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Abstract—With a growing number of areas leveraging interval-
valued data—including in the context of modelling human
uncertainty (e.g., in cybersecurity), the capacity to accurately
and systematically compare intervals for reasoning and compu-
tation is increasingly important. In practice, well established set-
theoretic similarity measures such as the Jaccard and Sørensen-
Dice measures are commonly used, while axiomatically a wide
breadth of possible measures have been theoretically explored.
This paper identifies, articulates, and addresses an inherent
and so far not discussed limitation of popular measures—
their tendency to be subject to aliasing—where they return
the same similarity value for very different sets of intervals.
The latter risks counter-intuitive results and poor automated
reasoning in real-world applications dependent on systematically
comparing interval-valued system variables or states. Given
this, we introduce new axioms establishing desirable properties
for robust similarity measures, followed by putting forward a
novel set-theoretic similarity measure based on the concept of
bidirectional subsethood which satisfies both traditional and new
axioms. The proposed measure is designed to be sensitive to the
variation in the size of intervals, thus avoiding aliasing. The paper
provides a detailed theoretical exploration of the new proposed
measure, and systematically demonstrates its behaviour using an
extensive set of synthetic and real-world data. Specifically, the
measure is shown to return robust outputs that follow intuition—
essential for real world applications. For example, we show that
it is bounded above and below by the Jaccard and Sørensen-
Dice similarity measures (when the minimum t-norm is used).
Finally, we show that a dissimilarity or distance measure, which
satisfies the properties of a metric, can easily be derived from
the proposed similarity measure.

Index Terms—similarity measure, distance measure, subset-
hood, interval-valued data

I. INTRODUCTION

S IMILARITY measures (SMs) are widely used in many
areas including decision making, data aggregation, ap-

proximate reasoning, and machine learning. Various SMs have
come into use to capture likeness among objects, though
each of the measures has its own strengths and weaknesses.
Similarity is commonly represented by a non-negative real
number, often between 0, meaning objects are not similar
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Fig. 1. Two different pairs of intervals showing aliasing with the Jaccard and
Dice similarity measures

at all, and 1, meaning they are identical. SMs are generally
symmetrical, though, for certain objects, similarity can be
better modelled by unidirectional or asymmetric functions [1].
In addition, similarity measures can be transformed to capture
distance using various functions [2], showing dissimilarity
among objects (e.g., color images as in [3]).

Interval-valued data have recently gained much interest for
the modelling of uncertainty and vagueness, particularly in the
modelling of survey data [4], the representation of symbolic
data [5], and the capture of natural language expressions [6],
as they offer simple and efficient representation of uncertain,
vague, and imprecise information. In such areas, intervals are
often compared through various SMs. Among them, the Jac-
card [7] and the Sørensen-Dice [8] SMs—henceforth referred
to as Dice SM for convenience—are the most commonly used
set-theoretic SMs in practice. These two measures provide
symmetrical similarity, growing slowly from a minimum (0)
to a maximum value (1) in response to an increasing degree
of overlap between two closed intervals.

Nevertheless, both of these, and indeed most set-theoretic
SMs frequently suffer from a so-far not discussed pitfall,
best described as aliasing. Aliasing occurs where the same
similarity value is generated for very different interval pairs.
Figure 1 shows an example of such interval pairs for which
the Jaccard and Dice SMs give the same similarity of 0.33 and
0.50 respectively. While SMs returning such identical results
for different sets of intervals is at least counter-intuitive, at
worst it leads to incorrect inference in real-world applications.
The reason why these measures exhibit aliasing is because
their sensitivity in respect to changes in the relative size of the
intervals is limited, that is, they are largely driven by the size
of intersection and union. However, it is reasonable to expect
that similarity would vary both in respect to the overlap and
to the mutual similarity-in-size of the intervals.
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TABLE I
ACRONYMS AND NOTATION

SM Similarity Measure
DM Distance Measure
SJ Jaccard SM
SD Dice SM
ST Tversky’s ratio model [1]
Sh Subsethood
SSh

Bidirectional subsethood based SM
DSh

Bidirectional subsethood based DM
X Universe of discourse
a Crisp set
a Interval {a ⊆ R : a = [a−, a+], a− < a+}
A Fuzzy set {(x, µA (x)) |x ∈ X and µA (x) ∈ [0, 1]}

We initially put forward the underpinnings of a new set-
theoretic SM in [9] for pairs of (closed) intervals which con-
sidered their reciprocal overlapping ratios to capture similarity
with a high degree of sensitivity.

This paper builds on our initial work [9], while using the
term subsethood rather than overlapping ratio as they are
equivalent in practice. Moreover, subsethood is commonly
used and well understood in the literature. The major con-
tributions of this paper are as follows–
• Aliasing is identified and articulated as a risk and potential

shortcoming affecting many popular SMs.1

• Going beyond the common axioms for being a SM, five
new axioms are introduced along with their justifications to
expand the axiomatic definition towards robust SMs. Further,
an axiomatic definition of subsethood for intervals is also
provided (in Appendix).
• A new set-theoretic SM is proposed which is designed

to be sensitive to the variation in the size of intervals, thus
avoiding aliasing.
• The new SM is explored theoretically, showing its con-

formity with the expanded axiomatic definition, that is, both
common and new axioms of a robust SM.
• A new distance measure (DM) is derived from the new

SM for estimating distance or dissimilarity between intervals,
and it is proved to be a metric.
• The utility of the new SM is demonstrated in the context

of both synthetic and real world cases. Using both synthetic
and real-world interval-valued data, we demonstrate its intu-
itive behaviour in line with popular SMs – specifically being
bounded above and below by Jaccard and Dice – highlighting
how the new SM follows expected and intuitive behaviour,
while still addressing pitfalls of existing SMs (e.g., by avoiding
aliasing).

The paper is structured as follows. Section II briefly re-
views SMs, including the Jaccard and Dice, as well as DMs.
Section III discusses an axiomatic definition towards robust
SMs for (closed) intervals, followed by proposing a new set-
theoretic SM which supports all axioms and then derives a new
distance metric from the new SM. In Section IV, we explore

1Beyond both Jaccard and Dice measures, other set-theoretic SMs such as
Szymkiewicz-Simpson coefficient [10], Otsuka coefficient [11], Sokal-Sneath
Coefficient [12], Simple-Matching coefficient [13] are also subject to aliasing
for intervals.

the behaviour of the new SM in respect to the Jaccard and Dice
measures, using both synthetic and real world interval-valued
datasets. Finally, Section V concludes the paper and briefly
discusses future work. Table I presents a list of acronyms and
notation used in this paper to assist the reader.

II. BACKGROUND

We review SMs generally, including their most common
properties arising from their axiomatic definition, followed by
a detailed review of the Jaccard and Dice measures as the
most widely used SMs for intervals in the literature. Next, we
briefly discuss DMs and the properties required for the latter
being a metric, followed by a review of subsethood which is
employed later in the paper to derive a new SM. We focus
throughout on measures applied to intervals in this paper as
the latter provide the foundation for the later extension to SMs
for more complex data types, including fuzzy sets.

A. Similarity Measures

A SM S (a, b) → [0, 1] is a real-valued function that
determines how two objects, a and b, are alike. Generally,
the similarity between two objects is bounded by 0 and 1,
where 0 means that both objects are completely different and
1 means that they are identical. The four common properties
of a SM for sets a, b, and c are as follows [14]:

[A1] Boundedness: 0 ≤ S (a, b) ≤ 1;
[A2] Symmetry: S (a, b) = S (b, a);
[A3] Reflexivity: S (a, b) = 1 ⇐⇒ a = b;
[A4] Transitivity: If a ⊆ b ⊆ c then S (a, b) ≥ S (a, c).

The above properties are mirrored in (and in many cases arise
from) the axiomatic definitions associated with a wide variety
of established SMs. Going beyond these standard and generic
properties, we now provide a more detailed review of both
the Jaccard and Dice SMs as the most common SMs used in
practice.

1) Jaccard Similarity Measure: The Jaccard SM [7] is one
of the most widely used set-theoretic SMs, and it satisfies all of
the above properties. Generally, the Jaccard similarity of two
crisp sets a and b is defined as the ratio of the cardinality2 of
their intersection and the cardinality of their union,

SJ (a, b) =
|a ∩ b|
|a ∪ b|

. (1)

Using the crisp set difference operation [15], Eq. (1) can be
written as

SJ (a, b) =
|a ∩ b|

|a ∩ b|+ |a\b|+ |b\a|
, (2)

where a\b is the set of items that are in a but not in b and
b\a is the set of items that are in b but not in a. Equation (2)
can also be derived from Tversky’s parameterized ratio model
of similarity [1]

ST (a, b) =
f(a ∩ b)

f(a ∩ b) + αf(a\b) + βf(b\a)
,

2The cardinality of a set a is defined as the number of elements within a
[15]. In this paper, we are interchangeably using the terms ‘cardinality’ and
‘size’ of a set. For intervals, we also use ‘width’.
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by setting the non-negative factors α and β to 1 and letting f
be a cardinality function. Note that this alternative form of the
Jaccard SM at Eq. (2) is relevant for showing its relationship
with the Dice and other SMs, detailed in Section III. Beyond
crisp sets, the Jaccard SM is used to estimate the similarity
for intervals or sets of intervals such as employed for example
in data fusion [16], [17] and that of fuzzy sets [18].

