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ABSTRACT

Lameness in dairy cattle is a highly prevalent 
condition that impacts on the health and welfare of 
dairy cows. Prompt detection and implementation of 
effective treatment is important for managing lame-
ness. However, major limitations are associated with 
visual assessment of lameness, which is the most com-
monly used method to detect lameness. The aims of 
this study were to investigate the use of metabolomics 
and machine learning to develop novel methods to de-
tect lameness. Untargeted metabolomics using liquid 
chromatography-mass spectrometry (LC-MS) alongside 
machine learning models and a stability selection meth-
od were utilized to evaluate the predictive accuracy of 
differences in the metabolomics profile of first-lactation 
dairy cows before (during the transition period) and at 
the time of lameness (based on visual assessment using 
the 0–3 scale of the Agriculture and Horticulture De-
velopment Board). Urine samples were collected from 
2 cohorts of dairy heifers and stored at −86°C before 
analysis using LC-MS. Cohort 1 (n = 90) cows were 
recruited as current first-lactation cows with weekly 
mobility scores recorded over a 4-mo timeframe, from 
which newly lame and nonlame cows were identified. 
Cohort 2 (n = 30) cows were recruited within 3 wk 
before calving, and lameness events (based on mobility 
score) were recorded through lactation until a mini-
mum of 70 d in milk (DIM). All cows were matched 
paired by DIM ± 14 d. The median DIM at lameness 
identification was 187.5 and 28.5 for cohort 1 and 2, 
respectively. The best performing machine learning 
models predicted lameness at the time of lameness with 
an accuracy of between 81 and 82%. Using stability se-
lection, the prediction accuracy at the time of lameness 

was 80 to 81%. For samples collected before and after 
calving, the best performing machine learning model 
predicted lameness with an accuracy of 71 and 75%, 
respectively. The findings from this study demonstrate 
that untargeted LC-MS profiling combined with ma-
chine learning methods can be used to predict lameness 
as early as before calving and before observable changes 
in gait in first-lactation dairy cows. The methods also 
provide accuracies for detecting lameness at the time 
of observable changes in gait of up to 82%. The find-
ings demonstrate that these methods could provide 
substantial advancements in the early prediction and 
prevention of lameness risk. Further external validation 
work is required to confirm these findings are generaliz-
able; however, this study provides the basis from which 
future work can be conducted.
Key words: liquid chromatography–mass 
spectrometry-based metabolomics, machine learning, 
lameness, dairy cattle

INTRODUCTION

Lameness in dairy cattle remains a prevalent and in-
tractable condition with profound health, welfare, and 
economic impacts (Huxley, 2013; Randall et al., 2019). 
Central to managing lameness in dairy cows is early 
detection to enable prompt effective treatment. This 
reduces lesion severity, recurrence rates, and lameness 
prevalence (Leach et al., 2012), whereas delay to treat-
ment has a negative effect on recovery rates (Thomas 
et al., 2016). The significant contribution of previous 
lameness events to herd level lameness, likely due to the 
long-term pathological changes associated with claw 
horn lesions, highlights the importance of intervening 
early in the disease process (Newsome et al., 2016; 
Randall et al., 2018a). The goal therefore is accurate 
identification of lameness as early as possible, ideally 
to have the ability to predict lameness risk before the 
development of gait changes. Furthermore, if targeted 
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to heifers, preventive approaches could have substantial 
effect on the herd over time; reducing long-term patho-
logical changes associated with lameness and improv-
ing the health, welfare, and sustainability of the herd. 
Visual assessment, the current mainstay of lameness 
identification, has some major limitations, including 
resource requirements and underestimation of lameness 
prevalence by farmers (Whay et al., 2003; Leach et al., 
2010). Additionally, visual assessment is reliant on the 
manifestation of pain from pathological changes that 
ultimately affect longer-term health and welfare. Meth-
ods to identify lame cows that are objective and could 
potentially identify disease risk before development of 
changes in mobility would offer huge advantages over 
visual assessment or automated sensor systems reliant 
on alterations in cow gait. Advanced chemical analyt-
ics such as metabolomics offer such an opportunity to 
achieve this through biomarker discovery.

Metabolomics using liquid chromatography-mass 
spectrometry (LC-MS) has come to the forefront as 
a technique for identification of disease biomarkers as 
well as providing unique insights into pathophysiologi-
cal processes. Biomarkers are characteristics that can be 
objectively measured as an indicator of pathogenic pro-
cesses as well as normal biological processes (Biomark-
ers Definitions Working Group, 2001). Metabolomics 
enables the comprehensive capture of metabolites that 
represent current phenotype and correlates with func-
tional state. This representation of system-wide biology 
in real time enables the development of diagnostic tools 
for early detection or prediction of disease. Metabolo-
mics-based approaches have so far been underused in 
livestock research (Goldansaz et al., 2017). Eckel et al. 
(2020) used a targeted metabolomics approach to iden-
tify 153 metabolites in urine samples of 6 severely lame 
and 20 nonlame cows using mass spectrometry. This 
preliminary study suggested differences in metabolites 
may be identified in lame and nonlame cows as early 
as precalving, which requires further validation. The 
transition period (3 wk before to 3 wk after calving) 
has been highlighted as a potentially important time as 
metabolic changes associated with calving may influ-
ence pathological processes occurring in the hoof that 
lead to lesions causing lameness; however, further work 
is still required to fully understand these processes and 
temporal associations (Randall et al., 2018b). Metabo-
lomics may offer an opportunity to achieve this goal 
through investigation of metabolite biomarkers associ-
ated with lameness.

Untargeted metabolomics, not restricted to a subset 
of a priori chosen biomolecules, offers a comprehensive 
and unbiased approach for metabolite analysis (Alonso 
et al., 2015). The untargeted analysis of metabolites, 

using sensitive techniques such as LC-MS, captures 
rich biological information relating to disease processes. 
The complex multidimensional data generated using 
LC-MS does, however, require appropriate statistical 
and computational techniques to translate the captured 
information for use in clinical application (Lee and 
Hu, 2019). Machine learning methods can be used to 
analyze multidimensional data sets, which enables the 
predictive power of data generated by advanced chemi-
cal analytical techniques to be optimized.

The aims of the current study were to use machine 
learning methods to identify differences in the urinary 
metabolomic profiles of lame and nonlame dairy cows 
and to evaluate the predictive accuracy of the metabo-
lomic differences in first-lactation cows before (during 
the transition period) and at the time of lameness. 
Therefore, the primary objectives of this study were 
to (1) evaluate predictive accuracy of the metabolomic 
profile of lame and nonlame dairy cows at the time of 
lameness during first lactation, and (2) evaluate the 
predictive accuracy of the metabolomics profile of lame 
and nonlame heifers during the transition period as 
they enter first lactation.

