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Highlights  

 Vaccination of foals with an EHV-1 gM-  MLV stimulated CF and VN antibodies  

 Vaccination resulted in reduced clinical scores on challenge infection 

 EHV-1 specific mucosal antibody and CTL activity were not induced by 

vaccination 

 This EHV-1 gM-  MLV vaccine partially protected foals against challenge 

infection 

  



Abstract  

Equid herpesvirus-1 (EHV-1) causes respiratory and neurological disease and late 

gestation abortion in pregnant mares. Current vaccines contain either inactivated or 

live EHV-1, but fail to provide complete clinical or virological protection, namely 

prevention of nasopharyngeal shedding and cell-associated viraemia. Thus, the 

development of novel products, such as modified live virus (MLV) vaccines which 

stimulate virus-specific, humoral and cell mediated immune responses more 

effectively remains a priority. Two groups of weaned foals (n=6 each group) were 

used in a longitudinal, prospective, experimental study to evaluate immune 

responses elicited by two vaccinations with a glycoprotein M (gM) deletion mutant of 

EHV-1 (RacHdeltagM). Following two concurrent intranasal and intramuscular 

inoculations six weeks apart, vaccinated (8.4+0.2 months old) and control foals 

(6.2+0.4 months) were challenge infected intranasally with EHV-1 Ab4/8 four weeks 

after the second vaccination and clinical signs and virological replication measured. 

Vaccination caused no adverse events, but did stimulate significantly higher 

complement fixing and virus neutralizing antibodies in serum compared with control 

foals at either equivalent or pre-vaccination time points. Virus-specific 

nasopharyngeal antibody levels and cytotoxic T lymphocyte responses were not 

significantly different between the groups.  Following challenge infection, these 

immune responses were associated with a reduction in clinical signs and virological 

replication in the vaccinated foals, including a reduction in duration and magnitude of 

pyrexia, nasopharyngeal shedding and cell-associated viraemia. We conclude that 

the RacHgM MLV primed EHV-1-specific humoral immune responses in weaned 

foals. However, complete virological protection by vaccination against EHV-1 

requires further research. 
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1. Introduction  

The ubiquitous alphaherpesvirus equid herpesvirus-1 (EHV-1) is responsible for 

respiratory and neurological disease in all horses and abortion in pregnant mares [1]. 

Abortion and neurological disease are the consequences of a cell-associated 

viraemia and endothelial cell infection, which leads to vascular pathology in the 

vulnerable pregnant uterus or spinal cord [2, 3].  

 

Vaccination against EHV-1 aims to prevent nasopharyngeal virus shedding and cell-

associated viraemia, which will eliminate within herd transmission or endothelial cell 

infection and thrombosis respectively [4]. Experimentally, a reduction in the duration 

and magnitude of these virological parameters is associated with high pre-infection 

titres of virus neutralizing (VN) antibody, respiratory mucosal IgG4 / IgG7 isotypes 

and high frequencies of precursor or memory cytotoxic T lymphocytes (CTL) in 

blood, sometimes combined with virus-specific mucosal antibodies in the 

nasopharynx [4, 5].  However, current vaccines which contain either inactivated virus 

with licensed adjuvants or attenuated, modified live virus [6], fail to stimulate the 

comprehensive range of immune responses required. The efficacy of these vaccines 

is variable, probably due to multiple factors including host, antigenic load and 

challenge infection method, but none prevent cell-associated viraemia completely.  

Thus, in the face of ongoing outbreaks of EHV-1 abortion in vaccinated horses [7], 

there is an urgent need to identify novel and safe but commercially practical vaccine 

formulations that stimulate long-lived and effective immune responses, particularly 



CTL leading to complete clinical and virological protection against EHV-1. Modified 

live virus vaccines (MLV) have been proposed as suitable candidates [8, 9]. 

 

Examples of the success of MLVs under field conditions include use of a modified 

live gE deletion mutant to eradicate bovine herpesvirus-1 (BHV-1) from some 

European countries [10]. In pigs, management and a gI deletion mutant of 

pseudorabies virus reduced the prevalence of disease in a large field study [11]. In 

young horses, EHV-1 gE/gI deletion mutants provided partial protection against 

respiratory disease [12, 13]. In Japanese Thoroughbred racehorses, a live 

attenuated EHV-1 / EHV-4 vaccine (ERPL, Nisseiken, Tokyo, Japan) stimulated 

higher VN antibody titres than the inactivated virus vaccine used previously and its 

use was also associated with a reduction in the frequency of EHV-1 outbreaks [14]. 

Live attenuated EHV-1 vaccines Rhinomune® (Boehringer Ingelheim) or 

Prevaccinol® (MSD Animal Health), which both contain strain RacH have been 

available commercially in the USA and Europe for decades.  

 

EHV-1 strain RacH was attenuated by 256 passages in porcine embryonic kidney 

cells [15] from the more virulent RacL (clade 4, originally isolated from an aborted 

fetus; [16]).  Sequencing of a plaque isolate, RacL11 has identified entire deletions of 

genes ORF1 (HSV homologue UL56) and ORF2 (no HSV homologue identified to 

date) and in-frame deletions of ORF14, ORF63, EICP0) and two regions in ORF68 

(HSV US2 [17]. In the RacH MLV strain, modification of ORF67 (IR6) is mainly 

responsible for the attenuation, relative to the parental virus [15-20]. In horses, by 

comparison with placebo-vaccinated controls, intramuscular vaccination of adults 

with Rhinomune® (RacH) resulted in a reduction in clinical disease and the amount 



of virus shed from the nasopharynx and cell associated viraemia following challenge 

infection [21, 22]. Intranasal vaccination of weanlings with Rhinomune® failed to 

stimulate either mucosal or systemic antibody after vaccination but after challenge 

infection, was associated with a reduction in clinical and biological signs [23]. RacH 

therefore has shown some promise as an MLV, and thus may benefit from further 

modification. RacH is an old strain but phylogenetic analysis of 80% of the genomes 

of 78 EHV-1 strains, the majority isolated over 35 years in the United Kingdom 

indicated the presence of 13 clades [19]. Further analysis indicated that EHV-1 

evolves very slowly, to the extent that strains isolated currently co-circulate and show 

similarity to much older viruses, including RacL and RacH [15, 18, 19].  

