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Abstract
Equivalent plate models are commonly used in order to simulate multilayer system as one single layer. This kind
of approach enables for instance to reduce the mesh size and thus the number of degrees of freedom in finite
element models. Usual condensed model rely on thin plate theory and are obviously limited when considering
thick multilayers. In this work we present a comparison of the transmission loss prediction using different
analytical models of solid layers: thin plate, thick plate (first order shear deformation) and 3D modelling (3D
linear elasticity) . Doing so, analytical limit for the validity of the thin plate theory is derived from wavenumber
analyses. Applications to industry inspired cases are presented.
Keywords: Equivalent plate model, Transmission loss

1 INTRODUCTION
In recent years, multi-layered partitions have been used widely for better sound comfort and noise attenuation.
Advanced composite structures are one type of multi-layered systems which are being used increasingly in var-
ious industries such as aerospace and aircraft industries. Sandwich composites which exhibit high stiffness with
light weight are widely used in the transportation and construction industries. Since the interactions between
the different layered materials affect the acoustic performance of the multi-layered system, it is not always op-
timized by including only the best materials. Due to the diversity of materials used in the multi-layered system,
modelling of this system often requires suitable mesh types for the material used and increases the total mesh
count in the Finite Element modelling. Additionally, it would lead to high computation time due to these com-
plexities. Therefore, in many engineering cases, it is of high interest to condense the behaviour of a multi-layer
system to a single layer material. This aims at reducing the mesh size of the finite element model which will
lead to less computation time. Guyader and Cacciolati[1, 2] had developed an equivalent thin plate model for
the multi-layer plate made of isotropic layers. Ross, Kerwin and Ungar (RKU) [3–6] developed a simplified
dynamic model for a three layer system to find the equivalent material properties. The model is initially devel-
oped for beams which was later used for plates as well. For the multi-layer plate consists of general orthotropic
layers, Woodcock[7] developed a vibroacoustic model which was later reformulated by Loredo and Castel[8] for
anisotropic layers. Marchetti, Ege, and Leclere[9] recently developed an equivalent plate model for multi-layer
thin plates made of orthotropic layers.
The goal of equivalent plate models is to find a set of parameters for a thin plate model which embeds the
bending and shear behaviours of a multilayer. The parameters are computed at each frequency and used with
a thin plate model. As the compressional effects are not taken into account in thin or thick plate models, this
requires a frequency limit to safely apply these models to have only equivalent bending effect. In this direction,
the present paper compares the elastic thin (Love-Kirchoff), thick (Reissner-Mindlin) and solid (linear elasticity)
plate models to find the analytical frequency limit to apply the classical plate theory to find the transmission
loss across the plate.
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Figure 1. Plane wave incidence on the elastic medium

2 VIBROACOUSTIC MODEL FOR THE ELASTIC PLATES
2.1 Transfer matrix for elastic solid
Generally, the Transfer Matrix Method (TMM) is used to compute the vibroacoustic indicators of the multi-
layer system from the transfer matrices of the stratified media. In the present work, this method is adopted to
compute the transmission loss of a single layer of isotropic elastic medium. Consider an infinite layer along
the x and y directions with thickness h along the z direction as shown in the Fig. 1, excited by a plane wave
with incidence angle θ . The layer has z axis origin at the middle surface as a reference. By considering both
longitudinal and shear wave propagation, the associated displacements and stresses can be obtained from theory
of elasticity approach and the transfer matrix ([T ES]) which relates the state variables (V ES) between the points
M and M’ is written as follows:

V ES(M) = [T ES]4×4V ES(M′) (1)

The elements of the matrix [T ES] are given in the book by Allard and Atalla[10] and the state vector (V ES)
which describes the acoustic field is given as:

V ES = {u̇x, u̇z,σzz,σxz}T (2)

In the above equation, u̇ and σ are the velocities and stresses, respectively. The transmission loss of the elastic
layer can be computed by Transfer Matrix Method (TMM), for example, as detailed by Allard and Atalla[10].
As the acoustic field in the elastic layer is completely described by the longitudinal and shear waves, the TL
solution obtained from [T ES] is taken as a reference to compare the other vibroacoustic models. Similarly for
the following plate models, by having appropriate transfer matrix, the TL is computed in the same way.

