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ABSTRACT:  

The precise synthesis of polymers derived from alkyl lactate ester acrylates is reported for the first time. 

Kinetic experiments were conducted to demonstrate that Cu(0) wire-catalyzed single electron transfer-

living radical polymerization (SET-LRP) in alcohols at 25 ºC provides a green methodology for the LRP 

of this forgotten class of bio-based monomers. The acrylic derivative of ethyl lactate (EL) solvent and 

homologous structures with methyl and n-butyl ester were polymerized with excellent control over 

molecular weight, molecular weight distribution, and chain end functionality. Kinetics plots in 

conventional alcohols such as ethanol and methanol were first order in monomer with molecular weight 

increasing linearly with conversion. However, aqueous EL mixtures were found to be more suitable than 

pure EL to mediate the SET-LRP process. The near quantitative monomer conversion and high bromine 

chain-end functionality, demonstrated by MALDI-TOF analysis, further allowed the preparation of 

innovative bio-based block copolymers containing rubbery poly(ELA) sequences. For instance, 

poly(ELA-b-poly(glycerol acrylate) block copolymer self-assembled in water to form stable micelles with 

chiral lactic acid-derived block forming micellar core as confirmed by pyrene-probe-based fluorescence 

technique. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements 

revealed nanosize spherical morphology for these bio-based aggregates. 
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INTRODUCTION 

Naturally occurring lactic acid (2-hydroxypropionic acid) was first isolated from sour milk by the Swedish 

chemist Scheele in 1780. Later on, this hydroxycarboxylic acid progressively became an industrial 

important product due to its versatile functional properties as a flavor agent, pH regulator, and 

preservative. 1  Currently, about 90% of the enantiomerically pure lactic acid is produced by the 

fermentation of refined carbohydrates with appropriate microorganisms.2  However, more convenient 

bioprocessing technologies based on lignocellulosic raw materials are already consolidated.3 In recent 

years, the derivation of polymeric materials from sustainable and annually renewable resources, such as 

vegetable oils, sugars, terpenes, polysaccharides, rosins and lignin, among others, has attracted increasing 

interest due to dwindling of fossil oil resources and environmental impact of petroleum manufacturing.4,5 

To this end, lactic acid has shown particular promise in production of poly(lactic acid) (PLA), either by 

its own polycondensation or ring-opening polymerization (ROP) of its cyclic dimer lactide.6,7,8  

The preparation of well-defined ABA thermoplastic elastomers illustrates an example on how recent 

advances in living radical polymerization has started a new era in the preparation of biomass-derived 

polymers with advanced properties and functions.9,10,11,12 In this regard, single electron transfer living 

radical polymerization (SET-LRP) has gained great popularity as a facile tool for precision 

macromolecular engineering. 13 , 14  , 15 , 16 , 17 , 18 , 19  For example, when conducted in reaction media that 

facilitates disproportionation of Cu(I)Br into Cu(0) and Cu(II)Br2
20,21,22 this method enables the synthesis 

of vinylic polymers with nearly 100% chain end functionality at complete conversion. 23,24,25,26 This has 

been demonstrated to be feasible even in “programmed” biphasic SET-LRP systems (i.e. aqueous-organic 

solvent mixtures based on both disproportionating 27 , 28 , 29  and non-disproportionating organic 

solvents).30,31,32,33 Consequently, benefiting from this and other inherent attributes (e.g. facile setup, 

ambient temperature, oxygen tolerance, compatibility with water and biological media), SET-LRP is an 
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appealing platform to create well-defined bio-based polymers and limitless number of block copolymers 

therefrom. The preparation of sequence controlled multi-block glycopolymers34,35 and the controlled 

grafting of natural polysaccharides36,37 exemplifies successful efforts. Also, aside from the excellent 

synergy of SET-LRP with water (H2O) and conventional alcohols,17,19 it is compatible with other eco-

friendly solvents such as polyethylene glycols,38 ionic liquids13,39 and N,N-dimethyl lactamide (DML)40 

without detrimentally affecting polymerization. More recently, it was also demonstrated that ethyl lactate 

(EL) possesses interesting features related to SET-LRP, 41  thus expanding the myriad of 

academic/industrial applications found for this promising bio-sourced solvent.42,43,44 ,45 

Acrylic derivatives of alkyl lactate esters are a forgotten class of sustainable monomers in polymer 

synthesis which complement the classic alkyl acrylates palette by increasing the density of polar and 

hydrolysable ester groups per repeat unit. In addition, well-defined poly(alkyl lactate acrylate)s may be 

important candidates for applications in chiral recognition and enantioselective catalysis because alkyl 

lactates are chiral synthons. To the best of our knowledge, there is no report on the LRP of such bio-based 

monomers. Surprisingly, even their free radical polymerization received limited attention.46,47,48 Herein, 

our attention was focused on ethyl lactate acrylate (ELA, Scheme 1) and investigated Cu(0) wire-catalyzed 

SET-LRP for the synthesis of well-defined poly(ELA) under mild and environmentally friendly 

conditions. This method also enables control over the polymerization of homologous monomers with 

methyl and n-butyl ester groups (Scheme 1). Further, the block copolymerization of poly(ELA) was 

accomplished with other monomers derived from biomass feedstock resulting in well-defined block 

copolymers including chiral alkyl lactate acrylate sequences. 

 

EXPERIMENTAL SECTION 
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Materials. The following chemicals were purchased from Sigma-Aldrich and were used as received: 

methyl 2-bromopropionate (MBP, 98%), ethyl -bromoisobutyrate (EBiB, 98%), -bromoisobutyryle 

bromide (98%), acryloyl chloride (97%), dowex® 50WX4 hydrogen form, tris[2-

(dimethylamino)ethyl]amine (Me6-TREN, 97%), copper(II) bromide ( Cu(II)Br2, 99%), 

propylphosphonic anhydride solution (T3P®, 50 wt. % in ethyl acetate), pyrene (99%), hydrazine 

hydrate (60% hydrazine), DL-1,2-isopropylideneglycerol (99%, 2-methyltetrahydrofuran (2-MeTHF, 

99%), thiophenol (PhSH, 99%), dimethylsulfoxide (DMSO, 99.7%), trans-2-[3-(4-tert-butylphenyl)-

2-methyl-2-propenylidene]malononitrile (98%) and potassium trifluoroacetate (KTFA, 98%). 1,1,1-

