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Abstract. In this work, we optimize manufacturing configurations, i.e., the set
of necessary assets, using the known capabilities and capacities of manufacturing
equipment. In particular, the work provides an Object-Oriented data model and the
translation of the Object-Oriented data model into a Mathematical data model for
efficiently utilizing optimization algorithms. The main contribution is developing
an optimization strategy for adapting to varying demand periods with the requested
capability and capacity.

The proposed methodology is validated in optimizing the planning for small-box
hinged product assemblies in aerospace manufacturing, which can be assembled in
a reconfigurable environment with common pick and place, drilling, fastening, and
inspection procedures.
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planning; optimization

1. Introduction

Manufacturing data models represent manufacturing assets, such as processes, activities,
and resources[1]. These models can be conceptual but are often utilised in manufacturing
software applications, such as simulation tools, planning systems, and testing[2].

In this work we present data models for representing manufacturing assets, and a
novel optimization strategy for demand satisfaction. The Object-Oriented data model fa-
cilitates the development of manufacturing software solutions due to the useful proper-
ties of Object-Oriented models such as abstraction, encapsulation, inheritance, and poly-
morphism. The Mathematical data model facilitates the utilization of state-of-the-art op-
timization algorithms.

The main contributions of this work are:

1. An Object-Oriented data model for efficient software implementations of manu-
facturing systems;
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2. A Mathematical data model for efficient implementation of optimization methods
for optimal configuration selection of manufacturing resources;

3. An optimization strategy for adapting to demand periods with the requested ca-
pability and capacity;

4. Definition and formulation of the demand-satisfaction problem and new objective
function with decision parameters.

The remainder of the work is organized as follows: In the Related Work section,
we compare existing solutions in the literature and analyze their advantages and limita-
tions. In the Object-Oriented Data Model section, we define the data model for repre-
senting manufacturing assets and their relations. The Mathematical Data Model section
translates the Object-Oriented Data Model and mathematically formulates the demand
satisfaction problem. The Use-Case section validates the proposed methodology using a
real industrial scenario. The manuscript ends with a Conclusions section outlining future
works in this research direction.

2. Related Work

Rapid market changes challenge manufacturing companies, requiring adaptation strate-
gies explored by researchers via optimization and data modeling.

Optimization studies include Youssef et al. [3] showing minimization of reconfig-
uration effort while maintaining capacity. Goyal et al. [4] used NSGA II and TOPSIS
algorithms for optimal configurations in reconfigurable manufacturing systems. Koren
et al. [5] proposed a method for scalable manufacturing design to meet market demands
effectively. Dou et al. [6] discussed integrated configuration design and scheduling with
a mixed-integer programming model. Moghaddam et al. [7] addressed configuration de-
sign for scalable systems handling demand fluctuations.

Data modeling studies involve capability and skill models of manufacturing re-
sources [8,9], knowledge-based ontology modeling [10], and object-oriented modeling
[1,11]. Järvenpää et al. [8] presented an ontological capability model for rapid recon-
figuration. Kocher et al. [9] proposed a formal capability and skill model for a knowl-
edge graph of resources. Ahmad et al. [10] used ontology for information integration and
knowledge generation. Torayev et al. [1] designed a hierarchical model for manufactur-
ing equipment.

A gap exists between practical data models and theoretical optimization methods
due to the distinct focus on either data modeling or optimization. This work aims to
bridge this gap by developing object-oriented and mathematical data models for optimal
configuration selection of manufacturing resources.

3. Object-oriented data model

Figure 1 depicts an Object-Oriented data model for manufacturing reconfiguration using
UML class diagram rules. It consists of the following classes:

Asset. A manufacturing asset is a physical or logical object with either a perceived
or actual value to a manufacturing company.

A. Torayev et al. / Optimal Selection of Manufacturing Configurations4



Figure 1. Object-oriented data model of manufacturing reconfiguration

The represented Asset class allows for defining different asset types using the
Object-Oriented paradigm’s inheritance property. Defining the Asset class in this Object-
Oriented way facilitates the extension of the manufacturing data model with new types
of assets as shown in Figure 1. Any asset has an asset type, such as a “base asset” or
“auxiliary asset,” and is distinguished within the same type of asset by its unique asset
identifier. A base asset is an asset that is relatively big in dimensions and static com-
pared to an auxiliary asset. Usually, auxiliary assets can be attached to base assets to give
certain functionalities.

