
Accepted manuscript doi: 
10.1680/jener.23.00017 

 

Accepted manuscript 

As a service to our authors and readers, we are putting peer-reviewed accepted manuscripts 

(AM) online, in the Ahead of Print section of each journal web page, shortly after acceptance. 

Disclaimer 

The AM is yet to be copyedited and formatted in journal house style but can still be read and 

referenced by quoting its unique reference number, the digital object identifier (DOI). Once 

the AM has been typeset, an ‘uncorrected proof’ PDF will replace the ‘accepted manuscript’ 

PDF. These formatted articles may still be corrected by the authors. During the Production 

process, errors may be discovered which could affect the content, and all legal disclaimers 

that apply to the journal relate to these versions also. 

Version of record 

The final edited article will be published in PDF and HTML and will contain all author 

corrections and is considered the version of record. Authors wishing to reference an article 

published Ahead of Print should quote its DOI. When an issue becomes available, queuing 

Ahead of Print articles will move to that issue’s Table of Contents. When the article is 

published in a journal issue, the full reference should be cited in addition to the DOI. 

Downloaded by [ University of Nottingham] on [23/11/23]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jener.23.00017 

 

Submitted: 02 April 2023 

Published online in ‘accepted manuscript’ format: 10 November 2023 

Manuscript title: Prediction of energy performance of residential buildings using regularized 

neural models 

Authors: Komal Siwach
1
, Harsh Kumar

2
, Nekram Rawal

3
, Kuldeep Singh

4
 and Anubhav 

Rawat
5
 

Affiliations: 
1
Maharshi Dayanand University, Rohtak, India; 

2
Indian Institute of Technology 

Delhi, India; 
3
Civil Engineering Department, Motilal Nehru National Institute of Technology-

Allahabad, Prayagraj, India; 
4
Faculty of Engineering, University of Nottingham, Nottingham, 

UK and 
5
Applied Mechanics Department, Motilal Nehru National Institute of Technology-

Allahabad, Prayagraj, India 

Corresponding author: Anubhav Rawat, Applied Mechanics Department, Motilal Nehru 

National Institute of Technology-Allahabad, Prayagraj – 211004, India. 

E-mail: anubhav-r@mnnit.ac.in 

Downloaded by [ University of Nottingham] on [23/11/23]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jener.23.00017 

 

Abstract 

Human habitats are one of the major consumers of energy. Therefore, in the current age of increasing carbon 

footprints, analyzing energy efficiency of a building is imminent, which has been taken up in the current work. 

Machine learning based Artificial Neural Network-ANN approach is used in the current work to study building-

energy-performance. Total eight parameters; relative compactness, surface area, wall area and roof area of the 

building, overall height, and orientation of the building, glazing area and its distribution are selected as the input 

parameters and heating and cooling loads as the output parameters. The network prediction capability was 

checked by comparing the predictions of the ANN architecture with the benchmark test case. A well trained and 

validated ANN is used to predict 96 conditions by varying glazing area and glazing area distribution. ANN is 

found to capture the physics efficiently. This study revealed that there is a significant potential to improve the 

energy efficiency of the building and the maximum saving in the cooling load can be as high as 20.67% for a 

fraction of the glazing areas equal to 0.15 if glazing area distribution is kept 32.5% in North, and 22.5% each in 

the East, South and West. 

Keywords: Energy; Building Energy Performance; Machine Learning; Neural Network; Glazing Area; Heating 

and Cooling Load; Built Environment 

Downloaded by [ University of Nottingham] on [23/11/23]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jener.23.00017 

 

INTRODUCTION 

In today’s era of globalization, industrialization and capitalization where economies are open to 

each other, there has been an influx of the masses to move to cities and this caused the number of 

cities to increase substantially from 5000 to approximately 10000 in last 50 years (Zlotnik 2017). 

During these years the major concern of the policy makers for governments have been to provide an 

abode to this population (Ozarisoy & Altan 2022). The houses so constructed require many amenities 

which are dependent on Energy supply from various sources. In haste, many a time the energy 

resources have been overburdened to construct the required buildings and in many of the cases the 

buildings were not given a due care for their energy efficiency resulting in more carbon foot prints 

across the globe. These urban buildings currently accounts for around 40% of the carbon emissions 

worldwide (Ma et al. 2012, Virote & Neves-Silva 2012, Abergel et al. 2018). It becomes much more 

important considering the fact that the life span of these buildings in much long. Changes in climate 

due to greenhouse gasses emissions and heat energy from buildings have increasingly affected the 

distribution and composition of ecosystems. This causes a very harmful impact on air quality, global 

biodiversity, agriculture, natural resources etc. in addition, it is responsible for high concern 

respiratory, circulatory, and skin diseases. Therefore, every year united nation’s organization like 

UNFCCC emphasizing to reduce carbon emissions in particularly in Urban areas (Kelly 2020). 

The Urbanization is required because cities generate more than 80% of global GDP, new ideas and 

innovations, industrialization, improved education and health facilities, availability of internet etc. 

Urban areas are responsible for two- thirds of primary energy consumption and 70% of carbon 

dioxide emissions only from the energy sector worldwide whereas the land surface covered by the 

urban areas is only 3%. Moreover, the ratio of the urban population to the global population will 

increase from 55% to 68% between now and 2050. As a result, more buildings will be needed which 

will be devastating for environmental health, however to attain sustainability is the only key to 

survive (Zlotnik 2017). 

In these circumstances urbanization and building creation shall only expand rather than being 

remained curtailed. It is thus imperative to design these buildings in such a manner so that they 

consume and waste minimal energy to save carbon footprints. This proportion of energy consumption 

depends on many parameters which need to be taken care of during the architectural design of a 

building. The parameters include weather conditions around the building, the age of the building, 

geometry design of the building, services offered, activities being carried out in the building, and last 

but not the least the glazing. 
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It is clear from above literatures that zero carbon foot in buildings require an attentive design of every 

parameter involved in energy performance of a building. For designers of such systems prior energy 

data of buildings is very vital. This data can be used by variety of software available to predict the 

energy need thereby suitable models for performance predictions. But the main problem lies in the 

dynamics of the data. Due to which the analysis of different data is very cumbersome and time-

consuming exercise. Therefore, a quick tool is vital which will help in concept design of urban 

buildings efficiently under these dynamic conditions. AI based artificial neural networks are answers 

to them. 

Conducting experiments and doing detailed energy analysis are expensive cumbersome exercises. 