MATERIALS AND METHODS

Ethical approval for this case-control study was 
granted from the University of Nottingham Committee 
for Animal Research and Ethics (Reference No. 3120 
200220 and 3132 200309). First-lactation Holstein dairy 
cows were recruited in 2 separate cohorts from one dairy 
herd based at the Centre for Dairy Science Innovation, 
University of Nottingham. The herd is a 300-cow re-
search dairy herd producing milk commercially. Cows 
were housed continuously with sand-bedded cubicles 
and slatted flooring. Milking was via automatic (ro-
botic) milking stations (Lely Astronaut A3; Lely UK 
Ltd.). Cows were fed a TMR, offered ad libitum, and 
a concentrate feed offered during milking in the auto-
mated milking system that was according to milk yield 
(0.45 kg/kg milk yield above 32 kg/d, up to maximum 
of 12 kg/d or 3 kg per automatic milking station visit).

Heifer Cohorts and Mobility Scoring

Two cohorts of heifers were recruited. Cohort 1 were 
recruited as current first-lactation cows with weekly 
mobility scores being recorded over a 4-mo timeframe 
from which lame and nonlame cows (based on mobility 
score) were defined. Cohort 2 were recruited within 3 
wk before calving, and lameness events (based on mo-
bility score) were recorded through their first lactation 
until a minimum of 70 DIM; lame and nonlame cows 
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were defined during this period. All mobility scoring 
was conducted using the Agriculture and Horticulture 
Development Board 0 to 3 scale (AHDB, 2022) scoring 
system by one of 3 trained mobility scorers. Calibration 
sessions were conducted on multiple occasions during 
the study periods and Gwet’s AC1 calculated from the 
calibration mobility score data (Gwet, 2014). Minimum 
cohort sizes were based on published pilot data in the 
same species using the same similar statistical analyti-
cal framework to analyze mass spectral data (He et al., 
2022). A brief description of each cohort is outlined 
below including timings of sampling and definitions of 
lameness;

Cohort 1.  A total of 175 first-lactation dairy cows 
were mobility scored weekly between July 24 and No-
vember 19, 2020. All first-lactation cows in the herd 
were eligible for inclusion, apart from those having 
undergone surgery or any treatment with antimicrobi-
als or anti-inflammatories in the current lactation. On 
identification of a new case of lameness, defined as a 
mobility score of <2 for at least 2 wk before being 
scored ≥2 for a minimum of 2 consecutive weeks, urine 
samples were collected (at lameness) and stored accord-
ing to the protocols described below. For each lame cow, 
match paired (±14 DIM) nonlame cows were identified 
and sampled in the same manner. A nonlame cow was 
defined as having at least 2 consecutive weeks of score 
<2 before sampling followed by at least 2 consecutive 
weekly scores <2. Once the sample collection phase of 
the study had been completed (so that mobility scores 
were available to enable confirmation that the criteria 
for lame and nonlame had been met by a total of 90 
cows), samples were selected and transported for me-
tabolomics analysis.

Cohort 2.  A total of 67 dairy heifers (entering 
their first lactation) were recruited precalving during 
August 7, 2020, to March 11, 2021. Mobility scoring 
was conducted weekly from up to 3 wk before calving 
to a minimum of 70 DIM. Urine samples were collected, 
according to protocols described below, from all heif-
ers within 3 wk before calving and within 3 wk after 
calving. Samples were also collected at the time of first 
case of lameness from lame cows and match paired 
nonlame control cows. Lameness was defined as above, 
with nonlame cows defined as having no 2 consecutive 
weekly score ≥2 within 70 DIM. Heifers undergoing 
surgery or treatment with anti-inflammatories or an-
timicrobials during the study period were excluded. 
Once the sample collection phase of the study had been 
completed (so that mobility scores were available up 
to a minimum of 70 DIM to confirm that the criteria 
for lame and nonlame had been met by a total of 30 
heifers), samples were selected and transported for me-
tabolomics analysis.

Sample Collection and Handling Protocols

Urine samples were collected via free-flow catch and 
gloves were worn at all times during sample collection 
and handling. Urine is widely used in metabolomics 
studies due to the minimally invasive nature by which it 
can be collected and its usefulness in providing insights 
into the metabolome at a systemic level (Fernández-
Peralbo and Luque de Castro, 2012). Warm water and 
paper towels were used to wash the exterior vulva and 
surrounding area before urine collection. Samples were 
collected into universal containers, transferred to cryo-
vials (1–2 mL) and immediately frozen in liquid nitro-
gen. Samples were stored at −86°C (Upright Ultra-Low 
Temperature Freezer, Thermo Fisher Scientific, Hemel 
Hempstead, UK) and transported on dry ice to the 
Centre for Analytical Bioscience, University of Not-
tingham.

Untargeted Metabolomics Using LC-MS

Samples from cohort 1 (at lameness) were processed 
together in one analytical run and samples from cohort 
3 (precalving, postcalving, and at lameness) were pro-
cessed together in one separate analytical run.

Chemicals and Reagents for LC-MS

Deionized water was prepared using Milli-Q wa-
ter purification system (Millipore). Acetonitrile and 
methanol were LC-MS grade and obtained from VWR 
(West Sussex, UK) and Fisher Scientific (Loughbor-
ough, UK), respectively. All analytical standards and 
chemicals including ammonium carbonate were pur-
chased from either Fisher Scientific (Loughborough, 
UK) or Sigma-Aldrich (Gillingham, UK) unless other-
wise stated. For metabolite identification, 5 mixtures 
containing 268 authentic standards were prepared in 
methanol: water (1:1) and were used for the identifica-
tion of the metabolites as detailed elsewhere (Abdel-
razig et al., 2020).

Sample Preparation for LC-MS

The preparation of urine samples was conducted as 
described by Want et al. (2010). In brief, 60 µL of urine 
samples were thawed on ice and centrifuged at 10,000 
× g at 4°C for 10 min. Fifty microliters of the superna-
tant of the urine samples were transferred into HPLC 
vials and diluted with 100 µL of deionized water. The 
urine samples were then vortexed for 30 s and analyzed 
with LC-MS. Reagent blank was prepared following the 
same procedure excluding the sample. For metabolo-
mics analysis, a pooled quality control (QC) sample 
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was prepared by mixing 20 µL from each urine sample 
and vortexed for 30 s.