 

Identification of the function of individual EHV-1 proteins, including those associated 

with virulence or correlated with protective immunity [24-26] , enables the informed 

and targeted removal of individual genes: one candidate is glycoprotein gM (gM; 

gp21/22a). This is a non-essential glycoprotein encoded by gene 52 (homologous to 

Herpes simplex virus-1 UL10; [17]) which is involved in virus entry and fusion and 

cell-to-cell spread in both EHV-1 and Herpes Simplex Virus-1 (HSV-1; [27, 28]). 

However RacHgM retains the ability to penetrate, spread from cell-to-cell and 

egress from host cells [27, 29] which is crucial to the development of cell mediated 

immune responses, including CTL activity. In vivo, mice vaccinated once with a 

RacHgM deletion mutant were completely protected against challenge infection 

with the virulent RacL11 strain, suggesting that the RacH gM deletion mutant 



stimulated protective immune responses [30] and may thus be a candidate vaccine 

for horses.    

 

The design of vaccine trials to assess the effectiveness of protection against EHV-1 

is complex, with multiple host, environmental and virological factors potentially 

influencing the outcome [4, 31]. The host complexities include recruitment of animals 

naïve to EHV-1 infection or at least with similar historical infections within a known 

time frame; this ensures similar humoral and cell mediated immunological status, but 

is difficult to assess. The production of specific pathogen-free foals is costly and 

time-consuming [32] so a pragmatic alternative to assess vaccine-induced immunity 

is to identify synchronized pregnant mares, unvaccinated against EHV-1, then use 

their offspring at weaning, when maternally-derived colostrum titres have declined, to 

assess vaccine-induced immunity. Even then the risk of inter-current bacterial 

infection following weaning and mixing of foals from different herds remains high [33, 

34]. Nevertheless, using weaned foals is informative because the current guidance 

states that vaccines against EHV-1 / EHV-4 can be administered to foals from 4-6 

months of age [35]. 

 

The current study tested the hypotheses that vaccination of weaned foals with an 

EHV-1 RacHgM mutant would stimulate immune responses and provide clinical 

and virological protection against challenge infection.  

 



2. Materials and Methods  

2.1 Foals 

The project design, animal care and ethics and genetically modified organisms’ 

safety complied with national laws and institutional regulations. All mares and foals 

were cared for at the Animal Health Trust, Newmarket and were examined by an 

independent clinician prior to vaccination and / or challenge infection. Pregnant 

mares (Welsh Mountain ponies) were kept in two herds according to their stage of 

gestation. Mares were vaccinated against influenza virus and with tetanus toxoid 

according to manufacturers’ instructions, but not vaccinated against EHV-1. For the 

vaccinated foals, 4/6 were male and the Major Histocompatibility Complex (MHC) 

class I haplotypes of both parents were partially known (Table 1). The control foals 

originated from a second herd of outbred mares mated to a single stallion, all were 

female and of unknown genotype. Foals were monitored at monthly intervals from 

birth to plot the decline of colostrum-derived, EHV-1 specific, serum virus 

neutralizing antibodies and to ensure the absence of complement fixing antibodies, 

indicative of recent, natural EHV-1 infection. With the decline of colostral antibody 

and increasing vulnerability of these foals to unplanned respiratory infection, the 

vaccination program was initiated in the six oldest foals 3 weeks after weaning. The 

reasons underlying this decision included the vulnerability of these foals to 

respiratory bacterial infection and inflammatory airway disease, particularly when 

groups of animals are mixed for the first time [33, 34]. The six remaining animals 

were allocated to the control group. As a result, the mean age of vaccinated foals 

was 2.2 months older than the control group.  



 

2.2 EHV-1 glycoprotein M (gM) deletion mutant EHV-1 (RacHgM) 

EHV-1 RacH11gM, a LacZ insertion mutant that still expresses the N-terminal 130 

amino acids was constructed and propagated by five passages in rabbit kidney 13 

(RK13) cells [27, 29]. RacH has deletions in ORF1 (MHC class I downregulation and 

modulation of cytokine responses) and ORF 2 (modulation of cytokine responses) 

and in frame deletions in ORF14, ORF63 and ORF68. The most significant alteration 

which is largely responsible for the attenuation of RacH is the deletion of both copies 

of ORF67 (IR6; HSV US10; [15, 20]).  

 

2.3 Vaccinations and EHV-1 challenge infection 

Three weeks after weaning, vaccinates were inoculated with RacH11gM (Figure 1). 

Vaccinated foals had a mean age of 6.1 + 0.2 months (183.0 + 7.1 days) at the first 

vaccination (Table 1) and were kept on a separate pasture from the control foals. 

Administration was both intramuscularly in the neck by 1” 18g needle and 

intranasally by aerosol spray attached to tubing and syringe and on two occasions 

(V1 and V2), with a 6 week interval. The vaccinated foals were monitored on days 2, 

5, 7 and 9 after V1 for clinical health, including ocular and nasal discharge, pyrexia, 

and cell associated viraemia. Four weeks after V2 (vaccinates) and three weeks 

after weaning (controls), all foals were stabled in pairs within their group and 

immediately challenge infected concurrently. All foals were infected intranasally (day 

0) with 2 x 106.3 50% tissue culture infectious dose (TCID50) of EHV-1 strain Ab4/8 

propagated on equine cells using an aerosol spray [36, 37]. The mean ages of 

vaccinated and control foals were 8.4 + 0.2 or 6.2 + 0.4 months respectively at 

challenge infection.  



 

2.4 Serology 

Serum samples were screened for complement fixing (CF) and virus neutralizing 

(VN) antibody at the time points shown in Figure 2. The V1+0 sample for VN 

antibody testing was taken immediately before first administration of the vaccine. 

Seroconversion was defined as a four-fold increase in titre [37].  