Therefore some alternative approaches are the need of the hour. In a recent past a remarkable study 

was performed by Forrester (1994) to highlight the importance of System dynamics approach which 

paved way for future Machine learning based works. 

Artificial Neural Networks is one such modelling approach of machine learning based modelling. 

Many studies are there in literature which highlights the importance of ANN based modelling (Gupta 

et al. 2017, Azadeh et al. 2011, Lippmann 1987, and Kang 2017) has also proven its efficacy in 

plethora of problems of core engineering related to mechanical, civil, electrical, computer science etc. 

This depicts that ANN is one of the most flexible tools having tremendous learning ability under 

dynamic systems and may prove to be vital for energy performance prediction of buildings. In 

comparison to other tools of artificial intelligence, ANN has already been proved to be a better option 

in solving the dynamical non-linear behaviors of engineering systems involving bigger dimension 

data sets (Haykin 2010). Zhang et al. 2021 reviewed the applications of machine learning for 

modelling and analysing the building energy system. They summarized 128 different machine 

learning algorithms namely algorithms of Regression, Support Vector Machine (SVM), Neural 

Network (NN), Deep Learning, Tree-based Algorithms, Hybrid Algorithms, Autoregressive methods, 

Extreme Learning, Bayesian Networks, Case-based Reasoning (CBR), Meta Learning, k-Nearest 

Neighbors (kNN), Gaussian Process and Mixture Models, Ensemble Methods, Fuzzy Timeseries 

Algorithm etc can be applied to predict building energy load. 

Banihashemi et al. 2017 used the ANN approach analyzing building energy performance by 

postulating a unique approach in which they introduced the energy hybrid function both in ANN and 

the decision tree. This enabled the network to deal with the continuous data. Deviating from 

traditional physics methods, Paterson et al. 2017 gave a machine learning based approach for building 

performance prediction. For performance analysis they used thermal comfort and energy consumption 

as the input layer parameters and could give the results having and errors within 22-23% in terms of 

mean absolute percentage error (MAPE). Considering the same factors of thermal comfort and energy 
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consumption Zhai and Soh 2017 tried to optimize heating, ventilation and air conditioning systems. 

With application of two algorithms sparse firefly algorithm and sparse augmented firefly algorithm 

(AFA) they could gave a program to save energy by upto 30% at no compromise to thermal comfort. 

Ahn and Cho 2017 gave another ANN base model to control the room parameters for energy 

efficiency through the air supply and its temperature together. Using this model, they could reduce the 

energy consumption by 2% by avoiding the control errors upto 88%. 

For Zero Energy Building (nZEB) in cold climate conditions, Xiaolong et al. 2018 did an energy 

performance analysis using ANN to minimize heating and cooling needs of these buildings in 

particularly for China. Using their approach, they could predict the energy needs upto an accuracy of 

approximately 95%. Turhan et al. 2014 studied many parameters using ANN approach to analysis the 

effect of these parameters, like geometry, layout climate etc., over building energy performance in 

terms of heat load. They did the whole exercise to compare the results of ANN with a software called 

KEP-IYTE-ESS (Turhan et al. 2014 and KEP-SDM 2008) which was a building energy performance 

simulation tool. They found that the ANN predictions were as good as the physical modelling using 

software tool with prediction rate of 0.977. 

Razmi et al. 2022 recently conducted a study to optimize and improve the energy performance 

during the architectural design of a building. Their PCA-ANN integrated NSGA-III model was 

specially focused for buildings like dormitories have multi-type buildings. The model had the R
2
 score 

of 0.99 with a prediction of thermal performance improvement in the range of 15-42% with respect to 

the existing base models. Elbeltagi and Wefki 2021 used ANN to predict the building energy 

performances in the early stages of its design with a reasonable accuracy. Chujie et al. 2021 did a 

detailed literature survey work and reviewed various works in recent past (Deb et al. 2017, Wang and 

Srinivasan 2017, Wei et al. 2018, Amasyali and El-Gohary 2018, Bourdeau 2019, Mohandes et al. 

2019, Wang et al. 2019, Roman et al. 2020, Fathi et al. 2020, and Sun et al. 2020) on energy 

performance analysis using ANN and concluded that ANN can be used for predicting building 

performances effectively. Their work basically focused on various ANN architecture for e.g., MLP, 

RBF, WNN, NARX, ENN, RNN, LSTM and CNN etc. 

Bui et al. 2020 further gave a new ANN model using Electromagnetism dependent Firefly model 

to evaluate the heating performance and cooling performance of buildings. D'Amico and Ciulla 2022 

worked on the similar aspects to check the economics of ANN based model in predicting the building 

energy efficacy. Xiang et al. 2022 used a three-step model approach using GeneticAlgorithm-Neural 

Network (GA-ANN) for building energy performance analysis to make the designers of such 

buildings predicting the real time, easy to use and trust worthy assessment in decision making. Olu-

Ajayi et al. 2022a adopted a machine learning (MI) based approach and compared nine algorithms for 

better suitability to building energy performance. Along with that probably first time they used hyper 
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parameter tuning for best results in building performance analysis through MI approach. Olu-Ajayi et 

al. 2022b further used various ML approaches like utilized various machine learning techniques such 

as Artificial Neural Network (ANN), Gradient Boosting (GB), Deep Neural Network (DNN), Random 

Forest (RF), Stacking, K Nearest Neighbour (KNN), Support Vector Machine (SVM), Decision tree 

(DT) and Linear Regression (LR) for the prediction of annual energy consumption in residential 

buildings. They concluded that the DNN (Deep Neural Network) is the most efficient model for 

energy prediction. The unique aspect of their work was to include the building design features as the 

part of the model. Zhang et al. 2019 developed and evaluated cooling load models using K-means 

clustering method and k-nearest neighbor (kNN) classification method. It is suggested that 

consideration of different load modes can effectively improve the accuracy of prediction of the day-

ahead model. Further Yang, et al 2023), López-Ochoa et al 2023, Ma, et al 2023, Krarti 2023 and 

Wang, et al 2023 recently did some remarkable researches to highlight the importance of machine 

learning approaches in the field of energy optimization. 