Tris(hydroxymethyl)ethane was received from Alfa Aesar. Acrylic acid (stabilised with hydroquinone 

monomethyl ether, for synthesis), 2,2,2-trifluoroethanol ( 99%) and HPLC grade acetonitrile were 

obtained from Merck. HPLC grade methanol (MeOH) and ethanol (96%) were purchased from Scharlab 

and VWR Chemicals, respectively. Acetone (synthesis grade) was also purchased from Scharlab. The 

radical inhibitor of methyl acrylate (MA, 99%, Sigma Aldrich) was removed by passing the monomer 

through a short column of basic Al2O3 prior to use. Deuterated chloroform (CDCl3) was purchased from 

Eurisotop. Ethyl lactate (EL, natural, 98%), methyl L-lactate (ML, 98%) and butyl L-lactate (BL, 99%) 

were purchased from Sigma-Aldrich and distilled prior to use. Triethylamine (TEA, 99%, Merck) and 

dichloromethane (DCM, reagent grade, Scharlab) were distilled from CaH2. Propan-2-ol (2-PrOH, 

>97.7%) was passed through a short column of basic Al2O3 and freshly distilled before to use. Ethylene 

glycol (99%, Sigma-Aldrich) was dried by azeotropic distillation before to use and stored under inert 

atmosphere. Ethylene bis(2-bromoisobutyrate) (bisEBiB) 49  and ethane-1,2-diyl bis(2-bromo-2-

methylpropanoate) ((OH)2EBiB)50 initiators and both solketal51 and -pinene52 acrylates (SA and PA, 

respectively) were prepared according to literature procedures. Copper(0) wire 99.9% pure of 20 gauge 
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diameter, received from Creating Unkamen, was activated using hydrazine following a procedure 

developed in our laboratory.53  

Methods. Proton (1H NMR) and carbon (13C NMR) nuclear magnetic resonance spectra were recorded on 

a 400 MHz (for 1H) and 100.6 MHz (for 13C) Varian VNMR-S400 NMR instrument at 25 ºC in CDCl3. 

All chemical shifts are quoted on the δ scale in ppm using the residual solvent as internal standard (1H 

NMR: CDCl3 = 7.26 and 13C NMR: CDCl3 = 77.16). Infrared (IR) spectra were recorded on a FTIR-

680PLUS spectrophotometer with a resolution of 4 cm−1 in the transmittance mode. An attenuated total 

reflection (ATR) devise with thermal control and a diamond crystal (Golden Gate heated single-reflection 

diamond ATR, Specac-Teknokroma) was used. Absorption maxima (νmax) are reported in wavenumbers 

(cm–1). Fluorescence spectra were obtained on an RF-5301 PC Shimadzu fluorescence spectrometer with 

a RFPC software with emission using excitation slit widths of 5 nm. Supercritical fluidic chromatography 

(SFC) analysis was performed on a supercritical CO2 chromatograph UPC2 from Waters equipped with 

Chiralpak IC (100x4.6 mm, 3 µm) column coupled with a DAD detector. CO2/2-PrOH (98:2) was used as 

eluent at a flow rate of 3.0 mL/min with the control ABPR pressure set at 1500 psi. ESI MS analysis were 

run on a chromatographic system Agilent G3250AA liquid chromatography coupled to 6210 time of flight 

(TOF) mass spectrometer from Agilent Technologies with an electrospray ionization (ESI) interface. 

Nominal and exact m/z values are reported in Daltons (Da). Optical rotations measurements were 

conducted on a Perkin-Elmer 241 MC polarimeter with a path length of 10 cm and are reported with 

implied units of 10–1 deg cm2 g–1. Molecular weight analysis was performed via gel permeation 

chromatography (GPC) using an Agilent 1200 series system equipped with three serial columns (PLgel 3 

m MIXED-E, PLgel 5 m MIXED-D and PLgel 20 m from Polymer Laboratories) and an Agilent 1100 

series refractive-index detector. THF (Panreac, HPLC grade) was used as eluent at a flow rate of 1.0 

mL/min. The calibration curves for GPC analysis were obtained with poly(methyl methacrylate) (PMMA) 
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standards purchased from PSS Polymer Standards Service GmbH. The molecular weights were calculated 

using the universal calibration principle and Mark-Houwink parameters. MALDI-TOF analysis was 

performed on a Voyager DE (Applied Biosystems) instrument with a 337-nm nitrogen laser (3-ns pulse 

width). For all polymers, the accelerating potential was 25 kV, the grid voltage was 93.5%, the laser power 

was 1700 units, and a positive ionization mode was used. The analysis was performed with trans-2-[3-(4-

tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile as matrix. THF solutions of the matrix (30 

mg/mL), KTFA as cationization agent (10 mg/mL), and polymer (10 mg/mL) were prepared separately. 

The solution for MALDI-TOF analysis was obtained by mixing the matrix, polymer and salt solutions in 

a 9/1/1 volumetric ratio. Then 1 µL portions of the mixture were deposited onto three wells of a sample 

plate and dried in air at room temperature before being subjected to MALDI-TOF analysis. Differential 

scanning calorimetry (DSC) measurements were carried out on a Mettler DSC3+ instrument using N2 as 

a purge gas (50 mL/min) at scanning rate 20 C/min in the -80 to 150 C temperature range. Calibration 

was made using an indium standard (heat flow calibration) and an indium-lead-zinc standard (temperature 

calibration). Thermal stability studies were carried out on a Mettler TGA2 /LF/1100 with N2 as a purge 

gas at flow rate of 50 mL/min. The studies were performed in the 30-600 ºC temperature range at a heating 

rate of 10 ºC/min. Transmission electron microscopy (TEM) was performed using a JEOL JEM-1011 

TEM microscope. Before the measurement, a drop of solution was placed on a copper grid which was 

allowed to dry at room temperature. Dynamic light scattering (DLS) measurements were carried out at 

room temperature using Zetasizer Nano ZS (Model ZEN3500) from Malvern Instruments equipped with 

a He-Ne laser. Chiral polymers were characterized on a Chirascan circular dichroism spectrometer from 

Applied Photophysics. The contactangle of deionised water against polymer surfaces was measured by 

the water drop method (3 L) at 25 ºC, using the OCA15EC contact angle setup (Neurtek Instruments).  
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Synthesis of Alkyl Lactate Acrylate Monomers. This procedure is generic for all the alkyl lactate 

monomers synthesized herein. The synthesis of ELA is described. Ethyl lactate (20.0 g, 0.17 mol) and 

anhydrous TEA (26.5 g, 0.26 mol) were dissolved in dry DCM (50 mL) under a positive flow of argon. 