Manufacturing Configuration. A manufacturing configuration is a group of base
and auxiliary assets that are physically and logically bound together with the capability
of performing manufacturing operations. Each operational capability has the related ca-
pacity and associated cost of operating for a unit period (usually one hour of production).
A manufacturing configuration has a purchase cost and recurring costs calculated based
on the group’s assets. Figure 1 represents the Manufacturing Configuration class using
the aggregation association of the UML class diagram.

Configuration Group. A configuration group comprises identical or different man-
ufacturing configurations with the same capability. For example, different manufactur-
ing configurations can be grouped into a configuration group to match a demand capac-
ity that any single manufacturing configuration cannot achieve alone. A configuration
group does not necessarily contain identical manufacturing configurations. It can com-
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prise complementing manufacturing configurations to match the required demand capac-
ity. However, all manufacturing configurations in a configuration group have the same
capability, possibly with different capacities. The total capacity of a configuration group
is the sum of the capacities of manufacturing configurations comprising the group.

Capability. A manufacturing capability is the ability of a manufacturing configura-
tion to execute a manufacturing operation such as drilling, welding, picking, or similar. In
Figure 1, the Capability class is represented with simple attributes such as identification
string and capability name.

Demand. A manufacturing demand consists of demanded capability and capacity.
For example, demand might be 50 pick-and-place operations per 1 hour. In Figure 1, the
Demand class has a uni-directional association with the Capability class. For modularity,
the Demand class can request only one capability from the Capability class. Multiple
capabilities and capacities can be represented by aggregating required capabilities.

4. Mathematical data model

In this section, we develop a Mathematical data model, a more general approach to data
modeling in which data is represented as mathematical objects, and the relationships
between data objects are represented as mathematical relationships between the objects.
We mathematically formulate the demand satisfaction problem, relying on the Object-
Oriented data model presented in the previous section.

4.1. Mathematical model

The below notations and definitions are translated to a Mathematical data model from
the Object-Oriented data model:

• Demand periods with required capability and capacity requirements for each pe-
riod:

D = [(B1,P1), . . . ,(Bt ,Pt), . . . ,(BT ,PT )] (1)

where Pt ∈ Z
+ is a required capacity for a capability Bt ∈ B at demand period t.

• The set of available capabilities:

B = {B1, . . . ,BNB
}. (2)

• The set of available assets:

A = {A1, . . . ,ANA
} (3)

where Ai is i-th manufacturing asset.
• The set of manufacturing configurations:

F = {F1, . . . ,FNF
} (4)

where Fi = {Ai,1, . . . ,Ai,NFi
} is i-th manufacturing configuration and Ai, j is the j-th

asset of i-th manufacturing configuration.
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• A configuration-to-assets matching function that matches a manufacturing config-
uration to a set of assets:

g : F → 2A (5)

where 2A is a power set of assets (i.e., the set of all subsets of A ).
• A capability-to-configurations matching function that matches a capability to a set

of manufacturing configurations:

f : B → 2F (6)

• A capacity function that matches a manufacturing configuration and a capability
to a capacity per unit time:

h : B×F → Z
+ (7)

• A recurring cost function that matches a manufacturing configuration to a recur-
ring cost per unit time:

r : F → R (8)

Function r is usually calculated by summing up a recurring cost of each asset in a
manufacturing configuration F .

4.2. Demand satisfaction problem

After translating the Object-oriented data model into a mathematical language, we can
formally define the demand satisfaction problem.

Let there be two or more demand periods with differing capabilities and capacities.
For example, in the first period, there is a demand for 10 ops/hour drilling capability; in
the second demand period, the demand is 12 ops/hour welding capability, and so on:

D = {(B1,P1),(B2,P2), . . . ,(BT ,PT )} (9)

Let R(xt) be a recurring cost for the demand period t and defined as:

R(xt) =
| f (Bt )|
∑
i=1

r( f (Bt)i) · xt,i (10)

and let

Q(xt−1,xt) (11)

be a reconfiguration effort function that returns the cost required to switch from manufac-
turing configuration at demand period t −1 to a manufacturing configuration at demand
period t.

