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1 INTRODUCTION

Subtypes are ubiquitous, and are given by a type equipped with a subtyping predicate. Subtypes
also have a well-known dual construction, quotient types, which are given by a type together with a
collection of equations. While few languages currently support their use, there are many practical
examples of quotient types, including algebraic structures such as monoids, and data structures
such as bags. Intuitively, a subtype requires that we prove its predicate is respected on construction,
while a quotient type requires that we prove that its equations are respected on elimination. In this
manner, both subtypes and quotient types introduce proof-obligations, which in turn may require
tedious manual proof construction in the absence of su�cient automated proof search.

Re�nement types [Freeman and Pfenning 1991] are a class of subtypes for which the subtyping
predicate, or re�nement, is SMT-decidable. Restricting ourselves to this class of subtypes has
an important practical bene�t: a type-checker that utilises an SMT-solver can automate many
of the proof obligations that arise from re�nements. Indeed, this is a central feature of Liquid
Haskell [Vazou 2016], an extension of Haskell with re�nement types. A simple example of a
re�nement type is the even integers, expressed in Liquid Haskell by {n:Int | n % 2 == 0}. For
any concrete integer, and for each of the common arithmetic operations, Liquid Haskell can check
the evenness condition without requiring that we manually construct a proof.

In contrast to subtypes, automated proof for quotient types is much less explored. Indeed, the only
languages with quotient types at present seem to be proof assistants. However, quotient types share
an important practical utility with subtypes: they allow us to assert static properties that we hope
can be validated by a type-checker. For example, the type of bags (multisets) can be expressed by
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27:2 Brandon Hewer and Graham Hu�on

quotienting the type of lists with a quotient swap :: x:a -> y:a -> xs:[a] -> x:y:xs == y:x:xs.
In particular, this quotient requires that for every function f :: Bag a -> b that takes a bag as
an argument, we must have f (x:y:xs) == f (y:x:xs), i.e. the behaviour of f must be invariant
under permutation of the elements. In the absence of automated proof tools, this means supplying
a manually constructed proof of this equality. In practice, this can quickly become burdensome and
is a signi�cant barrier to the use of quotient types in general programming.
In this article, we introduce Quotient Haskell, an extension of Liquid Haskell that extends the

notion of re�nement types to support a class of quotient types for which the elimination laws are
SMT-decidable. In particular, the system supports quotient inductive types [Altenkirch and Kaposi
2016], a class of quotient types that simultaneously de�ne the data of an inductive type together
with equations on that data. Concretely, the paper makes the following contributions:

• We introduce the system using three examples: mobiles (commutative trees – Section 2), the
Boom hierarchy (trees, lists, bags and sets – Section 3), and rational numbers (Section 4);

• We present a core language λQ for quotient types, by extending the core language λL for
liquid types with typing (Section 5) and subtyping (Section 6) rules for quotients;

• We show how the notion of equality in the underlying liquid type system can be extended
in λQ to make use of the equalities introduced by quotients (Section 7);

• We outline how Quotient Haskell is implemented, with a particular focus on how the new
quotient typing features are realised (Section 8).

Related work is discussed in Section 9, and we re�ect on the design, practical use and limitations
of the system in Section 10. We assume a basic knowledge of Haskell, but to make the article
more accessible we do not require expertise with type theory, quotient types or Liquid Haskell.
While Haskell serves as the implementation vehicle in this article, the ideas introduced by the core
language are applicable to any programming language with a liquid type system. The Quotient
Haskell system itself is freely available online as supplementary material [Hewer 2023].

2 MOBILES

To describe the class of quotient types that we introduce in this article and are implemented by
Quotient Haskell, we present three increasingly involved examples. The provided examples outline
the necessary concepts required to use Quotient Haskell. In this section, we explore the �rst of
these examples, mobiles, which are commutative trees in which subtrees with the same parent
can freely be swapped. For the purposes of this example, we will consider binary trees, de�ned in
Haskell as follows, but the same idea also applies to rose trees and multiway trees:

data Tree a = Leaf | Bin a (Tree a) (Tree a)