The above detailed literature survey reveals that, the Machine learning approach in particular ANN 

can address the design of building services in new buildings by optimizing the efficiency of different 

energy management, heating, ventilation, air conditioning and water systems as it can simultaneously 

handle multiple parameters efficiently to explicitly manifest their importance by avoiding costly 

experimentation for each parameter individually. It may provide a more detailed alternative to 

traditional building energy benchmarking and rating schemes. AI can either enable or inhibit the 

delivery of all 17 goals and 169 targets recognized in the 2030 Agenda for Sustainable Development 

(Vinuesa 2020). AI may act as an enabler on 134 targets (79%) across all SDGs, generally through a 

technological improvement, which may allow it to overcome certain present limitations. The major 

research contributions of the present work are summarized as follows: 

 In the present work one of the widely accepted tools of AI, artificial neural networks (ANN) 

have been chosen to establish the energy efficiency of a building situated in Greece. 

 Furthermore, the current work involves comparing the prediction performance of three neural 

variants models namely Levenberg-Marquardt (LM), Bayesian Regularization (BR) and 

Scaled Conjugate Gradient (SCG) for the target prediction task. The aim here is to find the 

best model for achieving reliable and accurate forecasting performance. 

 The impact of several building parameters; relative compactness, surface area of the building, 

wall area of the building, roof area of the building, overall height, and orientation of the 

building, glazing area and glazing area distribution on the heating and cooling loads of the 

buildings is well investigated and discussed in the present study. 

 The current research study reveals critical information about several factors to improve the 

energy efficiency of the buildings. 
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ARTIFICIAL NEURAL NETWORK (ANN) BASED MODELLING 

Based on literature survey, it is manifested that there exist alternative modeling and analysis 

approaches for the design of energy efficient buildings. Artificial Neural Networks are one of those 

most efficient machine learning based approaches which have gained popularity based on its potential 

to effectively simulate a physical systems of real world and very low cost. Details of this methodology 

which has been adopted in the current work are explained in subsequent sections. 

Structure of ANN 

ANN is a processing system, design which is inspired by the structure and functioning of the 

human brain, that can be trained to analyse and model nonlinear, complex processes that are not well 

explored or understood. A schematic diagram showing signal processing by an artificial neuron is 

shown inFigure 1.The similarity between a human neuron and artificial neuron is shown in Figure 1 

(a), where dendrite is taken as input, and synaptic terminal is taken as output. 

An artificial neural receives signal as an input and multiply these inputs with the weights 

corresponding to each input signal. The cumulative signal is processed by an activation function to get 

an output as shown in Figure 1(b). An artificial neural network is combination of several such 

neurons. The general-purpose ANN structure consists of various hidden layers and an input and an 

output layer. Each hidden layer may comprise of multiple 

neurons. The connection from input layer to hidden layers and hidden layers to output layer remains 

through weight activation function and optimization functions only to update the value of weights in 

each iteration called as learning of the ANN network (Zell et a. 1994). Flow diagram of neural 

network is shown in Figure 1(c) which explains the network as the matrix of neurons and its topology 

or connections between them which is governed by its learning rule. Each output of a neuron becomes 

the input to the next layer neuron. Complex relationships can be modelled with the help of multiple 

layers of neurons with different neurons in each layer training is done by sequentially applying inputs 

and adjusting their corresponding weights according to a specified algorithm until the desired target 

value is obtained. While training, the weights for each input will end up to a specific value, till its 

output approximately reaches the desired target. 

Mathematical Modelling of a Neuron 

A neuron, which is known to mimic the functionality of biological neuron, is obtained by 

formulating a simplified function into a mathematical formula, which will further be the basis of the 

mathematical model of neural network. In this section the mathematical model of Feed Forward Back 

Propagation (FF-BP) and Bayesian Regularization (BR) is explained. 
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Feed Forward Back Propagation 

Feed Forward Back Propagation (FF-BP) model can be categorized in two phases. During 

first phase, the input is presented and propagated forward through the network to compute the output 

value for each neuron. This neuron is then compared to the target output, resulting in an error signal 

for each output unit. The second phase involves a backward pass through the network during which 

the error signal is passed to each unit in the network and the appropriate weight change is made. 

Mathematical modelling of FF-BP algorithm is presented as below. 

The input vector    is defined as 

    [         ] (1) 

and the weight vector     is defined as 

     [            ] (2) 

The induced local field    is obtained by 

    ∑      
   
    (3) 

where, n is the number of inputs and the bias    is given as 

          (4) 

Finally, the output    is obtained as. 

     (       (5) 

where,   is the activation function which determines the behavior of a node. In current work sigmoid 

function is taken as activation function following Angel et al. 2017 as shown in Eq. (6), and its value 

varies from 0 to 1. 

  (  (    
 

      (    (   
 (6) 

where,     and      (    . 

The error signal at the output of neuron j at n
th 

iteration is calculated as 

   (     (     (   (7) 

The total error energy or cost function for neuron j at n
th
 iteration is given by 

  (   
 

 
∑   

 
   (   (8) 

where, m is the number of neurons in output layer 

Now if N is the total number of the training data set, then the average cost function will be, 

      
 

 
∑  (   

  (9) 

The goal of the training of the network is to adjust the weights to get closer to the target value. Thus, 

the objective of iterative training is to minimize the averaged cost function. As average cost function 

is a function given as  (     (        , its partial derivative is evaluated by the chain ruleas given 

in Eq. (10). 
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Individual constituents of Eq. (10) can be derived by differentiating Eq. (8), Eq. (7), Eq. (5) and Eq. 

(3). These constituents are given in Eq. (11) - Eq. (14). 
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After finding all the derivatives and substituting them back in Eq. (10) we may obtain, 

 
  (  

    (  
    (    

 (  (  )  (   (15) 

The updated weights can be written as given in Eq. (16), 

      (     
  (  

    (  
     (    

 (  (  )  (   (16) 

where,   is the learning rate parameter. 

These weights are calculated and updated iteratively for all the neurons used in ANN. 

Bayesian Regularization 

The intricacy of the back propagation neural network (BPNN), monitored by neurons in the 

hidden layer and their associated weights may leads to overfitting, i.e., the network tries to make the 

error as small as possible for the training set but performs poorly when new data is presented. 

However, a robust network model should be able to generalize accurately, i.e., it should predict 

accurately even when presented with new data. Therefore, Bayesian regularization-based learning of 

BPNN models is utilized to achieve better generalization and minimal over-fitting for the trained 

networks following Gouravarajua et al. 2020. To generalize the neural network, the cost function is 

modified using a regularization method. A penalty term is added to the performance index and 

performance index has been defined as 

  ( ̅    (       (17) 

where,     are regularisation parameter,    is the squared network weights and  (   is the total error 

energy or cost function. If    , smaller errors are generated, while if   , there is a reduced 

weight size, hence BR is used to find the optimum regularization parameters between   and  . 