Analytical Methodologies

The LC-MS for metabolite profiling and LC-MS/
MS for metabolite identification were performed using 
a Q-Exactive Plus mass spectrometer equipped with 
Dionex U3000 UHPLC system (Thermo Fisher Scien-
tific, Hemel Hempstead, UK). A ZIC-pHILIC column 
(4.6 × 150 mm, 5-µm particle size, Merck SeQuant, 
Watford, UK) was used for the chromatographic sepa-
ration of the metabolites in the samples, with a flow 
rate of 300 µL min−1 at 45°C for 15 min. The samples 
were maintained at 4°C and the injection volume was 5 
µL. The gradient started with 20% A (20 mM ammo-
nium carbonate in water) and 80% of B (acetonitrile) 
and increased to 95% A over 8 min, before returning 
the composition to the initial conditions in 2 min at 
400 µL/min and the column was re-equilibrated for 5 
min at 300 µL/min (15 min total time). The MS was 
operated in electrospray ionization positive and nega-
tive (ESI+ and ESI−, respectively) switching acquisi-
tion mode for LC-MS profiling and in data-dependent 
MS/MS for identification of metabolites (QC sample). 
Spray voltage was 4.5 kV (ESI+) and 3.5 kV (ESI−), 
capillary voltage was 20 V (ESI+) and −15 V (ESI−) 
and the sheath, auxiliary and sweep gas flow rates were 
40, 5, and 1 (arbitrary unit), respectively. Capillary and 
heater temperatures were 275 and 150°C, respectively. 
A resolution of 70,000 from m/z 70 to 1,050 was used 
to acquire data for LC-MS profiling. A resolution of 
17,500 and a stepped normalized collision energy of 20, 
30, and 40 were used for the identification of metabo-
lites using data-dependent MS/MS.

LC-MS Untargeted Metabolomics Analysis  
and Metabolite Identification

Urine samples, standard mixtures (n = 5), blanks (n 
= 3), and QC sample were analyzed in a single analyti-
cal run for each cohort. The pooled QC sample were 
analyzed at the beginning of analysis (n = 6) to equili-
brate the column. The urine samples were randomized 
and the QC sample was analyzed after every 9 samples 
to test the performance of the LC-MS analytical sys-
tem.

Data Analysis and Metabolite Identification

The acquired raw LC-MS data sets were processed 
with Compound Discoverer 3.1 SP1 software (Thermo 
Fisher Scientific, Hemel Hempstead, UK). The LC-MS 
analytical performance was assessed using the pooled 

QC approach by unsupervised principal component 
analysis (PCA, Simca P +164; Sartorius Stedim Data 
Analytics AB, Umea, Sweden; Gika et al., 2007; Want 
et al., 2010). In brief, the data sets were log-transformed 
using Compound Discoverer and imported to Simca P 
for multivariate analysis including PCA. The imported 
data sets were mean-centered and Pareto scaled. The 
robustness of the generated PCA model for metabolo-
mics analysis was evaluated using cross-validation by 
monitoring the fitness of model (R2X) value.

Subsequent analysis of each of the LC-MS profiles 
(mass ions) generated for each cohort (cohort 1: samples 
collected at lameness; cohort 2: at lameness, precalving, 
and postcalving) was conducted using R (R Core Team, 
2022) with lameness (lame or nonlame) as a binary 
outcome. A suite of machine learning models including 
support vector machine (SVM; Cortes and Vapnik, 
1995), elastic net regression (Zou and Hastie, 2005), 
partial least squares regression (Wold et al., 2001), 
Random forest (Breiman, 2001) and multivariate adap-
tive regression splines (MARS; Friedman, 1991) were 
utilized within the caret package (Kuhn, 2022). Data 
were normalized to total ion count and standardized. 
Recursive feature elimination is a sequential method of 
model construction with reducing numbers of variables; 
variables are removed in order of importance until an 
optimal model is achieved based on the best cross-
validation performance with the smallest number of 
variables (Kuhn and Johnson, 2013). Recursive feature 
elimination was used for each algorithm to select the 
smallest number of mass ions that provided the best 
performance accuracy in terms of classifying cows as 
lame or nonlame. The number of features that could 
be selected were between 2 and 200. Mean prediction 
accuracy and performance metrics including sensitiv-
ity, specificity, positive predictive values (PPV) and 
negative predictive values (NPV) were assessed using 
leave-one-out cross-validation. The best performing 
models were identified based on mean prediction ac-
curacy. In addition, stability selection was conducted 
using the stabilizer package (Hyde et al., 2022a) to 
prevent overfitting and identify the minimum number 
of variables that classify cows as lame or nonlame. This 
approach is based on the principles described by Mein-
shausen and Bühlmann (2010), whereby repeated sub-
sampling (bootstrapping) is used to identify covariates 
most frequently selected across bootstrap samples. A 
threshold for selection frequency for variable inclusion 
is identified by comparing the proportion of covariates 
selected using the observed data versus a data set in 
which the outcome is randomly permutated (Hyde et 
al., 2022b). Model triangulation, to select variables 
by multiple modeling approaches, further reduces the 
probability of selecting false positive variables (Lima et 
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al., 2021). We conducted model triangulation using 3 
regularized regression models based on (1) a modified 
Bayesian information criterion (Zhang and Siegmund, 
2007), (2) the minimax convex penalty (Zhang, 2010), 
and (3) least absolute shrinkage and selection operator 
regression (Friedman et al., 2010). Following stability 
analysis and model triangulation, performance metrics 
were calculated for the final selected variables using 
leave-one-out cross-validation.

RESULTS

Descriptive Statistics

Cohort 1. Samples from a total of 90 heifers [45 lame 
and 45 nonlame (control)] were analyzed using LC-MS. 
Body condition score ranged between 2.5 to 4, and DIM 
ranged between 2 to 318. The median DIM at lameness 
identification was 187.5 d (Table 1). All matched pairs 
met the criteria of being within 14 DIM. All lame cows 
were scored 2 for a minimum of 2 consecutive weeks, 
apart from one cow in cohort 2 with a single score 3 
(followed by a 2 the subsequent week).

Cohort 2. Samples from a total of 30 heifers [15 
lame and 15 nonlame (control); sample numbers at 
each stage differed due to small numbers of match 
paired samples not being available] were analyzed us-
ing LC-MS. The minimum BCS at any time point was 
3 and the maximum was 4. Days in milk ranged from 
7 to 76 at the time of lameness, whereas samples col-
lected precalving were from heifers between 1 and 15 d 

before calving, and samples collected postcalving were 
from heifers 0 to 20 d after calving (Table 1). The me-
dian DIM at lameness identification was 28.5 d and all 
matched pairs met the criteria of being within 14 DIM 
(Table 1). The Gwet’s AC1 coefficient (SE) was 0.60 
(0.07) for the 3 mobility scorers.

Untargeted LC-MS Metabolomics

The LC-MS profiles generated 2,680 mass ions from 
the samples collected at the time of lameness for cohort 
1. For cohort 2, the LC-MS profiles generated 4,383 
mass ions for samples collected precalving, postcalv-
ing, and at the time of lameness. Each of these LC-MS 
data sets were subsequently analyzed with all mass 
ions included in the analysis. Pooled QC samples were 
clustered toward the center of the PCA scores plot with 
all samples indicating good stability and validity of LC-
HRMS analytical performance for cohort 1 and cohort 
2.

