluation procedure, test set) pairs (that is, for each pair in {UAR, ROC, PR} × {standard, match, long, long match, 
random}) across all modalities and models, are bolded. Each training and test set is shown with the corresponding support of individuals who are COVID+ and COVID−. ROC, ROC–AUC; PR, 
PR–AUC; UAR, unweighted average recall.
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u1,1 = Rt − ε

[True positive result for COVID+,

Rt infections prevented on average ]

u1,0 = −ε

[ False positive for COVID−,

−ε is negative impact of self-isolation ]

u0,0 = 0

𝔼True negative for COVID−]

u0,1 = −δ

[ False negative for COVID+,

causingδ additional infections on average ] .

There are three specified parameters in the above: (i) the number of 
cases prevented by intervention on a single individual is specified as 
the effective reproduction number, Rt ≥ 0, that is, the average number 
of infections that person would cause under no intervention, assuming 
that all individuals with a positive result follow self-isolation guidance 
and cause no transmission; (ii) ε ≥ 0 measures the cost of intervention 
(for example, the negative impact on health or education resulting 
from self-isolation); and (iii) δ ≥ 0 is the expected number of additional 
infections caused by a false-negative result (for example, due to reduced 
caution and increased social mixing following a negative result).

Figure 5d–f shows maximum EU, as a function of prevalence, for 
settings of Rt ∈ {1, 1.5} and ε ∈ {0.02, 0.2} and with δ = 0 (corresponding 
results for δ = 0.25 are shown in Extended Data Fig. 4). The maximiza-
tion is performed point-wise with respect to sensitivity and specificity 
across the corresponding ROC curves in Fig. 5a–c. The utility of all clas-
sifiers decreases as the percentage of COVID– symptomatics increases 
from 10% to 30% in Fig. 5d–f, with the intuition being that it is more 
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Fig. 4 | Schematic demonstrating the importance of ascertainment bias 
adjustment in the context of reporting COVID-19 detection from patient 
respiratory audio performance. Human figures represent study participants 
and their corresponding COVID-19 infection status, with the different colours 
portraying different demographic or symptomatic features. When participants 
are randomly split into training and test sets, the randomized split models 
perform well at COVID-19 detection, achieving AUCs in excess of 0.8; however, 
matched test set performance is seen to drop to estimated AUC between 0.60 

and 0.65, with an AUC of 0.5 representing random classification. Inflated 
classification performance is also seen in engineered out of distribution test sets 
such as: the designed test set, in which a select set of demographic groups appear 
solely in the testing set, and the longitudinal test set, in which there is no overlap 
in the time of submission between train and test instances. The 95% confidence 
intervals calculated via the normal approximation method are shown, along with 
the corresponding n numbers of the train and test sets. Figure 4 created with 
Biorender.com.
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difficult to distinguish COVID– from the 65% symptomatic COVID+ 
population. When we compare the symptoms + audio RF classifier with 
the symptoms RF classifier, neither is generally optimal, with each clas-
sifier showing greater EU than the others for some values of (π, Rt, ε).

Exploratory approaches to identify the influence of unmeasured 
confounders. We explore whether the residual COVID-19 prediction 
performance of ROC–AUC = 0.62 in the matched test set is truly attrib-
utable to the targeted acoustic signature, or whether it stems from 
unmeasured confounders such as the audible recording environment, 
or unreported symptoms. We describe the two complementary explor-
atory methods in greater detail in Supplementary Note 1.

Method 1 investigates how much of the residual predictive vari-
ation persists when we map all matched test set samples to the first 
k-principal components of the COVID– samples. We train a classifier 
on COVID-19 detection in this k-dimensional space and hypothesize 
that, below a threshold value for k ≤ τ, correct classification is due to 
confounding in the signal. The value of τ is determined by running a 
calibration experiment and is set to 14 for the sentence modality. By 
removing these correctly classified cases to form a curated matched 
test set, we see a drop in SSAST performance to UAR = 0.51 (the results 
from this experiment can be found in Extended Data Fig. 5).

Method 2 examines how much residual predictive variation 
persists when, using a robust distance metric in openSMILE space, 
we map each COVID+ participant to their nearest COVID–neighbour. 

Predictive variation that persists in the space spanned by individuals 
who are COVID– is then attributed to unmeasured confounders. After 
the COVID+-to-COVID– nearest-neighbour mapping, the SVM matched 
test set ROC–AUC drops from 0.60 to 0.55. We interpret this persistent 
component of predictive variation after the mapping to COVID– indi-
viduals (that is, ROC–AUC drops only to 0.55 as opposed to 0.50) as 
pointing to some degree of unmeasured confounding contributing 
to the score of ROC–AUC = 0.60 in the matched test set.

Discussion
COVID-19 is well known to be causally related to particular self- 
identifiable symptoms such as a new continuous cough. This has 
allowed such symptoms to be used by governments during the pan-
demic as a basis for population intervention to control disease spread 
(for example, as a triage tool for individuals) via self-screening and 
without recourse to audio recording. It is therefore desirable to develop 
audio-based classifiers that can augment and complement the infor-
mation provided by self-identifiable COVID-19-specific symptoms, 
that is, to learn clinically valuable latent acoustic signatures caused 
by COVID-19.