Target is to choose the weights which maximize the posterior probability distribution of the weights 

 given a certain training data D, where weights ( ̅ are considered as random (         ׀̅ ) 

variables and   as neural network architecture. 
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According to Bayes’ rule, posterior probability distribution depends on the likelihood function, the 

prior density, and the normalization factor for a neural network model   and can be evaluated from 

(         ׀̅ )     
(     ׀̅ ) (     ̅ ׀  ) 

(       ׀  ) 
 (18) 

The likelihood function is given as 

(     ̅ ׀  )     
 (      

  (   
 (19) 

where,   (    (
 

 
     and       , 

And Prior density is given as, 

(     ׀̅ )    
 (      

  (   
 (20) 

The Posterior probability distribution is given as, 

(         ׀̅ )    
 (           

  (     
 

 (  ( ̅  

  (     
 (21) 

where,   (      is the normalization factor. 

The complexity of the model    is governed by regularization parameters(     , which need to be 

estimated from the data. Therefore, Bayes’ rule is again applied to optimize them as follows 

(     ׀     )     
(  ׀    ) (       ׀  ) 

(  ׀  ) 
 (22) 

    
 

   ( ̅  
 (23) 

where  (     ׀     ) denotes the assumed uniform prior density for the parameters   and  . It was 

seen that by maximising the likelihood function, the posterior probability maximises automatically. 

However, it can be noted that the likelihood function is the normalisation factor. For solving the 

likelihood function, the objective function around the minimal point  ̅ is expanded with a Taylor 

series expansion, and the optimum value of the regularization parameters can be evaluated using, 

    
   

   ( ̅  
 (23) 

where,   represent the number of effective parameters exhausted in minimising the error function 

given as 

         (      (24) 

For      , the Hessian matrix of the objective function is evaluated at  ̅  and is calculated using 

the Gauss-Newton approximation as 

        (25) 

where,  is the Jacobian matrix formed by the first derivatives of the network error   with respect to 

network weights    . 

The normalization factor   (     can then be approximated as 

   (      (   
 

 (   (     
 

     (  ( ̅    (26) 
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Bayesian Regularisation (BR) ANNs are extra vigorous than usual back-propagation networks and 

can lessen the necessity for long cross-validation. BR algorithm is a process that changes a nonlinear 

regression into a “well-modelled” statistical problem in the means of a ridge regression. Hence BR 

algorithm generally takes more time but is accurate with smaller data sets. 

Complex relationships can be modelled with the help of the multiple layers of the neurons with 

varying number of neurons in each layer. The weights for each input are the most important parameter 

to analyse the impact that input variable produces over the target output. The input variables having a 

stronger influence on the output parameter will have larger weights on specific input variables. 

Training Network 

Selection of the training network is the most important step while performing ANN analysis. The 

network consists of several layers termed as the input layer, the hidden layer, and the output layer. 

The input node is the left most node, while the output node is the right most one, the layers between 

the input and output layers are called as the hidden layers as depicted in Figure 1 (c). The network is 

basically trained by manipulating the values of hidden layers. The signals travel from the input layer 

to the output layer through hidden layers. Each neuron of the neural network is connected to the 

previous and next layer by an imaginary line with different weights and after each iteration (epoch), 

network updates these weights according to the desired output. 

The output of every node is the weighted sum of the input multiplied with its weight for every 

connection. To produce the output vector, the weighted sum of all of the neurons of the input passes 

through an activation function. An activation function may be sigmoid, RELU, Tanh, Linear etc. 

Sigmoid has been used as the activation function in the current work for all the hidden layers 

following Angel et al. 2017. A sigmoid function is a real function defined for all the real values and 

has a non-negative derivative. Mathematically, sigmoid function is defined as, 

   
 

  (     (28) 

where, x is the input parameter and y is the output parameter. 

Network Development 

MATLAB is used for the development of the required ANN network for the study. MATLAB is a 

programming language and numeric computing environment developed by MathWorks which 

provides the platform to create an artificial neural network (ANN), in which the data set can be 

trained using nnstart tool as shown in Figure 2. The saved network with the best performance (having 

least MSE) is used to predict the heating and cooling loads with the testing data or new data. The 

iteration continued till optimum number of neurons in hidden layer is reached, which is governed by 

value of the mean square error (MSE).One of the representative networks used in this study is shown 

in Figure 3. The details of this network shall be explained in section 3.3. 
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DEVELOPMENT OF NEURAL NETWORK FOR MODELING HEATING AND COOLING 

LOAD OF RESIDENTIAL BUILDING 

To develop the required neural network for the optimization of the heating and cooling loads of 

the residential buildings, the data set of Tsanas and Xifara (2012) is used in the present study. Figure 

4 shows the schematic diagram depicting parameters investigated in the present study and range of 

investigated parameters are given in Table 1. 

Benchmark Data Set 

The data used in the present study is taken from Tsanas and Xifara 2012, which is openly 

available from the following link https://archive.ics.uci.edu/dataset/242/energy+efficiency. Statistical 

analysis of this data has already been done by the authors of this article Tsanas and Xifara 2012. 

Additionally, Chou and Bui 2014 used the same data set and carried out analysis using support vector 

regression (SVR), artificial neural network (ANN), classification and regression tree (CART), chi-

squared automatic interaction detector (CHAID) and general linear regression (GLR). 

Likewise, Cheng and Cao 2014, proposed evolutionary multivariate adaptive regression splines 

(EMARS) which is a hybrid model of multivariate adaptive regression splines (MARS) and artificial 

bee colony (ABC). They utilised the same data set which is used in the present investigation. In this 

study, EMARS performance was compared against five other AI models, including MARS, back-

propagation neural network (BPNN), radial basis function neural network (RBFNN), classification 

and regression tree (CART), and support vector machine (SVM). They further compared the 

performance of EMARS with the random forest (RF). For hypothesis test, the comparison was done 

based on mean absolute error (MAE) values using one-tailed t-test with unequal size and unknown 

variances. Other studies such as Boukabour and Masmoudi 2021, Abdelkader et al. 2020, Irfan and 

Ramlie 2021, Yang et al. 2017, Gkioulekas et al. 2021 has shown statistically representativeness of 

the data considered in the present study. Moreover, In the present study 10-fold cross-validation is 

conducted to generalize statistical analysis for an independent data set. 