The solution was stirred for 30 min at 0-5 C before adding dropwise acryloyl chloride (18.4 g, 0.20 mol) 

dissolved in dry DCM (50 mL). The reaction was allowed to proceed for 24 h at room temperature. The 

mixture was then filtered and then washed with HCl 1 M (150 mL) and saturated NaHCO3 solution (150 

mL). The organic layer was rinsed with brine solution and dried over anhydrous MgSO4. The final residue 

was purified by vacuum distillation in the presence of 5 (w/w %) of hydroquinone to afford ELA (20.4 g, 

70 %) as a colorless liquid. [α]D
20 −53.9 (1.0 mg/mL, MeCN).  1H NMR (400MHz, CDCl3, δ): 6.48 (dd, 

1H), 6.19 (dd, 1H), 5.89 (dd, 1H), 5.15 (q, 1H), 4.21 (q, 2H), 1.53 (d, 3H), 1.28 (t, 3H); 13C NMR (100.6 

MHz, CDCl3, δ): 170.72, 165.43, 131.86, 127.78, 68.85, 61.42, 17.01, 14.14. FTIR–ATR (neat, νmax): 

2989, 1748, 1726, 1637, 1406, 1179, 809. HRMS (TOF ES+) m/z : [M+H]+ calcd for C8H13O4
+, 173.0808, 

found, 173.0809. 

Methyl lactate acrylate (MLA): 1H NMR (400MHz, CDCl3, δ): 6.48 (dd, 1H), 6.19 (dd, 1H), 5.91 (dd, 

1H), 5.17 (q, 1H), 3.76 (s, 3H), 1.54 (d, 3H); 13C NMR (100.6 MHz, CDCl3, δ): 171.00, 165.18, 131.78, 

127.57, 68.55, 52.20, 16.84. FTIR–ATR (neat, νmax): 2995, 2956, 1749, 1725, 1637, 1406, 1178, 808. 

HRMS (TOF ES+) m/z : [M+H]+ calcd for C7H11O4
+, 159.0652, found, 159.0656. 

n-Butyl lactate acrylate (BLA): 1H NMR (400MHz, CDCl3, δ): 6.48 (dd, 1H), 6.19 (dd, 1H), 5.90 (dd, 

1H), 5.16 (q, 1H), 4.16 (m, 2H), 1.63 (m, 2H), 1.53 (d, 3H), 1.38 (m, 2H), 0.93 (t, 3H); 13C NMR (100.6 

MHz, CDCl3, δ): 170.72, 165.34, 131.74, 127.71, 68.78, 65.13, 30.51, 18.99, 16.96, 13.62. FTIR–ATR 

(neat, νmax): 2961, 2875, 1750, 1723, 1637, 1406, 1179, 807. HRMS (TOF ES+) m/z : [M+H]+ calcd for 

C10H17O4
+, 201.1121, found,  201.1119. 
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Synthesis of ELA with the Aid of Acrylic Acid. Acrylic acid (0.70 mL, 10.18 mmol), TEA (3.65 mL, 26.19 

mmol) and T3P® (6.73 g, 10.58 mmol) were added to a solution of ethyl lactate (1mL, 8.72 mmol) in 

MeTHF (50 mL). The mixture was stirred for 48 h at room temperature. The reaction was monitored by 

1H NMR. After 48 h, the reaction was diluted with water (30 mL) and the aqueous phase was extracted 

with diethyl ether (3x30 mL). The combined organic layers were rinsed with aqueous HCl 1 M (30 mL), 

saturated aqueous solution of NaHCO3 (30 mL), brine (20 mL) and finally dried with MgSO4. The 

resulting solution was concentrated under reduced pressure, and the residue was purified by column 

chromatography (9:1 hexanes/ethyl acetate) to afford ELA (0.9 g, 60%) as a colorless liquid. 

Cu(0)-Catalyzed SET-LRP of Alkyl Lactate Acrylates at 25 ºC. This procedure is generic for all the 

polymerizations conducted herein. The polymerization of ELA with EBiB in EtOH under the following 

conditions: [ELA]0/[EBiB]0/[Me6-TREN]0 = 50/1/0.1 is described. ELA (1 mL, 6.23 mmol), EtOH (0.5 

mL), Me6-TREN (3.3 L, 0.01 mmol) and EBiB (18.3 L, 0.12 mmol) were introduced into a 25 mL 

Schlenk tube. The solution was deoxygenated by applying four freeze-pump ( 1 min)-thaw cycles. After 

that, a Teflon-coated stirring bar wrapped with 4.5 cm of hydrazine-activated Cu(0) wire of 20 gauge was 

loaded under positive argon pressure. Then, two additional freeze-pump ( 1 min)-thraw cycles were 

applied before placing the flask in a water bath at 25 ºC and introducing the stirring bar wrapped with the 

Cu(0) wire catalyst into the reaction mixture. To monitor the monomer conversion, the side arm of the 

tube was purged with argon before it was opened to remove two drops of sample using an airtight syringe. 

Samples were dissolved in CDCl3 and quenched by air bubbling. After that, the monomer conversion was 

determined by 1H NMR spectroscopy and Mn and Mw/Mn values by GPC using PMMA standards. Finally, 

to stop the reaction, the Schlenk flask was opened to air, and the polymerization mixture was dissolved in 

2 mL of CH2Cl2. Next, the resulting solution was precipitated twice in 100 mL of hexane with vigorous 
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stirring. The solvent was removed by filtration, and the final polymer was dried under vacuum until 

constant weight.  

Thio-Bromo “Click” Modification of poly(ELA) Using Thiophenol. A solution of polymer (0.3 g, Mn
th = 

4370 g/mol) in MeCN (1 mL) was prepared in a 10 mL vial equipped with a rubber septum. Then, 

thiophenol (23.3 L, 0.227 mmol) and TEA (31.7 L, 0.227 mmol) were added. The reaction was allowed 

to proceed for 4 h at room temperature and then added dropwise into 10 mL of hexanes with vigorous 

stirring. The resulting modified poly(ELA) was washed twice with fresh solvent and dried under vacuum 

until constant weight before MALDI-TOF analysis. 