 

2.5 Clinical signs, pyrexia and nasopharyngeal virus shedding 

Following challenge infection, clinical signs were assessed by one operator who was 

blinded to the group status. The presence of mucopurulent nasal or ocular discharge 

at each nostril or eye were assessed and scored as 0 (absent), 1 (present mild), 2 

(present, moderate) or 3 (present, severe). Swelling of the sub-mandibular lymph 

nodes was graded as 0 (barely palpable), 1 (slightly palpable), 2 (easily palpable) or 

3 (enlarged and painful).  Rectal temperatures (pyrexia >38.9oC) and deep 

nasopharyngeal swabs extending approximately 12” were collected daily for 10 days, 

the latter into 2ml of virus transport medium. The Animal Health Trust is an OIE 

reference laboratory for EHV-1 and EHV-4, therefore swabs and blood samples were 

handled according to the OIR manual [36]. Swabs were squeezed using metal 

forceps, which were sterilized between each sample extraction by flaming in alcohol. 

The swab extract was not filtered before titration from neat to 10-10 using log10 

dilutions across a 96 well flat-bottomed micro-titre plate, with 8 replicates per 

sample. Indicator cells were RK13s. Results from this endpoint dilution assay were 

expressed as TCID50/ml.  

 

2.6 Cell associated viraemia 



Peripheral blood samples were collected by jugular venipuncture from vaccinates 

into 10ml evacuated tubes coated with sodium heparin. Blood samples were then 

processed according to the OIE manual [36] using RK13 indicator cells in T25 tissue 

culture flasks. Leukocytes were pelleted by centrifugation of supernatant plasma 

after spontaneous rouleaux formation; Ficoll enrichment of leukocytes was not 

performed. In the absence of cytopathic effect (cpe), cells were passaged a second 

time as described [36]. Results were expressed as positive or negative. Samples 

were collected on days 2, 5, 7, and 9 after V1 and on day 6 after V2. After challenge 

infection, all foals were sampled on alternate days until day 21. 

 

2.7 Measurement of mucosal IgA and IgG in nasal washes 

Nasal washes were performed as described [38], before V1 (vaccinates only), then 

in controls and vaccinates at equivalent time points after vaccination and after 

challenge infection. Samples were clarified by centrifugation, stored at –70oC then 

assayed together following a method adapted from [38]. An optimised dilution of 

EHV-1 strain Ab4 was used as antigen and murine anti-equine IgA monoclonal 

antibody 3E7 (a kind gift from Dr Chris Stokes, University of Bristol), and 

commercial, enzyme conjugated anti-mouse or anti-horse IgG (Kirkegaard & Perry 

Laboratories) were used to detect the respective antibody isotypes. Optical density 

(OD) was read at 450nm. The mean protein concentration (triplicates) of each nasal 

wash was measured by comparing the OD295 generated using a protein assay kit 

(Sigma, Poole, Dorset) with a calibration curve ranging from 0.05 to 1.7 mg/ml 

(absorbance from 0.1 to 1 at OD295). Corrected OD was calculated according to the 

formula: mean OD450 of nasal wash immunoglobulin – non-specific binding OD450 / 



protein concentration (mg/ml). Each assay included positive and negative nasal 

wash controls, selected from pilot assays. 

 

2.8 Cytotoxic T lymphocyte assay 

Peripheral blood mononuclear cells (PBMC) were cryopreserved from all foals and 

MHC class I restricted, EHV-1 specific cytotoxic T lymphocyte activity was measured 

as described previously [39]. The mean of 6 replicates at each effector : target ratio 

(E:T; 100:1, 50:1, 25:1 and 12:1) was calculated and the percent lysis of mock 

infected targets subtracted from that of the autologous EHV-1 infected targets, to 

give a final percent specific lysis. Samples from each foal were tested in a single 

assay, with effector CTL from a hyper-immune pony used as a positive control. 

Statistical analysis was performed on CTL activity at all E:T ratios. 

 

2.9 Statistical Analysis 

For each parameter and sample time point, the mean and standard deviation for each 

group of foals was calculated. The data were checked for normality and homogeneity 

of variance before statistical analysis and were log transformed as necessary. For the 

endpoints (e.g. CF antibody titre) where more than one sample was collected and the 

data points were continuous, a randomized-block ANOVA was performed. The time 

points were grouped into pre-vaccination, after V1, after V2 or post-infection and 

analysed separately. In the analysis, time and vaccination groups were considered the 

factors, with the data blocked by foal identification. Where significant differences were 

detected, individual t-tests were performed to compare the control and vaccinated 

group on a particular day. For discrete endpoints, a non-parametric Mann-Whitney 

(Wilcoxon rank-sum) test was performed. As qualitative data, clinical scores were 



assessed using a non-parametric, one-way ANOVA (Kruskal-Wallis test). CTL data 

were analysed by Fisher’s Exact test. All statistical analysis was performed in Genstat 

17.1. 

 

3. Results  

All foals completed the study, there were no modifications to the study design and 

there were no unexpected adverse events or side effects. 

 
3.1 Pre- and post-vaccination monitoring 

Prior to V1, CF and VN antibody titres were either undetectable or had a reciprocal 

titre of log10 0.2 or 1.7 respectively (<1:20) in all foal samples (Figure 2a & b). 

Vaccinated foals showed no ocular or nasal discharge, pyrexia, clinical abnormalities 

or cell associated viraemia.  

 

3.2 Serology 

Mean CF antibody titres in control foals were low and stable until 2 weeks after 

challenge infection, when all 6 seroconverted to EHV-1 (Figure 2a). Vaccinated foals 

exhibited similar low titres prior to V1, then a non-significant increase in mean titre 

after V1 followed by a significant increase at all post V2 vaccination points compared 

with V1-3m. Samples taken one week after V2 demonstrated seroconversion in 5 / 6 

vaccinated foals, and one foal (1B05) seroconverted 1 week later. Elevated CF 

antibody titres declined thereafter but all 6 vaccinates seroconverted again by 2 

weeks after challenge infection.  Mean CF antibody titres were significantly higher in 

vaccinated versus control foals at all sample points after V2 (p<0.001) and 1 week 

after challenge infection (p<0.001).  

 



VN antibody titres were low in both groups of foals prior to the V1 sampling point 

(Figure 2b; Supplementary Table 1). Thereafter titres in the younger control foals 

declined further, reflecting the level of residual colostral antibody, but subsequently 

increased following challenge infection. In vaccinated foals, titres at the post V2 

vaccination and post infection time points were significantly different from the titre at 

V1+0 (p<0.001). There was a significant difference between the mean VN antibody 

titres of vaccinated versus control foals at V2+2weeks (p<0.001), but not before V1 

(p=0.07) or after challenge infection (p=0.07).  