The reconfiguration effort function Q depends on a use case and company require-
ments. For example, it can be the number of assets needed to remove and install, the cost
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of software reconfiguration, and the change in the number of hours and staff. In litera-
ture, there are several definitions of reconfiguration functions with names such as “Re-
configuration Smoothness”[12], “Responsiveness Index”[13], “Robustness Index”[14],
“Similarity Coefficient”[15], “Reconfiguration Effort”[16], “Effort Index”[17]. For this
reason, we leave the definition of the Q function open.

Following the definitions of the recurring cost and reconfiguration cost, the demand
satisfaction problem is defined as below:

min
x

T

∑
t=1

αR(xt)+βQ(xt−1,xt) (12)

such that

| f (Bt )|
∑
i=1

h(Bt , f (Bt)i) · xt,i ≥ Pt ∀t ∈ [1, . . . ,T ] (13)

and

xt,i ∈ Z
+ ∀t ∈ [1, . . .T ] (14)

Equation (13) is a demand-satisfaction constraint, and Equation (14) is an integrality
constraint.

The parameters α ≥ 0 and β ≥ 0 in Equation (12) control weights of recurring and
reconfiguration costs in the optimization objective. As shown in the Use-case section,
alpha and beta parameters play an important role in selecting the manufacturing config-
urations for the demand satisfaction problem.

5. Use-case

In this section, we validate the applicability of the proposed Object-Oriented data model,
Mathematical data model, and optimization strategy for a small-box hinged product as-
sembly in aerospace manufacturing.

5.1. Assembly process

The small-box hinged product is a product family that consists of rudders and elevators
in an aerospace context. They are similar in size and build philosophy so they can be
assembled with common capabilities. A reconfigurable assembly system can accommo-
date for variations in build volume and key datum requirements between different air-
craft and product types. A hinged product’s assembly also includes its assembly fixture
configuration. The assembly processes are presented in Figure 2.

As illustrated in Figure 2(a), the assembly starts with an empty jig frame, where
adjustable interfaces are available for mounting the assembly tooling. In Figure 2(b), the
next stage’s configuration is presented. Upper beam, lower beam, and two skin locations
are loaded into the jig frame (Op 1-4) by robotic pick and place capability. After manually
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Figure 2. Hinged product build sequence: (a) Empty jig frame (b) Upper beam, lower beam and two skin
locations are loaded, with hingeline, ribs and spars assembled and measured (Op 1-5), (c) Upper skin assembled
with three profile board supports (Op 6-10), (d) Back view of (c) and lower beam to be removed (Op 11), (e)
Lower skin assembled, three profile boards and two skin locations are to be removed (Op 12-18), (f) Final
inspection (Op 19)

locating the hinge line datum, ribs and spars, automated inspection (Op 5) is carried out
where steps and gaps are measured. In Figure 2(c), upper skin is picked and placed into
the jig (Op 6), drilled and fastened (Op7). After that, three profile boards are loaded
providing support to the assembled product (Op 8-10). Figure2(d) shows the jig frame
from the back, where lower beam is to be removed (Op11). In Figure 2(e), lower skin
is loaded, drilled and fastened (Op 12-13). At this point, the product is assembled. To
release the product from its assembly fixture, three profile boards and two skin locations
are to be removed (Op 14-18). Finally, the product is inspected (Op19) for its profile
tolerance in Figure 2(f).

5.2. Special-case

In this use-case, we analyze a special case with a demand for “Pick-and-place” and
“Drilling” capabilities with different capacities in each demand period.

Given the anticipated demand periods as below:

D = [(B1,50),(B2,50),(B3,100),(B3,100)] (15)

where B1 = B3 = “Pick and place” and B2 = B4 = “Drilling”, the goal is to find
an optimal manufacturing configuration for “Pick-and-place” and “Drilling” capabilities
with the requested capacity for multiple demand periods.