A closed interval a is a set of real numbers characterized
by two endpoints a− and a+ with a− < a+.3 The interval
a is often represented as [a−, a+] and its cardinality, size or
width is |a| = |a+ − a−|. For comparing the intervals a and
b, the Jaccard SM is expressed as

SJ
(
a, b
)

=

∣∣a ∩ b∣∣∣∣a ∪ b∣∣ , (3)

where |a| 6= 0 and
∣∣b∣∣ 6= 0.

∣∣a ∩ b∣∣ is the size of the intersection
between a and b and

∣∣a ∪ b∣∣ is the size of the interval
segment(s) covering both a and b. Hence, SJ

(
a, b
)

= 1 when
a and b are completely overlapping and SJ

(
a, b
)

= 0 when
they are not overlapping at all. Similar to Eq. (2), we can
rewrite Eq. (3) as

SJ
(
a, b
)

=

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣a\b∣∣+

∣∣b\a∣∣ , (4)

where
∣∣a\b∣∣ is the size of the interval segment of a that is

not overlapping with b and
∣∣b\a∣∣ is the size of the interval

segment of b that is not overlapping with a.
A fuzzy set [21] is defined as a set where the set’s elements

have membership ranging between 0 and 1. Formally, a type-1
fuzzy set A on a discrete and finite universe of discourse X
is written as [22]

A = {(x, µA (x)) |x ∈ X}, (5)

where µA (x) ∈ [0, 1] is the membership grade of the element
x in A. For two type-1 fuzzy sets A and B on the discrete
and finite universe X , the Jaccard SM can be written as [23]

SJ (A,B) =

N∑
i=1

min (µA (xi) , µB (xi))

N∑
i=1

max (µA (xi) , µB (xi))

, (6)

where µA(xi) and µB(xi) are the membership grades of xi in
A and B respectively. Equation (6) yields a value of 1 when
the fuzzy sets are identical and 0 when they are disjoint. It
is noted that the Jaccard SM has been further extended for
interval-valued fuzzy sets [24] [25] and type-2 fuzzy sets [26]
[27]; though, this is not discussed further here.

2) Dice Similarity Measure: The Dice SM [8] is closely
related to the Jaccard SM. To assess the similarity between two
sets, it considers the ratio of the cardinality of their intersection
and the average of their cardinality. Like the Jaccard similarity,
it produces outputs in [0, 1]. Specifically, for two crisp sets a
and b, the Dice similarity is expressed as

SD (a, b) =
|a ∩ b|

1
2 (|a|+ |b|)

, (7)

3Note that a is also known as a continuous [19] or convex [20] interval.

where |a| is the cardinality of the set a. We can rewrite Eq. (7)
by applying the crisp set difference operation [15]

SD (a, b) =
|a ∩ b|

|a ∩ b|+ 1
2 (|a\b|+ |b\a|)

. (8)

Note that Eq. (8) can also be obtained from Tversky’s ratio
model [1] when both non-negative factors α and β are 0.5.
The alternative expressions of Jaccard at Eq. (2) and Dice
at Eq. (8) show clearly that the averaging operation in the
denominator of Eq. (8) results in the Dice similarity always
being equal to—when sets are identical—or larger than the
Jaccard similarity. We expand on this in Section III.

In [16], [17], the Dice similarity is used along with the
Jaccard similarity for intervals. By following Eq. (4), the Dice
similarity for two intervals a and b can be expressed as

SD
(
a, b
)

=

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+ 1
2 (
∣∣a\b∣∣+

∣∣b\a∣∣) , (9)

where |a| 6= 0 and
∣∣b∣∣ 6= 0. While less frequently used for

fuzzy sets than Jaccard, the Dice SM is, for example, used
in [28], [29] for trapezoidal fuzzy numbers in the context of
solving multi-criteria decision-making problems.

B. Distance Measures

A DM D (a, b) → R+ is a real-valued function that
determines how far apart two objects a and b are. A DM is a
metric when it satisfies the following properties for sets a, b,
and c [30]:

[B1] Non-negativity: D (a, b) ≥ 0;
[B2] Symmetry: D (a, b) = D (b, a);
[B3] Identity: D (a, b) = 0 ⇐⇒ a = b;
[B4] Triangle Inequality: D (a, c) ≤ D (a, b) +D (b, c).
The Jaccard DM is complementary to the Jaccard SM and

is a distance metric [31]. It is simply obtained by DJ (a, b) =
1 − SJ (a, b). The Dice DM is also obtained by subtracting
the Dice SM from 1, i.e., DD (a, b) = 1−SD (a, b). However,
it is not a distance metric, but is often referred to as a semi-
metric as it satisfies all of the preceding properties except
the triangle inequality [31]. Note that a DM is often within
the range [0, 1]—0 for identical objects and 1 for dissimilar
objects—when it is derived from a similarity measure bounded
by [0, 1].

C. Subsethood

Subsethood between two crisp sets a and b is a relation that
indicates the degree to which a is a subset of b [24]. It is
defined as

Sh (a, b) =
|a ∩ b|
|a|

, (10)

where |a ∩ b| is the cardinality of the intersection of sets a
and b, and |a| is the cardinality of set a.4 From Eq. (10), it
is clear that subsethood is smaller when more elements of set
a are not part of set b and is larger when more elements of

4Equation (10) can also be derived from Tversky’s ratio model [1] by setting
α = 1 and β = 0.
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set a are part of set b. In general, Eq. (10) is bounded on the
interval [0, 1], where 1 means that a is a subset of b (a ⊆ b)
and 0 means a is not a subset of b (a 6⊂ b)—they are disjoint.

In a similar manner, the degree of subsethood of two closed
intervals a and b can be defined as

Sh
(
a, b
)

=

∣∣a ∩ b∣∣∣∣a∣∣ , (11)

where
∣∣a ∩ b∣∣ is the size of the intersection between a and b

and |a| 6= 0.5

A binary notion of subsethood for fuzzy sets is first defined
in [21] where for two fuzzy sets A and B on the universe
X , A is a subset of B (A ⊆ B) if and only if µA(x) ≤
µB ,∀x ∈ X . This definition is inherently crisp—A is or is not
a subset of B—which is incoherent in respect to the fuzzy set
theory. Hence, many alternatives for fuzzy subsethood have
been introduced. Using the set-theoretic approach, the degree
to which A is a subset of B on a finite X is defined as [33]

Sh (A,B) =


1, A = ∅
n∑

i=1
min(µA(xi),µB(xi))

n∑
i=1

µA(xi)
, A 6= ∅,

(12)

where
∑n
i=1 min (µA (xi) , µB (xi)) is a measure of the car-

dinality of the intersection of membership functions of A
and B, and

∑n
i=1 µA (xi) is a measure of the cardinality of

A. Contrarily, using the fuzzy implication operator I , it is
expressed as Sh(A,B) = infx∈X I (µA(x), µB(x)) where
I : [0, 1] × [0, 1] → [0, 1] is such that I (0, 0) = I (0, 1) =
I (1, 1) = 1 and I (1, 0) = 0 [34].

Further, fuzzy subsethood is characterized by different ax-
iomatizations. Initially, four axioms are proposed to define it
as a binary fuzzy relation in [35]. Subsequently, [36] offers
another set of axioms for fuzzy subsethood. We note that these
axioms (except the first two axioms) are equivalent to those in
[35]. However, in [37] it is argued that some fuzzy subsethoods
do not maintain all axioms and new ones are proposed. For
fuzzy sets A,B,C ∈ X , these axioms are –

[C1] Sh(A,B) = 1 if and only if A ⊆ B;
[C2] If P ≤ A, then Sh(A,Ac) = 0 if and only if A = X;
[C3] if A ⊆ B ⊆ C, then Sh(C,A) ≤ Sh(B,A) and if

A ⊆ B, then Sh(C,A) ≤ Sh(C,B);
where P is the fuzzy set with µP (x) = 1

2 and Ac is
the fuzzy set with µAc(x) = 1 − µA(x). Later, axiom
[C3] is modified as “if A ⊆ B ⊆ C, then Sh(C,A) ≤
Sh(B,A) and Sh(C,A) ≤ Sh(C,B)” in [38] for defining
new fuzzy subsethoods and their application to cluster va-
lidity. Besides, axioms [C2] and [C3] are altered in [39]
as “Sh(A,Ac) = 0 if and only if A = X” and “if A ⊆
B, then Sh(A,C) ≥ Sh(B,C) and Sh(C,A) ≤ Sh(C,B)”
respectively to introduce a new fuzzy DI-subsethood by ag-
gregating implication functions.

In many cases, fuzzy subsethood axioms are extended for
interval-valued, intuitionistic, and type-2 fuzzy sets. Specif-
ically, [40], [41], and [42] present key axioms for interval-
valued fuzzy set subsethood. Further, in [43] an interval-valued

5It is noted that subsethood is also known as inclusion [32] and overlapping
ratio [9] as it captures the overlapping ratio between intervals.

fuzzy strong S-subsethood measure is defined by aggregating
implication functions. The extension of fuzzy subsethood for
intuitionistic [44] and type-2 [45] fuzzy sets are not discussed.

Remark 1. In this paper, we build on the existing literature
on fuzzy subsethood, particularly its key axioms to develop
main properties of subsethood for intervals, see Appendix.

D. Interaction of Subsethood and Similarity Measures for
Fuzzy Sets

The relationship between subsethood and SM has been
explored for fuzzy sets. Particularly, [46] and [47] establish
interchangeability between fuzzy subsethood and fuzzy set
SM based on their axiomatic definitions. [41] also studies
similar relationship for interval-valued fuzzy sets. Further, a
set of axioms are proposed in [48] to define the properties of
a fuzzy set SM which is extensively used in earlier studies.
Further, three different SMs for fuzzy values are proposed and
compared in [49] where key properties are coincided with the
axioms defined in [48]. Besides, [50] and [51] also consider
the same set of axioms to design fuzzy set SMs for comparing
images with a restricted equivalence function [52].