 

3.3 Clinical signs and virological parameters after challenge infection 

Mean clinical scores amounted to 21.2+7.8 or 8.3+6.2 in the controls and vaccinated 

foals respectively (p=0.03). Pyrexia was detected on day 2 post infection in all 

control foals and 3/6 vaccinated foals (Figure 3a). Mean days of pyrexia were 4.5+1 

in control foals and 1.2+1 in vaccinated foals (p=0.004), but no significance was 

detected for the first or last day of pyrexia. The mean rectal temperature was 

significantly higher in the control group compared with the vaccinated group 

(p<0.001) and at each time point on days 2, 3, 4, 5 and 8 after challenge infection 

(p<0.001).  

 

The mean titres of infectious virus shed from the nasopharynx were higher in the 

control foals (mean 104.93/ml on day 2; Figure 3b), with all 6 animals still shedding 

detectable titres of virus on day 8 (mean 102.67/ml; p<0.01).  The amount of virus 

shed by the vaccinated foals peaked at a mean of 102.32/ml on day 2, but declined 

rapidly thereafter with 4/6 vaccinated foals no longer shedding by day 4. One foal in 

this group had no detectable virus shedding (V6825). There was a significant 



reduction in the total days of nasopharyngeal virus shedding in the vaccinated 

versus control groups (p<0.01; vaccinates mean 2.8+2.3 days, controls mean 

8.3+1.6 days). There was no difference in the first day of nasopharyngeal shedding 

between the groups. In contrast, the last day of nasopharyngeal shedding was 

significantly earlier in the vaccinated group, compared with controls (p<0.05; Figure 

3b; vaccinates day 4.0+3.6 versus controls day 8.8+1.0).  

 

There was a significant difference between the vaccinated and control groups in the 

total days of cell associated viraemia (p<0.002; vaccinates mean 2.5+0.5 days, 

controls 6.2+1.0 days; Figure 3c). In addition, there was a significant difference in the 

last day of cell associated viraemia between the vaccinated and control groups 

(p=0.006; vaccinates day 8.3+2.1 versus controls day 15.3+3.9). Details are shown 

in Supplementary Table 2. 

 

3.4 Mucosal antibody responses 

The levels of nasopharyngeal IgA and IgG were similar in control and RacH11gM 

vaccinated foals. There was a gradual but significant increase in EHV-1 specific, 

nasopharyngeal IgA (p<0.001) and IgG (p<0.001) over the sampling period in both 

groups, but no significant antibody production was induced by vaccination alone 

(Figure 4).  

 

3.5 Cytotoxic T lymphocyte responses 

All foals in both the control and vaccinated groups showed low (<5.6% maximum 

lysis at 100:1 E:T ratio) or undetectable levels of lysis at both time points prior to 

EHV-1 challenge infection (Figure 5). At three weeks after infection, an increase in 



CTL activity above the value of the pre-vaccination sample was detectable in some 

control (2/6) and vaccinated (4/6) foals. By ten weeks after infection, CTL activity 

either increased further or remained stable in most control and vaccinated foals, but 

individual responses were variable. Statistical analysis showed there was a non-

significant trend towards the earlier detection of CTL activity in vaccinated compared 

with control foals using the 100:1 E:T ratios (p=0.06). Analysis of data from all other 

effector to target ratios was also non-significant. 

 

4. Discussion  

This study demonstrated that mucosal and systemic vaccination of weaned foals 

with EHV-1 RacH11gM, a modified live virus vaccine, caused no side effects and 

induced no clinical signs or detectable viral replication. Furthermore, by comparison 

with unvaccinated control foals, vaccination served to prime the foals’ systemic 

humoral immune response and this was associated in vaccinates with a significant 

reduction in mean rectal temperature and temperatures on days 2-5 and 8 post-

infection inclusive, as well as total days and last day of nasopharyngeal virus 

shedding and cell-associated viraemia after challenge infection. Such partial 

protection is found commonly with many types of commercial and experimental EHV-

1 vaccines [13, 22, 40-43], but is particularly encouraging in EHV-1 naïve, weaned 

foals. 

 

Undertaking EHV-1 challenge infection experiments in horses, particularly foals is 

difficult and expensive, especially considering the need to obtain weaned animals of 

approximately the same age and disease-free status. To achieve this in the current 

study, home-bred foals were used. In the United Kingdom, the Horserace Betting 



Levy Board’s Codes of Practice for Equine Infectious Disease (specifically EHV-1) 

recommend keeping pregnant mares of the same gestational age in small groups 

[44]. Thus both herds of pregnant mares were kept separate. At birth, foals were 

kept in the separate groups into which they had been born. This approach aimed to 

reduce any stress in the lactating mares and the consequent risk of reactivation of 

latent EHV-1, which may have transmitted infection to their foals and thus 

compromised the foals’ EHV-1 naïve status. At weaning, the vulnerability of foals to 

inter-current respiratory bacterial infection and inflammatory airway disease, 

particularly when groups of animals are mixed for the first time, is also an ever-

present risk [33, 34]. Therefore, in the current study, prior to vaccination, foals were 

weaned, then maintained in their original birth groups; a strength of this approach is 

that healthy animals which were naïve to EHV-1 were available for the vaccine trial. 

It did however lead to several limitations in the study design. These included a lack 

of randomization, leading to differences in age, sex and genetic background between 

the vaccinated and control groups; addressing these issues would have improved 

the study design, but carried the associated risk outlined previously.  