We assume that, initially, there is no manufacturing configuration, and the aim is to
find a set of manufacturing configurations that provides optimal recurring costs within
the demand periods and optimal reconfiguration costs between demand periods.
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5.3. Reconfiguration effort Q-function

In Equation (12), we left the definition of the reconfiguration effort function Q open. For
this use-case, we define the Q function as the number of manufacturing configurations
needed to add and remove between the demand periods:

Q(xt−1,xt) = ∑
F∈ f (Bt−1)∪ f (Bt )

∣
∣
∣I(F, t −1)− I(F, t)

∣
∣
∣ (16)

where

I(F, t) =

{

xt,i if ∃i s.t. Ft,i = F
0 otherwise

(17)

5.4. Results and Analysis

We looked at 3 different optimization scenarios:

1. Optimization only with the recurring costs
2. Optimization only with the reconfiguration costs
3. Optimization with balanced costs

The results with different α and β parameters are shown in Tables 1, 2, and 3.

Table 1. Optimization results: α = 1, β = 0

t Configurations R(xt) Q(xt−1,xt)

1
mcfg2 (x2)
mcfg3 (x1)

263.0 3.0

2 mcfg4 (x5) 145.0 8.0

3
mcfg3 (x1)
mcfg5 (x4)

447.0 10.0

4 mcfg4 (x9) 261.0 14.0

- - Total: 1116.0 Total: 35.0

Table 1 shows the scenario where only recurring costs are considered for the opti-
mization, i.e., α = 1 and β = 0. The manufacturing configurations selected by the opti-
mization algorithm are heterogeneous. For example, the optimization algorithm suggests
choosing 2 units of “mcfg2” configuration and 1 unit of “mcfg3” configuration for the
first demand period. Since the reconfiguration cost is neglected during optimization, the
optimization algorithm suggests discarding all the existing configurations and replacing
them with 5 units of “mcfg4” configuration in the second demand period. In essence, the
optimization suggests new configurations in each demand period.

Table 2 shows the scenario where only reconfiguration costs are considered for the
optimization, i.e., α = 0 and β = 1. The manufacturing configurations selected by the
optimization algorithm are homogeneous. In this case, the optimization algorithm dis-
regards the recurring costs and suggests selecting the manufacturing configuration with
the most capabilities, the manufacturing configuration “mcfg5”, for all demand periods.

Table 3 shows the scenario where both recurring and reconfiguration costs are con-
sidered for the optimization with different weights, i.e., α = 0.05 and β = 0.95. In this
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Table 2. Optimization results: α = 0, β = 1

t Configurations R(xt) Q(xt−1,xt)

1 mcfg5 (x3) 270.0 3.0

2 mcfg5 (x5) 450.0 2.0

3 mcfg5 (x5) 450.0 0.0

4 mcfg5 (x5) 450.0 0.0

- - Total: 1620.0 Total: 5.0

Table 3. Optimization results: α = 0.05, β = 0.95

t Configurations R(xt) Q(xt−1,xt)

1 mcfg2 (x3) 264.0 3.0

2 mcfg2 (x3) 264.0 0.0

3
mcfg2 (x3)
mcfg5 (x2)

444.0 2.0

4
mcfg2 (x3)
mcfg5 (x2)

444.0 0.0

- - Total: 1416.0 Total: 5.0

case, the optimization algorithm balances the recurring and reconfiguration costs. The
optimization algorithm suggests selecting the manufacturing configuration “mcfg2” for
the first two demand periods. It suggests adding the necessary configuration “mcfg5”
only when necessary.

As can be seen from the tables, the α and β parameters in Equation (12) act as
decision parameters for controlling the effect of different costs, in this case, recurring and
reconfiguration effort cost functions. Changing α and β parameters allows for choosing
different optimization scenarios.

6. Conclusion

This work presented the Object-Oriented data model, Mathematical data model, and op-
timization strategy for the demand satisfaction problem. The work shows the translation
of an Object-Oriented data model into a Mathematical data model for the real indus-
trial scenario of small-box hinged product assembly. The demand satisfaction problem
was formulated, and a new optimization objective function was derived with decision
variables.

The work practically validated the proposed data models and optimization strate-
gies in optimal manufacturing configuration selection of real manufacturing assets for
assembly of the small-box hinged product in aerospace manufacturing.

It would be interesting to investigate the effect of other costs beyond recurring costs
in future works. Since the cost of transitioning from one manufacturing configuration to
another manufacturing configuration depends on the application and the resources of a
company, in future works, we will investigate more general and modular reconfiguration
effort functions.
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