In the benchmark study of Tsanas and Xifara (2012), the buildings considered were situated in 

Greece, with seven persons residing in it and idle in activity (which correlates to 70 W of energy).For 

the buildings, the humidity was considered as 60%, the air speed as 0.30 m/s, the illumination level as 

300 Lux, the sensible heat exchange as 5 W/m
2
 and the latent heat exchange as 2 W/m

2
. The 

infiltration rate of air into the building was considered as 0.5 with sensitivity of wind as0.25 air 

change/hour. The air change/hour was set as the internal design condition and taken as an assumption 

for the study. Further, it was assumed that the operation hours are 15 to 20 hours on the weekdays and 

10 to 20 hours are over the weekends for the heat transfer calculations.These buildings were 

composed of 18 elementary cubes and the total volume 771.75 m
3
 of the buildings were kept same 

whereas parameters such as surface area, roof area, glazing area etc. listed in Table 1were varied. 
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These geometric and operating parameters were modelled and simulated using Autodesk Ecotect 

analysis simulation software. 

A total of 768 building samples were obtained from different combinations of 

(a) Twelve building forms for the four of the orientations with three glazing areas, having five 

different glazing area distribution scenarios [Table 2] 

(b) Twelve building forms for the four of the orientations without glazing. All the 768 

simulated buildings are characterized by the eight building parameters (X1-X8 in Table 1) 

taken as input parameters and two output parameters (Y1and Y2 in Table 1) as heating load and 

cooling load for the development of the optimized neural network. Table 1 summarizes the 

details of the input and the output variable with their mathematical representation and the 

number of possible values of each of the variable. The functional dependence of input and 

output parameters used in this study is shown by parallel plot in Figure 5. It can be observed 

from this figure that both heating load (HL) and cooling load (CL) exhibit complex relation for 

all the input parameters (X1 to X8). 

Performance Analysis of Developed Network 

MATLAB developed by Mathworks is used to create an artificial neural network (ANN) with nntool 

(MATLAB 2018).The process of network optimization shall be explained under section 3.3.The 

performance of this network has been analyzed with the help of regression value and mean square 

error (MSE) value. 

Regression plot is the performance parameters to analyse the network performance as shown in Figure 

6. Regression plot is shown for a representative It creates a regression line between 2 parameters and 

helps to visualize their linear relationships. It is the plot between output and target value, which shows 

how closer the output is to the target value. The value of regression coefficient is 0.99865 for the 

training data as shown inFigure 6, for the testing data, it is 0.99826 and overall, the regression 

coefficient is 0.9986which indicates that network can take output closer to the target value. 

Mean Square Error is the average of squares of difference between target and output parameter values 

for all the training data as given in Eq. (29). It shows how close the network can reach to the target 

value. Lesser the value of MSE, the better is training of the network. The variation of MSE of current 

work with epochs is shown in Figure 7 for one representative among all the investigated networks. 

The least value of MSE in the training data i.e.,1.59e-04for the shown case is obtained at 258 epoch 

while 2.9e-04for the testing data. 

     ∑
((                      (                         

 

 
 
    (29) 
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Network Sensitivities Analysis 

The sensitivity of any network depends on factors like training of the selected algorithm, number of 

hidden layers, number of neurons in different hidden layers and segregation of data into training, 

validation, and testing. 

Sensitivity on the Training Algorithm 

In the current work three different algorithms are used to train the network. These networks are: 

Levenberg-Marquardt (LM), Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG). 

The data used for training is divided as 70% for training, 15% for validation and 15% for testing with 

a single hidden layer. Number of neurons are varied starting from 8 and then increased in the 

multiples of 8. The MSE of trained network is evaluated on the normalized data. This value may not 

be a true performance parameter and hence it is decided that the network predictions on the 

denormalised data for the untrained data will be used to evaluate the MSE performance of the 

investigated networks. Results obtained from this study are presented in Table 3 and Figure 8. 

Following are the observations drawn from the obtained results: 

 It is observed that the MSE decreases up to2.46e-01 with the increase in number of the 

neurons for LM training algorithm. It starts further decreasing for BR training algorithm when 

different number of neurons are taken from 8 to 80. But it starts increasing up to7.16e+00 

with the training algorithm SCG, hence increase in number of neurons is terminated as soon 

as the MSE starts increasing with the number of neurons. 

 Further, it is observed that the MSE is least (1.15e-01) for the BR algorithm as compared to 

the LM and SCG algorithms. The MSE for the SCG algorithm is higher(5.30e+00)as 

compared to the LM (2.11e-01) algorithm, thus, for the data set used in this study, the BR is 

the better algorithm, which gives best results with 16 neurons. 

Sensitivity analysis of the ANN network-Hidden Layers 

Performance of an artificial neural network is dependent on the number of hidden layers and the 

number of neurons. In order to select optimal number of the hidden layers and the number of neurons 

in each of the hidden layer, a systematic study is conducted by varying the hidden layers and the 

number of neurons in each hidden layer. The investigated hidden layers and combination of neurons 

in each layer is shown in Table 4. Artificial neural networks are developed for each case shown in 

Table 4. As mentioned in section 3.3.1the data used for training of these networks is divided as 70% 

for the training, 15% for the validation and 15% for the testing and BR can be selected as a training 

algorithm to train the network. It is seen that with additional neurons in the network the MSE value 

reduces and the minimum value of MSE is observed when the number of neurons in each of the two 

hidden layers are 24 and 12 respectively as mentioned in test case 4 of Table 4. However, it should be 
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noted that this minimum mean square error is more than the one observed for single hidden layer 

network. Hence, it is decided to use network BR-16 (single hidden layer) and BR-24-12 (two hidden 

layer) for further analysis. 

K-Fold Cross Validation 

K-Fold Cross Validation is popularly known for evaluation of performance of algorithms. For k-fold 

cross validation, firstly, data is divided into k disjoints folds (training and testing random sets) having 

approximately similar number of instances. Afterwards, every fold plays the role to test the model 

induced from the other k-1 folds when it is repeatedly performed as depicted in Figure 9.The purpose 

of k fold cross validation is to obtain reliable accuracy estimates. In the present study, 10 folds are 

used to evaluate the performance of selected networks i.e., BR-16 and BR-24-12. The average MSE 

of 10 folds for the trained network (BR-16) is given in Table 5. In each fold, MSE of the trained 

network on the normalized data used for validation is evaluated. Likewise in each fold, trained 

network is used to predict heating load and cooling load on the preserved 33 data points. The MSE is 

evaluated based on the prediction of these 33 conditions and presented in Table 5. The average MSE 

of the network on the trained normalized data is 2.28E-04 and MSE on the untrained data set of HL 

and CL is 0.158 and 1.26 respectively. K-fold analysis is also done on the network BR-24-12 i.e., two 

hidden layer network and results are presented in Table 6. The average MSE of the network on the 

trained normalized data is 7.14E-04 and MSE on the untrained data set of HL and CL is 1.5 and 4.41 

respectively. These values indicates that the networks can be utilized for further analysis. 