 

Amongst the limitations was that control foals were two months younger than 

vaccinated foals, which may have had an impact on their ability to mount an antigen 

specific immune response. The generation of an immune response is reliant on 

many factors including the ability of antigen presenting cells to stimulate T cells, T 

cell numbers, a favourable cytokine microenvironment to mediate co-stimulation of T 

and B cells and ultimately development of immune effector functions, including 

antibody synthesis of an appropriate isotype and CTL activity. In terms of foal age, 

most literature focusses on the immune ontogeny of the adaptive immune response 



to environmental antigens between birth and 6 months old. Holznagel et al [45] 

analysed immunoglobulin isotypes in 13 foals of mixed breeds at approximately 

monthly intervals from birth to 51 weeks of age, one of the few studies to monitor 

antibodies between 6 months of age, through puberty to adult hood. They reported 

stable concentrations of serum IgG1/2 (IgGa) or IgG5 (IgG(T)) and IgA at 8 weeks 

and 12 weeks respectively but IgG6 and IgG7 (IgGc) were not reported. Flaminio et 

al [46] showed that the absolute number of peripheral blood lymphocytes increased 

2.5 fold during the first 3 months of life but by 4 months of age, foals had their full 

repertoire of CD4 and CD8 lymphocytes. In addition, foals aged 1-5 months had a 

higher proportion of FoxP3+ cells in the circulating CD4+ CD25+ (T regulatory cell) 

population and possessed higher suppressor activity compared with their mothers 

[47]. Compared with adult horses, foals at 4 months of age demonstrated equivalent 

innate and adaptive immune functions, including lectin-mediated lymphocyte 

proliferation (indicative of a functional T cell receptor), lymphokine activated killer 

activity and oxidative burst activity [46, 48]. Similarly Major Histocompatibility 

Complex class II expression by T and B lymphocytes reached adult levels by 3-4 

months of age [46, 49]. Ryan et al. reported a lower frequency of IFN and IL-4 

secreting cells in 3-4 month old foals compared with adults [50]. Another study 

reported that IFN gene expression was similar in blood leukocytes from foals aged 

4, 5 and 6 months [51], suggesting that this parameter had matured. IFNproduction 

per cell was also equivalent in 6 and 10 month old foals (8 month old foals were not 

tested). However the number of IFN+ blood leukocytes appeared lower in foals aged 

6 months compared with 10 months [51].  These authors concluded that the mean 

level of IFN protein production in foals approached adult levels by 3 months of age. 

Ryan et al also reported a lower frequency of IFN and IL-4 secreting cells in 3-4 



month old foals compared with adults [50]. Demmers et. al. [52] demonstrated that 

total IgG concentrations were similar in 6 versus 8 month old foals. Antibody isotype 

analysis in foals aged 3-8 months, which encompasses the ages of the foals in the 

current study, showed that IgG1, IgG3 and IgG5 predominate quantitatively over 

IgG4/IgG7 [53]. The latter displays virus neutralizing activity [54].  Perkins & Wagner 

[55] re-analysed published data to show that IgG1 and IgG5 are equivalent 

quantitatively in foals at 6 and 8 months of age. However IgG7 (IgGc) shows a slow 

but gradual increase from a nadir at 3-4 months, to reach ~3g/l at 30 weeks then 4g/l 

by 50 weeks of age [45]. Thus the increased levels of VN antibody titre in the 

RacHgM vaccinated foals within the current study may in part be attributable to the 

greater capacity of older foals to synthesize this isotype compared with the younger 

controls. Nevertheless, this increase in IgG7 is part of immune ontogeny rather than 

measuring the ability of foals to respond to a viral antigen and mount primary and 

secondary immune responses. There is some evidence of variation in antigen-

specific immune responses with age, particularly very young foals. For example, 

foals vaccinated with keyhole limpet haemocyanin at 3 days old, followed by booster 

vaccination showed a diverse immunoglobulin repertoire and the ability to switch 

isotype as measured by sequencing of the B cell immunoglobulin variable region 

[56]. Three-month-old foals vaccinated twice intra-musculary at 3 week intervals with 

a killed cattle respiratory viral vaccine and adjuvant, mounted lower antigen specific 

proliferation and humoral immune responses compared with adults [57] suggesting 

that the adaptive immune response to this antigen is still immature at 3-4 months of 

age. In contrast, the influenza and tetanus IgG1/IgG2, IgG4 and IgG5 sub-isotype 

responses (IgGa, IgGb and IgG(T) respectively) of 6-month-old foals to vaccination 

with inactivated influenza virus, tetanus toxoid and adjuvant followed the same 



pattern as those shown by yearlings but titres were generally lower [58]. Further 

comparison of the results from control foals in the current study with data from 7 

month old, EHV-1 naïve, Icelandic foals infected with strain NY03 [59], showed 

similar patterns of pyrexia, nasopharyngeal virus shedding and cell-associated 

viraemia; the key difference was the longer duration of these signs in the current 

study. This difference may be a reflection of the strain used for infection or other 

unidentified host-related factors. On balance, the sparsity of published literature 

means that currently, it is impossible to draw any firm or precise conclusion about 

the impact of a two month age difference on the ability of weaned foals to generate 

immune responses to either EHV-1 RacH11gM and / or challenge infection. The 

majority of immune parameters studied appear mature at 4 months of age, with 

absolute IgG4 / IgG7 increasing gradually to adult hood [45]. Furthermore current 

guidelines states that primary vaccination of foals at 4-6 months of age is sufficient to 

generate an effective immune response to viral vaccines [35].  

 

Any effect of gender on immune responses in foals has not been reported to date. In 

people, gender plays a role in susceptibility to disease and response to vaccination, 

but any bias is dependent on the pathogen [60]. For example Fleming et al [61] 

reported a higher seroprevalence against herpesvirus-2 in adult females compared 

with males, while the incidence of varicella zoster infection was higher in women, but 

age-dependent [62]. Reproductive hormone status can also have an impact on the 

immune response, as many white blood cells express receptors for steroid and 

gonadal hormones [60]. For example, in adult people, oestrogens promote the Th2 

cytokine bias and thus activation of antibody production, but androgens tend to 

promote Th1 –dependent responses and activate CD8+ T lymphocytes, although 



progesterone can have immune-suppressive effects [63-65]. In the current study, the 

weaned foals were pre-pubertal; puberty in this species begins at approximately 10 

months and until then, is characterized by little testicular activity, but ovaries do have 

active steroidogenesis and thus low gonadotrophin and steroid concentrations [66-

68]. Thus the influence of reproductive hormones on the immune responses of the 

control and vaccinated foals, particularly females remains undetermined. 

 

As part of an unrelated project, the MHC class I haplotypes expressed by some foals 

were characterized. For intracellular pathogens such as EHV-1, MHC class I 

expression is crucial in antigen processing and ultimately in primed animals, the 

presentation and recognition of short viral peptides by cytotoxic T lymphocytes. 

Here, the two groups of foals were each sired by a single but different Welsh 

Mountain pony stallion and the genetics of the foals also differed, with one group 

expressing unknown MHC Class I haplotypes and the other showing a 

predominance of the MHC class I A3 and A7 haplotypes. Both these haplotypes are 

common in the Welsh Mountain pony breed (Prof D.F. Antczak, Cornell University, 

Personal Communication), thus it is likely that at least some of the control foals 

expressed these haplotypes and their associated alleles, making them potentially 

more genetically similar to the vaccinated group. In addition all vaccinates were 

heterozygous so both groups may have had similar genetic diversity, but this 

remains uncharacterized. Nevertheless a potential impact of genetic background 

must be considered when evaluating the outcome of this vaccine trial. 

 

There is evidence that infection of horses with different wild type strains of EHV-1 will 

stimulate cytokine responses with subtle differences [69]. Thus, the parent strain of 



an MLV may affect the nature and route of antigen presentation and thus the 

immune response generated. Here, vaccination with the prototype MLV based on 

RacH11 primed humoral immune responses effectively. Vaccination of a third group 

of foals with the parent RacH strain would have enable more detailed 

characterization of the precise role of gM in immune-enhancement and protection 

against EHV-1 challenge infection as reported in mice [29].  However experimental 

infection of yearling or 2-4 year old ponies with either strain Ab4ORF1/2 or 

Ab4ORF2 resulted in pyrexia and nasopharyngeal shedding of a lower magnitude 

and shorter duration compared with wild type Ab4, but no difference in cell 

associated viraemia [70, 71]. These data are in contrast to the current study where 

RacHgM vaccination (in which ORF 1/ 2 are deleted) did result in reduced cell-

associated viraemia on challenge in infection, along with reduced clinical signs and 

nasopharyngeal shedding. 

 

It had been anticipated that the MLV vaccine would prime antigen specific cell 

mediated immunity via its replication then presentation of viral antigens to CTL by 

MHC class I molecules. Strain RacL11, from which RacH was derived, also causes 

moderate MHC class I downregulation in infected host cells in vitro compared with 

strain Ab4; this is largely due to the absence of ORF1 (EHV-1 UL1; pUL56 HSV 

homologue) [72]. ORF2 (EHV-1 UL2; no HSV homologue identified) which 

modulates cytokine responses is also absent [17].  The ORF17 (gene pUL43) 

collaborates with ORF1 (pUL56) in the downregulation of MHC class I in strain Ab4 

[73]. However, ORF17 is present in strain RacL [17] and to the author’s knowledge, 

there are no reports to suggest it has been deleted during the attenuation of RacH. 

Thus the impact of RacHgM on MHC class I expression is likely to reflect the 



parental RacL strain. Nevertheless, in vivo the replication of EHV-1 occurs 

sequentially at primary and secondary sites, so it is unlikely that downregulation of 

MHC class I occurs in all infected cells simultaneously. Thus antigen presentation by 

MHC class I molecules to CTL is predicted to continue. Despite this prediction and 

although there was a suggestion that RacH11gM vaccination primed CTL activity, 

this was insignificant and individual responses were variable. One potential 

explanation and in common with other viruses and species [74, 75], is that the host’s 

genetic background, particularly MHC class I haplotypes may impact the magnitude 

of the CTL response. Unlike in-bred mice, the recruitment of genetically identical 

horses is challenging and despite being the same breed, the foals in the current 

study were not in-bred. This potential confounding factor needs consideration when 

interpreting the data. 

 

Despite deletion of EHV-1 gM, RacHgM retains the ability to penetrate, spread from 

cell-to-cell and egress from host cells [29]. This glycoprotein is also a moderate 

tetherin antagonist, potentially permitting release of virions trapped on host cells and 

allowing further dissemination [76]. It may be that the RacHgM vaccination resulted 

in a more limited release of virions from host cells, but antigen processing and 

presentation continued, permitting the development of robust systemic humoral 

immunity but a more limited priming of CTLs. Vaccination with the RacH vector alone 

would have permitted further insights into the role of gM in the generation of selected 

immune responses. 

 

Intranasal administration of the RacHgM mutant in combination with an 

intramuscular prime was predicted to result in the stimulation of mucosal antibody, 



particularly IgA and thus contribute to protection against EHV-1 challenge infection in 

vaccinated foals. Simultaneous intranasal and intramuscular administration of an 

MLV provided good protection against challenge infection with bovine herpesvirus-1 

[77]. Here, no significant difference in corrected OD values for nasopharyngeal IgA 

and IgG was detected in the control versus vaccinated foals. Instead there was a 

general increase in mean corrected OD values for IgA and IgG throughout the 

sample period. A similar failure of an intranasally administered, live attenuated 

vaccine (Rhinomune®; RacH strain) administered exclusively within the nares to 

stimulate EHV-1 specific mucosal IgA or IgG or serum antibody in weaned foals was 

reported previously [23]. This was in contrast to the intranasal administration of strain 

A183, which stimulated virus specific mucosal IgA effectively, for a duration of at 

least 13 weeks [23].  However Dolby et al [78] reported that intramuscular 

administration of EHV-1 strain V592 with Freunds’ complete and incomplete 

adjuvants successfully primed the mucosal immune response, resulting in detectable 

mucosal IgA on challenge infection. Thus, as well as the route of administration and 

antigen, adjuvants are likely to play an important role in the generation of mucosal 

immunity [79, 80]. Another contributing factor to the relative absence of 

nasopharyngeal antibody may be the nasopharyngeal muco-ciliary clearance 

system, particularly the mucus component, which may have trapped and removed 

the majority of RacHgM virions at this location. The main component of mucus is 

secreted mucins and these are composed of heavily glycosylated glycoproteins 

which form a complex mesh, with pore size dictating the size and charge of particles 

which can enter the mucus [81]. In horses, MUC5B and MUC5AC form the major 

and minor components in equine respiratory secretions respectively [82]. In vitro, the 

movement of pseudorabies virus, was 59 fold slower in porcine mucus compared 



with water and this hindrance was related to charge, rather than size alone (Yang et 

al 2012). EHV-1 has a zeta potential of -33mV (J.H. Kydd, unpublished data) and is 

approximately 266nm in diameter which is similar to pseudorabies virus (zeta charge 

-31.8+1.5mV; [83]. Thus the respiratory mucus may have limited access of the 

RacH11gM vaccine to the underlying epithelial cells and local immune system. This 

in turn may have resulted in EHV-1 failing to reach the lamina propria and stimulate 

IgA production by cognate plasma cells and transudation or FcRn mediated transport 

of selected IgG isotypes to the apical aspect of the mucosal epithelium and thus 

prohibit any post-vaccination increase in mucosal antibody [84-86]. The absence of 

mucosal IgA and IgG following vaccination of ponies with a gM deletion mutant may 

also be explained by the virus failing to, or at least showing limited binding and entry 

to the respiratory epithelium. An equine respiratory epithelial cell model (EREC) has 

shown that EHV-1 uses cellular N-linked glycans as receptors for initial EHV-1 

binding and entry and thus infection of epithelial cells. These receptors are located 

on the basolateral aspect of ERECs and are normally inaccessible to EHV-1 when 

the  epithelium is intact [87]. This phenomenon would also prevent antigen reaching 

plasma cells within the lamina propria and explain the absence of mucosal antibody. 

Yet another contributing factor to the relative absence of nasopharyngeal antibody 

may be a failure of RacH11gM to replicate sufficiently, perhaps due to degradation 

by mucosal enzymes, such as lysozyme [88]. Thus it may be that a combination of 

mucus and intact respiratory epithelium limited replication in the respiratory tract 

following intranasal vaccination with a RacHgM deletion mutant, thus failing to 

prime mucosal immunity with no consequent exponential increase in virus specific 

IgA and IgG responses. The form (MLV and / or inactivated) and route (intranasal 

and / or intramuscular) of concurrent inoculation can influence protection against 



challenge infection, as highlighted for BHV-1 [77].  Moreover, in horses, separate 

intramuscular prime, followed by an intranasal boost by vaccination or infection did 

stimulate equine influenza or EHV-1 specific mucosal antibody responses [38, 78]. 

However, although intranasal vaccination of foals with the RacH11gM failed to 

stimulate mucosal antibody, it may have generated effector CTL activity in 

respiratory lymphoid tissue, as has been reported for strain A183 [89], contributing to 

partial protection.  

 

The protective efficacy of other MLV or gene deletion mutant vaccines against 

respiratory viruses has been reported in horses. For example, intramuscular 

vaccination of adult horses with MLV Prevaccinol® or Rhinomune® reduced 

nasopharyngeal shedding and viral DNA or infectious virus in blood [21, 22, 90, 91]. 

van de Walle and colleagues generated an MLV (NY03IR6/1) that mimicked 

mutations in EHV-1 strain RacH [42]. Intramuscular and subcutaneous vaccination of 

susceptible horses aged 2 to 18 years generated high titres of virus neutralizing 

antibody. On challenge infection, the amount and duration of nasopharyngeal 

shedding was significantly shorter compared with controls and no pyrexia or cell 

associated viraemia was detected.  Experimentally, some EHV-1 gene deletion 

mutants (e.g. gene 38 (thymidine kinase) and gE / gI deletions) have shown 

virulence after vaccination [92-94], while others gave no or partial protection on 

challenge infection [12, 95]. In Japanese Thoroughbred racehorses, a live attenuated 

EHV-1 / EHV-4 vaccine (ERPL, Nisseiken, Tokyo, Japan) which is licensed for 

prevention of respiratory disease and abortion has been introduced successfully at 

one training centre [14]. This vaccine stimulated higher VN antibody titres than the 

inactivated virus vaccine used previously and was also associated with a reduction in 



the frequency of EHV-1 outbreaks [14].  Of note, several studies which used Ficoll 

gradient centrifugation to isolate PBMC report a high viral load as assessed by 

quantitative PCR, but no infectious virus was detected during co-cultivation on 

indicator cells [21, 23], which appears illogical. Overall, commercial EHV-1 vaccines 

containing either MLV or inactivated virus can stimulate components of humoral and 

cell mediated immune responses effectively, when administered individually [22] and 

some are associated with partial virological protection against respiratory disease . 

Consequently, to exploit these known benefits and improve protection, it may be 

timely to re-evaluate conventional vaccination strategies and consider for example, 

the combined use of MLV and inactivated virus vaccines, as well as optimization of 

adjuvants and routes, timing and frequency of administration [59, 88].  

 

In conclusion, intramuscular and intranasal vaccination of weaned foals with an 

EHV-1 RacH11gM mutant primed systemic humoral immune responses, but no 

significant mucosal antibody or CTL activity could be detected. By comparison with 

control foals, these responses were associated with improved but incomplete 

protection of vaccinated foals against challenge infection. Complete prevention of 

nasopharyngeal virus shedding and cell associated viraemia by vaccination remains 

a challenging goal for future EHV-1 research.  

 

Conflict of interest statement 

The funding source had no involvement in study design, the collection, analysis and 

interpretation of data, the writing of the report and in the decision to submit the article 

for publication. 

 



Disclosure statement 

JHK, DH and RR conducted the experiments and acquired, analysed and interpreted 

the data. DH and NO conceived and designed the study and NO provided the gM- 

deletion mutant and permissive cells for its production. NB revised the article 

critically for important intellectual content. JHK drafted the article and all co-authors 

approved the final version of the manuscript.  

 

Acknowledgements 

JHK, NB and DH were supported by the Animal Health Trust, RSR by University of 

Nottingham and NO by grant Os 143/2-2 from the Deutsche 

Forschungsgemeinschaft. The authors thank the Animal Health Trust’s’ technicians 

within the Diagnostic Virology Service for their efficient serological testing and estate 

staff for their excellent animal handling expertise.  

 
 



Table 1. Details of weaned foals used in the EHV-1 RacH11gM vaccine trial. Major 

histocompatibility Complex (MHC) class I haplotype had been determined previously 

by microcytotoxic lymphocyte assay. V1 = first vaccination. CI = challenge infection. 

n/a = not applicable. M = month. * two stallions were used and each sired the foals in 

one group only. 