In Situ Block Copolymerization of Poly(ELA) by Cu(0)-Catalyzed SET-LRP in Ethanol. This procedure 

was used for both copolymerizations with SA and αPA. The block copolymerization of poly(ELA) 

([ELA]0/[EBiB]0/[Me6-TREN]0 = 50/1/0.1) with αPA (50 equiv) is described. A solution of the ELA (1 

mL, 6.23 mmol), EtOH (0.5 mL), Me6TREN (3.3 L, 0.01 mmol) and EBiB (18.3 L, 0.12 mmol) was 

prepared in a 25 mL Schlenk tube. After following the deoxygenation procedure described above, Cu(0) 

catalyst (4.5 cm of gauge 20 wire, wrapped around a Teflon-coated stir bar) was introduced into the flask 

under positive pressure of argon. Next, two additional freeze-pump ( 1 min)-thaw cycles were applied 

before placing the flask in a water bath at 25 ºC and introducing the stirring bar wrapped with the catalyst 

into the reaction mixture. After 3 h the side arm of the tube was purged with argon before it was opened 

to determine monomer conversion and introduce a degassed solution containing the αPA (1.3 mL, 6.27 

mmol) in EtOH (0.7 mL) containing Me6-TREN (3.3 L, 0.01 mmol) via cannula. After stirring the 

polymerization mixture for 24 h at 25 ºC, conversion of the second monomer was determined by 1H NMR 

and the polymerization mixture was dissolved the minimum DCM and precipitated in cold methanol. The 

final copolymer poly(ELA)-b-poly(αPA) was dried under vacuum until constant weight.  
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Preparation and Characterization of Amphiphilic Block Copolymer poly(ELA)-b-poly(GA) micelles. 

Polymer micelles were prepared by nanoprecipitation as follows: 1 mg of poly(ELA)-b-poly(GA) 

copolymer was first dissolved in acetone (1 mL). This solution was added dropwise into 10 mL of 

deionized water via a syringe. The colloidal dispersion was sonicated for 4 h at room temperature to 

remove the organic solvent. The critical micelle concentration (CMC) was determined by using pyrene as 

a fluorescence probe by monitoring the emission peaks at 382 and 372 nm. The concentration of block 

copolymer was ranging from 1.0 x 10-9 to 1.0 x 10-3 g L-1 and the pyrene concentration was fixed at 6.0 x 

10-7  M. 

 

RESULTS AND DISCUSSION 

Synthesis of Ethyl Lactate Acrylate. As illustrated in Scheme 2a, the acryloyl polymerizable 

functionality was installed on EL, commercially produced from sugarcane by fermentation, by acylation 

with acryloyl chloride in the presence of trimethylamine (TEA) using dichloromethane (DCM) as solvent. 

ELA was isolated as a colorless liquid after work up and vacuum distillation in the presence of 

hydroquinone to minimize auto-polymerization (70% yield). The synthesis of the monomer was confirmed 

by NMR and FTIR spectroscopy (Figures S1-3). The acrylic protons appear in the 1H NMR spectrum 

between 6.50 and 5.88 ppm, whereas the four characteristic signals of the vinylic and carbonyl carbons 

appear in the 13C NMR spectrum at 170, 165 and 131, 127 ppm, respectively.  
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Scheme 1. Chemical Structures of (a) Bio-Based Acrylates and (b) Initiators used in this Study 

 

 

Scheme 2. Synthetic Routes to ELA Starting from EL Solvent 

 
 

FTIR spectroscopy showed characteristic absorptions of the two ester moieties at 1748 and 1726 cm-1 and 

the stretching of the acrylate C=C bond at around 1637 cm-1. An additional structure confirmation was 

provided by high-resolution mass spectrometry (see experimental section). Supercritical fluid 

chromatography (SFC) was used for analytical chiral separation of the synthesized monomer (Figure S4). 

On the basis of this analysis and optical rotation measurements ([]D
25 = -53.9, c 1.0 mg/mL, MeCN), 

ELA employed was L-(-)-ELA with 96.7% enantiomeric excess. Being critical with the sustainability of 

the above described procedure, two alternative greener routes were explored in attempt to prepare ELA 
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with the aid of acrylic acid (Scheme 2b and c). It is worth to mention that with the recent developments 

toward the commercial production of bio-acrylic acid and the cost-competitive production of bio-ethanol, 

ELA may be ultimately prepared entirely from biomass derived platform chemicals.3  Unfortunately, the 

acrylic acid/EL acid-catalyzed esterification by azeotropic distillation in toluene was low-yield because 

extensive oligomerization of EL occurred at high temperature.46 Conversely, the use of propylphosphonic 

anhydride (T3P®) under milder conditions gave an excellent result.52 This ester coupling promoter lacks 

the toxicity and shock sensibility associated with other coupling agents (e.g. DCC and EDC).54 Moreover, 

by-products from the coupling are H2O-soluble and therefore easily separated from the reaction mixture.  

Using the biomass-derived 2-methyl-tetrahydrofuran (Me-THF) as solvent and a slight excess of acrylic 

acid in combination with TEA, 1H NMR analysis confirmed the nearly quantitative esterification of EL 

with acrylic acid. Despite due to low scale reaction, ELA was purified in this case by flash column 

chromatography. This route represents a more attractive approach to ELA and other alkyl lactate ester 

acrylates from a green chemistry point of view. 

  

 Selection of Initiator for SET-LRP of ELA in DMSO. The polymerization of ELA was investigated 

employing the simpler SET-LRP methodology which uses Cu(0) wire  wrapped around a stirring bar. Our 

preliminary investigations were devoted to select the optimal initiator for the polymerization of ELA using 

tris[2-(dimethylamino)ethyl]amine (Me6-TREN) as ligand in DMSO (50 vol%) at 25 ºC (Scheme 3). This 

powerful dipolar aprotic solvent is always one of the preferred options to practice SET-LRP because 

promotes extensive disproportionation of Cu(I)X in the presence of N-ligands such as Me6-TREN and 

tris(2-aminoethyl)amine (TREN).21,22 
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Scheme 3. Cu(0) Wire-Catalyzed SET-LRP of ELA Initiated with MBP or EBiB using Me6-TREN Ligand 

in Various Solvents at Room Temperature. Solvents used here are DMSO, EtOH, MeOH, 2-PrOH, TFE, 

EL and Aqueous EL Mixtures 

 

 

 

 

Figure 1. Monomer conversion, kinetics plots and evolution of experimental Mn (GPC) and Mw/Mn, based 

on the calibration by PMMA standards, versus theoretical M(th) for the SET-LRP of ELA initiated with 

MBP (a) and EBiB (b) in DMSO at 25ºC. Reaction conditions: ELA = 1 mL, DMSO = 0.5 mL, 