Performance Metrics

The performance metrics for all data sets and data 
analytical approaches are summarized in Table 2. The 
mean prediction accuracy of the best performing ma-
chine learning model (SVM) for cohort 1, with samples 
taken at the time of lameness, was 82.2% with 10 
variables selected. For cohort 2, the highest prediction 
accuracy from the best performing machine learning 
model (MARS) was 80.8% with 2 variables selected 
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Table 1. Descriptive statistics for DIM/days before calving when sampled relating to 2 cohorts of dairy heifers 
sampled for urine (n = 172 samples) for metabolomics analysis

Data set1

DIM/days precalving when sampled

All Lame Nonlame (control)

Cohort 1; at lameness (n = 90)
 Range 2–318 2–318 11–313
 Median 187.5 187 188
 Interquartile range 50.25–233.75 50–234 53–233
Cohort 2; at lameness (n = 26)    
 Range 7–76 7–76 7–64
 Median 28.5 29 28
 Interquartile range 20–51.75 22–56 20–51
Cohort 2; precalving (n = 28)    
 Range 1–15 1–13 3–15
 Median 5.5 4.5 6.5
 Interquartile range 4–7.75 3.00–6.75 4.2–10.25
Cohort 2; postcalving (n = 28)    
 Range 0–20 0–15 1–20
 Median 4 3.50 5.00
 Interquartile range 3–7.5 3.00–5.75 3.00–3.50
1Cohort 1: Urine samples collected from a total of 90 heifers [45 lame and 45 nonlame (control)]. Cohort 2: 
Urine samples collected from a total of 30 heifers (15 lame and 15 nonlame). At lameness: samples collected 
at the time of lameness. Precalving: samples collected within 3 wk precalving. Postcalving: samples collected 
within 3 wk postcalving.
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in the model for samples taken at the time of lame-
ness. At the time of lameness, sensitivity of between 
0.80 (cohort 1) and 0.92 (cohort 2) were achieved, and 
specificity of between 0.84 and 0.69 for cohort 1 and 
2, respectively, while PPV of between 0.84 (cohort 
1) to 0.75 (cohort 2) and NPV 0.81 (cohort 1) to 0.9 
(Cohort 2) were achieved. Using stability selection, the 
prediction accuracy of selected metabolites was 79.9% 
(5 variables selected) and 80.8% (1 variable selected) 
for samples taken at the time of lameness for cohort 
1 and 2, respectively. While the sensitivity was 0.76 
to 0.84, specificity was 0.77 to 0.82, PPV was 0.79 to 
0.81, and NPV 0.77 to 0.83 across the 2 cohorts using 
these methods (samples collected at the time of lame-
ness and performance metrics calculated from metabo-
lites selected using stability selection). For precalving 
samples (median sampling time was 5.5 d precalving), 
the best performing machine learning model (random 
forest) provided a prediction accuracy of 71.4% with 15 
variables selected in the model, for lameness occurring 
in the following lactation. Sensitivity, specificity, PPV, 
and NPV were 0.5, 0.71, 0.64, and 0.59 respectively. 
For postcalving samples (median sampling time was 
4 d postcalving) the highest prediction accuracy from 
the best performing machine learning model (random 
forest) was 75.0% with 15 variables selected. Sensitiv-
ity, specificity, PPV, and NPV were 0.71, 0.50, 0.59, 
and 0.63, respectively. For both data sets from samples 
collected within the transition period (3 wk precalving 
to 3 wk postcalving) no variables were selected using 
stability selection and therefore no predictions were 
made using this method.

Triangulation of Top-Ranking Mass Ions  
and Selection Using Stability Selection Method

Of the top 10 ranking mass ions output from the 
best performing machine learning (ML) algorithm 
and the top 5 ranking mass ions selected by the sta-
bility selection method, between one and 4 mass ions 
were found to be the same across both methods (ML 
algorithm and stability selection) for each data set. 
These mass ions have a higher certainty of being cor-
rectly identified as being predictive for lameness for 
that particular data set. For samples collected at the 
time of lameness, there was one mass ion that was 
top ranking in the best performing ML model (SVM) 
and was also selected using stability selection for co-
hort 1. Likewise, there was one mass ion that was top 
ranking in the best performing ML model (MARS) 
and selected using stability selection for cohort 2. For 
samples collected precalving (cohort 2) there were 3 
mass ions that were top ranking in the best perform-
ing ML model (random forest) that were also selected 
using stability selection. For samples collected post-
calving there were 4 mass ions that were top ranking 
(random forest) and selected using stability selection. 
Using stability selection 5 mass ions were selected 
in the model for samples collected at the time of 
lameness in cohort 1 and one mass ion for samples 
collected at the time of lameness in cohort 2. For 
samples collected pre- and postcalving no mass ions 
were selected suggesting more uncertainty in these 
being predictive of lameness versus those selected at 
the time of lameness.

Randall et al.: USING METABOLOMICS TO PREDICT LAMENESS IN DAIRY COWS

Table 2. Performance metrics [mean prediction accuracy (point estimate), sensitivity, specificity, PPV, NPV] for mass ions selected by machine 
learning (ML) models and stability selection from liquid chromatography-mass spectrometry data generated using untargeted metabolomics on 
urine samples from dairy heifers1 

Data set2  
Best performing  
ML model

No. variables 
selected

Mean 
accuracy (%) Sensitivity Specificity PPV NPV

Cohort 1         
 At lameness (n = 90)  SVM3 10 82.2 0.80 0.84 0.84 0.81
  Stability analysis 5 79.9 0.76 0.82 0.81 0.77
Cohort 2        
 At lameness (n = 26)  MARS4 2 80.8 0.92 0.69 0.75 0.90
  Stability selection 1 80.8 0.84 0.77 0.79 0.83
Precalving (n = 28)  Random forest 15 71.4 0.50 0.71 0.64 0.59
  Stability selection None NA5 NA NA NA NA
Postcalving (n = 28)  Random forest 15 75.0 0.71 0.50 0.59 0.63
  Stability selection None NA NA NA NA NA
1Best preforming models were selected based on having the highest mean accuracy of all algorithms evaluated. PPV = positive predictive value; 
NPV = negative predictive value.
2Cohort 1: Urine samples collected from a total of 90 heifers [45 lame and 45 nonlame (control)]. Cohort 2: Urine samples collected from a total 
of 30 heifers (15 lame and 15 nonlame). At lameness: samples collected at the time of lameness. Precalving: samples collected within 3 wk pre-
calving. Postcalving: samples collected within 3 wk postcalving.
3SVM = support vector machine.
4MARS = multivariate adaptive regression splines.
5NA = not applicable.
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DISCUSSION