Remark 2. A variety of works have focused on definitions
and extensions of subsethood across the fuzzy set literature,
including for type-1 [33], interval-valued [40], and type-2 [45]
fuzzy sets. In this paper, we focus on SMs for intervals rather
than fuzzy sets as the latter provide the direct underpinnings
for straightforward subsequent extension (via the alpha-cut
decomposition representation) to fuzzy sets.

In the next section, we first introduce an expanded axiomatic
definition for robust SMs, followed by proposing a new SM
for closed intervals which fulfills said definition and provides
robust comparison of intervals.

III. TOWARDS ROBUST SET-THEORETIC SIMILARITY
MEASURES

As outlined in Section I, aliasing poses a so far not
discussed challenge to the robust comparison of intervals.
In order to address this and move towards robust SMs, we
first put forward an axiomatic definition for robust SMs for
(closed) intervals. Then, building on this, in Section III.B, we
define a novel set-theoretic SM for intervals [9] based on their
bidirectional subsethood, showing that it follows the axiomatic
definition put forward. From this SM, we derive a new DM for
intervals along with a proof showing the measure is a metric.
It is worth mentioning that we also define the properties of
the subsethood for intervals in respect to the wider literature,
for conciseness this is provided in the Appendix.

A. An Expanded Axiomatic Definition for Robust Similarity
Measures on Closed Intervals

A real-valued function S : a × b → [0, 1] is defined as
a similarity measure for (closed) intervals if it maintains the
following axioms:

[P1] 0 ≤ S(a, b) ≤ 1 (boundedness);
[P2] S(a, b) = S(b, a) (symmetry);
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[P3] S(a, b) = 1 if and only if a = b (reflexivity);
[P4] If a ⊆ b ⊆ c, then S(a, b) ≥ S(a, c) and S(b, c) ≥

S(b, a) (transitivity);
[P5] S(a, b) = 0 if and only if |a ∩ b| = 0 (disjointness);
[P6] For two interval pairs {a1, b1} and {a2, b2} where∣∣a1 ∩ b1

∣∣ > 0,
∣∣a2 ∩ b2

∣∣ > 0,
∣∣a1 ∪ b1

∣∣ =
∣∣a2 ∪ b2

∣∣,
and

∣∣a1 ∩ b1
∣∣ =

∣∣a2 ∩ b2
∣∣, S (a1, b1

)
6= S

(
a2, b2

)
if
∣∣a1| 6= |a2

∣∣ and
∣∣a1| 6= |b2

∣∣, and
∣∣b1| 6= |a2

∣∣ and∣∣b1| 6= |b2∣∣ (non-aliasing);
[P7] S(a, b) < 1 if a ⊂ b (subsethood-limit);
[P8] For two interval pairs {a1, b1} and {a2, b2} with∣∣a1 ∩ b1

∣∣ > 0 and
∣∣a2 ∩ b2

∣∣ > 0, S
(
a1, b1

)
=

S
(
a2, b2

)
if a2 = n × a1 = [n × a−1 , n × a+

1 ] and
b2 = n × b1 = [n × b−1 , n × b+1 ] where n > 0 is a
scaling factor (scaling-invariance);

[P9] For two interval pairs {a1, b1} and {a2, b2} where∣∣a1

∣∣ =
∣∣b1∣∣ =

∣∣a2

∣∣ =
∣∣b2∣∣, S (a1, b1

)
< S

(
a2, b2

)
if
∣∣a1 ∩ b1

∣∣ < ∣∣a2 ∩ b2
∣∣ (increased-overlap).

Justification of the axioms: The axioms [P1]-[P4] are de-
rived following the common axioms [A1]-[A4] stated in
Section II.A. Axiom [P5] is put forward for disjoint intervals
where their similarity should be 0 as they are not overlapping.
The aliasing example discussed in Section I calls for the axiom
[P6]. Axiom [P7] is presented for intervals when one interval
is a proper subset of the other. Here, the similarity should
be less than 1 as both intervals are not equal. Axiom [P8] is
introduced for intervals where they are scaled up by a factor.
In this case, the ratio of overlapping and non-overlapping
segments stays the same while scaling; thus, the similarity
between intervals should remain constant. Lastly, axiom [P9]
suggests higher similarity for equal-sized intervals when their
overlap increases.

B. Similarity Measure based on Bidirectional Subsethood

As noted in Section I, the motivation behind the new
set-theoretic SM is to establish a SM which is sensitive
to potentially (very) different cardinalities of the sets being
compared, in particular when one is a subset of the other.
Thus, the proposed SM takes into consideration the reciprocal
subsethood (i.e., the overlapping ratio) of both sets/intervals
being compared, in order to estimate their overall similarity.

Definition 1. The bidirectional subsethood based SM SSh
for

a pair of intervals, a and b, is the t-norm of their reciprocal
subsethoods Sh(a, b) and Sh(b, a), i.e.,

SSh
(a, b) = F(Sh(a, b), Sh(b, a)), (13)

where F is a t-norm.

In this paper, we use F to refer to either minimum t-norm
or product t-norm, while using ‘∧’ and ‘Π’ to indicate the
minimum and product t-norms respectively. In future, we will
explore other t-norms beyond minimum and product.

Theorem 1. Consider a minimum (∧) or product (Π) t-norm
F and the subsethood for intervals Sh. Then, SSh

(a, b) =
F(Sh(a, b), Sh(b, a)) is a SM for intervals a and b satisfying
all axioms [P1]–[P9].

Proof: The proofs are given per axioms in Section III.C.

Similar to Eqs. (4) and (9), we can rewrite Eq. (13) as

SSh

(
a, b
)

= F

( ∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣a\b∣∣ ,

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣b\a∣∣

)
, (14)

where
∣∣a\b∣∣ is the size of non-overlapping segment(s) of a as

to b and vice versa for
∣∣b\a∣∣. Also, |a| 6= 0 and

∣∣b∣∣ 6= 0.

C. Properties of the Proposed Similarity Measure

We now explore the properties of the proposed bidirectional
subsethood based SM SSh

(
a, b
)
.6

Theorem 2 (Boundedness). 0 ≤ SSh

(
a, b
)
≤ 1.

Proof: All t-norms are bounded by 0 and 1 [53]. This
is also true for the subsethood Sh (see Appendix). This
eventually means that SSh

(
a, b
)

always within [0, 1], thus
addressing the axiom [P1].

Theorem 3 (Symmetry). SSh

(
a, b
)

= SSh

(
b, a
)
.

Proof: Any t-norm (F) is symmetric [53]. Therefore,
SSh

(
a, b
)

is also symmetric. The SSh
SM, thus, satisfies the

axiom [P2].

Theorem 4 (Reflexivity). SSh

(
a, b
)

= 1 ⇐⇒ a = b.

Proof: If a = b, then Sh
(
a, b
)

= Sh
(
b, a
)

= 1. From
the boundary conditions of the t-norm (F) [53], F (1, 1) = 1,
thus making SSh

(
a, b
)

= 1. Alternatively, SSh

(
a, b
)

= 1
means that both Sh

(
a, b
)

and Sh
(
b, a
)

are equal to 1. This
only happens when a and b are identical intervals. Here, the
SSh

SM maintains the axiom [P3].

Theorem 5 (Transitivity). If a ⊆ b ⊆ c, then SSh

(
a, b
)
≥

SSh

(
a, c
)

and SSh

(
b, c
)
≥ SSh

(
a, c
)
.

Proof: if a ⊆ b ⊆ c, then

SSh

(
a, b
)
= F

(∣∣a ∩ b
∣∣∣∣a∣∣ ,

∣∣a ∩ b
∣∣∣∣b∣∣
)

= F

(∣∣a∣∣∣∣a∣∣ ,
∣∣a∣∣∣∣b∣∣
)

=

∣∣a∣∣∣∣b∣∣ ,
SSh

(
a, c
)
= F

(∣∣a ∩ c
∣∣∣∣a∣∣ ,

∣∣a ∩ c
∣∣∣∣c∣∣
)

= F

(∣∣a∣∣∣∣a∣∣ ,
∣∣a∣∣∣∣c∣∣
)

=

∣∣a∣∣∣∣c∣∣ .
As b ⊆ c, it follows that

∣∣b∣∣ ≤ ∣∣c∣∣. Therefore, |a||b| ≥
|a|
|c| and

hence, SSh

(
a, b
)
≥ SSh

(
a, c
)
. Again,

SSh

(
b, c
)
= F

(∣∣b ∩ c
∣∣∣∣b∣∣ ,

∣∣b ∩ c
∣∣∣∣c∣∣
)

= F

(∣∣b∣∣∣∣b∣∣ ,
∣∣b∣∣∣∣c∣∣
)

=

∣∣b∣∣∣∣c∣∣ .
As a ⊆ b, it follows that

∣∣b∣∣ ≥ ∣∣a∣∣. Hence, |b||c| ≥
|a|
|c| , implying

that SSh

(
b, c
)
≥ SSh

(
a, c
)
. In this case, the new SM satisfies

the axiom [P4].

Theorem 6 (Disjointness). SSh

(
a, b
)

= 0, if and only if a
and b are disjoint.

6Note that all properties discussed in this paper are maintained by the
proposed SSh

SM with both minimum (∧) and product (Π) t-norms, unless
otherwise specified.
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Proof: If a and b are disjoint, then
∣∣a ∩ b∣∣ = 0. Hence,

Sh
(
a, b
)

= 0 and Sh
(
b, a
)

= 0, implying that SSh

(
a, b
)

=
F(0, 0) = 0. Again, SSh

(
a, b
)

= 0 only when both Sh
(
a, b
)

and Sh
(
b, a
)

are equal to 0. This only happens when a and
b are not overlapping. Here, the proof of this theorem shows
that the new SM follows the axiom [P5].

Theorem 7 (Non-aliasing). For two interval pairs {a1, b1}
and {a2, b2} where

∣∣a1 ∩ b1
∣∣ > 0,

∣∣a2 ∩ b2
∣∣ > 0,

∣∣a1 ∪ b1
∣∣ =∣∣a2 ∪ b2

∣∣, and
∣∣a1 ∩ b1

∣∣ =
∣∣a2 ∩ b2

∣∣, SSh

(
a1, b1

)
6=

SSh

(
a2, b2

)
if
∣∣a1

∣∣ 6= ∣∣a2

∣∣ and
∣∣a1| 6= |b2

∣∣, and
∣∣b1| 6= |a2

∣∣
and

∣∣b1| 6= |b2∣∣.
Proof: For the pair {a1, b1}, Sh

(
a1, b1

)
=
|a1∩b1|
|a1| and

Sh
(
b1, a1

)
=
|a1∩b1|
|b1| . Thus,

SSh

(
a1, b1

)
= F

(∣∣a1 ∩ b1
∣∣∣∣a1

∣∣ ,

∣∣a1 ∩ b1
∣∣∣∣b1∣∣
)
.

Again, for the pair {a2, b2}, Sh
(
a2, b2

)
=
|a2∩b2|
|a2| and

Sh
(
b2, a2

)
=
|a2∩b2|
|b2| . Thus,

SSh

(
a2, b2

)
= F

(∣∣a2 ∩ b2
∣∣∣∣a2

∣∣ ,

∣∣a2 ∩ b2
∣∣∣∣b2∣∣
)
.

As
∣∣a1 ∩ b1

∣∣ =
∣∣a2 ∩ b2

∣∣, therefore,

SSh

(
a2, b2

)
≡F

(∣∣a1 ∩ b1
∣∣∣∣a2

∣∣ ,

∣∣a1 ∩ b1
∣∣∣∣b2∣∣
)
.

Given that
∣∣a1

∣∣ 6= ∣∣a2

∣∣ and
∣∣a1

∣∣ 6= ∣∣b2∣∣, it implies that∣∣a1 ∩ b1
∣∣∣∣a1

∣∣ 6=
∣∣a1 ∩ b1

∣∣∣∣a2

∣∣ and

∣∣a1 ∩ b1
∣∣∣∣a1

∣∣ 6=
∣∣a1 ∩ b1

∣∣∣∣b2∣∣ .

Similarly,
∣∣b1∣∣ 6= ∣∣a2

∣∣ and
∣∣b1| 6= |b2∣∣ meaning that∣∣a1 ∩ b1

∣∣∣∣b1∣∣ 6=
∣∣a1 ∩ b1

∣∣∣∣a2

∣∣ and

∣∣a1 ∩ b1
∣∣∣∣b1∣∣ 6=

∣∣a1 ∩ b1
∣∣∣∣b2∣∣ .

Therefore,

F

(∣∣a1 ∩ b1
∣∣∣∣a1

∣∣ ,

∣∣a1 ∩ b1
∣∣∣∣b1∣∣
)
6= F

(∣∣a1 ∩ b1
∣∣∣∣a2

∣∣ ,

∣∣a1 ∩ b1
∣∣∣∣b2∣∣
)
.

Hence, SSh

(
a1, b1

)
6= SSh

(
a2, b2

)
, thus satisfying the

axiom [P6].

Theorem 8 (Subsethood-limit). SSh
(a, b) < 1 if a ⊂ b.

Proof: If a ⊂ b, then
∣∣a∣∣ < ∣∣b∣∣ and

∣∣a ∩ b∣∣ =
∣∣a∣∣. Thus,

Sh
(
a, b
)

=
|a∩b|
|a| =

|a|
|a| = 1 and Sh

(
b, a
)

=
|a∩b|
|b| =

|a|
|b| .

It means that SSh
(a, b) = F

(
1,
|a|
|b|

)
=
|a|
|b| . As

∣∣a∣∣ < ∣∣b∣∣,
then |a||b| < 1. Hence, SSh

(a, b) < 1. Here, the new SM, thus,
addresses the axiom [P7].

Theorem 9 (Scaling-invariance). For two interval pairs
{a1, b1} and {a2, b2} with

∣∣a1 ∩ b1
∣∣ > 0 and

∣∣a2 ∩ b2
∣∣ > 0,

SSh

(
a1, b1

)
= SSh

(a2, b2) if a2 = n×a1 = [n×a−1 , n×a
+
1 ]

and b2 = n× b1 = [n× b−1 , n× b
+
1 ] where n > 0 is a scaling

factor.

Proof: For the pair {a1, b1}, Sh
(
a1, b1

)
=
|a1∩b1|
|a1| and

Sh
(
b1, a1

)
=
|a1∩b1|
|b1| . Thus,

SSh

(
a1, b1

)
= F

(∣∣a1 ∩ b1
∣∣∣∣a1

∣∣ ,

∣∣a1 ∩ b1
∣∣∣∣b1∣∣
)
.

Again, for the pair {a2, b2}, Sh
(
a2, b2

)
=
|a2∩b2|
|a2| and

Sh
(
b2, a2

)
=
|a2∩b2|
|b2| . Thus,

SSh

(
a2, b2

)
= F

(∣∣a2 ∩ b2
∣∣∣∣a2

∣∣ ,

∣∣a2 ∩ b2
∣∣∣∣b2∣∣
)
.

Given that a2 = n × a1 and b2 = n × b1. It implies that∣∣a2 ∩ b2
∣∣ =

∣∣(n× a1) ∩ (n× b1)
∣∣ = n×

∣∣a1 ∩ b1
∣∣. Therefore,

SSh

(
a2, b2

)
= F

(
n×

∣∣a1 ∩ b1
∣∣

n×
∣∣a1

∣∣ ,
n×

∣∣a1 ∩ b1
∣∣

n×
∣∣b1∣∣

)

= F

(∣∣a1 ∩ b1
∣∣∣∣a1

∣∣ ,

∣∣a1 ∩ b1
∣∣∣∣b1∣∣
)

= SSh

(
a1, b1

)
.

Hence, SSh

(
a1, b1

)
= SSh

(
a2, b2

)
. Here, the new SM

follows the axiom [P8].

Theorem 10 (Increased-overlap). For two interval pairs
{a1, b1} and {a2, b2} where

∣∣a1

∣∣ =
∣∣b1∣∣ =

∣∣a2

∣∣ =
∣∣b2∣∣,

SSh

(
a1, b1

)
< SSh

(
a2, b2

)
if
∣∣a1 ∩ b1

∣∣ < ∣∣a2 ∩ b2
∣∣.

Proof: For the pair {a1, b1}, Sh
(
a1, b1

)
=
|a1∩b1|
|a1| and

Sh
(
b1, a1

)
=
|a1∩b1|
|b1| . Thus,

SSh

(
a1, b1

)
= F

(∣∣a1 ∩ b1
∣∣∣∣a1

∣∣ ,

∣∣a1 ∩ b1
∣∣∣∣b1∣∣
)
.

For the pair {a2, b2}, Sh
(
a2, b2

)
=

|a2∩b2|
|a2| and

Sh
(
b2, a2

)
=
|a2∩b2|
|b2| . Thus,

SSh

(
a2, b2

)
= F

(∣∣a2 ∩ b2
∣∣∣∣a2

∣∣ ,

∣∣a2 ∩ b2
∣∣∣∣b2∣∣
)
.

As
∣∣a1

∣∣ =
∣∣b1∣∣ =

∣∣a2

∣∣ =
∣∣b2∣∣, therefore,

SSh

(
a2, b2

)
≡F

(∣∣a2 ∩ b2
∣∣∣∣a1

∣∣ ,

∣∣a2 ∩ b2
∣∣∣∣b1∣∣
)
.

Given that
∣∣a1 ∩ b1

∣∣ < ∣∣a2 ∩ b2
∣∣, it implies that |a1∩b1||a1| <

|a2∩b2|
|a1| and |a1∩b1||b1| <

|a2∩b2|
|b1| . Therefore,

F

(∣∣a1 ∩ b1
∣∣∣∣a1

∣∣ ,

∣∣a1 ∩ b1
∣∣∣∣b1∣∣
)
<F

(∣∣a2 ∩ b2
∣∣∣∣a1

∣∣ ,

∣∣a2 ∩ b2
∣∣∣∣b1∣∣
)
.
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Hence, SSh

(
a1, b1

)
< SSh

(
a2, b2

)
. Here, the SSh

SM
addresses the axiom [P9].

Theorem 11. SSh

(
a, b
)

is bounded by the Jaccard and Dice
SMs when F is the minimum (∧) t-norm. That is, SJ

(
a, b
)
≤

SSh∧
(
a, b
)
≤ SD

(
a, b
)
.

Proof: For the interval pair {a, b}, consider the formula-
tions of the SMs at Eqs. (4), (9), and (14).

To prove this theorem, we consider four cases: 1) a = b, 2)
a ∩ b = ∅, 3) a ⊂ b, and 4) a ∩ b 6= ∅, and a 6⊂ b and b 6⊂ a.

Case 1: If a = b, then all three measures yield a similarity of
1. That is, SJ

(
a, b
)

= SD
(
a, b
)

= SSh∧
(
a, b
)

= 1.

Case 2: If a ∩ b = ∅, all three measures result in a similarity
of 0. Thus, SJ

(
a, b
)

= SD
(
a, b
)

= SSh∧(a,b) = 0.

Case 3: If a ⊂ b (subset), then
∣∣a ∩ b∣∣ =

∣∣a∣∣. With respect
to b, there is no non-overlap segment of a; hence,

∣∣a\b∣∣ = 0.
Inversely, there is a non-overlap segment of b as to a; thus,∣∣b\a∣∣ 6= 0. In this case, the three SMs can be simplified to

SJ
(
a, b
)

=

∣∣a∣∣∣∣a∣∣+
∣∣b\a∣∣ ,

SD
(
a, b
)

=

∣∣a∣∣∣∣a∣∣+ 1
2

∣∣b\a∣∣ ,
SSh∧

(
a, b
)

= ∧

(∣∣a∣∣∣∣a∣∣ ,
∣∣a∣∣∣∣a∣∣+
∣∣b\a∣∣

)
=

∣∣a∣∣∣∣a∣∣+
∣∣b\a∣∣ ,

which implies that

SJ
(
a, b
)

= SSh∧
(
a, b
)
< SD

(
a, b
)
.

Case 4: If a∩b 6= ∅, and a 6⊂ b and b 6⊂ a (a and b are partially
overlapping), then assume the case

∣∣a∣∣ ≤ ∣∣b∣∣. It implies that∣∣a∣∣ − |a ∩ b| ≤ ∣∣b∣∣ − |a ∩ b| =⇒
∣∣a\b∣∣ ≤ ∣∣b\a∣∣. The three

SMs are

SJ
(
a, b
)

=

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣a\b∣∣+

∣∣b\a∣∣ ,
SD
(
a, b
)

=

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+ 1
2

(∣∣a\b∣∣+
∣∣b\a∣∣) ,

SSh∧(a, b) = ∧

( ∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣a\b∣∣ ,

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣b\a∣∣

)

=

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣b\a∣∣ , as

∣∣a\b∣∣ ≤ ∣∣b\a∣∣ .
It is true that∣∣a ∩ b∣∣∣∣a ∩ b∣∣+

∣∣a\b∣∣+
∣∣b\a∣∣ <

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+ 1
2

(∣∣a\b∣∣+
∣∣b\a∣∣) ,

thus SJ
(
a, b
)
< SD

(
a, b
)
. Again, it is clear that∣∣a ∩ b∣∣∣∣a ∩ b∣∣+

∣∣a\b∣∣+
∣∣b\a∣∣ <

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣b\a∣∣ ,

implying that SJ
(
a, b
)
< SSh∧

(
a, b
)
. Also,∣∣a ∩ b∣∣∣∣a ∩ b∣∣+

∣∣b\a∣∣ =

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+ 1
2

∣∣b\a∣∣+ 1
2

∣∣b\a∣∣
≤

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+ 1
2

∣∣a\b∣∣+ 1
2

∣∣b\a∣∣ , as
∣∣a\b∣∣ ≤ ∣∣b\a∣∣ ,

indicating that SSh∧
(
a, b
)
≤ SD

(
a, b
)
. Hence, SJ

(
a, b
)
<

SSh∧
(
a, b
)
≤ SD

(
a, b
)
. Note that for the case

∣∣b∣∣ ≤ ∣∣a∣∣, the
same procedure can be used to prove the above relation.

D. Distance Measure based on Bidirectional Subsethood

A new DM DSh
(a, b) can easily be derived from the SSh

measure at Eq. (13) by taking its complement, capturing the
dissimilarity between both intervals:

DSh

(
a, b
)

= 1− SSh

(
a, b
)
. (15)

Alternatively, Eq. (15) can be written as

DSh
(a, b) = 1−F

( ∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣a\b∣∣ ,

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣b\a∣∣

)

= F

(
1−

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣a\b∣∣ , 1−

∣∣a ∩ b∣∣∣∣a ∩ b∣∣+
∣∣b\a∣∣

)

= F

(∣∣a ∩ b∣∣+
∣∣a\b∣∣− ∣∣a ∩ b∣∣∣∣a ∩ b∣∣+

∣∣a\b∣∣ ,

∣∣a ∩ b∣∣+
∣∣b\a∣∣− ∣∣a ∩ b∣∣∣∣a ∩ b∣∣+

∣∣b\a∣∣
)

= F

( ∣∣a\b∣∣∣∣a ∩ b∣∣+
∣∣a\b∣∣ ,

∣∣b\a∣∣∣∣a ∩ b∣∣+
∣∣b\a∣∣

)
.

Note that this alternative form of the proposed DSh

(
a, b
)

mea-
sure can now directly be used in pattern recognition problems
with sets/intervals such as classification and clustering.

We next discuss the essential properties of the DSh

(
a, b
)

measure in terms of it being a metric.

Theorem 12. DSh

(
a, b
)

= 1− SSh

(
a, b
)

is a metric.

Proof: To prove that the DM, DSh

(
a, b
)

is a metric, we
need to show that it satisfies the following properties for the
intervals a, b, and c where F is the minimum (∧) or product
(Π) t-norm:
(a) DSh

(
a, b
)
≥ 0 (non-negativity),

(b) DSh

(
a, b
)

= DSh

(
b, a
)

(symmetry),
(c) DSh

(
a, b
)

= 0 ⇐⇒ a = b (identity),
(d) DSh

(
a, c
)
≤ DSh

(
a, b
)

+ DSh

(
b, c
)

(triangle inequal-
ity).

Below we provide proofs for all the properties (a–d) above.

(a) By Theorem 3, SSh

(
a, b
)

is always bounded by [0, 1]. As
DSh

(
a, b
)

= 1− SSh

(
a, b
)
, it implies that 0 ≤ DSh

(
a, b
)
≤

1, thus meeting the non-negativity property.

(b) By Theorem 4, SSh

(
a, b
)

is always symmetric; thus,
DSh

(
a, b
)

is also symmetric.

(c) Theorem 5 shows that if a = b, then SSh

(
a, b
)

is always
1. Hence, 1−SSh

(
a, b
)

makes DSh

(
a, b
)

= 0. Alternatively,
If a 6= b, then SSh

(
a, b
)
6= 1, meaning DSh

(
a, b
)
6= 0.
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(d) For the intervals a, b, and c, we consider a ⊆ b ⊆ c. It
implies that

∣∣a∣∣ ≤ ∣∣b∣∣ ≤ ∣∣c∣∣. To prove this theorem, we apply
the formulation of the SSh

measure at Eq. (14).
Case 1: When all three intervals are equal

(
a = b = c

)
,

SSh

(
a, b
)

= SSh

(
b, c
)

= SSh

(
a, c
)

= 1. Accordingly,
DSh

(
a, b
)

= DSh

(
b, c
)

= DSh

(
a, c
)

= 0, thus satisfying
the triangle inequality.
Case 2: When a ⊂ b ⊂ c, it implies that

∣∣a∣∣ < ∣∣b∣∣ < ∣∣c∣∣. Now,
we can calculate the similarity and distance for each pair of
intervals by applying Eq. (14):
(i) For a ⊂ b,

SSh

(
a, b
)

= F

(∣∣a ∩ b∣∣∣∣a∣∣ ,

∣∣a ∩ b∣∣∣∣b∣∣
)

= F

(∣∣a∣∣∣∣a∣∣ ,
∣∣a∣∣∣∣b∣∣
)

=

∣∣a∣∣∣∣b∣∣
Thus, DSh

(
a, b
)

= 1− SSh

(
a, b
)

= 1−
∣∣a∣∣∣∣b∣∣ .

(ii) For b ⊂ c,

SSh

(
b, c
)

=

∣∣b∣∣∣∣c∣∣
Thus, DSh

(
b, c
)

= 1− SSh

(
b, c
)

= 1−
∣∣b∣∣∣∣c∣∣ .

(iii) For a ⊂ c (by the transitive property of subsets [15]),

SSh

(
a, c
)

=

∣∣a∣∣∣∣c∣∣
Thus, DSh

(
a, c
)

= 1− SSh

(
a, c
)

= 1−
∣∣a∣∣∣∣c∣∣ .

Now, we have to show that

DSh

(
a, c
)
< DSh

(
a, b
)

+DSh

(
b, c
)
.

By placing the distance of each pair of intervals in the above
equation, we get the following:

1−
∣∣a∣∣∣∣c∣∣ < 1−

∣∣a∣∣∣∣b∣∣ + 1−
∣∣b∣∣∣∣c∣∣

⇐⇒ 1−
∣∣a∣∣∣∣c∣∣ − 1 +

∣∣b∣∣∣∣c∣∣ < 1−
∣∣a∣∣∣∣b∣∣

⇐⇒ −
∣∣a∣∣∣∣c∣∣ +

∣∣b∣∣∣∣c∣∣ < 1−
∣∣a∣∣∣∣b∣∣

⇐⇒
∣∣b∣∣− ∣∣a∣∣∣∣c∣∣ <

∣∣b∣∣− ∣∣a∣∣∣∣b∣∣
⇐⇒ 1∣∣c∣∣ < 1∣∣b∣∣ .

It is true as
∣∣b∣∣ < ∣∣c∣∣, thereby satisfying the triangle inequality.

Thus, DSh

(
a, c
)
≤ DSh

(
a, b
)

+DSh

(
b, c
)
.

Example satisfying triangle inequality: Consider three inter-
vals a, b, and c in Fig. 2 where b, c ⊂ a and b∩c = ∅. Table II

c

b

a

0 25 50 75 100
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s

Fig. 2. Example that shows to satisfy the triangle inequality by the DSh
measure

TABLE II
SIMILARITY AND DISTANCE BETWEEN THE INTERVALS OF FIG. 2

Interval Pair SSh∧ SShΠ DSh∧ DShΠ

{a, b} 0.50 0.50 0.50 0.50
{a, c} 0.42 0.42 0.58 0.58
{b, c} 0.0 0.0 1.0 1.0

presents the similarity and distance between each pair of the
three intervals using the SSh

and DSh
measures respectively

with the minimum (∧) and product (Π) t-norms. Note that the
same similarity and distance results are received using both
t-norms. From the distance results, it is observed that for the
interval pair {a, c}, their distance—which is 0.58—is less than
the summed distances of the pairs {a, b} and {b, c}—which
is 1.50—implying DSh

(
a, c
)
< DSh

(
a, b
)

+DSh

(
b, c
)
. This

relation is also maintained for the interval pairs {a, b} and
{b, c}, thereby demonstrating the DSh

measure meeting the
triangle inequality.

Theorem 13. DSh

(
a, b
)

follows the property of transitivity.
That is, DSh

(
a, b
)
≤ DSh

(
a, c
)

when a ⊆ b ⊆ c.

Proof: When a ⊆ b ⊆ c, then

SSh

(
a, b
)
= F

(∣∣a ∩ b
∣∣∣∣a∣∣ ,

∣∣a ∩ b
∣∣∣∣b∣∣
)

= F

(∣∣a∣∣∣∣a∣∣ ,
∣∣a∣∣∣∣b∣∣
)

=

∣∣a∣∣∣∣b∣∣ ,

SSh

(
a, c
)
= F

(∣∣a ∩ c
∣∣∣∣a∣∣ ,

∣∣a ∩ c
∣∣∣∣c∣∣
)

= F

(∣∣a∣∣∣∣a∣∣ ,
∣∣a∣∣∣∣c∣∣
)

=

∣∣a∣∣∣∣c∣∣ .
Thus,

DSh

(
a, b
)

= 1− SSh

(
a, b
)

= 1−
∣∣a∣∣∣∣b∣∣ ,

DSh

(
a, c
)

= 1− SSh

(
a, c
)

= 1−
∣∣a∣∣∣∣c∣∣ .

As b ⊆ c, it follows that
∣∣b∣∣ ≤ ∣∣c∣∣. Therefore, |a||b| ≥

|a|
|c|

which implies that

1−
∣∣a∣∣∣∣b∣∣ ≤ 1−

∣∣a∣∣∣∣c∣∣ .
Hence DSh

(
a, b
)
≤ DSh

(
a, c
)
.



JOURNAL OF FUZZY SYSTEMS, VOL. .., NO. .., XXX XX 9

a4

b4

a3

b3

a2

b2

a1

b1

0 25 50 75 100

In
te

rv
al

 p
ai

rs

Fig. 3. Interval pairs used to demonstrate the aliasing of SMs

TABLE III
THE SJ AND SD MEASURES EXHIBIT ALIASING FOR THE INTERVAL

PAIRS IN FIG. 3

Interval Pair SJ SD SSh∧ SShΠ

{a1, b1} 0.15 0.26 0.15 0.15
{a2, b2} 0.15 0.26 0.17 0.08
{a3, b3} 0.15 0.26 0.21 0.07
{a4, b4} 0.15 0.26 0.26 0.06

IV. DEMONSTRATION AND ANALYSIS

We now demonstrate and analyse the behaviour of the
proposed SM SSh

with the minimum (∧) and product (Π)
t-norms in the context of the SJ and SD SMs for a set of
synthetic examples in the first part and with a real dataset
in the last part. Here, we alter different features of interval-
pairs to explore how well these three measures perform or
follow intuitive results. In particular, we focus on the following
aspects:

1) Propensity to exhibiting aliasing in response to variations
in interval sizes.

2) Behaviour in respect to intervals where one is a complete
subset of the other.

3) Behaviour in respect to intervals of equal sizes and
overlapping ratio.

4) Response to variations in interval size, while maintaining
the same level of subsethood.

5) Response to linear increase in the overlap of intervals.

A. Synthetic Dataset Based Demonstration

For each of the above cases, a series of synthetic intervals
is proposed and visualised.

1) Experiment on aliasing propensity: In Fig. 3, four dif-
ferent pairs of intervals {a, b} are considered where all pairs
have an intersection of equal size. The similarity results for
the pairs using the three SMs are shown in Table III. The SJ
and SD measures are subject to aliasing, providing the same
similarity of 0.15 and 0.26 respectively for all pairs.

Indeed, both measures provide –unexpectedly– identical
similarities for pairs of intervals when the size of the union
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(a) Increasing interval overlapping
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(b) Increasing interval non-overlapping

Fig. 4. Interval pairs where one interval as a complete subset of the other

TABLE IV
SIMILARITY RESULTS FOR THE INTERVAL PAIRS AS SHOWN IN FIG. 4

Interval Pair SJ SD SSh∧ SShΠ subset by
{a1, b1} 0.10 0.18 0.10 0.10 10%

{a2, b2} 0.20 0.33 0.20 0.20 20%

{a3, b3} 0.30 0.46 0.30 0.30 30%

{a4, b4} 0.40 0.57 0.40 0.40 40%

{a5, b5} 0.50 0.67 0.50 0.50 50%

(a) Increasing interval overlapping

Interval Pair SJ SD SSh∧ SShΠ subset by
{a1, b1} 0.20 0.33 0.20 0.20 20%

{a2, b2} 0.172 0.294 0.172 0.172 17.2%

{a3, b3} 0.152 0.263 0.152 0.152 15.2%

{a4, b4} 0.135 0.238 0.135 0.135 13.5%

{a5, b5} 0.122 0.217 0.122 0.122 12.2%

(b) Increasing interval non-overlapping
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Fig. 5. Interval pairs with equal size and equal ratio of overlap

TABLE V
SIMILARITY RESULTS FOR THE INTERVAL PAIRS AS SHOWN IN FIG. 5

Interval Pair SJ SD SSh∧ SShΠ intersecting by
{a1, b1} 0.05 0.10 0.10 0.01 10%

{a2, b2} 0.11 0.20 0.20 0.04 20%

{a3, b3} 0.18 0.30 0.30 0.09 30%

{a4, b4} 0.25 0.40 0.40 0.16 40%

{a5, b5} 0.33 0.50 0.50 0.25 50%

of their non-overlapping segments remains constant. On the
contrary, the SSh

measure with both minimum and product t-
norms (SSh∧ and SShΠ) yields a different degree of similarity
for all cases, thereby exhibiting its aliasing-free and robust
behaviour. The reason is that the SSh

measure captures the
changes in the size of both input intervals as compared to SJ
and SD measures, which eventually affects their reciprocal
subsethood and the overall similarity. Note that as shown in
Theorem 11, the results of the SSh∧ measure are bounded by
the SJ and SD measures.

2) Experiment with interval pairs when one interval is a
complete subset of the other: Two separate cases are consid-
ered with different sets of interval pairs, where in both cases
one interval is a complete subset of the other: (a) an increasing
degree of overlap between both intervals by increasing the size
of the smaller interval, and (b) decreasing the degree of overlap
by increasing the size of the larger interval.

Figure 4(a) shows five interval pairs with b ⊂ a, where b
covers 10%, 20%, 30%, 40%, and 50% of a. On the contrary,
in Fig. 4(b) another five interval pairs are presented where the
degree of overlap (in %) is gradually decreased by increasing
the size of a. Tables IV(a) and IV(b) show the similarity
for all pairs with all three SMs. Note that for all pairs, the
subsethood of b is 1 while the subsethood of a depends on the
size of a and b, i.e., |a∩b||a| . Intuitively, their mutual similarity

should be at most |a∩b||a| for each pair. From the results, we
see that both SSh

(with minimum and product t-norms) and
SJ measures perform according to the intuition while the SD
measure exceeds this expected limit.
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Fig. 6. Interval pairs used to demonstrate the invariance of SMs

TABLE VI
ALL THREE SMS DISPLAY INVARIANT SIMILARITY FOR THE INTERVAL

PAIRS IN FIG. 6

Interval Pair SJ SD SSh∧ SShΠ multiplied by n
{a1, b1} 0.36 0.53 0.44 0.29 1
{a2, b2} 0.36 0.53 0.44 0.29 2
{a3, b3} 0.36 0.53 0.44 0.29 3
{a4, b4} 0.36 0.53 0.44 0.29 4
{a5, b5} 0.36 0.53 0.44 0.29 5

3) Experiment with interval pairs of equal size and equal
overlapping ratio: In Fig. 5, five interval pairs are shown
where the intervals are of equal size and the size of their
intersection is varied to 10%, 20%, 30%, 40%, and 50% of
their size. Table V provides the results for all pairs using
the three SMs. In all pairs, the subsethood is equal, and it
is intuitive to expect the similarity to be the same as this
subsethood (as the intervals are both of equal size). In this
case, the SSh

with minimum t-norm (SSh∧) and SD measures
follow the intuition whereas the SSh

with product t-norm
(SShΠ) and SJ measures yield a lower degree of similarity.

4) Experiment on scaling invariance: Five pairs of intervals
are shown in Fig. 6, where both endpoints of a and b are
gradually multiplied by a factor n ∈ {2, 3, 4, 5} to generate
new interval pairs. The degree of subsethood stays the same
across the pairs. Adapting the definition from [54], a similarity
measure is invariant if its similarity output remains constant
regardless of scaling the interval endpoints by a factor. Ta-
ble VI shows the similarity for all pairs using the three SMs
where n is the factor applied to the interval endpoints. The
results demonstrate the scaling invariance property for the
given pairs of intervals for all SMs.

5) Experiment on increased overlap linearly: Adapting the
definition from [54], a SM on intervals is linear if its similarity
output varies linearly as to a linear change in the size of the
overlap/intersection of the intervals. In Fig. 7(a), the overlap
between two intervals of equal size is gradually increased in
10% steps. The corresponding similarity outputs for the pairs



JOURNAL OF FUZZY SYSTEMS, VOL. .., NO. .., XXX XX 11

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

0 25 50 75 100

%
 o

f o
ve

rla
p

(a) Rising overlap while intervals are of equal size
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(b) Similarity versus overlap

Fig. 7. Displaying linearity by the SD and SSh∧ measures, and convexity
by the SJ and SShΠ measures

and all three SMs are shown graphically in Fig. 7(b). Results
show that all three SMs provide higher similarity for increased
overlap. Particularly, the SSh

with minimum t-norm (SSh∧)
and SD measures exhibit linearity in the similarity results
while the SSh

with product t-norm (SShΠ) and SJ measure
display convexity (similarity increases rapidly with an increase
in the size of the intersection).

In summary, case 1) shows that SJ and SD measures
are subject to aliasing and return the same similarity for
very different interval-pairs whenever the union of their non-
overlapping remains constant (regardless of any changes in

their size). In case 2), when one interval is a complete subset
of the other, proportionately increasing or decreasing their
degree of overlap results in the SSh

and SJ measures returning
sensible results whereas the SD measure overestimates the
similarity. In case 3), the SSh

with minimum t-norm (SSh∧)
and SD measures meet the expectation when intervals are of
equal size and their intersection is changed proportionately,
whereas the SJ measure underestimates the similarity. In case
4), we multiply interval end-points by a factor, maintaining
the same degree of subsethood. Here, all three measures show
scaling invariance in the results as expected. Lastly, in case 5),
for linear increases in the size of overlap between the intervals
of equal size, the SSh

with minimum t-norm (SSh∧) and SD
measures exhibit linearity in the similarity results while the
SSh

with product t-norm (SShΠ) and SJ measure display
convexity. These experiments demonstrate that the proposed
SM shows behaviour in line with expectation, which is not
the case for the other, commonly used measures.

B. A Real World Example
In this part, we have used a real world dataset to review

the behaviour of the three SMs (SSh
with minimum (∧) and

product (Π) t-norms, SJ , and SD), particularly in respect to
the aliasing issue. The dataset used for this demonstration
is the temperature data of different standard areas (districts)
of the UK for the year 2016 from the UK Met Office. The
entire dataset is available at [55]. The map of the standard
areas used by the UK Met office is shown in Fig. 8. We
have used temperature data of nine standard areas: Scotland
North (SN), Scotland East (SE), Scotland West (SW), England
East & North East (EEN), England Northwest & Wales North
(ENW), Midlands (ML), East Anglia (EA), England South-
west & Wales South (ESW), and England South-east & Central
South (ESC) for four different seasons in 2016.

The intervals are constructed by taking the minimum and
the maximum temperature of each area for every season, as
shown in Table VII. We have applied the SSh

(with minimum
(∧) and product (Π) t-norms), SJ and SD measures to estimate
similarities between all possible pairs of the nine areas for
all seasons; here the results for Autumn and Spring seasons
are reported which are shown in Tables VIII, IX, X and XI.
We do not include results for other two seasons—Winter and
Summer—as they follow the same pattern.

Regarding similarity based on seasonal temperature, one
can expect higher similarity for pairs of areas geographically
close to each other (i.e., located in the same latitude), while
expecting lower similarity for remote areas as it is generally
recognized that latitude (i.e., distance from the equator) is an
important factor affecting variations in temperature. Hence, in
this real world example, the districts in the Northern UK (e.g.,
SE, SW) are likely to be more similar as they are in the South
(e.g., ML, EA). By the same token, a district in the North
will be highly dissimilar to a district in the South. Generally,
all three SMs appear to meet up with such expectations. For
instance, considering Autumn-temperatures between SN and
the other eight areas from geographically close to far off,
three SMs appear to generate higher to lower similarity as
temperature-range differs more.
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Fig. 8. Standard areas (districts) of the UK [55]

TABLE VII
SEASONAL TEMPERATURE IN STANDARD AREAS OF THE UK IN 2016

Seasons
Area Acronym Winter Spring Summer Autumn

Min Max Min Max Min Max Min Max
Scotland N SN 0.5 6.0 2.7 9.8 9.1 15.8 4.8 11.2
Scotland E SE 0.4 6.2 2.4 10.3 9.1 16.9 4.4 11.5
Scotland W SW 1.9 7.2 3.2 11.1 10.0 17.3 5.6 12.0
England E & NE EEN 2.4 8.5 3.6 11.6 10.9 19.5 6.6 13.5
England NW & Wales N ENW 3.1 8.6 3.9 11.8 11.4 18.7 6.5 13.1
Midlands ML 3.3 9.4 3.9 12.6 11.7 20.6 6.9 14.1
East Anglia EA 3.8 10.0 4.5 13.2 12.3 22.1 7.7 15.5
England SW & Wales S ESW 4.5 9.8 4.4 12.7 11.9 19.5 7.3 14.2
England SE & Central S ESC 4.3 10.2 4.7 13.5 12.4 21.6 7.5 15.4

TABLE VIII
SIMILARITY RESULTS FOR TEMPERATURE DATA USING THE SJ MEASURE

Autumn Spring
Area SN SE SW EEN ENW ML EA ESW ESC SN SE SW EEN ENW ML EA ESW ESC

SN 1 0.9014 0.7778 0.5287 0.5663 0.4624 0.3271 0.4149 0.3491 1 0.8987 0.7857 0.6966 0.6484 0.596 0.5048 0.54 0.4722
SE 0.9014 1 0.7763 0.5385 0.5747 0.4742 0.3423 0.4286 0.3636 0.8987 1 0.8161 0.7283 0.6809 0.6275 0.537 0.5728 0.5045
SW 0.7778 0.7763 1 0.6835 0.7333 0.6 0.4343 0.5465 0.4592 0.7857 0.8161 1 0.8929 0.8372 0.766 0.66 0.7053 0.6214
EEN 0.5287 0.5385 0.6835 1 0.9286 0.88 0.6517 0.8158 0.6818 0.6966 0.7283 0.8929 1 0.939 0.8556 0.7396 0.7912 0.697
ENW 0.5663 0.5747 0.7333 0.9286 1 0.8158 0.6 0.7532 0.6292 0.6484 0.6809 0.8372 0.939 1 0.908 0.7849 0.8409 0.7396
ML 0.4624 0.4742 0.6 0.88 0.8158 1 0.7442 0.9315 0.7765 0.596 0.6275 0.766 0.8556 0.908 1 0.871 0.9318 0.8229
EA 0.3271 0.3423 0.4343 0.6517 0.6 0.7442 1 0.7927 0.9625 0.5048 0.537 0.66 0.7396 0.7849 0.871 1 0.9318 0.9444
ESW 0.4149 0.4286 0.5465 0.8158 0.7532 0.9315 0.7927 1 0.8272 0.54 0.5728 0.7053 0.7912 0.8409 0.9318 0.9318 1 0.8791
ESC 0.3491 0.3636 0.4592 0.6818 0.6292 0.7765 0.9625 0.8272 1 0.4722 0.5045 0.6214 0.697 0.7396 0.8229 0.9444 0.8791 1

TABLE IX
SIMILARITY RESULTS FOR TEMPERATURE DATA USING THE SD MEASURE

Autumn Spring
Area SN SE SW EEN ENW ML EA ESW ESC SN SE SW EEN ENW ML EA ESW ESC

SN 1 0.9481 0.875 0.6917 0.7231 0.6324 0.493 0.5865 0.5175 1 0.9467 0.88 0.8212 0.7867 0.7468 0.6709 0.7013 0.6415
SE 0.9481 1 0.8741 0.7 0.7299 0.6434 0.5101 0.6 0.5333 0.9467 1 0.8987 0.8428 0.8101 0.7711 0.6988 0.7284 6707
SW 0.875 0.8741 1 0.812 0.8462 0.75 0.6056 0.7068 0.6294 0.88 0.8987 1 0.9434 0.9114 0.8675 0.7952 0.8272 0.7665
EEN 0.6917 0.7 0.812 1 0.963 0.9362 0.7891 0.8986 0.8108 0.8212 0.8428 0.9434 1 0.9686 0.9222 0.8503 0.8834 0.8214
ENW 0.7231 0.7299 0.8462 0.963 1 0.8986 0.75 0.8593 0.7724 0.7867 0.8101 0.9114 0.9686 1 0.9518 0.8795 0.9136 0.8503
ML 0.6324 0.6434 0.75 0.9362 0.8986 1 0.8533 0.9645 0.8742 0.7468 0.7711 0.8675 0.9222 0.9518 1 0.931 0.9647 0.9029
EA 0.493 0.5101 0.6056 0.7891 0.75 0.8533 1 0.8844 0.9809 0.6709 0.6988 0.7952 0.8503 0.8795 0.931 1 0.9647 0.9714
ESW 0.5865 0.6 0.7068 0.8986 0.8593 0.9645 0.8844 1 0.9054 0.7013 0.7284 0.8272 0.8834 0.9136 0.9647 0.9647 1 0.9357
ESC 0.5175 0.5333 0.6294 0.8108 0.7724 0.8742 0.9809 0.9054 1 0.6415 0.6707 0.7665 0.8214 0.8503 0.9029 0.9714 0.9357 1

TABLE X
SIMILARITY RESULTS FOR TEMPERATURE DATA USING THE SSh∧ MEASURE

Autumn Spring
Area SN SE SW EEN ENW ML EA ESW ESC SN SE SW EEN ENW ML EA ESW ESC

SN 1 0.9014 0.875 0.6667 0.7121 0.5972 0.4487 0.5652 0.4684 1 0.8987 0.8354 0.775 0.7468 0.6782 0.6092 0.6506 0.5795
SE 0.9014 1 0.831 0.6901 0.7042 0.6389 0.4872 0.5915 0.5063 0.8987 1 0.8987 0.8375 0.8101 0.7356 0.6667 0.7108 0.6364
SW 0.875 0.831 1 0.7826 0.8333 0.7083 0.5513 0.6812 0.5696 0.8354 0.8987 1 0.9375 0.9114 0.8276 0.7586 0.8072 0.7273
EEN 0.6667 0.6901 07826 1 0.942 0.9167 0.7436 0.8986 0.7595 0.775 0.8375 0.9375 1 0.9625 0.8851 0.8161 0.8675 0.7841
ENW 0.7121 0.7042 0.8333 0.942 1 0.8611 0.6923 0.8406 0.7089 0.7468 0.8101 0.9114 0.9625 1 0.908 0.8391 0.8916 0.8068
ML 0.5972 0.6389 0.7083 0.9167 0.8611 1 0.8205 0.9444 0.8354 0.6782 0.7356 0.8276 0.8851 0.908 1 0.931 0.9425 0.8977
EA 0.4487 0.4872 0.5513 0.7436 0.6923 0.8205 1 0.8333 0.9747 0.6092 0.6667 0.7586 0.8161 0.8391 0.931 1 0.9425 0.9659
ESW 0.5652 0.5915 0.6812 0.8986 0.8406 0.9444 0.8333 1 0.8481 0.6506 0.7108 0.8072 0.8675 0.8916 0.9425 0.9425 1 0.9091
ESC 0.4684 0.5063 0.5696 0.7595 0.7089 0.8354 0.9747 0.8481 1 0.5795 0.6364 0.7273 0.7841 0.8086 0.8977 0.9659 0.9091 1
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TABLE XI
SIMILARITY RESULTS FOR TEMPERATURE DATA USING THE SShΠ MEASURE

Autumn Spring
Area SN SE SW EEN ENW ML EA ESW ESC SN SE SW EEN ENW ML EA ESW ESC

SN 1 0.9014 0.7656 0.4792 0.523 0.4013 0.2454 0.3444 0.2708 1 0.8987 0.7766 0.6768 0.6206 0.5635 0.4548 0.4948 0.4163
SE 0.9014 1 0.7661 0.4901 0.5335 0.4139 0.2607 0.3601 0.2853 0.8987 1 0.8077 0.7103 0.6563 0.596 0.4895 0.5309 0.4511
SW 0.7656 0.7661 1 0.6603 0.7161 0.5645 0.3704 0.5002 0.4005 0.7766 0.8077 1 0.89 0.8306 0.7543 0.6338 0.6846 0.5892
EEN 0.4792 0.4901 0.6603 1 0.9278 0.8768 0.625 0.8074 0.6604 0.6768 0.7103 0.89 1 0.9381 0.8519 0.7243 0.7807 0.6763
ENW 0.523 0.5335 0.7161 0.9278 1 0.8089 0.5664 0.7387 0.6015 0.6206 0.6563 0.8306 0.9381 1 0.908 0.7754 0.8351 0.7251
ML 0.4013 0.4139 0.5645 0.8768 0.8089 1 0.7293 0.9308 0.7658 0.5635 0.596 0.7543 0.8519 0.908 1 0.8668 0.9312 0.8152
EA 0.2454 0.2607 0.3704 0.625 0.5664 0.7293 1 0.785 0.9622 0.4548 0.4895 0.6338 0.7243 0.7754 0.8668 1 0.9312 0.9437
ESW 0.3444 0.3601 0.5002 0.8074 0.7387 0.9308 0.785 1 0.8235 0.4948 0.5309 0.6846 0.7807 0.8351 0.9312 0.9312 1 0.8762
ESC 0.2708 0.2853 0.4005 0.6604 0.6015 0.7658 0.9622 0.8235 1 0.4163 0.4511 0.5892 0.6763 0.7251 0.8152 0.9437 0.8762 1

However, in several cases, the SJ and SD measures suffer
from the aliasing—returning the same similarity for different
ranges of temperature. As mentioned earlier, both measures
provide identical similarity for pairs of areas as long as the
size of the intersection and union of their temperature-range
remain constant. Table VIII and IX show that they produce
the same similarity (i.e., 0.7396 and 0.8503 respectively) for
pairs of areas, (EEN versus EA) and (ENW versus ESC) in
Spring, even though they have separate temperature-ranges.
Analogously, we also notice identical similarities for the pairs,
(SW vs ML) and (EA vs ENW), and the pairs (ML vs ENW)
and (ESW vs EEN) in Autumn. In contrast, the SSh

measure
with minimum and product t-norms (i.e., SSh∧ and SShΠ),
responding to variation in temperature-range, yields a distinct
outcome for all of these pairs as shown in Table X and XI.

This real world example showing the aliasing inherent to the
SJ and SD measures highlights the potential for misleading
inference in practice. In particular, while clustering the areas
with respect to temperature, some areas may be placed in the
same group albeit having different ranges of temperature. This
can be an issue when we compare real-world interval data
for the purpose of grouping, ranking, and decision making.
Therefore, a similarity measure which avoids this aliasing—
such as the proposed measure, is desirable.

V. CONCLUSIONS AND FUTURE WORK

The contributions of this paper centre on to identifica-
tion and articulation of potential shortcomings – specifically
aliasing – affecting popular set-theoretic similarity measures.
The latter have the potential to give misleading results, in
turn affecting real-world applications dependent on the robust
comparison of intervals. In order to address this limitation, this
paper develops the underpinnings of robust SMs by putting
forward five new axioms which complement the traditional
axioms associated with the most common SMs. Building
on this set of nine axioms, the paper establishes a new
set-theoretic similarity measure for intervals based on their
bidirectional subsethood. The new SM is shown to avoid short-
comings such as aliasing, while delivering intuitive results
(e.g., being bounded above and below by Jaccard and Dice
SMs), facilitating its potential use in real world applications.
As part of the development of the new SM, the paper also
puts forward the definition of subsethood for intervals and
proofs of its mathematical properties (see Appendix). Finally,

a corresponding dissimilarity or distance measure is derived
from the new SM, which is also proven to be a metric.

At an experimental level, the paper provides a detailed
investigation contrasting the behaviour of the proposed SM
vis-a-vis the Jaccard and Dice SMs – using both synthetic
and real-world interval-valued data. The exhaustive analyses
confirm that the new measure exhibits desirable behaviour
while maintaining all essential features of a similarity mea-
sure. In particular, the new SM is resilient to aliasing and
provides desirable results in respect to all key features (e.g.,
linearity, scaling invariance), whereas popular SMs are shown
to produce counter-intuitive results in some cases.

In the future, we plan to use this new measure for assessing
similarity between discontinuous intervals and to develop
corresponding extensions of the SM for type-1, interval-
valued, and type-2 fuzzy sets using the α-cut decomposition
representation. We also aim to explore it for capturing the
mutual agreement of interval-valued evidence for aggregation
as well as clustering and classification of real-world interval-
valued data sets.

APPENDIX

DEFINITION OF SUBSETHOOD FOR CLOSED INTERVALS

Building on the axiomatic definitions of subsethood in the
literature (see Section II.C), the key properties of subsethood
for intervals are captured in the following theorem.

Theorem 14. A real-valued function Sh : a × b → [0, 1]
captures subsethood for intervals, if it follows the properties,

(1) Sh(a, b) = 1 if and only if a ⊆ b,
(2) Sh(a, b) = 0 if and only if a and b are disjoint,
(3) if a ⊆ b ⊆ c, then Sh(c, a) ≤ Sh(b, a) and Sh(c, a) ≤

Sh(c, b).

Proof: Below we give proofs for all the properties (1–3).
(1) If a ⊆ b, then |a ∩ b| = |a|. Thus, Sh(a, b) = |a∩b|

|a| =
|a|
|a| = 1. Again, Sh(a, b) = 1 only when a is included in b.

(2) If a and b are disjoint, then |a∩b| = 0. Thus, Sh(a, b) = 0.
Contrarily, Sh(a, b) = 0 when a and b are not overlapping.
(3) If a ⊆ b ⊆ c, then |a| ≤ |b| ≤ |c|. Thus, Sh(c, a) =
|c∩a|
|c| = |a|

|c| and Sh(b, a) = |b∩a|
|b| = |a|

|b| . Since |b| ≤ |c|, it

follows that 1
|c| ≤

1
|b| . Hence, |a||c| ≤

|a|
|b| , implying Sh(c, a) ≤

Sh(b, a). Moreover, Sh(c, b) = |c∩b|
|c| = |b|

|c| . Since |a| ≤ |b|, it

follows that |a||c| ≤
|b|
|c| , proving that Sh(c, a) ≤ Sh(c, b).
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