 

Foal no. Gender  Date of birth Age at V1 Age at CI Dam MHC Sire MHC*

(Group)   (days) (days) 

----------------------------------------------------------------------------------------------------------------

  

Controls 

144D Female 24th June n/a 210 unknown unknown 

6633 Female 16th July n/a 188 unknown unknown 

4033 Female 17th July n/a 187 unknown unknown 

4933 Female 17th July n/a 187 unknown unknown 

4150 Female 24th July n/a 180 unknown unknown 

4B05 Female 30th July n/a 174 unknown unknown 

Mean + standard deviation   187.7+12.2  

     6.2+0.4 m 

 

Vaccinates 

4568 Male 11th April 184 254 A3/x A7/x 

6825 Male 30th April 195 265 A3/x A7/x 

1B05 Male 10th May 185 255 A3/x A7/x 

6A77 Female 14th May 181 251 A7/x A7/x 

1105 Female 16th May 179 249 A3/x A7/x 

7728 Male 21st May 174 244 A3/x A7/x 

Mean + standard deviation  183+7.1 253+7.1 

    6.1+0.2 m 8.4+0.2m 

  



Figure legends. 

Figure 1. Timeline of EHV-1 RacHgM vaccine trial in weaned foals. V1 and V2 = 

first and second vaccinations respectively. 

 

Figure 2. EHV-1 specific antibody titres in serum samples collected from control and 

vaccinated foals at different stages of the EHV-1 RacHgM vaccine trial. 

Seroconversion of either complement fixing (CF) or virus neutralizing (VN) antibody 

was defined as an increase of log10 0.6 in titre. * indicates a significant difference 

(p<0.001) between the antibody titres in the control group compared with the 

vaccinated group. m= months, w = weeks.  

a) complement fixing antibody. A reciprocal CF titre of log10 1.9 (> 1:80) is indicative 

of exposure.  Comparison of V1-3m with other time points in vaccinated foals: “a” not 

significant, “b”, “c”, “d” indicate p<0.05, with significance levels of a<b<c<d, with d 

the highest level of significance at p<0.001.  

b) virus neutralizing antibody. Comparison of V1+0 (pre-vaccination) with other time 

points in vaccinated foals: “a” not significant; “b” p<0.001. 

 

Figure 3. Clinical and virological parameters in control and RacHgM vaccinated 

foals following intranasal challenge infection with EHV-1 strain Ab4/8. a) rectal 

temperature; b) nasopharyngeal virus shedding; c) percent of foals with detectable 

cell associated viraemia. Samples for viraemia testing used buffy coat cells, which 

were not purified on sucrose density gradients. No samples were collected on Day 8 

after infection. 



 

Figure 4. EHV-1 specific IgA and IgG immunoglobulins in nasal washes from control 

and vaccinated foals at different stages of the EHV-1 RacHgM vaccine trial. Data 

are expressed as corrected optical densities (OD) namely relevant immunoglobulin 

(Ig) OD – non specific binding / protein concentration in neat nasal wash (mg/ml). 

Mean corrected positive and negative control OD values for each group assayed 

were: IgA unvaccinated foals 0.51+0.20 and 0.20+0.04; IgA vaccinated foals 

0.57+0.14 and 0.09+0.03; IgG unvaccinated foals 0.37+ 0.17 and 0.07+0.03; IgG 

vaccinated foals 0.30+0.19 and 0.06+0.01 respectively. a) IgA control foals; b) IgA 

vaccinated foals; c) IgG control foals; d) IgG vaccinated foals.  

 

Figure 5. EHV-1 specific cytotoxic T lymphocyte (CTL) responses in peripheral blood 

lymphocytes collected from control and vaccinated foals at different stages of the 

EHV-1 RacHgM vaccine trial. Final mean percent specific lysis by effector cells 

after subtraction of percent lysis against mock infected target cells is shown. Each 

sample was assayed in triplicate. Effector to target ratios are shown. a) control foals; 

b) vaccinated foals. 
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Figure 4 continued.  
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Supplementary Table 1. Log10 VN antibody titres/ml before and after vaccination and following EHV-1 challenge infection  
 
 
Foal Number Sample Point 
 
  Pre V1 V2+2w I+2w I+5w 
 
--------------------------------------------------------------------------------------------------------------------------------------------------  
Controls: 
 4B05 2.15 1.55 1.95 >3.15 
 4033 1.44 1.14 >3.15 >3.15 
 4933 1.35 0.75 2.45 3.05 
 6633 1.35 0.55 2.64 >3.15 
 144D 1.14 1.14 >3.15 >3.15 
 4150 1.14 0.75 2.94 >3.15 
 
 Mean 1.48+0.37 0.98+0.37 2.71+0.47 3.13+0.04 
 
Vaccinates: 
 7728 0.75 2.55 3.05 >3.15 
 1B05 2.25 >3.15 >3.15 >3.15 
 6825 2.15 >3.15 >3.15 >3.15 
 4568 2.15 2.94 >3.15 >3.15 
 1105 1.85 1.95 3.05 3.05  
 6A77 1.14 2.85 >3.15 >3.15 
 
 Mean 1.71+0.62 2.76+0.46 3.12+0.05 3.13+0.04 



Supplementary Table 2.  Mean clinical scores, pyrexia, nasopharyngeal (NP) shedding and cell associated viraemia in control or gM- 

vaccinated foals following intranasal challenge infection with EHV-1, strain Ab4/8. The presence of mucopurulent nasal or ocular discharge at 

each nostril or eye and submandibular lymph node enlargement were assessed and scored as 0 (absent), 1 (present, mild), 2 (present, 

moderate) or 3 (present, severe). Total = total number of days, then first and last day of detection. 

  
 
 Foal status Clinical Score Pyrexia NP virus shedding Cell associated viraemia 
 
    (Days)   (Days)    (Days) 

   Total   First  Last Total  First   Last Total  First  Last 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 Controls: 
 
 Mean 21.2 4.5 2.0 5.5 8.3 1.3 8.8 6.2 3.0 15.3 
  
 St Dev 7.8 1.0 0 1.0 1.6 0.5 1.0 1.0 1.3 3.9 
 
Vaccinates: 
 
 Mean 8.3 1.2 3.0 3.7 2.8 1.2 4.0 2.5 4.7 8.3    

 St Dev 6.2 1.0 2.4 2.7 2.3 0.7 3.6 0.5 0.8 2.1 

 

 
  



48 
 

 1 