Network and prediction 

After the sensitivity analysis it is observed that the best possible network consists of single hidden 

layer with 16 neurons in them, while the Bayesian Regularization algorithm is the best possible 

algorithm to be used for the data set considered in the present study. However, performance prediction 

of network BR-24-12 is also comparable. Hence, predictions of these two networks is discussed 

throughout the paper. Further, a comparison between the predicted values of heating and cooling 

loads using both the selected networks and the values obtained from Tsanas and Xifara (2012) is 

shown in the Figure 10 and Figure 11 for the entire data set of 768 samples. It is seen that the 

prediction values from the network traces the non-linear trend of the benchmark data set accurately 

despite of the fact that only 70% data was used for training of the network. The absolute error and its 

occurrence can be understood from the histogram presented in Figure 12 for both the heating and 

cooling loads. It can be observed from Figure 12 that absolute error is skewed towards the zero error 

for both the selected networks. The important observations drawn are discussed as follows: 
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 For the heating load predictions, 331& 336 data sets are within the range of 0 < 0.5 absolute 

error and 291& 320are within the range of -0.5 < 0 for the network BR-16 and BR-24-12 

respectively. Thus, for 84.62%& 89.25% of the heating load data set, absolute error is within 

the range of -0.5 to 0.5 for the network BR-16 and BR-24-12 respectively. A maximum 

absolute error of 1.89&1.71 is noticed for a single data point which is corresponding to 12.56 

%&11.34 % error for the heating load data set for the network BR-16 and BR-24-12 

respectively. 

 Similar to the heating load data, cooling load predictions are in good agreement with the 

benchmark data set of Tsanas and Xifara (2012). For the cooling load predictions, 263&278 

data sets are within the range of 0 < 0.5 absolute error and 222 &281 are within the range of -

0.5 < 0. Thus, for 65.99% &76.05% of the cooling load data set, absolute error is within the 

range of -0.5 to 0.5 for the network BR-16 and BR-24-12 respectively. A maximum absolute 

error of 3.54& 2.03is noticed for a single data point which is corresponding to 10.34% 

&6.08% error for the cooling load data set for the network BR-16 and BR-24-12 respectively. 

The mean square error in predicting heating and cooling load is found to be 0.115 and 0.749 

for the network BR-16 and0.21 and 0.876 for the network BR-24-12 respectively. 

VERIFICATION OF NETWORK PREDICTION CAPABILITY 

For the verification of network prediction capability out of the eight input parameters as mentioned in 

Table 1 four most important parameters are selected namely Glazing area distribution, Wall area, 

Surface Area, and Relative Compactness. Untrained data set was reserved for these parameters for 

verification of network prediction capability before training the networks investigated in this study. 

Then with the help of the trained networks (BR-16 & BR-24-12), predictions for heating (HL) and 

cooling (CL) loads of the building are done for different values of the four parameters mentioned 

above. The results so obtained for HL and CL are drawn in Figure 13 and Figure 14 respectively and 

compared with the actual values obtained for the same parameters by Tsanas and Xifara (2012). The 

details discussion regarding varying four parameters vs HL and CL is given as follows: 

 The variation of heating load with glazing area distribution is shown in Figure 13 (a) along 

with the benchmark test case. It can be observed that the variation in the heating load with 

glazing area distribution is well captured by the trained ANN. A maximum deviation of 

2.35% and 2.11% is observed for the normalized glazing area distribution of 1 for the network 

BR-16 and BR-24-12 respectively. 

 The variation of heating load with the wall area follows a non-linear trend in the benchmark 

study as shown in Figure 13 (b). Heating load decreases when the normalized wall area 

increases from 294 to 318.5 after that a sudden peak in the heating load was observed for wall 

area of 343; further increment in the wall area leads to decrease in the heating load. This non-
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linear behavior is well captured by the trained neural network. A maximum deviation of 1.4% 

is observed for the normalized wall area of 294 for the network BR-16 and 0.92% is observed 

for the normalized wall area of416.5 for the network BR-24-12. 

 The variation of heating load with the normalized surface area is shown in Figure 13 (c). It 

can be observed that heating load increases with the increase in the normalized surface area 

and attains a maximum value for the normalized surface area of 784. Heating load decreases 

in the benchmark test case with further increment in the normalized surface area. This trend is 

also captured by the trained neural networks with a reasonable accuracy. The maximum 

deviation of 1.25 %&0.71% is observed in the predicted results for the normalized surface 

area of 735 for the network BR-16 and BR-24-12 respectively. 

 Heating load variation with the relative compactness follows the similar trend as was 

followed by the normalized surface area. Heating load increases when relative compactness 

increases from 0.62 to 0.64 and thereafter it decreases as shown in Figure 13 (d). It can be 

observed from this figure that the trained network can predict this trend. The maximum 

deviation of 7.13 % & 2.23% is observed in the predicted results fora relative compactness of 

0.74 for the network BR-16 and BR-24-12 respectively. 

In a similar context, a comparison of predicted cooling load with the benchmark results for the above 

mentioned four parameters are shown in Figure 14 and the corresponding critical observations are 

discussed as follows: 

 The variation of cooling load with the glazing area distribution is almost uniform in the 

benchmark test case as shown in Figure 14 (a). The trained ANN network under predicted 

cooling load by 2.44% for the normalized glazing area distribution of 4 for the network BR-

16 and over predicted by 5.44% for the normalized glazing area distribution of 1 for the 

network BR-24-12. 