This study is the first to report on the use of un-
targeted LC-MS metabolomics combined with machine 
learning algorithms to determine the prediction accu-
racy of urinary metabolomics profiles for lameness in 
dairy cows. Furthermore, the differences in the urinary 
metabolomics profiles were evaluated at time points 
both around the time of calving (transition period) and 
at the time of lameness detection, to determine whether 
the differences in the metabolomics profiles could be 
predictive for lameness at an early stage before changes 
in gait, as well as once gait changes are visible. At 
the time of lameness, prediction accuracies of up to 
82% were achieved using these methods. Around the 
time of calving, prediction accuracies of 71 to 75% were 
achieved, before changes in gait were being observed. 
The reference standard outcome for lameness, against 
which these accuracies were calculated, was mobility 
score (visual assessment of gait). As it is well acknowl-
edged that mobility scoring is a subjective measure 
with high inter-rater variability and poorer accuracy 
for detecting milder lameness, this may contribute to 
lower prediction accuracies of the mass ions selected 
by algorithms due to misclassification of the outcome 
in the first place. It is possible that the metabolomics 
profile was in fact better at detecting lameness than 
by mobility scoring. Furthermore, these prediction ac-
curacies may be increased with the use of targeted me-
tabolomics compared with untargeted metabolomics, 
once target metabolites have been established. Future 
studies may also be able to improve on the accuracies 
reported here with the addition of lesion data to define 
lameness outcomes. It is likely that the cause of lame-
ness, and whether this is infectious or noninfectious, 
will affect the metabolome of lame cows.

One of the key potential uses for metabolomics is 
in diagnostic applications and this has been evidenced 
across multiple diseases in humans, including cancer, 
diabetes and cardiovascular diseases (Gowda et al., 
2008). Studies evaluating the use of metabolomics to 
develop diagnostic biomarker panels in dairy cattle 
have been reported in a small number of diseases in-
cluding mastitis and ketosis (Hu et al., 2021; Zhang et 
al., 2021). For example, Zhang et al. (2021) reported 
that the area under the curve from receiver operating 
characteristics curve of a small 6 biomarker panel for 
predicting ketosis at −8 and −4 wk were 0.98 and 0.99, 
respectively, demonstrating the potential predictive 
capabilities of metabolomics for livestock diseases. In 
terms of lameness, one pilot study has reported an area 
under the curve of 0.98 (95% CI: 0.76–1) and 0.99 (95% 
CI: 0.94–1) at −4 and −8 wk postpartum, respectively 
(Eckel et al., 2020). This was achieved using the top 5 

biomarkers identified in the urine of severely lame (n 
= 6) compared with control (n = 20) cows utilizing 
a targeted LC-MS metabolomics; however, no other 
performance metrics such as accuracy were reported, 
and authors highlight the preliminary nature of these 
results that require further external validation. How-
ever, the results do support the findings of the current 
study, in which it was found that mass ions predictive 
of lameness can be detected as early as before calv-
ing (for the lactation in which the cows become lame). 
In the current study, prediction accuracies up to 75% 
were achieved using samples collected in the transition 
period (3 wk pre- to 3 wk postcalving). For samples 
collected precalving, this was a minimum of 8 d and 
a maximum of 22 d before the detection of lameness 
using visual assessment. These results demonstrate the 
potential for using these methods to develop tools for 
early warning or prediction of lameness before any vis-
ible changes in gait.

The precalving and postcalving samples collected 
during the transition period were used in the current 
study as the transition period has been identified as an 
important time period for influencing lameness risk due 
to hormonal and metabolic changes taking place (Web-
ster, 2001; Tarlton et al., 2002). Additionally, subacute 
inflammation occurring during transition is thought to 
play a role influencing subsequent health status (Brad-
ford et al., 2015). The findings of the current study 
suggest that metabolic alterations are indeed occurring 
during the transition period that increase the risk of 
lameness; metabolomics profiles during this time period 
were predictive of lameness later in lactation. Eckel et 
al. (2020) and Dervishi et al. (2020) reported findings 
from studies of the same small cohort of severely lame 
and healthy dairy cows that identified metabolic altera-
tions of lame cows up to 8 wk before calving as well 
as during the transition period, although it should be 
noted all lameness cases occurred within 2 wk postcalv-
ing (i.e., during the transition period).

Prediction accuracies up to 82% were achieved for 
both mildly and newly lame cows using samples col-
lected at the time of lameness (identified visually) in 
addition to those collected before lameness. This is 
important when considering the benefits of using these 
techniques for early diagnosis or prediction of lame-
ness. The lameness definitions used in this study meant 
samples were from the first new lameness event scored 
as mild to moderate, or a mild to moderate lameness 
event that was not preceded by lameness within a mini-
mum of 2 wk in first-lactation cows. These definitions 
and inclusion criteria meant that potential effects of 
lameness history were either eliminated or reduced con-
siderably. In the study reported by Eckel et al. (2020), 
the severity of lameness was much higher with a lame-
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ness definition of cows scored 4 or 5 on a 1-to-5 scale. 
Findings therefore may not be relevant for milder to 
moderate lameness, which is most commonly observed 
in dairy herds. In a study reported by He et al. (2022), 
conducted at the same herd as the current study and 
also utilizing untargeted metabolomics, a lameness defi-
nition of score ≥2 (0–3 scale; AHDB, 2020) was used, 
encompassing the milder lameness definition. Predic-
tion accuracies of 95 to 100% were achieved using milk 
samples (dried milk spots) collected on Whatman FTA 
DMPK cards (Qiagen). The current study focused on 
the inclusion of milder lameness in dairy heifers, as this 
is the population in which prevention and treatment 
strategies will have most effect, particularly with early 
detection and prompt effective treatment (Randall et 
al., 2018a; Pedersen and Wilson, 2021). Studies have 
demonstrated that early lameness interventions im-
prove treatment outcomes (Leach et al., 2012) and that 
delays to treatment result in the converse (Groenevelt 
et al., 2014; Thomas et al., 2016). As reliability of lame-
ness classification is lower for milder lameness versus 
severe lameness and single gait scores can contribute to 
misclassification (Eriksson et al., 2020), 2 consecutive 
weekly scores were used to classify lameness outcomes 
in the current study. Prediction accuracies were lower 
than those reported by He et al. (2022), which may be 
due to differences in the biofluid (milk vs. urine) or 
chemical analytical methods employed.