2.2 Transfer matrix for plate theories
If the acoustic field in the elastic layer (Fig. 1) is described by the state vector V P = {σzz, u̇z}T , then the general
form the transfer matrix for the plate theories can be expressed by the following equation:

V P(M) = [T P]V P(M′) =
[

1 −ZP
0 1

]
V P(M′) (3)

Here, ZP is the mechanical impedance of the plate and it is expressed as below based on the theory adopted.

ZP =
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=
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(4)

where, kt = k0 sinθ with k0 as the wave number in the air, ms is the mass density per unit area, D is the bending
stiffness, G∗ = Gξ with G as the shear modulus of the plate, ξ is the shear correction factor, Iz =

msh2

12 is the
mass moment of inertia, and ω is the circular frequency. The mechanical impedances of the thin and thick plates
are obtained from the elastic plate theories of Love-Kirchoff[11] and Reissner-Mindlin[12, 13] respectively.
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2.3 Transfer matrix for equivalent thin plate theories
2.3.1 Guyader model
By applying classical plate theory to the multi-layer viscoelastic plate, Guyader and Cacciolati [1, 2] developed
an analytical model to determine the equivalent complex bending stiffness as a function of the excitation fre-
quency. In this model, each layer is assumed to have Reissner-Mindlin type displacements or in other words
each layer is modeled by considering bending, membrane and shear effects. Displacement and shear stress con-
tinuity conditions are applied to obtain the equations of motion of the multi-layer plate which are interestingly
expressed as a function of only the first layer displacement field. Finally, assuming that the transverse dis-
placement is the same for both the equivalent single layer and the multi-layer plate, this model determines the
equivalent bending stiffness by using Love-Kirchhoff thin plate theory.

2.3.2 RKU model
Ross, Kerwin and Ungar (RKU) [3–6] developed a vibroacoustic model for a three layered plate by assuming
the second layer (core) to be soft in nature compared to the other two stiff layers (skins), and the core is mainly
stressed in shear. Expressions for the equivalent thin plate properties such as bending stiffness and loss factor
are derived as a function of the shear parameter that describes how well the viscoelastic layer couples flexural
motions of the other two layers. The complete derivation can be found in the articles [3–6] as well as in the
book by Beranek and Ver[14].

2.3.3 Added Stiffness (AS) Model
This model is based on computing the equivalent properties by adding the respective individual layer properties.
The bending stiffness of each layer is obtained with respect to the neutral axis of the multi-layer plate. One
can note that a similar approach is often used for composite materials as described in [15] for beams.

After obtaining the equivalent bending stiffness (Deq) from the above equivalent thin plate theories, it can be
substituted in Zthin for the TL computation. It must be noted that Deq is a dynamic bending stiffness (i.e,
function of the frequency) for the equivalent plate models.

3 COMPARISON WITH AS MODEL: A MULTI-LAYER PLATE EXAMPLE
In this section, a multi-layer plate (Plasterboard/Glue/Plasterboard) of practical application is taken to illustrate
the necessity of the frequency limit, for the AS model, to be found. The material properties are listed in the
Table 1. The TL curves pertaining to the diffuse field excitation are generated from the AS model (equivalent

Table 1. Material properties

Material parameters Units Plasterboard Glue Concrete
Thickness mm 12.5 0.5 140
Density kg/m3 700 600 2300

Young’s modulus GPa 3 0.002 30
Loss factor - 0.02 1 0.02

Poisson’s ratio - 0.3 0.3 0.3

thin plate model) and compared with linear elasticity solution in the Fig. 2. It can be observed that AS
model starts to differ from the reference solution before the critical frequency (though it predicts the critical
frequency with good accuracy) of the multi-layer plate. It also shows that the stiffness is predicted with a fair
accuracy while the loss factors is largely underestimated. Furthermore, at higher frequencies, the difference in
TL between the reference solution and equivalent plate models is greater than 4 dB. This example the need for

275



Figure 2. Transmission loss for the multi-layer plate (Plasterboard/Glue/Plasterboard) under diffuse field excita-
tion

the frequency limit is required to safely use the AS model for the vibroacoustic problems of the multi-layer
system. In this direction, as a primary step, the next section discusses about deriving the analytical frequency
limit for the Love-Kirchoff plate model.