 A non-linear variation of the cooling load with the normalized surface area, wall area and 

relative compactness can be observed from Figure 14 (b-d) respectively. These trends are well 

predicted by the trained neural networks. The maximum deviation in the predictions of the 

normalized surface area, wall area and relative compactness is 6.58%, 4.5% and 2.87% 

respectively for the network BR-16. The maximum deviation in the predictions of the 

normalized surface area, wall area and relative compactness is 3.36%, 4.29% and 1.18% 

respectively for the network BR-24-12. Thus, it can be concluded that the predictions of the 

trained neural network are well within 10% deviation for the untrained data set and trained 

neural network can be employed to predict energy performance of the building within the 

reasonable accuracy. 
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OPTIMIZATION OF ENERGY PERFORMANCE USING DEVELOPED NETWORK 

In this section the optimization of building glazing area distribution for four different fractions of 

the glazing areas (0.15, 0.2, 0.3 and 0.35) is discussed. Twelve building glazing area distribution 

investigated are summarized in Table 7. The trained network with a structure of 8-16-2 is used to 

predict in total 96 different conditions of glazing area distribution between North, East, South, and 

West for four fractions of glazing areas (0.15, 0.2, 0.3 and 0.35).The predicted heating and cooling 

load are depicted in Figure 15 and the important conclusion drawn are discussed as follows: 

 It can be observed that with the decrease in the glazing area fraction, the requirement of 

heating and cooling load decreases. This is because of the higher rate of the heat transfer from 

the glazing area as compared to the walls. When the glazing area is decreased, the heat 

loss/gain to/from the surrounding is also decreased. Hence, heating, and cooling load decrease 

with decreases in the glazing area. 

 It can also be observed from Figure 15 (a) that there is a potential to decrease the heating load 

if glazing area distribution is carefully designed. For glazing area (GA) = 0.35, a minimum 

heating load is required for Test Number 8 which is listed in Table 7. For this test case, 15% 

of the glazing area is distributed in the North and West and 35% in the East and in the South. 

The saving in normalized heating load for Test-8 as compared to Test-1 is around 4 % for all 

the glazing area fractions investigated in this study. 

 On the contrary to the heating load, the potential to save in cooling load is significantly higher 

as it can be seen in Figure 15 (b). The minimum and the maximum predicted cooling loads 

are corresponding to Test cases of 1 and 9 respectively for all the glazing area fractions 

investigated in this study. There is a potential of 18.97% saving in the cooling load for a 

glazing area of 0.35 if glazing area distribution is kept 32.5% in North, 22.5% in the East I, in 

the South and West respectively (Test Case -1) as compared to the glazing area distribution of 

15% in the North and West, 25% in the East and 45% in the South (Test Case-9). It is also 

interesting to note that there is a potential to save 20.67% of the cooling load for a glazing 

area of 0.15. The minimum and the maximum predicted cooling load for a glazing area of 

0.15 is corresponding to Test Case-1 and Test Case-9 respectively. 

 Based on the combined minimum heating and cooling load, Test Case-1 is recommended i.e., 

glazing area distribution of 32.5% in the North, 22.5% each in the East, in the South and 

West. A saving of 6.9% and 7.87 % can be achieved in the combined heating and cooling 

load as compared to Test Case-9 for the glazing area of 0.35 and 0.15 respectively. For the 

other two investigated glazing areas, the net saving is within the range of saving achieved 

from the glazing area of 0.35 and 0.15. 
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Thus, a significant improvement in the energy efficiency of the residential buildings can be achieved 

if due care is given while planning or constructing residential buildings. Artificial neural network-

based predictions can give a reliable and quick input to the town planners. 

CONCLUSIONS 

The current study is conducted to obtain an AI based optimized ANN network to find the minimum 

heating and cooling loads of a building and there by predict the building energy performance with 

respect to a number of parameters viz. surface area, wall area, glazing area, glazing area distribution 

etc. An ANN structure 8-16-2 with Bayesian Regularization algorithm is found to be the optimum 

ANN network structure for the prediction of the building energy performance with the MSE as 1.59e-

04 for the network validation and 0.115 and 0.749 for prediction on the untrained data. The optimality 

of the network is also confirmed by the comparison of the HL and the CL values predicted by the 

network and the actual values available in literature, where the error is found to be less than 10% 

only. A well trained and validated artificial network is used to predict 96 conditions by varying 

glazing area and glazing area distribution. 

This study revealed that there is a significant potential to improve the energy efficiency of the 

building. The maximum saving in the cooling load can be as high as 20.67% for a glazing area of 0.15 

if glazing area distribution is kept 32.5% in the North and 22.5% each in the East, South and West. 

The net saving of the combined cooling and heating load can be as high as 6.9% and 7.87 % for 

glazing area of 0.35 and 0.15 respectively. 

Nomenclature 

   Bias 

   Hessian matrix 

  Jacobian Matrix 

   Induced local field 

    Weight vectors 

   Input vector 

   Output 

   normalization factor 

Greek Symbols 

  Activation function 

  Cost function 

  learning rate 
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Abbreviations 

ANN Artificial Neural Network 

BR Bayesian Regularization 

CL Cooling Load 

CNN Convolutional Neural Network 

DNN Deep Neural Network 

ENN Ensemble Neural Network 

GA Glazing Area 

GDP Gross Domestic Product 

HL Heating Load 

KNN K-Nearest Neighbor 

LM Levenberg-Marquardt 

LR Logistic Regression 

LSTM Long short-term memory 

MAPE Mean Absolute Percentage Error 

ML Machine Learning 

MLP Multi-Layer Perceptron 

MSE Mean Square Error 

NARX Nonlinear Auto-Regressive Exogenous Model 

RBF Radial Basis Function 

RF Random Forest 

RNN Recurrent Neural Networks 

SCG Scaled Conjugate Gradient 

SVM Support Vector Machine 

UNFCCC United Nations Framework Convention on Climate Change 

WNN Wavelet Neural Networks 
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Table 1. Input and output parameters, following Tsanas and Xifara (2012). 

Input/Output Parameter Symbol Used Number of Level Studied 

Relative Compactness X1 12 

Surface Area X2 12 

Wall Area X3 7 

Roof Area X4 4 

Overall Height X5 2 

Orientation X6 4 

Glazing Area X7 4 

Glazing Area Distribution X8 6 

Heating Load Y1 586 

Cooling Load Y2 636 

 

Table 2. Glazing area distribution scenarios Tsanas and Xifara (2012). 

Distribution Scenario simulated for 

all three Glazing Areas 
% of Glazing Area 

Uniform Equal 25% on every of the four sides 

North 55% in north and rest remaining three having equal 15% 

East 55% in north and rest remaining three having equal 15% 

South 55% in north and rest remaining three having equal 15% 

West 55% in north and rest remaining three having equal 15% 

 

Table 3. Performance of the single hidden layer networks investigated in the present study. 