[ELA]0/[Initiator]0/[Me6-TREN]0 = 50/1/0.1 using 4.5 cm of hydrazine-activated Cu(0) wire (20-gauge 

diameter). (c) GPC traces (normalized to peak height) for the poly(ELA) obtained from kinetic 

experiments. 
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Table 1. Cu(0) Wire-Catalyzed SET-LRP of ELA in DMSO and Conventional Alcohols at 25ºC.a  

entry 
reaction 

medium 
initiator 

[ELA]0/[Initiator]0/[Me6-

TREN]0 
kp

app  
time 

(min) 

conv.b 

(%) 
M(th) c Mn

 d Mw/Mn
 d  

1 DMSO MBP 50/1/0.1 0.0263 110 94 8,225 8.800 2.13 

2 DMSO EBiB 50/1/0.1 0.0243 110 92 8,000 9,000 1.25 

3 DMSO MBP 50/1/0.1e 0.0263 110 94 8,225 7,970 1.18 

4 EtOH EBiB 50/1/0.1 0.0315 75 94 8,320 8,400 1.19 

5 MeOH EBiB 50/1/0.1 - 120 96 8,460 9,660 1.20 

6 2-PrOH EBiB 50/1/0.1 - 120 95 8,375 8,560 1.30 

7 TFE EBiB 50/1/0.1 0.0251 110 93 8,150 8,590 1.17 

8 EtOH EBiB 25/1/0.1 - 240 97 4,370 4,120 1.22 

9 EtOH EBiB 100/1/0.2 - 240 94 16,400 18,150 1.22 

10 EtOH EBiB 200/1/0.5 - 240 95 32,700 34,700 1.20 

11 EtOH EBiB 400/1/0.5 - 240 95 65,620 64,300 1.23 

          
a Polymerization conditions: ELA = 1 mL, solvent = 0.5 mL (for entries 1-10) or 0.75 mL (for entry 11), 4.5 cm (for entries 1-7 and 9-11) or 0.5 cm (for entry 

8) of hydrazine-activated Cu(0) wire (20-gauge diameter). b Determined by 1H NMR. c M (th) = 172.18 x [ELA]0/[EBiB]0 x conv. + 195.05. e Determined by 

GPC using PMMA standards.e Reaction conducted in the presence of 5 mol% of externally added Cu(II)Br2. 

 

 

Moreover, it stabilizes the resulting colloidal Cu(0) particles and at the same time is also a good solvent 

for Cu(II)X2 ligand complex.55 Figure 1a,b depicts kinetic plots and GPC analysis for the polymerization 

using the monofunctional initiators methyl -bromopropionate (MBP) and ethyl -bromoisobutyrate 

(EBiB) at a targeted degree of polymerization (DP) of 50 (entries 1 and 2 in Table 1).  1H NMR analysis 

of regularly withdrawn samples from the homogeneous reaction mixtures was used to monitor monomer 

consumption during the reaction. Both polymerizations proceeded up to above 90% conversion in 110 

min, confirming the generation of propagating radical from initiator. However, GPC analysis showed that 

there exist important differences between both initiating systems (Figure 1c). For example, significant 

deviation between the experimental (Mn (GPC)) and theoretical (M(th)) molecular weight values of the 

resulting poly(ELA) was observed during the polymerization with MBP up to approximately 30% 

monomer conversion. Moreover, polydispersity (Mw/Mn) in this case did not decrease below 2.1. These 

results suggest slow initiator rate when compared with propagation and/or slower rate of deactivation. In 

stark contrast, molar mass increased monotonically and linearly with theoretical values when using the 
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tertiary initiator EBiB (Figure 1b, right). In this case, only a subtle molecular weight deviation, probably 

due to the bimolecular combination reaction between the propagating polymer chains, was observed at 

high conversion. Overall, the tertiary initiator (EBiB) provided much higher degree of control over the 

molecular weight distribution (MWD) resulting in poly(ELA) with narrow Mw/Mn  (1.25 compared to 

2.13). This result, combined with a linear increase of ln[M]0/[M] with time up to high conversion, suggest 

living polymerization features for the reaction initiated with EBiB. These observations are consistent with 

the fact that tertiary -haloester-type initiators are better electronic mimics for conventional acrylates.56 

Notably, the use of MBP initiator in the presence of 5 mol% externally added Cu(II)Br2 deactivator, with 

respect to initiator concentration under otherwise identical conditions, yielded an important improvement 

over the MWD (Mw/Mn = 1.19) (entry 3 in Table 1 and Figure S5). However, we preferred using EBiB 

and other mono and bifunctional bromoisobutyrate derivatives, in absence of externally added deactivator, 

for the rest of this study. 

 

Selection of Eco-Friendly Solvents for SET-LRP of Ethyl Lactate Acrylate  

Ethanol and other Conventional Alcohols. A more environmentally friendly process for the SET-LRP of 

ELA was devised through the use of alcohols as solvents because they combine both acceptable levels of 

[Cu(I)(Me6-TREN)Br] disproportionation and low environmental impact.17,57,58,59,60 We first focused our 

attention on ethanol (EtOH), the oldest and most successful bio-sourced chemical solvent. The kinetics of 

the polymerization for the Cu(0) wire-catalyzed SET-LRP of ELA in EtOH using EBiB was investigated 

under identical conditions to the experiment in DMSO (entry 4 in Table 1 and Figure 2a). Also in this 

case, the reaction mixture remained homogeneous through the entire reaction course. The time evolution 

of ln([M]0/[M]) was linear up to monomer conversion above 90%, which is consistent with a constant 

concentration of propagating radicals during the homopolymerization reaction. In addition, molecular 
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weights values were in excellent agreement with theoretical prediction (i.e. living polymerization). 

Surprisingly, the SET-LRP in EtOH was even faster than in DMSO (kp
app = 0.0315 min-1 compared to 

0.0243 min-1). Indeed, it delivered a polymer with narrower MWD (Mw/Mn
 = 1.19 compared to 1.25). 

 

Figure 2. Monomer conversion, kinetics plots and evolution of experimental Mn (GPC) and Mw/Mn, based 

on the calibration by PMMA standards, versus theoretical M(th) for the SET-LRP of ELA initiated with 

EBiB in (a) EtOH and (b) EL at 25ºC. (c) GPC traces (normalized to peak height) for the poly(ELA) 

isolated after SET-LRP polymerization of ELA in EtOH, MeOH, TFE and EL. Reaction conditions: ELA 

= 1 mL, alcohol = 0.5 mL, [ELA]0/[EBiB]0/[Me6-TREN]0 = 50/1/0.1, and 4.5 cm of hydrazine-activated 

Cu(0) wire (20-gauge diameter). Numbers shown in black in (c) correspond to monomer conversion, M 

(th), Mn (GPC), and Mw/Mn respectively from the top to bottom. 

 

 

As shown in Figure 2c, other conventional alcohols having similar solvent properties such as methanol 

(MeOH) could also be used to prepare well-defined poly(ELA) (entries 5 in Table 1). The reaction in 

propan-2-ol (2-PrOH) furnished a polymer with higher Mw/Mn (entries 6 in Table 1). However, in a 

fluorinated alcohol such as 2,2,2-trifluoroethanol (TFE), Mw/Mn was as low as 1.17 (entry 7 in Table 1 
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and Figure 2c). The kinetic plots for the polymerization in TFE also validates the use of fluorinated 

alcohols (Figure S6).61,62,63 

Pushing the envelope of the ethanolic SET-LRP, we further investigated its potential in delivering well-

defined poly(ELA) across a broad range of molecular weight while retaining control. Thus, a series of 

polymerizations were conducted varying the targeted DPs from 25 to 400 (entries 8-11 in Table 1). In all 

cases, SET-LRP smoothly proceeded at 25ºC to high monomer conversions (>90%), yielding polymers 

with controlled molecular weight up to 65,000 (Figure 3).  

 

Figure 3. GPC traces (normalized to peak height) of poly(ELA) with different targeted DPs (see entries 

8-11 in Table 1 for polymerization conditions). The inset shows a digital image of the homogeneous 

reaction mixture after ethanolic SET-LRP at targeted DP=400. Numbers shown in black correspond to 

monomer conversion, Mn (GPC), and Mw/Mn respectively from the top to bottom. 

 

It is worth to mention that the SET-LRP at DP=400 was still homogeneous at high conversion, suggesting 

good solubility of poly(ELA) in this protic solvent environment (Figure 3, inset). Despite using a 

monofunctional initiator, no shoulders in the GPC curves and Mw/Mn  1.20 for all the polymers suggesting 

minimal side reactions such as bimolecular termination and high end-group fidelity. This was further 

confirmed by the structural characterization of the lowest molar mass poly(ELA) (Mn = 4,120, Mw/Mn = 

1.22).  
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Figure 4. MALDI-TOF spectra of poly(ELA) obtained at 97% conversion before and after thio-bromo 

“click” modification with thiophenol. Magnified regions confirm the expected peak-to-peak spacing for 

ELA repeating unit and the near perfect bromine chain end functionality of the synthesized polymer. 

 

 Unfortunately, bromine end-group functionality could not be evaluated by 1H NMR due to the 

overlapping of the signal corresponding to both  and  chain ends with the methylene signal of the 

pendant ethyl ester groups (Figure S7). However, according to MALDI-TOF analysis, the chain-end 

functionality was well-maintained after the SET-LRP process (Figure 4). The spectrum of poly(ELA) 

isolated at near quantitative conversion (>95%) shows a dominant distribution of peaks, having a peak-

to-peak mass increment of 172 Da, which equals to the mass of a single repeating unit (Figure 4a). The 

m/z values of these peaks match the expected [M+K]+ -bromo-terminated chains. Moreover, after thio-
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bromo “click” post-polymerization modification with thiophenol,64,65 this series completely vanished and 

meanwhile a new series of peaks emerged 29 Da above (Figure 4b). This mass difference is consistent 

with the thioetherification at the -bromo chain ends with thiophenol. Overall, MALDI-TOF analysis 

before and after end-group modification confirmed minimal side reactions and high bromine chain end-

group fidelity after SET-LRP, which combined with near quantitative monomer conversions at various 

DPs is expected to enable the straightforward synthesis of poly(ELA)-derived block copolymers by in situ 

sequential addition of a second monomer (vide infra). 

 

Ethyl Lactate and Aqueous Ethyl Lactate Mixtures. Encouraged by these results, the polymerization of 

ELA was investigated in detail using its bio-sourced synthetic precursor EL as solvent. EL is an 

economically viable green solvent with effectiveness comparable to some petroleum-based 

solvents.42,43,44,45 Replacing EtOH by EL, under identical conditions, also furnished poly(ELA) with 

narrow MWD (entry 1 in Table 2 and Figure 2c). However, despite the fact that poly(ELA) was also 

soluble in this solvent the reaction achieved lower monomer conversion (compare entry 1 in Table 2 with 

entry 4 in Table 1). Unexpectedly, the plot of ln([M]0/[M]) versus time was linear only up to 50 min (60% 

monomer conversion) (kp
1app = 0.0205 min-1) (Figure 2b). After, the polymerization proceeded following 

a second kinetic domain with a significantly lower rate constant (kp
2app = 0.0098 min-1). According to 

previous reports, this result may be attributed to rapid activation combined with insufficient 

disproportionation, which favors bimolecular termination events between growing chains (i.e. loss of 

bromine chain ends).66,67,68,69,70,71 It has been previously demonstrated that the addition of small amount 

of H2O to poor disproportionation reaction mixtures can dramatically improve its ability to produce 

reactive Cu(0) and the needed levels of Cu(II)X2 deactivator to prevent irreversible termination of chains 
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in early stages of SET-LRP reactions.66,67 Indeed, tuning EL with H2O and other co-solvents is a common 

strategy to create ideal conditions in organic synthesis.72,73 

Table 2. Cu(0) Wire-Catalyzed SET-LRP of ELA Initiated with EBiB in EL and Aqueous EL Mixtures at 

25ºC.a  

entry reaction medium 
kp

1app  

(min-1)  

kp
2app  

(min-1) 

kp
1app 

increaseb 

(%) 

time (min) 
conv.c 

(%) 
M (th)d Mn

 e Mw/Mn
 e  

1 EL 0.0205 0.0098 - 110 81 7,168 6.715 1.25 

2  EL 0.0146 0.0035 - 220 81 14,140 14,200 1.26 

3  EL/H2O. (9.5/0.5, v/v) 0.0227 0.0106 55 110 83 14,050 14,330 1.22 

4  EL/H2O. (9/1, v/v) 0.0276 - 89 75 86 14,730 16,500 1.18 

5  EL/H2O. (8.5/1.5, v/v) 0.0344 - 135 75 90 15,520 18,700 1.19 
 

a Polymerization conditions: ELA = 1 mL, solvent = 0.5 mL, using 4.5 cm of hydrazine-activated Cu(0) wire (20-gauge 

diameter), [ELA]0/[EBiB]0/[Me6-TREN]0 = 50/1/0.1 (for entry 1), [ELA]0/[EBiB]0/[Me6-TREN]0 = 100/1/0.2 (for entries 2-5). 
b Increase of kp

app with respect to the kp
1app from entry 2. c Determined by 1H NMR. d M (th) = 172.18 x [ELA]0/[EBiB]0 x conv 

+ 195.06. e Determined by GPC using PMMA standards. 