Problematically, enrolment on the basis of symptoms has  
the potential not only to artificially inflate the association between 
COVID-19 and its particular symptoms, but also to introduce associa-
tion between COVID-19 and symptoms that are not COVID-19 specific. 
Furthermore, enrolment on the basis of other characteristics such as 
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Fig. 5 | Comparison of sensitivity, specificity, and utility across audio-
based and symptoms-based classifiers, as applied in simulated general 
populations. a–c, The percentage of COVID– individuals who are symptomatic 
in the general population varies between 10% and 30% across the three columns 
of panels (labelled at the top). Comparison of ROC curves between the audio, 
symptoms, and symptoms + audio classifiers; curves show sensitivity as a 
function of specificity, with error bars denoting 95% confidence intervals for 
sensitivity, where confidence intervals are calculated using the pROC::ci.se() R 

function and are based on a sample size of 2,000 stratified bootstrap replicates. 
The legends show the curve colour for each classifier alongside ROC–AUC 
estimates and 95% DeLong confidence intervals. d–f, Comparison of maximum 
expected utility across classifiers. Four different utility functions are included, 
as detailed in the top-right legend (utility function parameters Rt, ε and δ are 
defined in the ‘Results’ section; δ = 0 in this figure). Curves are coloured to 
indicate audio, symptoms, or symptoms + audio classifiers, as detailed in the 
top-left legend.
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gender and age may also introduce non-causal COVID-19–gender or 
COVID-19–age associations in the enrolled subpopulation, possibly 
interacting with symptoms.

Under such recruitment bias, classifiers trained to predict COVID-
19 in enrolled subpopulations may learn to predict self-identifiable 
COVID-19-specific symptoms, thereby providing no further utility 
beyond a classifier trained directly on those self-screened symptoms. 
It is worth noting that there are exceptions to this statement, including 
situations in which passive monitoring is necessary or when individuals 
have reasons to provide incorrect information. More concerningly, 
the classifier may learn to predict age/gender/non-COVID-19-specific 
symptoms as proxies for COVID-19 in the enrolled subpopulation, 
in which case its performance will not generalize to subpopulations 
unaffected by the same recruitment bias.

Han et al.18 examine several aspects of recruitment bias in ABCS, 
simulating the effects of biases introduced by age, gender, language, 
and by the same individuals appearing in both the train and test sets. 
Although their dataset is approximately balanced with respect to age 
and gender (across COVID+ and COVID– subgroups), it is imbalanced 
with respect to self-reported symptoms (84% of their COVID+ subgroup 
is symptomatic, compared with 49% of the COVID–subgroup; ref. 18, 
Fig. 1e). Such imbalance with respect to symptoms is also present in our 
study (prior to matching) and other studies for which data, including 
symptoms, are available (see Extended Data Fig. 6).

We make the following recommendations with the aim of clarify-
ing the effects of recruitment bias and mediation by self-identifiable 
symptoms in future studies:

	1.	 Collect and disseminate metadata. Repositories of audio sam-
ples should include details of the study recruitment criteria and 
relevant metadata (for example, gender, age, symptoms, loca-
tion, time since COVID-19 test) so that data can be filtered for 
quality and for relevance to hypothesis, and bias from measured 
confounders can be characterized and controlled if necessary.

	2.	 Characterize and control recruitment bias. Analyse data us-
ing methods that acknowledge and control for the effects of re-
cruitment bias. We approached this by matching on measured 
confounders in our test and/or training sets.

	3.	 Design studies with bias control in mind. Matching leads to re-
duced sample size when performed post-recruitment, so it can 
be beneficial to design observational studies that recruit par-
ticipants to maximize the potential for matching on measured 
confounders in the enrolled cohort.

	4.	 Focus on the added predictive value of classifiers. Quantify 
the additional predictive value offered by classifiers compared 
with standard methods.

	5.	 Assess classifier performance in targeted settings. Measures 
of classifiers’ predictive accuracy, such as ROC–AUC, sensitiv-
ity and specificity vary depending upon the characteristics of 
the targeted population (for example, according to prevalence 
and the proportion of COVID+ and COVID– individuals that are 
symptomatic). Where possible, apply the classifier in a test set 
that reflects the appropriate application setting, for example, by 
subsampling a test set that is representative of the general popu-
lation, as we do here.

	6.	 Examine classifiers’ expected utility. We can specify utilities 
for each testing outcome, that is, quantify the average ben-
efit accrued from a true positive, the different benefit of a true 
negative, and similarly the costs attached to false positives 
and false negatives. Then the expected utility provides a highly 
context-specific score for quantifying and comparing classifi-
ers’ performance.

	7.	 Out-of-study replication. Replication studies could be per-
formed in randomly sampled cohorts, or in pilot studies in 
real-world prediction settings with domain-specific utility func-
tions. There are extra challenges when performing out-of-study 

replication; in particular, the audio-capture protocols might dif-
fer. It would facilitate replication if standardized protocols for 
audio data gathering are collaboratively developed.
We conclude by outlining some limitations of our study, dataset 

and findings. There are potentially subtle unmeasured confounders 
across our recruitment channels REACT and T+T. For example, PCR 
testing in T+T usually occurs in the days after self-screening of symp-
toms, whereas PCR tests in REACT are more likely to occur on a date 
approximately pre-determined by study researchers, and therefore to 
be independent of participants’ symptoms. We attempted to control 
for such unmeasured confounders by including recruitment channel 
as one of the matched variables in the test set. Despite matching on 
measured confounders, some residual predictive variation persists 
(ROC–AUC = 0.62). Our exploratory approaches for characterizing this 
residual predictive variation (Methods and Supplementary Note 1) sug-
gest that some of this residual performance may be due to unmeasured 
confounders, but these results are inconclusive. Our results are sug-
gestive of little utility of ABCS in practice relative to symptoms-based 
screening (Fig. 5). The development of more sophisticated methods for 
training audio-based models—such as utilizing voice activity detection, 
fusing multiple models’ predictions, or new augmentation methods—in 
the presence of symptoms data and recruitment bias is a worthwhile 
and active area of research which, alongside careful design and replica-
tion of studies, will eventually provide full clarity on the potential of 
ABCS as a tool to protect public health.