Metabolite identification was not a focus of the cur-
rent study; however, the methods adopted, including 
triangulation of top-ranking mass ions from multiple 
analytical approaches and use of the stability selec-
tion method, provides greater confidence in the ability 
to correctly identify top-ranking or selected mass ions 
that are predictive of the disease outcome compared 
with more traditional approaches to analyzing data 
from LC-MS, such as PCA or orthogonal projections 
to latent structures discriminant analysis. The useful-
ness in determining a metabolic signature that is pre-
dictive of lameness is for (1) development of diagnostic 
tools and (2) metabolite identification and pathway 
analysis to elucidate mechanistic pathways associated 
with those metabolites. One of the major challenges 
with this later approach is ensuring the “top-ranking” 
or “selected” metabolites are truly associated with the 
lameness outcome. This is particularly pertinent with 
untargeted metabolomics studies where there is no a 
priori subset of metabolites. Untargeted metabolomics 
provides an opportunity to uncover unknown pathways 
and important metabolites, which is a major benefit 
of this approach at these exploratory stages. However, 
the data analysis must be appropriate for the complex 
LC-MS data that this highly sensitive approach gener-
ates. Model triangulation and selection stability are 

methods reported to improve likelihood of selecting the 
correct variables from multidimensional data sets, and 
furthermore, implementation of a stability threshold 
to identify the correct covariates has been demon-
strated to out-perform conventional stepwise methods 
of implementing machine learning models (Lewis et 
al., 2021; Lima et al., 2021). Further work is required 
to confirm the identity of mass ions identified in this 
study as well as to demonstrate the generalizability 
through external validation studies. However, these 
findings inform the basis from which this confirmatory 
and validatory work can be conducted and if success-
ful, these techniques could then provide the building 
blocks for the development of commercial tools for the 
early prediction and identification of lameness. These 
techniques could also be applied for the investigation 
or other diseases and conditions. Additionally, path-
way analysis of validated predictive metabolites would 
provide important insights into the pathogenesis of 
lameness. This would contribute valuable information 
to understanding the pathological pathways at differ-
ent time points both during the transition period as 
well as closer to the time of lameness becoming vis-
ibly apparent. Ultimately, this would aid in developing 
strategies to improve the prevention or management of 
lameness in dairy cattle.

CONCLUSIONS

The findings from this study demonstrate that the 
use of untargeted LC-MS-based metabolomics along-
side machine learning and a stability selection method 
can predict lameness risk in dairy cows, from as early 
on as before calving. Prediction accuracies up to 82% 
were achieved using these methods at the time of 
lameness. Further work to demonstrate the generaliz-
ability of findings, through external validation studies 
is required, as well as confirmation of metabolite iden-
tification. Using these techniques to develop methods 
for the early and accurate prediction of lameness risk 
provides a huge opportunity to build tools to enable 
the improvement of lameness management and reduce 
lameness in dairy herds.

ACKNOWLEDGMENTS

This work was supported by the Biotechnology 
and Biological Research Council (grant number BB/
T0083690/1); Academy of Medical Sciences (grant 
number SGL023\1096; London, UK) and the Agricul-
ture and Horticulture Development Board (Coventry, 
UK). Data can be accessed via https: / / doi .org/ 10 
.17639/ nott .7279. The authors have not stated any 
conflicts of interest.

Randall et al.: USING METABOLOMICS TO PREDICT LAMENESS IN DAIRY COWS

https://doi.org/10.17639/nott.7279
https://doi.org/10.17639/nott.7279


Journal of Dairy Science Vol. 106 No. 10, 2023

7041

REFERENCES

Abdelrazig, S., L. Safo, G. A. Rance, M. W. Fay, E. Theodosiou, P. D. 
Topham, D.-H. Kim, and A. Fernández-Castané. 2020. Metabolic 
characterisation of Magnetospirillum gryphiswaldense MSR-1 us-
ing LC-MS-based metabolite profiling. RSC Advances 10:32548–
32560. https: / / doi .org/ 10 .1039/ D0RA05326K.

AHDB. 2022. Agriculture and Horticulture Development Board 
(AHDB) Mobility scoring: How to score your cows. Accessed Jan. 
8, 2022. https: / / ahdb .org .uk/ knowledge -library/ mobility -scoring 
-how -to -score -your -cows.

Alonso, A., S. Marsal, and A. Julia. 2015. Analytical methods in un-
targeted metabolomics: State of the art in 2015. Front. Bioeng. 
Biotechnol. 3:23. https: / / doi .org/ 10 .3389/ fbioe .2015 .00023.

Biomarkers Definitions Working Group. 2001. Biomarkers and sur-
rogate endpoints: Preferred definitions and conceptual framework. 
Clin. Pharmacol. Ther. 69:89–95.

Bradford, B. J., K. Yuan, J. K. Farney, L. K. Mamedova, and A. J. 
Carpenter. 2015. Invited review: Inflammation during the transi-
tion to lactation: New adventures with an old flame. J. Dairy Sci. 
98:6631–6650. https: / / doi .org/ 10 .3168/ jds .2015 -9683.

Breiman, L. 2001. Random forests. Mach. Learn. 45:5–32. https: / / doi 
.org/ 10 .1023/ A: 1010933404324.

Cortes, C., and V. Vapnik. 1995. Support-vector networks. Mach. 
Learn. 20:273–297. https: / / doi .org/ 10 .1007/ BF00994018.

Dervishi, E., G. Zhang, G. Zwierzchowski, R. Mandal, D. S. Wishart, 
and B. N. Ametaj. 2020. Serum metabolic fingerprinting of pre-
lameness dairy cows by GC–MS reveals typical profiles that can 
identify susceptible cows. J. Proteomics 213:103620. https: / / doi 
.org/ 10 .1016/ j .jprot .2019 .103620.

Eckel, E. F., G. Zhang, E. Dervishi, G. Zwierzchowski, R. Man-
dal, D. S. Wishart, and B. N. Ametaj. 2020. Urinary metabo-
lomics fingerprinting around parturition identifies metabolites 
that differentiate lame dairy cows from healthy ones. Animal 
14:2138–2149.

Eriksson, H. K., R. R. Daros, M. A. G. von Keyserlingk, and D. M. 
Weary. 2020. Effects of case definition and assessment frequency 
on lameness incidence estimates. J. Dairy Sci. 103:638–648. https: 
/ / doi .org/ 10 .3168/ jds .2019 -16426.

Fernández-Peralbo, M. A., and M. D. Luque de Castro. 2012. Prepa-
ration of urine samples prior to targeted or untargeted metabolo-
mics mass-spectrometry analysis. Trends Analyt. Chem. 41:75–85. 
https: / / doi .org/ 10 .1016/ j .trac .2012 .08 .011.

Friedman, J., T. Hastie, and R. Tibshirani. 2010. Regularization paths 
for generalized linear models via coordinate descent. J. Stat. Softw. 
33:1–22. https: / / doi .org/ 10 .18637/ jss .v033 .i01.

Friedman, J. H. 1991. Multivariate adaptive regression splines. Ann. 
Stat. 19:1–67.

Gika, H. G., G. A. Theodoridis, J. E. Wingate, and I. D. Wilson. 2007. 
Within-day reproducibility of an HPLC-MS-based method for 
metabonomic analysis: Application to human urine. J. Proteome 
Res. 6:3291–3303. https: / / doi .org/ 10 .1021/ pr070183p.

Goldansaz, S. A., A. C. Guo, T. Sajed, M. A. Steele, G. S. Plastow, 
and D. S. Wishart. 2017. Livestock metabolomics and the livestock 
metabolome: A systematic review. PLoS One 12:e0177675. https: / 
/ doi .org/ 10 .1371/ journal .pone .0177675.