 

Inspired by these studies, a series of experiments were conducted in aqueous EL mixtures under the 

following conditions: [ELA]0/[EBiB]0/[Me6-TREN]0 = 100/1/0.2 (entries 2-5 in Table 2). The control 

experiment in pure EL showed again limited monomer conversion and loss of livingness manifested as 

kinetic plots with two linear regimes (Figure S8a). However, after the addition of 5% H2O to EL the 

polymerization rate of the second linear regime significantly increased (3x). An increase on kp
1app was also 

observed, but much lower (1.5x) than that determined for kp
2app. To our delight, increasing further the H2O 

content completely eliminated kp
2app and generated the characteristic first order kinetic of a LRP processes. 

Figure 5a-c compares kinetic plots and GPC results for the polymerization in pure EL and EL/H2O mixture 

(9/1, v/v). In the latter system, the reaction rate was even faster (1.9x compared to kp
1app obtained in pure 

EL). The linear increase in kp
app for aqueous EL mixtures is determined by the higher polarity of H2O 

(Figure 5d, close symbols). Moreover, the high disproportionation constant of Cu(I)Br in H2O (Kd = 0.89 

x 106 to 5.8 x 107) is crucial to improve control during initial stages of SET-LRP.74,75 Notably, GPC traces 

revealed the disappearance of the high molecular weight tailing observed in pure EL, which tend to 
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indicate insufficient level of Cu(II)Br2 to mediate an effective deactivation of growing chains, in the 

presence of H2O (Figure S9).  

 

Figure 5. (a) Monomer conversion vs time, (b) ln[M]0/[M] vs time and (c) evolution of experimental Mn 

(GPC) and Mw/Mn, based on the calibration by PMMA standards, versus theoretical M(th) for the SET-

LRP of ELA initiated with EBiB in EL (blue squares) and EL/H2O (9/1, v/v) (black circles). (c) 

Dependence of kp
app and Ieff with the percentage of H2O (% H2O). Reaction conditions: ELA = 1 mL, 

solvent = 0.5 mL, [ELA]0/[EBiB]0/[Me6-TREN]0 = 100/1/0.2 using 4.5 cm of hydrazine-activated Cu(0) 

wire (20-gauge diameter). 

 

Consequently, in the presence of 10%, and even 5% H2O, better control over the MWD was obtained. 

Although EL is a good solvent for poly(ELA) and EL/H2O mixtures are miscible at any composition, the 

SET-LRP reaction mixture of this series of experiments progressively transitioned from a one phase to a 

biphasic SET-LRP system by showing increasing turbidity (Figure S10). However, higher loadings of 

H2O only slightly compromise initiator efficiency (Ieff) probably due to extremely fast activation and 
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propagation in more polar media and not due to appearance of turbidity (Figure 5d, open symbols). Note 

that in the presence of 15% H2O, reaction rate was accelerated by 135% compared to kp
1app obtained in 

pure EL (compare entries 2 and 5 in Table 3). These results demonstrate that the judicious selection of 

solvent is critical to practice SET-LRP and highlight the importance of mixed solvent systems.  

Expanding the Range of Alkyl Lactate Ester Acrylates. To expand the scope of SET-LRP to other 

acrylic alkyl lactate ester derivatives, the homopolymerization of methyl lactate acrylate (MLA) and n-

butyl lactate acrylate (BLA) was also investigated via ethanolic SET-LRP.  Both monomers were 

synthesized, following the same procedure previously described for ELA, from the corresponding 

commercially available alkyl lactate ester. The kinetic experiments for [MLA]0/[EBiB]0/[Me6-TREN]0 = 

100/1/0.2 and [BLA]0/[EBiB]0/[Me6-TREN]0 = 50/1/0.1 are shown in Figure S11. In both cases, the Cu(0) 

wire-catalyzed polymerization initiated by EBiB furnished well-defined polymers with high conversions 

(entries 1 and 2 in Table 3). No significant differences were found between the kinetic data in comparison 

with ELA (compare entry 2 in Table 3 with entry 4 in Table 1). Also in this case, the linear relationship 

of the semi-logarithmic kinetic plot and the linear increase of molecular weight values throughout the 

polymerization strongly support that the SET-LRP of these monomers follows a LRP mechanism. Further, 

the use of difunctional and hydoxyl-functional bromoisobutyrate-type initiators (bisEBiB and (OH)2EBiB, 

see Scheme 1) allowed the preparation of well-defined,-dibromo telechelic and -dihydroxy 

functional polymers (entries 3 and 4 in Table 3 and Figure 6a). MALDI-TOF analysis evidenced the very 

high end-group fidelity for the poly(BLA) functional polymer (Figure 6b). These materials could be 

interesting in the preparation of more complex polymer architectures based on alkyl lactate acrylic 

polymers including ABA triblocks and AB2 stars using LRP or other living polymerization reactions in a 

second step. Research in this line will be reported in a forthcoming publication.  
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Figure 6. (a) GPC traces (normalized to peak height) for the poly(ELA) synthesized using bisEBiB and 

(OH)2EBiB (see entries 3 and 4 in Table 3 for polymerization conditions). Numbers shown in black above 

GPC traces correspond to monomer conversion, Mn (GPC), and Mw/Mn respectively from the top to 

bottom. (b) MALDI-TOF spectrum of poly(BLA) synthesized by SET-LRP using (OH)2EBiB initiator. 

Magnified region in (b) confirms the expected peak-to-peak spacing for BLA repeating unit and the near 

perfect bromine chain end functionality of the synthesized polymer. 

 

Table 3. Cu(0) Wire-Catalyzed SET-LRP of MLA and BLA in EtOH at 25ºC.a 

entry monomer initiator  [M]0/[Initiator]0/[Me6-TREN]0 
kp

app  

(min-1) 

time 

(min) 

conv.b 

(%) 
M (th)c Mn

 d Mw/Mn
 d  

1 MLA EBiB 100/1/0.1 0.0235 80 87 13,730 15,500 1.18 

2  BLA EBiB 50/1/0.1 0.0254 110 93 9,455 10,200 1.20 

3  MLA bisEBiB 300/1/0.5 - 300 94 44,960 47,620 1.22 

4  BLA (OH)2EBiB 30/1/0.1 - 270 93 6,120 5,000 1.25 
 

a Polymerization conditions: monomer = 1 mL, EtOH = 0.5 mL (for entries 1, 2 and 4) and 0.75 mL (for entry 3), 4.5 cm of hydrazine-activated Cu(0) wire 

(20-gauge diameter). b Determined by 1H NMR. c M (th) = MW (monomer) x [M]0/[Initiator]0 x conv + MW (initiator). d Determined by GPC using PMMA 

standards. 
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Block Copolymerization of poly(ethyl lactate acrylate) with Bio-based -Pinene and Solketal 