Methods
Dataset and study design
This section contains an overview of how the dataset was collected, 
its characteristics and its underlying study design. More in-depth 
descriptions are provided in two accompanying papers: Budd and 
co-workers23 report a detailed description of the full dataset, whereas 
Pigoli et al.30 present the rationale for and full details of the statistical 
design of our study.

Recruitment sources. Our main sources of recruitment were the 
REACT study and the NHS T+T system. REACT is a prevalence survey of 
SARS-CoV-2 that is based on repeated cross-sectional samples from a 
representative subpopulation defined via (stratified) random sampling 
from England’s NHS patient register31. The NHS T+T service was a key 
part of the UK government’s COVID-19 recovery strategy for England. 
It ensured that anyone developing COVID-19 symptoms could be swab 
tested, followed by the tracing of recent close contacts of any individu-
als testing positive for SARS-CoV-2 (ref. 25).

Criteria for enrolment. Enrolment for both the REACT and NHS T+T 
recruitment channels was performed on an opt-in basis. Individuals 
participating in the REACT study were presented with the option to vol-
unteer for this study. For the NHS T+T recruitment channel, individuals 
receiving a PCR test from the NHS T+T pillar 2 scheme were invited to 
take part in research (pillar 1 tests refer to ‘all swab tests performed in 
Public Health England laboratories and NHS hospitals for those with a 
clinical need, and health and care workers’, whereas pillar 2 comprises 
‘swab testing for the wider population’25). The guidance provided to 
potential participants was that they should be at least 18 years old, had 
taken a recent swab test (initially no more than 48 h, changing to 72 h 
on 14 May 2021), agree to our data privacy statement and have their 
PCR barcode identifier available, which was then internally validated.

Audio recordings. Participants were directed to the ‘Speak up and help 
beat coronavirus’ web page24. Here, after agreeing to the privacy state-
ment and completing the survey questions, participants were asked to 
record four audio clips. The first involved the participant reading out 
the sentence: ‘I love nothing more than an afternoon cream tea’, which 
was designed to contain a range of different vowel and nasal sounds. 
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This was followed by three successive sharp exhalations, taking the 
form of a ‘ha’ sound. The final two recordings involved the participant 
performing volitional/forced coughs, once, and then three times in 
succession. Recordings were saved in .wav format. Smart phones, 
tablets, laptops and desktops were all permitted. The audio recording 
protocol was homogenized across platforms to reduce the risk of bias 
due to device types.

Demographic and clinical/health metadata. Existing metadata such 
as age, gender, ethnicity and location were transferred from linked T+T/
REACT records. Participants were not asked to repeat this information 
to avoid survey fatigue. An additional set of attributes—hypothesized to 
pose the most utility for evaluating the possibility for COVID-19 detec-
tion from audio—was collected in the digital survey. This was in line 
with General Data Protection Regulation requirements that only the 
personal data necessary to the task should be collected and processed. 
This set included the symptoms currently on display (the full set of 
which are detailed in Fig. 1e,f), and long-term respiratory conditions 
such as asthma. The participants’ first language was also collected to 
control for different dialects/accents, and complement location and 
ethnicity. Finally, the test centre at which the PCR was conducted was 
recorded. This enabled the removal of submissions when cases were 
linked to faulty test centre results. A full set of the dataset attributes 
can be found in Budd and colleagues23.

Final dataset. The final dataset is downstream of a quality control 
filter (see Fig. 1g), in which a total of 5,157 records were removed, each 
with one or more of the following characteristics: (1) missing response 
data (missing a PCR test); (2) missing predictor data (any missing audio 
files or missing demographic/symptoms metadata); (3) audio submis-
sion delays exceeding ten days post test result; (4) self-inconsistent 
symptoms data; (5) a PCR testing laboratory under investigation for 
unreliable results; (6) a participant age of under 18; and (7) sensi-
tive personal information detected in the audio signal (see Fig. 3d of  
ref. 23). Pigoli et al.30 present these implemented filters in full, and 
the rationale behind each one. The final collected dataset, after data 
filtration, comprised 23,514 COVID+ and 44,328 COVID– individu-
als recruited between March 2021 and March 2022. Please note that 
the sample size here differs to that in our accompanying papers, in 
which Budd et al.23 reported numbers before the data quality filter 
was applied, whereas our statistical study design considerations, 
detailed in a work by Pigoli and colleagues30, focused on data from the 
restricted date range spanning March to November 2021. We note the 
step-like profile of the COVID– count is due to the six REACT rounds, 
where a higher proportion of COVID– participants were recruited 
than in the T+T channel. As detailed in the geo-plots in Fig. 1a,b, the 
dataset achieves a good coverage across England, with some areas 
yielding more recruited individuals than others. We are pleased to see 
no major correlation between geographical location and COVID-19 
status, (Fig. 1c), with Cornwall displaying the highest level of COVID-19 
imbalance, with a 0.8% difference in percentage proportion of COVID+ 
and COVID– cases.