Gowda, G. A. N., S. Zhang, H. Gu, V. Asiago, N. Shanaiah, and D. 
Raftery. 2008. Metabolomics-based methods for early disease di-
agnostics. Expert Rev. Mol. Diagn. 8:617–633. https: / / doi .org/ 10 
.1586/ 14737159 .8 .5 .617.

Groenevelt, M., D. C. J. Main, D. Tisdall, T. G. Knowles, and N. J. 
Bell. 2014. Measuring the response to therapeutic foot trimming in 
dairy cows with fortnightly lameness scoring. Vet. J. 201:283–288. 
https: / / doi .org/ 10 .1016/ j .tvjl .2014 .05 .017.

Gwet, K. L. 2014. Handbook of Inter-Rater Reliability: The Definitive 
Guide to Measuring the Extent of Agreement Among Raters. 4th 
ed. Advanced Analytics.

He, W., A. S. Cardoso, R. M. Hyde, M. J. Green, D. J. Scurr, R. 
L. Griffiths, L. V. Randall, and D.-H. Kim. 2022. Metabolic al-
terations in dairy cattle with lameness revealed by untargeted 

metabolomics of dried milk spots using direct infusion-tandem 
mass spectrometry and the triangulation of multiple machine 
learning models. Analyst 147:5537–5545. https: / / doi .org/ 10 .1039/ 
D2AN01520J.

Hu, H., Z. Fang, T. Mu, Z. Wang, Y. Ma, and Y. Ma. 2021. Applica-
tion of metabolomics in diagnosis of cow mastitis: A review. Front. 
Vet. Sci. 8:747519. https: / / doi .org/ 10 .3389/ fvets .2021 .747519.

Huxley, J. N. 2013. Impact of lameness and claw lesions in cows on 
health and production. Livest. Sci. 156:64–70. https: / / doi .org/ 10 
.1016/ j .livsci .2013 .06 .012.

Hyde, R., M. J. Green, and E. Lima. 2022a. Stabiliser Package v1.0.1. 
Accessed Jul. 12, 2023. https: / / cran .r -project .org/ web/ packages/ 
stabiliser/ index .html.

Hyde, R., L. O’Grady, and M. Green. 2022b. Stability selection for 
mixed effect models with large numbers of predictor variables: A 
simulation study. Prev. Vet. Med. 206:105714. https: / / doi .org/ 10 
.1016/ j .prevetmed .2022 .105714.

Kuhn, M. 2022. Caret: Classification and Regression Training. R 
package version 6.0-92 ed. Accessed Jul. 12, 2023. https: / / cran .r 
-project .org/ web/ packages/ caret/ index .html.

Kuhn, M., and K. Johnson. 2013. Applied Predictive Modelling. 
Springer.

Leach, K. A., D. A. Tisdall, N. J. Bell, D. C. J. Main, and L. E. Green. 
2012. The effects of early treatment for hindlimb lameness in dairy 
cows on four commercial UK farms. Vet. J. 193:626–632. https: / / 
doi .org/ 10 .1016/ j .tvjl .2012 .06 .043.

Leach, K. A., H. R. Whay, C. M. Maggs, Z. E. Barker, E. S. Paul, A. 
K. Bell, and D. C. Main. 2010. Working towards a reduction in 
cattle lameness: 1. Understanding barriers to lameness control on 
dairy farms. Res. Vet. Sci. 89:311–317. https: / / doi .org/ 10 .1016/ j 
.rvsc .2010 .02 .014.

Lee, M. Y., and T. Hu. 2019. Computational methods for the discovery 
of metabolic markers of complex traits. Metabolites 9:66. https: / / 
doi .org/ 10 .3390/ metabo9040066.

Lewis, K. E., M. J. Green, J. Witt, and L. E. Green. 2021. Multiple 
model triangulation to identify factors associated with lameness in 
British sheep flocks. Prev. Vet. Med. 193:105395. https: / / doi .org/ 
10 .1016/ j .prevetmed .2021 .105395.

Lima, E., R. Hyde, and M. Green. 2021. Model selection for inferential 
models with high dimensional data: Synthesis and graphical repre-
sentation of multiple techniques. Sci. Rep. 11:412. https: / / doi .org/ 
10 .1038/ s41598 -020 -79317 -8.

Meinshausen, N., and P. Bühlmann. 2010. Stability selection. J. R. 
Stat. Soc. Series B Stat. Methodol. 72:417–473. https: / / doi .org/ 10 
.1111/ j .1467 -9868 .2010 .00740 .x. 

Newsome, R., M. J. Green, N. J. Bell, M. G. G. Chagunda, C. M. Ma-
son, C. S. Rutland, C. J. Sturrock, H. R. Whay, and J. N. Huxley. 
2016. Linking bone development on the caudal aspect of the dis-
tal phalanx with lameness during life. J. Dairy Sci. 99:4512–4525. 
https: / / doi .org/ 10 .3168/ jds .2015 -10202.

Pedersen, S., and J. Wilson. 2021. Early detection and prompt ef-
fective treatment of lameness in dairy cattle. Livestock (Lond.) 
26:115–121. https: / / doi .org/ 10 .12968/ live .2021 .26 .3 .115.

R Core Team. 2022. R: A language and environment for statistical 
computing. R Foundation for Statistical Computing.

Randall, L. V., M. J. Green, L. E. Green, M. G. G. Chagunda, C. 
Mason, S. C. Archer, and J. N. Huxley. 2018a. The contribution of 
previous lameness events and body condition score to the occur-
rence of lameness in dairy herds: A study of 2 herds. J. Dairy Sci. 
101:1311–1324. https: / / doi .org/ 10 .3168/ jds .2017 -13439.

Randall, L. V., M. J. Green, and J. N. Huxley. 2018b. Use of statistical 
modelling to investigate the pathogenesis of claw horn disruption 
lesions in dairy cattle. Vet. J. 238:41–48. https: / / doi .org/ 10 .1016/ 
j .tvjl .2018 .07 .002.

Randall, L. V., H. J. Thomas, J. G. Remnant, N. J. Bollard, and J. 
N. Huxley. 2019. Lameness prevalence in a random sample of UK 
dairy herds. Vet. Rec. 184:350. https: / / doi .org/ 10 .1136/ vr .105047.