Acrylates. Poly(alkyl lactate acrylate)s are amorphous hydrophobic polymers with glass transition 

temperature (Tg) below ambient temperature and thermal stability comparable to conventional alkyl 

acrylates (see discussion in supplementary information, Figure S12a,b). Also appealing is the chiroptical 

activity of these bio-based polymers (Figure S13 and Table S1). Boosted by the near-perfect retention of 

bromine chain-ends at high conversion in ethanolic SET-LRP, we investigated the block copolymerization 

of poly(ELA) by sequential addition of a second vinylic monomer. Two diblock copolymers of ELA were 

targeted using -pinene acrylate (αPA),52 which is derived from one of the most abundant turpentine 

components, and the glycerol-derived solketal acrylate (SA)76 as a comonomers. Preliminary experiments 

were conducted to confirm for the first time that well-defined poly(αPA) is also accessible by SET-LRP 

in EtOH. Despite the polymerization of this bulky and hydrophobic monomer occurred through a self-

generated biphasic system,59 kinetic plots evidenced living character and MALDI-TOF analysis confirmed 

near-perfect end group fidelity (Figures S14-17). The in situ Cu(0) wire-catalyzed SET-LRP chain-

extension of poly(ELA) at high conversion (>95%) with equivalent amount of αPA (DP= 50) and twice 

as much SA (DP=100) was successful at synthesizing the corresponding AB block copolymers. In both 

cases, SEC curve of the first block shifted to lower retention time while retaining narrow MWD after chain 

extension, thus hinting at successful chain-growing from the -bromo terminal of poly(ELA) (Figure 7). 

Differential scanning calorimetry (DSC) analysis of poly(ELA)-b-poly(αPA) reveled the existence of two 

distinct Tgs (Figure 8a, red trace). These Tgs can be ascribed to those of the poly(ELA) and poly(αPA) 

segments (green and black traces, respectively), suggesting immiscibility between the poly(ELA) 

segments with the bulky pol(αPA). The existence of microphase separated morphology in this system 

could be exploited in the preparation of innovative ABA sustainable thermoplastic elastomers. 9,10,11,12  

Conversely, poly(ELA)-b-poly(GA) showed only one Tg at 2 ºC but the hydrolysis of the acetal protecting 
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group of SA segments in acidic media afforded a novel block copolymer poly(ELA)-b-poly(GA) (Figure 

S18).76,77,78  

 

 

Figure 7. GPC traces for the in situ block copolymerization of ELA with αPA and SA. Initial conditions 

for block copolymerization: [ELA]0/[EBiB]0/[Me6-TREN] = 50/1/0.1, ELA:EtOH = 2:1 (v/v), 4.5 cm of 

hydrazine-activated Cu(0) wire (20 gauge). Block copolymerization achieved by addition of a) αPA (50 

equiv.) and Me6-TREN (0.1 equiv) in EtOH (αPA:EtOH = 2:1 (v/v)) and b) SA (100 equiv.) and Me6-

TREN (0.1 equiv) in EtOH (SA:EtOH = 2:1 (v/v)).  
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FTIR-ATR analysis was used to confirm the complete removal of isopropylidene acetal groups and 

consequently the preparation of a new copolymer which is amphiphilic in nature with poly(GA) as the 

hydrophilic segment and poly(ELA) being hydrophobic (Figure S19). Stable micellar aggregates in 

aqueous solution could be simply prepared by nanoprecipitation method. The formation of micelles was 

first proved by tracking fluorescence intensity of pyrene as a function of the polymer concentration. The 

change of fluorescence emission intensity of pyrene in poly(ELA)-b-poly(GA) aqueous solutions at 

different concentrations is depicted in Figure S20. In spite of the constant pyrene concentration, the 

fluorescence intensity increased and an obvious intensity variation occurred for fluorescence emission 

peaks at 382 and 372 nm as the polymer concentration increased from 1.0 x 10-9 to 1.0 x 10-3 g L-1. This 

phenomenon was attributed to the formation of micelles in the system and the movement of pyrene probe 

from the polar aqueous environment into the hydrophobic micelles core where shows much stronger 

fluorescence. The excitation intensity ratio of I382/I372 was plotted against the logarithmic concentration 

(log c) of copolymer and the concentration corresponding to the intersection of the two tangential lines 

was considered the critical micelle concentration (CMC) value (Figure 8b). The CMC of poly(ELA)-b-

poly(GA) was determined to be 1.3 mg/L, which is comparable with other block copolymers used as drug 

delivery systems.79,80 ,81 Further, shape and size of the micelles were determined using transmission 

electron microscopy (TEM) and dynamic light scattering (DLS). As can be seen in Figure 8c, micelles 

from poly(ELA)-b-poly(GA) displayed spherical morphology. Finally, z-average hydrodynamic diameter 

(dH) of the micelles was determined to be 67 ± 1.6 nm (PDI = 0.19) by DLS (Figure 8d). Collectively, 

these results suggest that that amphiphilic block copolymers with hydrophilic poly(GA) shells and 

poly(ELA) in the hydrophobic core could potentially be used as hydrophobic drug carriers.82 Moreover, 

due the chiral nature of the lactic acid synthon, other potential applications of poly(ELA)-based 
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amphiphilic copolymers could be as enenatioselective sensors or chiral catalysts  for asymmetric 

synthesis.83,84,85,86 

 

 

Figure 8. (a) Differential scanning calorimetry (DSC) analysis of various homopolymers and block 

copolymers obtained by Cu(0) wire-catalyzed SET-LRP in EtOH. Characterization of poly(ELA)-b-

poly(GA) micelles: (b) plot of the fluorescence intensity ratio (I382/I372) for pyrene versus the log of micelle 

concentration,  (c) TEM image and (d) DLS size distribution. 
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CONCLUSIONS 

The synthesis of polymers by LRP of alkyl lactate ester acrylates was reported here for the first time. Two 

different methods were elaborated for the synthesis of the bio-based forgotten acrylate monomers based 

on ethyl lactate (EL), and of homologous structures based on methyl- and n-butyl- acrylates. Their SET-

LRP in alcohols, in mixtures of alcohols and water, and in biphasic mixtures of alcohols with water 

provided excellent control of their molecular weight, polydispersity and chain end functionality that 

creates the basis for the synthesis of polymers with more complex architecture. A block copolymer of 

poly(ELA)-b-poly(glycerol acrylate) was shown to form micellar assemblies in water and thus 

demonstrated that SET-LRP methods for the monomers elaborated here could be used to design and 

synthesize a large diversity of new complex biomaterials based on these and other bio-based monomers. 
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