Data splits. In our pre-specified analysis plan, we defined three training 
sets and five test sets to define a range of analyses in which we investigate, 
characterize and control for the effects of enrolment bias in our data:

�Randomized train and test sets. A participant-disjoint train and 
test set was randomly created from the whole dataset, similar to 
methods in previous works.
�Standard train and test set. Designed to be a challenging, 
out-of-distribution evaluation procedure. Carefully selected 
attributes such as geographical location, ethnicity and first 
language are held out for the test set. The standard test set 
was also engineered to over represent sparse combinations of 

categories such as older COVID+ participants30. The samples 
included in this split exclusively consist of recordings made 
prior to 29 November 2021.
�Matched train and test sets. The numbers of COVID– and 
COVID+ participants are balanced within each of several key 
strata. Each stratum is defined by a unique combination of meas-
ured confounders, including binned age, gender and a number of 
binary symptoms (for example, cough, sore throat, shortness of 
breath; see Methods for a full description). The samples included 
in this split exclusively consist of recordings made prior to 29 
November 2021.
�Longitudinal test set. To examine how classifiers generalized 
out-of-sample over time, the longitudinal test set was constructed 
only from participants joining the study after 29 November 2021.
�Matched longitudinal test set. Within the longitudinal test set, 
the numbers of COVID– and COVID+ participants are balanced 
within each of several key strata, similarly as in the matched test 
set above.

The supports for each of these splits are detailed in Fig. 1h.

Machine learning models
Three separate models were implemented for the task of COVID-19 
detection from audio, each representing an independent machine 
learning pipeline. These three models collectively span the machine 
learning research space thoroughly—ranging from the established 
baseline to the current state of the art in audio classification tech-
nologies–and are visually represented in Extended Data Fig. 7. We also 
fitted an RF classifier to predict COVID-19 status from self-reported 
symptoms and demographic data. The outcome used to train and 
test each of the prediction models was a participant’s SARS-CoV-2 
PCR test result. Each model’s inputs and predictors, and the details 
on how they are handled, can be found below. Wherever applicable, 
we have reported our study’s findings in accordance with TRIPOD 
statement guidelines32. The following measures were used to assess 
model performance: ROC–AUC, area under the precision–recall curve 
(PR–AUC), and UAR (also known as balanced accuracy). Confidence 
intervals for ROC–AUC, PR–AUC and UAR are based on the normal 
approximation method33, unless otherwise stated to be calculated by 
the DeLong method34.

openSMILE–SVM. We defaulted to the widely used openSMILE–SVM 
approach35 for our baseline model. Here, 6,373 handcrafted features 
(the ComParE 2016 set)—including the zero-crossing rate and shim-
mer, which have been shown to represent human paralinguistics 
well—are extracted from the raw audio form. These features are then 
concatenated to form a 6,373-dimensional vector, fopenSMILE(w) → v, 
where the raw waveform, w ∈ ℝn (n = clip duration in seconds × sample 
rate) is transformed to v ∈ ℝ6,373; v is then normalized prior to training 
and inference. A linear SVM is fitted to this space and tasked with binary 
classification. We select the optimal SVM configuration on the basis 
of the validation set before then retraining on the combined train–
validation set.

ResNet-50 BNN. Bayesian neural networks provide estimates of uncer-
tainty, alongside strong supervised classification performance, which 
is desirable for real-world use cases, especially those involving clinical 
use. Bayesian neural networks are naturally suited to Bayesian decision 
theory, which benefits decision-making applications with different 
costs on error types (for example, assigning unequal weighting to 
errors in different COVID-19 outcome classifications)36,37. We thus sup-
ply a ResNet-50 (ref. 38) BNN model. The base ResNet-50 model showed 
initial strong promise for ABCS5, further motivating its inclusion in this 
comparison. We achieve estimates of uncertainty through Monte-Carlo 
Dropout to achieve approximate Bayesian inference over the posterior, 
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as in ref. 39. We opt to use the pre-trained model for a warm start to the 
weight approximations, and allow full retraining of layers.

The features used to create an intermediate representation, as 
input to the convolutional layers, are Mel filterbank features with 
default configuration from the VGGish GitHub (ref. 40): Xi ∈ ℝ96×64, 64 
log-mel spectrogram coefficients using 96 feature frames of 10 ms 
duration, taken from a resampled signal at 16 kHz. Each input signal 
was divided into these two-dimensional windows, such that a 2,880 ms 
clip would produce three training examples with the label assigned to 
each clip (COVID+ or COVID−). Incomplete frames at edges were dis-
carded. As with the openSMILE–SVM, silence was not removed. For 
evaluation, the mean prediction over feature windows was taken per 
audio recording, to produce a single decision per participant. To make 
use of the available uncertainty metrics, Supplementary Note 3 details 
an uncertainty analysis over all audio modalities for a range of train–
test partitions.