   Trained Data Untrained Data 

Test 

Case 

Training 

Algorithm 

No. of 

Neurons 

Network MSE 

(Normalized 

Data) 

MSE_HL (De-

normalized Data) 
MSE_CL (De-

normalized Data) 

1 

Levenberg-

Marquardt 

8 5.38E-04 2.53E-01 1.80E+00 

2 16 2.30E-04 2.11E-01 1.46E+00 

3 24 1.78E-04 1.53E-01 9.66E-01 

4 32 1.48E-04 2.46E-01 1.45E+00 

5 

Bayesian 

Regularization 

8 5.67E-04 2.35E-01 2.21E+00 

6 16 1.59E-04 1.15E-01 7.49E-01 

7 24 9.55E-05 8.11E-02 8.93E-01 

8 32 6.30E-05 1.73E-01 1.19E+00 

9 64 2.73E-05 5.86E-01 9.43E-01 

10 80 3.36E-05 1.17E-01 8.86E-01 

11 
Scaled 

Conjugate 

Gradient 

8 5.22E-03 1.48E+01 1.59E+01 

12 16 4.48E-03 5.30E+00 1.24E+01 

13 24 4.02E-03 7.16E+00 1.74E+01 

14 32 3.27E-03 6.73E+00 9.07E+00 
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Table 4. Performance of the deep learning networks investigated in the present study. 

   Trained Data Untrained Data 

Test Case Hidden Layer-

1 

No. of 

Neurons 

Hidden 

Layer-2 

No. of 

Neurons 

Network MSE 

(Normalized 

Data) 

MSE_HL (De-

normalized 

Data) 

MSE_CL (De-

normalized Data) 

1 16 8 1.65E-04 1.04E-01 1.30E+00 

2 16 12 1.52E-04 1.87E-01 1.92E+00 

3 24 8 8.44E-05 2.05E-01 1.33E+00 

4 24 12 9.03E-05 2.10E-01 8.76E-01 

5 24 16 9.53E-05 2.58E-01 2.53E+00 

6 32 12 6.58E-05 4.08E-01 1.94E+00 

7 32 16 7.34E-05 1.26E-01 1.72E+00 

8 32 20 7.63E-05 5.23E-01 1.46E+00 

9 40 20 6.56E-05 4.87E-01 3.10E+00 

 

Table 5. k-fold cross validation for network BR_16 

 Trained Data Untrained Data 

Fold Number Network MSE 

(Normalized Data) 

MSE_HL (De-

normalized Data) 

MSE_CL (De-

normalized Data) 

1 3.25E-04 1.07E-01 9.09E-01 

2 2.46E-04 1.36E-01 8.59E-01 

3 1.97E-04 1.42E-01 1.22E+00 

4 1.55E-04 1.33E-01 9.22E-01 

5 3.17E-04 1.29E-01 9.09E-01 

6 2.36E-04 1.46E-01 6.94E-01 

7 2.10E-04 2.30E-01 1.26E+00 

8 1.45E-04 1.76E-01 1.36E+00 

9 2.07E-04 1.48E-01 1.18E+00 

10 2.45E-04 2.27E-01 3.27E+00 

Mean 2.28E-04 1.58E-01 1.26E+00 

 

Table 6. k-fold cross validation for network BR_24_12 

 Trained Data Untrained Data 

Fold Number Network MSE 

(Normalized Data) 

MSE_HL (De-

normalized Data) 

MSE_CL (De-

normalized Data) 

1 8.90E-05 2.27E+00 5.64E+00 

2 6.87E-05 2.83E+00 6.17E+00 

3 8.21E-05 8.65E-01 2.60E+00 

4 7.10E-05 2.08E-01 8.45E-01 

5 5.53E-05 3.92E-01 1.16E+00 

6 8.22E-05 6.51E-01 2.85E+00 

7 6.65E-05 8.59E-01 2.59E+00 

8 7.85E-05 1.70E+00 5.51E+00 

9 6.06E-05 2.80E+00 8.10E+00 

10 5.97E-05 2.40E+00 8.70E+00 

Mean 7.14E-05 1.50E+00 4.41E+00 

 

  

Downloaded by [ University of Nottingham] on [23/11/23]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jener.23.00017 

 

Table 7. Percentage of Glazing Area Distribution 

Test Case North East  South West 

1 32.5 22.5 22.5 22.5 

2 40 20 20 20 

3 47.5 17.5 17.5 17.5 

4 45 25 15 15 

5 35 35 15 15 

6 25 45 15 15 

7 15 45 25 15 

8 15 35 35 15 

9 15 25 45 15 

10 15 15 45 25 

11 15 15 35 35 

12 15 15 25 45 

 

Figure captions 

Figure 1. a) Similarity between human neuron and artificial neuron b) flow diagram of single neuron 

c) a schematic diagram showing signal processing by an artificial neuron. 

Figure 2. Flow diagram of the procedure adopted to train the data set in MATLAB. 

Figure 3. A schematic diagram of the deep learning network 

Figure 4. A schematic diagram showing parameters investigated in the benchmark study of Tsanas 

and Xifara (2012). 

Figure 5. Parallel plot of data set (Tsanas and Xifara (2012)) showing functional dependency of (a) 

heating load and (b) cooling load on the input parameters. 

Figure 6. Performance analysis of the network (a) regression of training data set (b) regression of test 

data set (c) regression of Target. 

Figure 7. Variation of Mean Square Error (MSE) with Epochs for one representative network. 

Figure 8. Comparison of prediction performance of BR-16 (best performing) and SCG-8 (worst 

performing) networks among the tested networks with single hidden layer. 

Figure 9. Schematic showing K-Fold cross validation procedure. 

Figure 10. Comparison of actual (Tsanas and Xifara (2012)) and predicted heating load for the dataset 

used in network development and training. 

Figure 11. Comparison of actual (Tsanas and Xifara (2012)) and predicted cooling load for the dataset 

used in network development and training. 

Figure 12. Histogram showing absolute error variation for (a) Heating Load (b) Cooling Load 

Figure 13. Comparison of experimental and predicted results of heating load for the untrained data (a) 

Glazing area distribution (b) Wall area (c) Surface Area (d) Relative Compactness 

Figure 14. Comparison of experimental and predicted results of cooling load for the untrained data (a) 

Glazing area distribution (b) Wall area (c) Surface Area (d) Relative Compactness. 

Figure 15. Influence of glazing area distribution and glazing area on the heating and cooling load. 
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