4 FREQUENCY LIMIT FOR THE LOVE-KIRCHOFF PLATE MODEL
The behaviour of the propagating waves in the framework of the thick plate model is studied in this section
followed by the discussion on the analytical frequency limit for the thin plate model. The dispersion equation
of thick plate can be obtained by letting Zthick = 0.
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2 +

(
Izms
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ω

2− k2
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)
ω

2− k2
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2 = 0 (5)

The propagating wave number solution of the above dispersion relation is written as:
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By defining k2
b = ω

√ms
D ,k2
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G∗h and k2
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D , Eq.(6) is rewritten in a compact form as:
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It can be observed from Eq.(6) that at low frequencies kb >> ks,kr, leading to the pure bending wave propaga-
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tion. In this case, we have

kt ≈ kb =

√
ω

√
ms

D
(at low frequencies) (8)

At higher frequencies, ks >> kb, leading to pure shear wave propagation.

kt ≈ ks = ω

√
ms

G∗h
(at high frequencies) (9)

With this regard, kb and ks are referred as bending and shear wave numbers respectively in the further discus-
sions. Based on the percentage error between the wave number pertaining to the bending wave (Eq.(8)) and
the full propagating wave (Eq.(6)), the limiting frequency for the use of thin plate model for the vibroacoustic
problems can be found. By defining C = kb/ks, it can be seen from the Eq.(10a) that, the ratio between kt and
kb (thus the error,ε) is the function of only the Poisson’s ratio, shear correction factor and C.
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C2 +
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ε =

(
1− 1
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)
100% (10b)

The value for C can be chosen such that ε is below the accepted error percentage and the frequency limit for
the thin isotropic plate model can be found as given by Eq.(11).

ωlimit =
ξ

2C2h

√
12E

ρ

1−ν

1+ν
(11)

It can be observed that the influence of material properties on the frequency limit is small when the plate
thickness is large and vice versa. To illustrate this frequency limit, the transmission loss (TL) curves for the
plasterboard and concrete (Table 1) are computed from the transfer matrices of thin plate, thick plate, Guyader
model and compared with linear elasticity solution for an oblique plane wave incidence with θ = 60o. The
TL curves obtained for plasterboard (Fig. 3) show that the thick plate and Guyader models estimate better with
elasticity solution. It is to be noted that the frequency limit is computed from the Eq.(11) by having C = 4,
which corresponds to the error percentage (ε) of 1.94%. The frequency limit for the thin plate model in this
case is found to be before the coincidence frequency. But in the case of concrete material, Fig. 4 shows that
the frequency limit spotted after the coincidence frequency, which is interesting to note.
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Figure 3. Transmission loss for the plasterboard under plane wave excitation with θ = 60o

Figure 4. Transmission loss for the concrete under plane wave excitation with θ = 60o
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5 COMPARISON OF PLATE MODELS FOR THE MULTI-LAYER PLATE EXAMPLE
In this section, the same multi-layer plate (discussed in section 3) is taken for the comparison of equivalent
thin plate models with linear elasticity solution. From Fig. 5, it can be observed that, since Guyader and
RKU models include the shear behaviour of the multi-layer plate in their formulation, they predict the critical
frequency of the plate with good approximation though the equivalent properties corresponds to thin plate. But
it is also seen that they exhibit poor correspondence with elasticity solution at higher frequencies, because these
models do not account for compressional effect in their theories. Also, it must be noted that, as the parameters
of equivalent plate models are fitted with a thin plate model, they can not be used with other models as thick
plate or full elasticity.

Figure 5. Transmission loss for the multi-layer plate (Plasterboard/Glue/Plasterboard) under diffuse field excita-
tion

6 CONCLUSION
A multi-layer plate of practical application is taken to illustrate the need to find the frequency limit for the
Added Stiffness (AS) model, as it is applicable only for thin multi-layer plates. From the wave propagation
analysis of the thick plate model, based on the Reissner-Mindlin plate hypothesis, the analytical expression of
the frequency limit for the thin plate model is derived. From the comparison plots, the deviations of transmis-
sion loss curves obtained from different models are observed after this frequency limit. It is also observed that
the thick plate (Reissner-Mindlin), Guyader and RKU models provide good approximation with the linear elas-
ticity solution by including shear effect of the plate but do not exhibit good approximation for the compressional
effect of the plate.
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