SSAST. In recent years, transformers41 have started to perform well 
in high-dimensional settings such as audio42,43. This is particularly 
the case when models are first trained in a self-supervised manner on 
unlabelled audio data. We adopt the SSAST44, which is on a par with 
the current state of the art for audio event classification. Raw audio is 
first resampled to 16 kHz and normalized before being transformed 
into Mel filter banks. Strided convolutional neural layers are used to 
project the Mel filter bank to a series of patch level representations. 
During self-supervised pretraining, random patches are masked 
before all of the patches are passed to a transformer encoder. The 
model is trained to jointly reconstruct the masked audio and to clas-
sify the order of which the masked audio occurs. The transformer is 
made up of 12 multihead attention blocks. The model is trained end 
to end, with gradients being passed all of the way back to the convo-
lutional feature extractors. The model is pre-trained on a combined 
set of AudioSet-2M (ref. 45) and Librispeech46, representing over 
two million audio clips for a total of ten epochs. The model is then 
fine-tuned in a supervised manner on the task of COVID-19 detec-
tion from audio. Silent sections of audio recordings are removed 
before then being resampled to 16 kHz and normalized. Clips are cut/
zero-padded to a fixed length of 5.12 s, which corresponds to approxi-
mately the mean length of the audio clip. For cases in which the signal 
length exceeds 5.12 s (after silence is removed), the first 5.12 s are 
taken. At the training time, the signal is augmented through apply-
ing SpecAugment47 along with the addition of Gaussian noise. The 
output representations are mean pooled before being fed through 
a linear projection head. No layers are frozen and again the model is 
trained end-to-end. The model is fine-tuned for a total of 20 epochs. 
The model is evaluated on the validation set at the end of each epoch 
and its weights are saved. At the end of training the best performing 
model, over all epochs, is chosen.

Random forest classifier. To predict SARS-CoV-2 infection status 
from self-reported symptoms and demographic data, we applied an 
RF classifier with default settings (having self-reported symptoms and 
demographic data as inputs). In our dataset, predictor variables for the 
symptoms RF classifier on our dataset comprised: cough; sore throat; 
asthma; shortness of breath; runny/blocked nose; a new continuous 
cough; Chronic obstructive pulmonary disease (COPD) or emphy-
sema; another respiratory condition; age; gender; smoker status; and 
ethnicity. In Han and colleagues’ dataset18, predictor variables for the 
symptoms RF classifier comprised: tightness of chest; dry cough; wet 
cough; runny/blocked nose; chills; smell/taste loss; muscle ache; head-
ache; sore throat; short breath; dizziness; fever; runny/blocked nose; 
age; gender; smoker status; language; and location. Prior to training, 
categorical attributes were one-hot encoded. No hyperparameter tun-
ing was performed, and models were trained on the combined Standard 
train and validation sets. For the hybrid symptoms + audio RF classifier, 

the outputted predicted COVID+ probability from an audio-trained 
SSAST is appended as an additional input variable to the self-reported 
symptoms and demographic variables listed above.

Matching methodology
The matched test set was constructed by exactly balancing the numbers 
of individuals with COVID+ and COVID– in each stratum where, to be in 
the same stratum, individuals must be matched on all of (recruitment 
channel) × (10-year-wide age bins) × (gender) × (all of six binary symp-
toms covariates). The six binary symptoms matched on in the matched 
test set were: cough; sore throat; asthma; shortness of breath; runny/
blocked nose; and ‘at least one symptom’.

Our matching algorithm proceeds as follows. First, each partici-
pant is mapped to exactly one stratum. Second, the following matching 
procedure is applied separately in each stratum: in stratum s (of a total 
of S strata) let ns,+ and ns,− denote the number of individuals with COVID+ 
and COVID–, respectively, and let 𝒜𝒜s,+ and 𝒜𝒜s,− be the corresponding 
sets of individuals. Use ℳs,+ and ℳs,− to denote random samples without 
replacement of size min{ns,+,ns,−} from 𝒜𝒜s,+ and 𝒜𝒜s,− respectively. Finally 
we combine matched individuals across all strata into the matched 
dataset ℳ defined as:

ℳ ∶= ∪S
s=1(ℳs,+ ∪ ℳs,−).

The resulting matched test set comprised 907 participants who were 
COVID positive and 907 who were COVID negative. The matched 
training set was constructed similarly to the matched test set, though 
with slightly different strata, so as to increase available sample size. 
For the matched training set, individuals were matched on all of: 
(10-year-wide age bins) × (gender) × (all of seven binary covariates). 
The seven binary covariates used for the matched training set were: 
cough; sore throat; asthma; shortness of breath; runny/blocked nose; 
COPD or emphysema; and smoker status. The resulting matched 
training set comprised 2,599 participants who were COVID positive 
and 2,599 who were COVID negative.

Quantifying the expected utility of a testing protocol
We consider the action of applying a particular testing protocol to an 
individual randomly selected from a population. The four possible 
outcomes O ̂y,y are

O ̂y,y ∶= 𝔼Predict COVID-19 status as ̂y]AND 𝔼TrueCOVID-19 status is y]
(2)

for predicted COVID-19 status ̂y ∈ {0, 1}  and true COVID-19 status 
y ∈ {0, 1}. We denote the probability of outcome O ̂y,y by

p ̂y,y ∶= ℙ(O ̂y,y) (3)

and use u ̂y,y  to denote the combined utility of the consequences of 
outcome O ̂y,y. For a particular population prevalence proportion, π, 
the p ̂y,y are subject to the constraints

p0,1 + p1,1 = π (4)

p0,0 + p1,0 = 1 − π, (5)

leading to the following relationships, valid for π ∈ (0, 1), involving the 
sensitivity and specificity of the testing protocol:

sensitivity ≡
p1,1

p1,1 + p0,1
=

p1,1
π (6)

specificity ≡
p0,0

p0,0 + p1,0
=

p0,0
1 − π . (7)
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The expected utility is:

EU = ∑
̂y∈{0,1}

∑
y∈{0,1}

u ̂y,yp ̂y,y (8)

= u1,1p1,1 + u0,1(π − p1,1) + u0,0p0,0 + u1,0(1 − π − p0,0) (9)

= π𝔼(u1,1 − u0,1) × sensitivity + u0,1]

+(1 − π)𝔼(u0,0 − u1,0) × specificity + u1,0],
(10)

where equations (4) and (5) are substituted into equation (8) to obtain 
equation (9), and equations (6) and (7) are substituted into equation (9)  
to obtain equation (10).

Demonstration code
To provide researchers easy access to running the code, we have created 
a demonstration notebook where the participant is invited to record 
their own ‘sentence’, ‘cough’, ‘three cough’ or ‘exhalation’ sounds and 
evaluate our COVID-19 detection machine learning models on it. The 
model outputs a COVID-19 prediction, along with some explainable AI 
analysis, for example, enabling the user to listen back to the parts of the 
signal which the model allocated the most attention to. In the demon-
stration, we detail that this is not a clinical diagnostic test for COVID-19, 
but that it is instead for research purposes and does not provide any 
medical recommendation, nor should any action be taken following 
its use. The demonstration file is detailed on the main repository page 
and can be accessed at https://colab.research.google.com/drive/1Hdy 
2H6lrfEocUBfz3LoC5EDJrJr2GXpu?usp=sharing.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
To obtain access to ‘The UK COVID-19 Vocal Audio Dataset’ in full, inter-
ested parties may submit their requests to UKHSA at DataAccess@
ukhsa.gov.uk. Access is subject to approval and completion of a data 
sharing contract. For information on how one can apply for UKHSA 
data, please visit https://www.gov.uk/government/publications/
accessing-ukhsa-protected-data/accessing-ukhsa-protected-data. Audio 
data are provided in .wav format, with four files (one for each recording) 
for each of the 72,999 participants (unless missing). Metadata are pro-
vided in three .csv files, linked by a participant identifier code. Although 
the dataset is fully anonymized and therefore does not contain any per-
sonal data, it has been deposited as safeguarded data in line with the 
privacy notice provided to participants. Safeguarded data can be used 
for non-commercial, commercial and teaching projects. To enable wider 
accessibility, we created another dataset in addition to the original data-
set; this dataset has been made open access under a Open Government 
Licence v3.0. This subset of the ‘The UK COVID-19 Vocal Audio Dataset’ has 
been curated to meet the ISB1523: Anonymisation Standard for Publish-
ing Health and Social Care Data standards. Two key changes have been 
made to achieve this. The ‘sentence’ modality has been removed; this was 
non-negotiable from a data privacy perspective as it was classified as per-
sonally identifiable information on its own. Furthermore, the granularity 
of the metadata has been decreased to K3 anonymity after combining all 
attributes. This was achieved by dropping attributes such as participant 
location, binning age and date obfuscation. This dataset is available at 
https://doi.org/10.5281/zenodo.10043978 (ref. 48).

Code availability
The code-base developed for this project can be found at this pub-
lic GitHub repository: https://github.com/alan-turing-institute/
Turing-RSS-Health-Data-Lab-Biomedical-Acoustic-Markers under 

https://doi.org/10.5281/zenodo.8130844 (ref. 49). Here, instructions 
are provided to replicate our experimental environment and run 
our experiments. We have provided a docker image to replicate our 
experimental set-up fully, which can be initialized with the following 
command: docker run-it–name-v:/workspace/–gpus=all–ipc=host 
harrycoppock/ciab:ciab_v4. Further details can be found on the 
GitHub repository49.
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Extended Data Fig. 1 | Bayesian knowledge graph describing the main features of the recruitment process. The nodes in the graph represent the states of an 
individual in the population; shaded nodes are observed and non-shaded are latent.
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Extended Data Fig. 2 | Predictive accuracy within Matched strata. Estimated 
ROC–AUC in each of 88 strata in the combined Matched and Longitudinal 
Matched test sets (these are the 88 largest strata in this combined test set, having 
at least 10 COVID+ and 10 COVID- participants). Upon controlling False Discovery 
Rate (FDR) at 5%, we observe significant differences in predictive scores between 
COVID- and COVID+ individuals in 28 strata (two-tailed Mann-Whitney U test; 
significance denoted by filled points), suggesting that the classifier has low 
but consistent predictive power across a large number of strata. Results are 
presented as estimated ROC–AUC with accompanying error bars denoting 

DeLong 95% confidence intervals (the sample size underlying each CI is given by 
‘# in stratum’ in the final row of the table beneath the plot). Of these CIs, 84 out of 
88 (95.4%) are overlapping with 0.62, consistent with a common value of ROC–
AUC=0.62 across all strata. Details of each stratum are shown in the table below 
the plot. The reference value of ROC–AUC=0.62, representing the estimated 
global (non-stratified) predictive ability of the SSAST classifier (see Table 1) is 
marked with a horizontal dashed line. The value ROC–AUC=0.5, representative of 
no predictive ability is marked by a solid horizontal line.
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Extended Data Fig. 3 | ROC–AUC SSAST performance when trained and 
evaluated on the COVID-19 sounds publicly available dataset18. Here, our 
SSAST model’s ROC–AUC exceed those of the CNN model of Han et al.18, but 
the difference in ROC–AUC between the methods is small and is compatible 
with random estimation error, as seen from the wide confidence intervals 

(attributable to the small test set of size 200): cough (ROC–AUC for SSAST 
0.68 [0.62-0.74] vs CNN 0.66 [0.60-0.71]), breath (0.64 [0.58-0.70] vs 0.62 
[0.56-0.68]), voice (0.64 [0.58-0.70] vs 0.62 [0.56-0.68]). A simple symptoms 
checker (RF) and a hybrid symptoms-audio are also evaluated for comparison, 
outperforming both our SSAST audio-only fit and Han et al.’s audio-only CNN.
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Extended Data Fig. 4 | Comparison of sensitivity, specificity, and utility 
across audio-based and symptoms-based classifiers, as applied in a 
simulated general populations. The percentage of COVID- individuals who 
are symptomatic in the general population varies between 10% and 30% across 
the three columns of panels (labelled top). (a)-(c) Comparison of ROC curves 
between the Audio, Symptoms, and Symptoms+Audio classifiers; curves show 
sensitivity as a function of specificity with error bars denoting 95% CIs for 
sensitivity, where CIs are calculated in pROC::ci.se and are based on a sample size 

of 2,000 stratified bootstrap replicates; panel legends show the curve colour 
for each classifier alongside ROC–AUC estimates and 95% DeLong CIs. (d)-(f) 
Comparison of maximum expected utility across classifiers. Four different 
utility functions are included, as detailed in the top-right legend (utility function 
parameters Rt, ε and δ are defined in Results; in this Figure, δ = 0.25). Curves  
are coloured to indicate Audio, Symptoms or Symptoms+Audio classifiers,  
as detailed in the top left legend.
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Extended Data Fig. 5 | Results of the Weak-Robust approach. The blue line 
represents the SVM model trained and evaluated on an increasing number 
of Principal Component Analysis (PCA) components of openSMILE vector 
representations of the audio signal for the Matched COVID-19 detection from 
audio task (‘weak-model-covid- matched’). Individuals correctly classified 
by the weak model in the Matched test set are hypothesized to har- bour 
confounding signal, and are removed to create the curated Matched test 
set. The red line shows SSAST performance on this curated Matched test set 
(‘ssast-covid-matched-curated-removal’). For comparison, we also randomly 
remove Matched test cases and these results are shown by the purple line 

(‘ssast-covid-matched- curated-removal’). The vertical green line corresponds 
to the calibration threshold, that is, the number of PCs for which the weak model 
achieves UAR of greater than 80% on the calibration task. The green shaded area 
corresponds to the drop in SSAST performance that we attribute to the removal 
of confounding in Matched test set cases. We note that the drop in performance 
below random classification is hypothesized to be due to only the ‘tricky’ cases 
remaining (for example, symptomatic COVID-). The 95% confidence intervals 
are calculated via the normal approximation method with the outcome of the 
experiment being the center line.
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Extended Data Fig. 6 | Symptomatic vs asymptomatic for other COVID-19 datasets when sufficient information is provided. Coswara48, COVID-19 Sounds18,  
Tos COVID-1917 and Virufy49.
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Extended Data Fig. 7 | Schematic detailing the three separate pipelines 
implemented to evaluate ABCS. openSMILE- SVM baseline, the Bayesian 
Neural Network (BNN) and the Self-Supervised Audio Spectrogram Transformer 

(SSAST). Both SSAST and BNN first convert the raw audio signal to mel 
spectrogram space whereas the openSMILE–SVM approach extracts a series of 
handcrafted audio features.

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00773-8

Extended Data Table 1 | Non-exhaustive record of COVID-19 respiratory audio datasets

Publicly available datasets and two highly cited private datasets are shown.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The online survey "Speak up and help beat coronavirus" was accessible via compatible internet connected devices with the ability to capture 
audio recordings, such as smartphones, tablets, laptops, and desktop computers.

Data analysis The accompanying open source repository details the custom code developed to perform the data analysis. No commercial products were 
used. Python 3.8 served as the main high level language. We have provided a docker image to fully replicate our experimental setup and it can 
be initialised with the following command: docker run -it --name <name_for_container> -v <location_of_git_repo>:/workspace/ --gpus=all --
ipc=host harrycoppock/ciab:ciab_v4 Further details can be found on the GitHub repository which can be found here: https://github.com/alan-
turing-institute/Turing-RSS-Health-Data-Lab-Biomedical-Acoustic-Markers

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

To obtain access to the full dataset, named `The UK COVID-19 Vocal Audio Dataset', interested parties may submit their requests to UKHSA at 
DataAccess@ukhsa.gov.uk. Access is subject to approval and completion of a data sharing contract. For information on how one can apply for UKHSA data, please 
visit: https://www.gov.uk/government/publications/accessing-ukhsa-protected-data/accessing-ukhsa-protected-data. Audio data are provided in .wav format, with 
four files (one for each recording) for each of the 72,999 participants (unless missing). Metadata are provided in three .csv files, linked by a participant identifier 
code. 
 
Although the dataset is fully anonymised, and therefore does not contain any personal data, it has been deposited as safeguarded data in line with the privacy 
notice provided to participants. Safeguarded data can be used for non-commercial, commercial and teaching projects. 
 
To enable wider accessibility, in addition to the original dataset, we have created another dataset which has been made open access under a Open Government 
Licence v3.0. This subset of the `The UK COVID-19 Vocal Audio Dataset' has been curated to meet the SB1523: Anonymisation Standard for Publishing Health and 
Social Care Data standards. To achieve this, two main changes have been made. The `sentence' modality has been removed; this was non-negotiable from a data 
privacy perspective as it was classified as personally identifiable information on its own. Additionally, the granularity of the metadata has been decreased to K3 
anonymity after combining all attributes. This was achieved by dropping attributes such as participant location, binning age, and date obfuscation. This dataset is 
available at https://zenodo.org/records/10043978, doi:10.5281/zenodo.10043978.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We use the term "gender" throughout. Gender was determined based on self reporting, and was recognised as a measured 
confounder due to its potential association with both recruitment and Covid status. To control for recruitment bias, we 
performed analyses matched on gender and on other measured confounders, such as symptoms and age. Source data, once 
available, will include disaggregated gender data. In our pre-QC dataset, 59.64% of participants were female (43,537 
participants). Participants accepted a privacy statement outlining how their survey and test data would be linked, how their 
data would be used for research, and made available for re-use by researchers. 

Population characteristics Please see the "Behavioural & social sciences study design" section below.

Recruitment Participants were recruited in parallel via two SARS-CoV-2 infection testing channels: 1) a community prevalence survey Real-
time Assessment of Community Transmission-1 (REACT) and 2) a government testing service NHS Test and Trace (T&T). In 
each channel, participants were invited to take part in the study after they underwent testing for SARS-CoV-2. Survey 
responses and audio recordings were linked to their test result. Inclusion criteria in each recruitment channel were: being 18 
years of age or older and having a COVID-19 test barcode number. In the REACT channel, participants were randomly 
selected from National Health Service England records (which include almost the entire population). During the study period, 
individuals were advised to seek a PCR test through the T&T channel (i) if they were experiencing symptoms; (ii) were 
identified as a close contact of a Covid case; or (iii) were taking a confirmatory PCR test following a positive lateral flow device 
(LFD) test. The main recruitment biases affecting our study arise in the T&T channel, primarily from symptoms-based 
recruitment; also various age/gender combinations may be more or less likely to self-select, and may also have systematically 
different probabilities of being Covid positive. Our paper focuses on careful treatment of recruitment bias, and uses matching 
analysis to control for these effects.

Ethics oversight This study has been approved by The National Statistician’s Data Ethics Advisory Committee (reference NSDEC(21)01) and the 
Cambridge South NHS Research Ethics Committee (reference 21/EE/0036) and Nottingham NHS Research Ethics Committee 
(reference 21/EM/0067).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Mixed-methods observational study. Participants were recruited on an opt-in basis through two SARS-CoV-2 swab testing programs 
(REACT and Test-and-Trace) in England between March 2021 and March 2022. Participants were directed to the "Speak up and help 
beat coronavirus" web page, where they were prompted to record four audio clips (quantitative data), as well as to fill in a symptoms 
survey (qualitative data). Further existing metadata, such as age (quantitative), and gender, ethnicity, and location (all qualitative), 
were transferred from linked records in REACT and Test-and-Trace. The study design is described in detail in Methods.

Research sample The UK Health Security Agency recruited participants voluntarily through the NHS Test and Trace (T&T) programme and the REACT 
survey in England from March 2021 to March 2022. The median age of participants was 53 years old with 59.64% of participants 
reporting female gender (43,537 participants), both larger than the UK-wide averages over the corresponding period: UK-wide 2021 
median age 40.7 years old, with females comprising 51.0% of the population. The sample is strongly enriched with individuals 
exhibiting self-identifiable symptoms, as this was one of the criteria for enrolment via the T&T recruitment channel. The rationale for 
this particular research sample was that participants would have an accompanying PCR test result linked to their self-reported survey 
data and audio samples.

Sampling strategy We recruited from REACT and T&T testing channels over a time window, with the rate of accrual of participants determined by self-
selection. Recruitment began in March 2021 and ended in March 2022. The eventual overall sample size was 72,999 with matched 
training and combined test set size of 5,198 and 6,010 respectively. The sampling method used was convenience sampling. Collecting 
a large participant number was required to ensure that, on matching, sufficient data remained. We adjudged this sample size to be 
approximately around a minimum of what would be required to train a state-of-the-art audio classification model on a moderately 
complex task. 

Data collection The online survey ‘Speak up and help beat coronavirus’ was accessible via compatible internet connected devices with the ability to 
capture audio recordings, such as smartphones, tablets, laptops, and desktop computers. The participant answered survey questions 
and provided audio samples in an environment of their choosing, in which third parties and ambient noise could be present. The 
researchers were not present during data collection. For data analysis the researchers were not blinded to the data (which included 
participant meta data, SARS-CoV-2 test result, and audio files);  nor were  researchers blinded to the study hypothesis. 

Timing Data were collected between 2021-03-01 and 2022-03-07.

Data exclusions A total of 5,157 (out of 72,999) were excluded from the analyses because each of which had one or more of the following 
characteristics (a) missing response data (missing a PCR test); (b) missing predictor data (any missing audio files or missing 
demographic/symptoms metadata); (c) audio submission delays exceeding 10 days post test result; (d) self-inconsistent symptoms 
data; (e) PCR testing lab under investigation for unreliable results; (f) participant age under 18; (g) sensitive personal information 
detected in audio signal. 

Non-participation Participants were self-selected and so the initialization rate of the survey was 100% participants. Of participants initiating the survey, 
(68%, 96%) completed the questionnaire and (63%, 85%) completed the questionnaire and the audio recording in (T&T, REACT) 
respectively. Having completed the questionnaire there was one participant who dropped out and requested that their records be 
removed.

Randomization Participants were not allocated into experimental groups. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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