Tarlton, J. F., D. E. Holah, K. M. Evans, S. Jones, G. R. Pearson, 
and A. J. F. Webster. 2002. Biomechanical and histopathological 
changes in the support structures of bovine hooves around the time 

Randall et al.: USING METABOLOMICS TO PREDICT LAMENESS IN DAIRY COWS

https://doi.org/10.1039/D0RA05326K
https://doi.org/10.3389/fbioe.2015.00023
https://doi.org/10.3168/jds.2015-9683
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.jprot.2019.103620
https://doi.org/10.1016/j.jprot.2019.103620
https://doi.org/10.3168/jds.2019-16426
https://doi.org/10.3168/jds.2019-16426
https://doi.org/10.1016/j.trac.2012.08.011
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1021/pr070183p
https://doi.org/10.1371/journal.pone.0177675
https://doi.org/10.1371/journal.pone.0177675
https://doi.org/10.1586/14737159.8.5.617
https://doi.org/10.1586/14737159.8.5.617
https://doi.org/10.1016/j.tvjl.2014.05.017
https://doi.org/10.1039/D2AN01520J
https://doi.org/10.1039/D2AN01520J
https://doi.org/10.3389/fvets.2021.747519
https://doi.org/10.1016/j.livsci.2013.06.012
https://doi.org/10.1016/j.livsci.2013.06.012
https://doi.org/10.1016/j.prevetmed.2022.105714
https://doi.org/10.1016/j.prevetmed.2022.105714
https://doi.org/10.1016/j.tvjl.2012.06.043
https://doi.org/10.1016/j.tvjl.2012.06.043
https://doi.org/10.1016/j.rvsc.2010.02.014
https://doi.org/10.1016/j.rvsc.2010.02.014
https://doi.org/10.3390/metabo9040066
https://doi.org/10.3390/metabo9040066
https://doi.org/10.1016/j.prevetmed.2021.105395
https://doi.org/10.1016/j.prevetmed.2021.105395
https://doi.org/10.1038/s41598-020-79317-8
https://doi.org/10.1038/s41598-020-79317-8
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.3168/jds.2015-10202
https://doi.org/10.12968/live.2021.26.3.115
https://doi.org/10.3168/jds.2017-13439
https://doi.org/10.1016/j.tvjl.2018.07.002
https://doi.org/10.1016/j.tvjl.2018.07.002
https://doi.org/10.1136/vr.105047


7042

Journal of Dairy Science Vol. 106 No. 10, 2023

of first calving. Vet. J. 163:196–204. https: / / doi .org/ 10 .1053/ tvjl 
.2001 .0651.

Thomas, H. J., J. G. Remnant, N. J. Bollard, A. Burrows, H. R. Whay, 
N. J. Bell, C. Mason, and J. N. Huxley. 2016. Recovery of chroni-
cally lame dairy cows following treatment for claw horn lesions: A 
randomised controlled trial. Vet. Rec. 178:116. https: / / doi .org/ 10 
.1136/ vr .103394.

Want, E. J., I. D. Wilson, H. Gika, G. Theodoridis, R. S. Plumb, J. 
Shockcor, E. Holmes, and J. K. Nicholson. 2010. Global meta-
bolic profiling procedures for urine using UPLC–MS. Nat. Protoc. 
5:1005–1018. https: / / doi .org/ 10 .1038/ nprot .2010 .50.

Webster, A. J. 2001. Effects of housing and two forage diets on the 
development of claw horn lesions in dairy cows at first calving and 
in first lactation. Vet. J. 162:56–65. https: / / doi .org/ 10 .1053/ tvjl 
.2001 .0569.

Whay, H. R., D. C. J. Main, L. E. Green, and A. J. F. Webster. 2003. 
Assessment of the welfare of dairy cattle using animal-based mea-
surements: Direct observations and investigation of farm records. 
Vet. Rec. 153:197–202. https: / / doi .org/ 10 .1136/ vr .153 .7 .197.

Wold, S., M. Sjöström, and L. Eriksson. 2001. PLS-regression: A ba-
sic tool of chemometrics. Chemom. Intell. Lab. Syst. 58:109–130. 
https: / / doi .org/ 10 .1016/ S0169 -7439(01)00155 -1.

Zhang, C.-H. 2010. Nearly unbiased variable selection under minimax 
concave penalty. Ann. Stat. 38:894–942.

Zhang, G., R. Mandal, D. S. Wishart, and B. N. Ametaj. 2021. A 
multi-platform metabolomics approach identifies urinary me-
tabolite signatures that differentiate ketotic from healthy dairy 
cows. Front. Vet. Sci. 8:595983. https: / / doi .org/ 10 .3389/ fvets .2021 
.595983.

Zhang, N. R., and D. O. Siegmund. 2007. A modified Bayes infor-
mation criterion with applications to the analysis of comparative 
genomic hybridization data. Biometrics 63:22–32. https: / / doi .org/ 
10 .1111/ j .1541 -0420 .2006 .00662 .x.

Zou, H., and T. Hastie. 2005. Regularization and variable selection via 
the elastic net. J. R. Stat. Soc. Series B Stat. Methodol. 67:301–
320. https: / / doi .org/ 10 .1111/ j .1467 -9868 .2005 .00503 .x.

ORCIDS

Laura V. Randall  https: / / orcid .org/ 0000 -0002 -4644 -9319
Nicola J. Bollard  https: / / orcid .org/ 0000 -0002 -1002 -9726
Robert M. Hyde  https: / / orcid .org/ 0000 -0002 -8705 -9405
Jake S. Thompson  https: / / orcid .org/ 0000 -0002 -7443 -2709
Martin J. Green  https: / / orcid .org/ 0000 -0002 -6408 -6443

Randall et al.: USING METABOLOMICS TO PREDICT LAMENESS IN DAIRY COWS

https://doi.org/10.1053/tvjl.2001.0651
https://doi.org/10.1053/tvjl.2001.0651
https://doi.org/10.1136/vr.103394
https://doi.org/10.1136/vr.103394
https://doi.org/10.1038/nprot.2010.50
https://doi.org/10.1053/tvjl.2001.0569
https://doi.org/10.1053/tvjl.2001.0569
https://doi.org/10.1136/vr.153.7.197
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.3389/fvets.2021.595983
https://doi.org/10.3389/fvets.2021.595983
https://doi.org/10.1111/j.1541-0420.2006.00662.x
https://doi.org/10.1111/j.1541-0420.2006.00662.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://orcid.org/0000-0002-4644-9319
https://orcid.org/0000-0002-1002-9726
https://orcid.org/0000-0002-8705-9405
https://orcid.org/0000-0002-7443-2709
https://orcid.org/0000-0002-6408-6443

	Predicting lameness in dairy cattle using untargeted liquid chromatography–mass spectrometry-based metabolomics and machine learning
	INTRODUCTION
	MATERIALS AND METHODS
	Heifer Cohorts and Mobility Scoring
	Sample Collection and Handling Protocols
	Untargeted Metabolomics Using LC-MS
	Chemicals and Reagents for LC-MS
	Sample Preparation for LC-MS
	Analytical Methodologies
	LC-MS Untargeted Metabolomics Analysis and Metabolite Identification
	Data Analysis and Metabolite Identification

	RESULTS
	Descriptive Statistics
	Untargeted LC-MS Metabolomics
	Performance Metrics
	Triangulation of Top-Ranking Mass Ions and Selection Using Stability Selection Method

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES


