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Abstract

Previous deep learning based approaches to illuminant estimation either resized

the raw image to lower resolution or randomly cropped image patches for the

deep learning model. However, such practices would inevitably lead to informa-

tion loss or the selection of noisy patches that would affect estimation accuracy.

In this paper, we regard patch selection in neural network based illuminant es-

timation as a controlling problem of selecting image patches that could help

remove noisy patches and improve estimation accuracy. To achieve this, we

construct a selection network (SeNet) to learn a patch selection policy. Based

on data statistics and the learning progression state of the deep illuminant es-

timation network (DeNet), the SeNet decides which training patches should be

input to the DeNet, which in turn gives feedback to the SeNet for it to update

its selection policy. To achieve such interactive and intelligent learning, we uti-

lize a reinforcement learning approach termed policy gradient to optimize the

SeNet. We show that the proposed learning strategy can enhance the illuminant

estimation accuracy, speed up the convergence and improve the stability of the

training process of DeNet. We evaluate our method on two public datasets and

demonstrate our method outperforms state-of-the-art approaches.
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1. Introduction

Color constancy is a kind of ability of humans to perceive the same color of a

particular scene under varying illuminant. Enabling computers to have the same

color constancy ability as humans has a long research history [1, 2, 3, 4, 5, 6, 7,

8, 9]. In recent years, deep learning approaches have demonstrated tremendous5

performance in a series of computer vision tasks [10, 11, 12], and have also been

successfully applied to solve the color constancy problem [13, 14, 15, 16, 17].

Figure 1: Two random patch cropping scenarios. Red Bounding Box: the illuminant in the

image is not spatially uniform. Green Bounding Box: It is very likely the cropped patch

is almost dark that can be difficult for the neural network to estimate illuminant from it.

A key step to color constancy is to estimate the color of illuminant. Although

previous deep learning approaches have demonstrated significant increase in illu-

minant estimation accuracy, they still suffer from two main problems (examples10

are shown in Figure 1). Firstly, there is information loss or disturbance when

constructing the inputs for the deep neural network. This is caused by either

resizing the raw image to lower resolution [18] or randomly cropping (evenly

partitioning) image patches [15, 19] to fit with the input size of the deep neural

network. Resizing raw image would lose the detail features of the raw image,15

and randomly cropping image patches would has the possibility of cropping

patches that could not reflect the color of the illuminant. Secondly, in the single

illuminant estimation task, it is widely assumed that the illuminant is spatially

uniform in the image [20] and thus all patches from the image should have

the same illuminant color. However, such assumption is often violated in the20

real world scenario due to the occlusion of objects. Thus, it is essential to de-

velop techniques to select optimal input patches that could increase illuminant
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estimation accuracy for the deep neural network.

In this paper, we regard patch selection in neural network based illuminant

estimation as a controlling problem to select image patches that could increase25

the estimation accuracy and to remove those noisy patches that do not con-

tribute to the estimation accuracy. This is achieved by first constructing a se-

lection network (SeNet) to learn a patch selection policy to filter image patches

in each training batch. The decision is made based on the data statistics of

those patches and also the learning progress state of the deep illuminant esti-30

mation network (DeNet). In each time step, the SeNet decides which training

patches should be input to the DeNet, and the DeNet then gives feedback to

the SeNet to update its selection policy. To achieve such interactive training

process, we utilize a reinforcement learning approach termed policy gradient

to optimize the weights of SeNet. By adopting such a learning strategy, the35

selected patches could not only improve the estimation accuracy, but also speed

up the convergent rate for the DeNet. The main contributions of our work

include:

1. We present a new research perspective on illuminant estimation and high-

light the importance of input selection in the illuminant estimation task,40

which is neglected in previous methods especially in the deep learning

based approaches.

2. We propose a novel reinforcement learning based input selection mecha-

nism for deep learning based single illuminant estimation. We show that

the new method not only enhances the illuminant estimation accuracy but45

also accelerates the neural network’s convergence speed.

3. Our approach is evaluated on the Color Checker dataset and the NUS 8-

Camera datasets. On both datasets, our approach demonstrates superior

estimation performances to the previous deep learning approaches.

3
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2. Related Work50

2.1. Traditional Approaches

There are mainly two lines of traditional approaches to addressing the illumi-

nant estimation problem including statistics-based approaches and the learning-

based approaches.

Statistics-based approaches are based on the assumption that the statistics55

of reflectance in the scene should be achromatic. A number of well-known ap-

proaches including Grey-World [2], White-Patch [3, 4] , Shades of Grey [5] and

Grey-Edge [6] are based on the assumption of the scene color to be gray. The

advantage of the statistics-based approaches is that they do not heavily rely on

the illuminant label and also those approaches are efficient to estimate illumi-60

nations. However, the estimation accuracy of these methods is not comparable

with the learning-based approaches.

The learning-based approaches usually employ labeled training data to es-

timate illumination. There are mainly two kinds of learning-based methods

including combinatorial methods and direct methods. Combinatorial methods65

try to find a optimal combination of several statistics-based methods accord-

ing to the scene contents of the input images. One work [21] trained a neural

network to estimate illumination based on the binarized rg-chromaticity as the

input. The work of [22] applies low level properties of images to select the best

combination of algorithms.70

Direct approaches manage to train a learning model and estimate the illu-

mination from the training dataset. The Gamut Mapping methods assume one

observes only a limited gamut of colors for a given illuminant [23]. [1, 7] first

find the canonical gamut from the training data and then map the gamut of

each input image into the canonical gamut. Other learning approaches such as75

SVR-based algorithm [24], neural networks [25], Bayesian model [8, 9] and the

exemplar-based algorithm [26], usually employ hand-crafted features and the

learning models are also shallow.

4
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2.2. Deep Learning Approaches

However, with the emergence of deep learning, the deep learning approaches80

[10, 11, 12] are shown to achieve superior performance to the traditional hand-

crafted features on a number of computer vision tasks.

There are also a number of deep learning work trying to solve the color

constancy problem. One problem with the deep learning approaches is that the

size of dataset is usually small, and it would lead to the over-fitting problem85

when training a deep neural network. To overcome this problem, [13] uses

ImageNet dataset to pre-train a CNN whose ground-truths are obtained by the

existing method such as Gray-of-shades. In the work of [14], they regard the

color constancy as a classification problem and try to compute illuminant by

finding their nearest neighbor in the training dataset. In their work, they also90

try to cluster the image to make the classification easier for the CNN. In those

approaches, the raw images are usually resized to fit in the deep neural network

to predict illuminant. However, resizing raw image would inevitable lead to

information loss and thus lower the estimation accuracy.

Another way to augment the dataset size is to partition the raw image into95

patches. One pioneer work [15] takes raw image patches as input and directly

predict illumination from a CNN. In their further work [16], they develop a

multiple illuminate detector to decide whether to aggregate the local outputs

into the single estimate. The author of [18] develop a fully convolutional network

architecture that can take any size of input patches. In the work of [17], they100

also apply image patches to the network and they propose a selection network

to choose an estimate from illumination hypotheses. [19] constructs a recurrent

neural network to take a sequence of input image patches to estimate illuminant.

In these work, they usually randomly crop patches or evenly partition raw105

image into many patches. By using such patch extraction strategy, it is possible

to select noisy patches that could have influence on the network’s estimation

ability. Thus, it is desired to develop an intelligent patch selection mechanism to

select appropriate training patches that will help boost the deep neural network

5
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Figure 2: The overview of our patch selection framework. It contains two networks includ-

ing a selection network to select appropriate patches and a deep estimation network takes

these patches to estimate the illuminant value, and the deep estimation network gives re-

ward feedback to selection network for updating its weights in each time step. In this figure,

“Conv(7,1,64)” means there are 64 convolutional filters with kernel size of 7 × 7 and stride of

1. “FC” refers to fully-connected layers. “GAP” denotes the global average pooling layer.
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ability to accurately estimate the illuminant of an image.110

3. Methodology

3.1. Overview

In this paper, we formulate single illuminant estimation task as a Markov

Decision Process (MDP) to find optimal input patches for the estimation task.

Essentially, the MDP is constructed based on state s ∈ S, action a ∈ A, and115

reward function R = r(s, a). In the problem of single illuminant estimation,

the state st at time step t refers to the information of learning progress of deep

estimation network (DeNet) and also the statistics of arrived mini-batch data

Dt = (d1, . . . , dN ). Given the state st, the action at = {ant }Nn=1 ∈ {0, 1}N has

to decide which patches in the arrived mini-batch data Dt are the appropriate120

inputs to the DeNet, where ant = 1 means to keep the n−th instance in the mini-

batch, and ant = 0 means to remove the corresponding data in the mini-batch.

We could further define πθ(st) = at as the selection policy and we call πθ the

selection network (SeNet) that is parameterized by θ. Then, the DeNet will be

trained by the mini-batch data provided by the SeNet. Finally, we will receive125

a reward R by executing action at, which will be the feedback for the SeNet to

update its policy for time step t + 1. By formulating the illuminat estimation

task as a MDP, we are able to optimize the patch selection process through a

reinforcement learning approach termed policy gradient, which is illustrated in

Section 3.6. The overview of our approach is shown in Figure 2.130

3.2. State Feature Construction

Here we introduce the details of how to construct the state features in each

time step. In our framework, the state features S = (FL,FD) is constructed to

represent the learning progress of deep estimation network FL and the statistics

of the arrived mini-batch FD. In Table 1, we summarize the details of each135

feature.

The learning progress features FL of DeNet are represented as: (1) the av-

erage historical training loss; (2) the best estimation accuracy so far on the

7
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Feature name Length

Learning progress features

Average historical training loss 1

Best estimation accuracy 1

Passed iteration number 1

Statistics of arrived data

VGG-16 features 4096

Estimated illuminant value (r̂, ĝ) 2

Ground-truth value (r, g) 2

Table 1: Summary of state features to represent learning progress and statistics of arrived

data.

validation dataset; (3) the passed iteration number. These are the effective

features to represent the progress of DeNet. The statistics features FD of the140

arrived mini-batch data are consisted of: (1) patch features extracted by the

VGG-16 FC1 layer; (2) the estimated illuminant value on each data instance.;

(3) its ground-truth illuminat value.

3.3. Selection Network (SeNet)

The SeNet parameterized by θ models the action policy πθ(st) to sample

actions based on the state features in each time step. As shown in Table 1, the

length of VGG-16 features is much larger than the sum of the rest of the features

(4096 versus 7). Thus, directly combining all the features together will cause

unbalanced representation of state features. To address this unbalanced repre-

sentation problem, we first re-separate state features into two groups including

VGG features G and the rest state features Z: S = G∪Z. We then embed the

VGG features through a fully-connected (FC) layer to a low dimension feature

representation:

G′i = φ(Wg(Gi) + bg) (1)

where Wg ∈ Rm×v, bg ∈ Rv, m is the length of VGG features, v is the length

of embedded VGG features and φ(·) represents ReLU activation function. The

rest state features Z are also embedded through a FC layer with tanh activation

function σ(·) to produce embedding features Z ′:

Z ′i = σ(Wz(Zi) + bz) (2)

8
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where Wz ∈ Rd×d′ , bz ∈ Rd′ , d is the length of rest state features Z and d′ is

the length of embedding features of Z. We then combine the embedded VGG

feature C ′ with the embedded features of the rest state features Z ′ to form

the final embedded state features. We thus could sample actions from the final

embedded state features:

ai = sigmoid(Wa(φ(Ws(Z ′i||C ′i) + bs)) + ba) (3)

where Ws ∈ R(v+d′)×u, Wa ∈ Ru×1, bs ∈ Ru, ba ∈ R1, u is the length of final145

embedded state features and “||” represents the concatenation operation. The

output layer uses a sigmoid function to sample actions to decide whether to keep

the data instance in the mini-batch for training the deep estimation network.

3.4. Deep Estimation Network (DeNet)

After the selection process, the SeNet is able to provide a batch of selected

data for the deep estimation network to estimate the illuminant. Deep esti-

mation network formulates the illuminant estimation problem as a regression

problem:

ŷi = δ(di; θr) (4)

where ŷ = {r̂, ĝ} is the estimated illuminant color, and it is predicted by the150

DeNet with parameters θr.

The detailed structure of deep estimation network is shown in Figure 2.

Based on the previous experience to construct suitable network architecture

for illuminant estimation [17], we use large size of convolutional kernel (7 × 7

and 5 × 5) to capture more spatial information. Inspired by the success of

ResNet [10] on feature learning, we also construct a residual block to learn

more representative patch features as shown in Figure 2. The selected patches

are trained by DeNet based on the mean-squared-error loss:

arg min
θr

1

N

N∑
i

‖yi − δ(di)‖22 (5)

where yi is the ground-truth illuminant label, di is the input data.

9
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It should be noticed that we did not apply very deep network architecture

such as ResNet [10] in DeNet. Such shallow network architectures are also ap-

plied in previous deep learning based illuminant estimation work [13, 14, 15,155

16, 17]. It is mainly due to two reasons: (1) the size of current color constancy

datasets are usually small, and thus using very deep network would lead to the

over-fitting problem; (2) although very deep networks have powerful discrim-

inative ability, they are usually illuminant-insensitive which is not a suitable

property for the illuminant estimation problem [18]. Thus we did not choose160

those networks with very deep structure in this work.

3.5. Reward Signal

After executing the actions, the DeNet will be trained by the selected data

which are provided by the SeNet. We will then have new observation of state

St+1 and also will receive a reward signal Rt from last time step. The goal of

our patch selection mechanism is to maximize the sum of the reward signal:

R =
∑T
t=1(rtp + rtc), where the reward signal is designed to reflect two things:

(1) the training performance rtp of DeNet; (2) the convergence rate rtc of DeNet.

In this paper, we set both rtp and rtc as the terminal reward, which is calculated

at time step T and set to 0 in other time steps. Specifically, they are computed

in the following ways: the training performance is estimated by the average

angular error on the validation set:

rTp = − 1

N

N∑
i=1

arccos(
Ŷi · Yi
‖Ŷi‖ · ‖Yi‖

). (6)

The convergence rate estimation is set to the mini-batch index iΓ that the

validation loss is lower than a threshold Γ according to work [27]:

rTc = − log(
iΓ
T ′

). (7)

where T ′ is denoted as the pre-defined maximum iteration number. The final

reward signal is then calculated by:

R = rTp + rTc (8)

10
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3.6. Training SeNet with Policy Gradient

We train the SeNet to learn optimal selection policy πθ(at|s1:t) based on the

strategy of policy gradient [28] by maximizing the expected value:

J(θ) = Ep(s1:T ;θ)[

T∑
t=1

(rTp + rTc )] = Ep(s1:T ;θ)[R]. (9)

To maximize J , the gradient of J is approximated by:

∇θJ =

T∑
t=1

[∇θ log πθ(at|s1:t)R]

≈ 1

M

M∑
j=1

T∑
t=1

∇θ log πθ(a
j
t |s

j
1:t)R

j

(10)

Although the this gradient estimator (Equation 10) can provide an unbiased

estimate of gradient, it might cause high variance and unstable the training

progress. One way to address this problem is to subtract a baseline from it [29]:

1

M

M∑
j=1

T∑
t=1

∇θ log πθ(a
j
t |s

j
1:t)(R

j − bt) (11)

where bt is the average historical reward in previous episodes. The estimation

of Equation 11 has the same expectation value as Equation 10 but could has165

lower variance to achieve stable training performance.

3.7. Illuminant Value Inference

In the testing phase, both SeNet and DeNet are no longer updated and thus

their weights are fixed. Each image in the testing dataset is evenly partitioned

to form the image patches as Xi = (d1, . . . , dN ) which is discussed in Section170

4.6. Those patches are filtered by the SeNet and the selected patches will be

estimated by the DeNet. The final estimated illuminant value is calculated by

taking the average illuminant value over all the selected patches from a particular

testing image.

11
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4. Experiment175

4.1. Experimental Setup

The following settings were used in the DeNet:

1. Data preprocessing: we crop image patches through sliding window with-

out overlapping and padding and cropped patch size is set to 32× 32.

2. The learning rate is set to 0.0003 and the batch size is set to 24.180

3. We use RMSprop optimizer for training the estimation network.

4. The ground-truth label is converted to the normalized rg chromaticity

space as: r = R/(R+G+B), g = G/(R+G+B).

For the SeNet, the following settings are applied:

1. The weights are uniformly initialized between (−0.01, 0.01).185

2. The bias value are set to 0 in hidden layers and set to 1.5 in the output

layer.

3. We use l2 normalization to normalize input state features.

4. The batch size is set to 36, learning rate is set to 0.001 and Adam optimizer

is applied to train SeNet.190

5. It should be noticed that in some situation the SeNet might select fewer

number of data instance than the batch size of DeNet. In such cases,

we will wait the SeNet for gathering enough number of data to train the

DeNet. It is to ensure the result of DeNet is not affected by different input

batch sizes, but only influenced by the input quality.195

The threshold Γ in Equation 7 is set to 0.02 which is discussed in Section 4.8

and we set pre-defined iteration number T ′ = 200. We train our approach on

four Nvidia 1080 Ti GPUs and the model is implemented based on the PyTorch.

4.2. Datasets and Evaluation Metric

We evaluate the proposed patch selection framework on two widely used color200

constancy datasets including the reprocessed [30] Color Checker Dataset [9] and

NUS 8-camera dataset [31]. The Color Checker dataset contains 568 raw images.

12
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For the NUS 8-camera dataset, it contains 1,736 images from 8 different cameras

and the experiment is done independently on each sub-dataset. Both datasets

apply a Macbeth Color Checker (MCC) to obtain the ground truth illumination205

color. When doing experiment, we masked out the MCCs in both training and

testing phase. The evaluation is done through a 3-fold cross validation for both

datasets. For the NUS dataset, we calculate the performance metric by taking

geometric mean over the eight image subsets as done in previous works.

A widely applied evaluation metric for illuminant estimation is through an-

gular error computation:

errangle = arccos(
Ŷi · Yi

‖Ŷi‖ · ‖Yi‖
). (12)

4.3. Quantitative Comparisons210

In Table 2 and 3, we compared our approaches with a number of traditional

approaches [2, 6, 32, 1, 5, 22, 26, 35, 38, 36], and also a series of state-of-the-art

deep learning approaches [16, 17, 37, 18, 40, 39]. As shown in both tables, our

approach outperformed all the other algorithms, which proved the effectiveness

of the new approach. Especially when comparing with the state-of-the-art deep215

learning approaches such as FC4 [18], our approach demonstrates low angular

error not only on the mean and media value, but also on the best and worst

value. It shows that our approach is more stable to handle different scene in

the dataset, which results in much lower the best and worst angular error than

the previous work. It proves that our solution to more carefully select suitable220

input patches for the DeNet is effective.

4.4. Ablation study

We have also performed a series of ablation study to investigate the con-

tribution of each component of our framework. We built five kinds of baseline

models:225

1. Ours (w/o SeNet): SeNet is removed and we use all the patches to train

the DeNet.

13
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Method Mean Med Best-25% Worst-25%

Gray World [2] 6.36 6.28 2.33 10.58

General Gray World [6] 4.66 3.48 1.00 10.09

White Patch [32] 7.55 5.68 1.45 16.12

Shades-of-Gray [5] 4.93 4.01 1.14 10.20

Spatio-spectral (GenPrior) [33] 3.59 2.96 0.95 7.61

Cheng et al. [31] 3.52 2.14 0.50 8.74

NIS [22] 4.19 3.13 1.00 9.22

Corrected-Moment (Edge) [34] 3.12 2.38 0.90 6.46

Corrected-Moment (Color) [34] 2.96 2.15 0.64 6.69

Exemplar [26] 3.10 2.30 - -

Regression Tree [35] 2.42 1.65 0.38 5.87

GreyPixel [36] 3.07 1.87 0.43 7.62

CNN [16] 2.36 1.98 - -

CCC (dist+ext) [37] 1.95 1.22 0.35 4.76

DS-Net (HypNet+SelNet) [17] 1.90 1.12 0.31 4.84

FFCC-4 channels [38] 1.78 0.96 0.29 4.29

SqueezeNet-FC4 [18] 1.65 1.18 0.38 3.78

AlexNet-FC4 [18] 1.77 1.11 0.34 4.29

FPCNet [39] 2.06 1.46 0.46 4.66

Ours (w/o SeNet) 2.26 1.57 0.46 5.72

Ours (w/o rtp) 2.16 1.48 0.44 5.20

Ours (w/o rtc) 1.72 1.06 0.33 4.18

Ours (S = FD) 2.10 1.40 0.42 5.31

Ours (S = FL) 1.94 1.22 0.39 5.15

Ours (S = (FL,FD)) 1.62 0.94 0.28 4.14

Table 2: Performance of various methods on the Color Checker dataset. For metric values

not reported in the literature, their entries are left blank.
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Method Mean Med Best-25% Worst-25%

White-Patch [32] 10.62 10.58 1.86 19.45

Edge-based Gamut [1] 8.43 7.05 2.41 16.08

Pixel-based Gamut [1] 7.70 6.71 2.51 14.05

Intersection-based Gamut [1] 7.20 5.96 2.20 13.61

Gray-World [2] 4.14 3.20 0.90 9.00

Bayesian [9] 3.67 2.73 0.82 8.21

NIS [22] 3.71 2.60 0.79 8.47

Shades-of-Gray [5] 3.40 2.57 0.77 7.41

1st-order Gray-Edge [6] 3.20 2.22 0.72 7.36

2nd-order Gray-Edge [6] 3.20 2.26 0.75 7.27

Spatio-spectral (GenPrior) [33] 2.96 2.33 0.80 6.18

Corrected-Moment (Edge) [34] 3.03 2.11 0.68 7.08

Corrected-Moment (Color) [34] 3.05 1.90 0.65 7.41

Cheng et al. [31] 2.92 2.04 0.62 6.61

CCC (dist+ext) [37] 2.38 1.48 0.45 5.85

Regression Tree [35] 2.36 1.59 0.49 5.54

GreyPixel [36] 1.99 1.31 0.56 6.67

DS-Net (HypNet+SelNet) [17] 2.24 1.46 0.48 6.08

FFCC-4 channels [38] 2.12 1.53 0.48 4.78

AlexNet-FC4 [18] 2.12 1.53 0.48 4.78

SqueezeNet-FC4 [18] 2.23 1.57 0.47 5.15

DPN + DMBEN [40] 2.21 1.47 0.48 5.42

FPCNet [39] 2.17 1.57 0.51 4.88

Ours (w/o SeNet) 2.47 1.65 0.53 5.98

Ours (w/o rtp) 2.38 1.59 0.49 5.89

Ours (w/o rtc) 1.98 1.35 0.45 4.82

Ours (S = FD) 2.43 1.52 0.49 5.76

Ours (S = FL) 2.24 1.38 0.47 5.32

Ours (S = (FL,FD)) 1.94 1.29 0.43 4.68

Table 3: Performance of various methods on the NUS 8-Camera dataset.
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2. Ours (w/o rtp): r
t
p is removed from the reward function (Eq. 8).

3. Ours (w/o rtc): r
t
c is removed from the reward function (Eq. 8).

4. Ours (S = FL): only use learning progress state features for the SeNet.230

5. Ours (S = FD): only use arrived data statistics state features for the

SeNet.

The results are shown in Table 2 and 3. Firstly, we could see that the estima-

tion performance drops dramatically when no selection mechanism is involved,

which is caused by a number of noisy patches that are used to train the DeNet.235

Secondly, when evaluating the contribution of each reward signal, we could see

that rtp is more important to lower down the estimation error, since rtp reflects

estimation ability of DeNet. When rtp is absent from the reward function, the

SeNet is not sure which image patches are the suitable training samples for

the DeNet. In comparison, rtc contributes less to the estimation performance,240

since it only denotes the convergence rate of DeNet. However, it is still able

to improve estimation accuracy, since the redundant and noisy patches could

be removed from training dataset to achieve fast convergence. When compar-

ing the contribution of different state features, it can be seen that the arrived

data statistics FD contributes slightly more than the learning progress features245

FL, which means the features of incoming data is crucial for SeNet to find out

optimal selection policy.

4.5. Patch Size Analysis

We also investigate how the size of cropping patch would affect the esti-

mation accuracy. The results is shown in Fig. 3. It can be seen that the best250

performance is reached by setting patch size to 32×32. When setting it to lower

resolution (16 × 16), there is small increasing on the mean angular error. It is

caused by its small receptive field that makes the DeNet unable to capture its

detailed patch features for estimation. However, it does not mean it is always

better to increase the patch size. When setting it to higher resolution (64× 64255

and 128× 128), there is also a reduction on the estimation accuracy. The main

reason is that redundant and possible noisy features could be included in the
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Figure 3: Comparative results of different patch sizes on mean angular error of both datasets.

Original number Convergence stage number

Color Checker 1,001,952 664,788

NUS 8-Camera 3,648,652 2,740,579

Table 4: Comparing the patch number at the beginning and at the end of convergence stage.

larger receptive field patch when there is already enough feature information for

illuminant estimation.

4.6. Patch Number Comparison260

We extract image patches by sliding window without overlapping and padding.

It results in 2,646 patches per image in the Color Checker dataset and 3,176

patches per image in the NUS 8-Camera dataset. In Table 4, we present the

training size of the original patches and the number of patches selected in the

convergence stage. It can be seen that the SeNet filtered out around 34% patches265

of the Color Checker dataset in the convergence stage, while only 25% of the

patches from the NUS 8-Camera dataset are filtered out. It is caused by more

severe occlusion problem that leading to the dark regions in the indoor scene in

the Color Checker dataset. Those dark patches usually contains minor informa-

tion about illuminant. They are considered as valueless patches in the selection270

process and are filtered out by SeNet in the training stage.
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4.7. Convergence Analysis
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(a) The convergene analysis on Color Checker dataset.

(b) The convergene analysis on NUS 8-camera dataset

Figure 4: We evaluate the effectiveness of SeNet on both datasets by calculating MSE loss

on the training dataset. It can be seen that by using the SeNet to select appropriate training

sets, the DeNet could achieve faster convergence than not using SeNet.

We then evaluate the effectiveness of SeNet to achieve fast convergence.

We calculate the MSE loss by the end of each epoch. The results are shown

in Figure 4a and 4b. We observed that on both datasets the SeNet could275

contribute to achieve faster convergence and lower loss. In specific, the training

loss of utilizing SeNet is almost always lower than that of not using SeNet. It
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can also be seen that the network is able to reach convergence in around 150

epochs when SeNet is applied, while it takes more than 175 epochs when SeNet

is not available.We can also observe that, in the early stage of training, the loss280

value is almost the same when the SeNet is applied or not, since the DeNet is

not well-trained. Thus DeNet could not give accurate reward feedback to SeNet

for updating its selection policy. After around 5 training epochs, the SeNet

demonstrates superior ability on providing suitable training batches to increase

the estimation ability for the DeNet. Finally, we can see that the DeNet is able285

to achieve faster convergence and lower loss value by co-operating with SeNet.

4.8. Threshold analysis

Figure 5: Comparing different mean angular errors on two datasets by setting different value

of threshold in Equation 7.

We then evaluate the influence of threshold Γ in Equation 7 on the estimation

performance. The result is shown in Figure 5. It can be seen that the best

performance is achieved when setting Γ = 0.02 on both datasets. When setting290

Γ to higher value, the estimation error increases dramatically. The reason is that

it is easy to achieve such high loss at the early stage of training (see Figure 4a

and 4b), which reduces the incentive of DeNet to reach lower loss value. When

setting Γ to smaller value, there is slightly increase on the estimation error. The

reason is that it is difficult for the DeNet to achieve such low validation loss,295

and thus improvement between each epoch is relatively smaller. This makes it

19

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

ambiguous for the SeNet to update its selection policy with such tiny changes

in the reward feedback.

5. Conclusion

In this paper, we provide a new research perspective on the single illumi-300

nant estimation task, where the inputs to the deep learning model should be

carefully chosen to prevent noisy inputs and information loss. To solve this prob-

lem, we propose a patch selection mechanism based on a reinforcement learning

framework. A selection network uses the state features of learning progress and

statistics of the arrived data to formulate a decision policy to provide the op-305

timal inputs to the deep estimation network. By applying such patch selection

strategy, the deep estimation network could achieve better estimation results

and faster convergence rate than the random cropping approach in previous

deep learning based solutions to this problem.
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