In usual parlance, Leaf and Bin are the data constructors of the Tree type. A quotient type extends
the typical notion of an algebraic datatype with a new kind of constructor, that we shall refer to as
an equality constructor. In the type-theory literature, equality constructors can also be referred to as
path constructors. However, while a data constructor introduces new terms of a data type, an equality
constructor introduces new equalities between terms of a type. For example, in order to de�ne
mobiles we will require an equality constructor that quotients Tree to assert the commutativity
condition. That is, we require an equality constructor of the following form:

swap :: x:a -> l:Tree a -> r:Tree a -> Bin x l r == Bin x r l
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In the above de�nition of swap we have made use of the dependent syntax of Liquid Haskell. In
particular, a type of the form x:a -> P whereby P is a proposition can be understood as universal
quanti�cation over the elements of a and can be read as ‘for all x of type a, P holds’. While the
syntax used for equality in the above de�nition is shared by Haskell’s Eq typeclass, it is instead a
type-level proposition and this syntax is inherited from Liquid Haskell.
Note that the target of the swap constructor introduces an equality between trees. In particular,

swap asserts that two trees with swapped children must be treated identically. Concretely, we can
de�ne the datatype of binary mobiles in Quotient Haskell as follows:

data Mobile a

= Tree a

|/ swap :: x:a -> l:Mobile a -> r:Mobile a -> Bin x l r == Bin x r l

Aswith any re�nement in Liquid Haskell, this de�nitionmust be given within a {−@ @−} block. How-
ever, for brevity we omit these additional annotations throughout this article. As shown in the above
example, a quotient type in Quotient Haskell is de�ned with a similar syntax to that of ADTs, with
some notable di�erences. Firstly, an underlying type must directly follow after the equality symbol.
The underlying type can be a Liquid Haskell re�nement type or even another quotiented type. After
providing the underlying type, the equality constructors must follow, each preceded by the / charac-
ter. Any equality constructor de�ned in a Liquid Haskell block, such as swap, is introduced as a term
with the same name within the namespace in which it is de�ned. Consequently, equality construc-
tors can be used in Liquid Haskell proofs. For example, swap can be understood as a Liquid Haskell
proof function of type x:a -> l:Mobile a -> r:Mobile a -> { Bin x l r == Bin x r l }.
Importantly, the left-hand term of the equality target of an equality constructor must be in

canonical form, i.e. the left-hand termmust be a valid match term. This is important in circumstances
of induction-recursion, whereby a function on an inductive type appears in any of its equality
constructors. A formal account of this rule and an explanation for its existence is given in Section 8.
The right-hand term of the equality may vary freely, as long as it has the correct type.

Note that quotient types in Quotient Haskell introduce a new type constructor into the Liquid
Haskell namespace. That is, a quotient type de�nition can be read as de�ning a new type rather
than simply giving a re�nement for an existing type. This is in contrast to the usual approach of
datatype re�nement in Liquid Haskell, whereby type constructors refer directly to their underlying
GHC counterparts. We adopt this alternative approach for the practical purpose of avoiding having
to create a newtype for every quotient type de�ned on an underlying type. To explain the issue,
let us consider how the usual Liquid Haskell approach to data type re�nement could be adopted
for our Mobile example. In particular, this approach would involve rede�ning Tree in a Liquid
Haskell block, and then appending the swap constructor. In keeping with the terminology used in
Liquid Haskell, we say that the type Tree has been re�ned to the type of mobiles. Consequently,
any function de�ned on the type Tree must be a function on mobiles, i.e. must respect the swap

constructor. As such, to de�ne multiple quotient types on the same underlying Tree type, such as
sets or bags, we would need require a distinct type de�nition for each.
Crucially, every binary tree is a binary mobile. As described in more detail in Section 5, this

imposes an ordering relation on types subject to quotienting. A key practical concept of quotient
types is that, unlike subtypes, there are no proof obligations imposed by quotienting on term
construction. Rather, an equality constructor introduces proof obligations on term elimination.
Intuitively, subtyping imposes conditions when building a term and quotienting imposes conditions
when using a term. For example, for the swap equality constructor this means that for any function
of the form f :: Mobile a -> b, we require that f (Bin x l r) = f (Bin x r l). Functions that
do not respect this law are not valid functions on mobiles, and we should expect this to be checked
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by our type checker. Indeed, this is precisely what Quotient Haskell can be used for. For example,
the following function on trees cannot be re�ned to a function on mobiles:

isLeft :: Tree Bool -> Bool

isLeft Leaf = False

isLeft (Bin p Leaf z) = p

isLeft (Bin p (Bin q x y) z) = q

Evidently, the function isLeft distinguishes between the left and right subtrees when they do not
contain the same logical value. In contrast, an example of a function on trees that can be re�ned to
a function on mobiles is the following summation function:

sum :: Tree Int -> Int

sum Leaf = 0

sum (Bin n l r) = n + sum l + sum r

Because addition is commutative, we should expect that the sum function can be re�ned over binary
mobiles. That is, we should expect sum :: Mobile Int -> Int to be a valid typing judgement. The
necessary proof obligation imposed by the swap equality constructor is

n:Int -> l:Mobile Int -> r:Mobile Int -> sum (Bin n l r) == sum (Bin n r l)

After unfolding the de�nition of sum on both sides of the equality, we can observe that the necessary
proof follows from commutativity of addition. Indeed, a constraint of this form can be solved by
Liquid Haskell with no further intervention.
A second example of a function on mobiles trees is that of the map function. We recall that the

typical de�nition for the map function on binary trees is given as follows:

map :: (a -> b) -> Tree a -> Tree b

map f Leaf = Leaf

map f (Bin x l r) = Bin (f x) (map f l) (map f r)

We expect the type of map to re�ne to (a -> b) -> Mobile a -> Mobile b. In this example, after
unfolding de�nitions and eliding quanti�cation, the necessary condition that must hold is:

Bin (f x) (map f l) (map f r) == Bin (f x) (map f r) (map f l)

This equality is witnessed by the term swap (f x) (map f l) (map f r), and our implementation
of Quotient Haskell is capable of automatically applying this single proof step.

By making use of Liquid Haskell’s re�nement types, we can de�ne the general fold on mobiles.
Recall that the general fold on binary trees is given as follows:

fold :: (a -> b -> b -> b) -> b -> Tree a -> b

fold f z Leaf = z

fold f z (Bin x l r) = f x (fold f z l) (fold f z r)

We cannot naively re�ne fold by replacing Tree with Mobile, as in general we do not have:

fold f z (Bin x l r) == fold f z (Bin x r l)

After unfolding de�nitions on both sides of the equality we can observe that this condition only
holds when the function f is symmetric in its second and third arguments. More speci�cally, this
means that we have a family of equalities of the following form:

x:a -> l:b -> r:b -> f x l r = f x r l

In Liquid Haskell, we can de�ne the type of such functions as follows:
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type Fun a b = ( f : a -> b -> b -> b ,

x:a -> l:b -> r:b -> { f x l r == f x r l } )

Unfortunately, this approach to de�ning a subtype of the function space is not particularly er-
gonomic, and requires explicitly carrying proof witnesses. However, Liquid Haskell necessarily
does not permit higher-order propositions to inhabit the type of propositions Prop and as such, this
is a work-around. With this de�nition of Fun, we can de�ne a general fold on mobiles by

fold :: Fun a b -> b -> Mobile a -> b

fold (f, p) z Leaf = Leaf

fold (f, p) z (Bin x l r) = f x (fold (f, p) z l) (fold (f, p) z r)

The witness that the swap constructor is respected by our new fold function follows from the
second component of the pair. However, the version of Quotient Haskell introduced by this article
cannot implicitly make use of the explicit proof term. As such, this de�nition will not type-check
without additional intervention. In particular, we must explicitly construct the necessary witness
that the above fold function respects the swap equality constructor. To achieve this in Quotient
Haskell, we �rst de�ne the following unre�ned proof:

foldSwap :: Fun a b -> b -> a -> Tree a -> Tree a -> Proof

foldSwap (f, p) z x l r = p x (fold (f, p) z l) (fold (f, p) z r)

This is precisely the proof that fold respects the swap equality constructor. Notably, the arguments
of swap are expanded as arguments to foldSwap. Any explicit proof that an equality constructor
is respected must follow this form in Quotient Haskell. The next step then is to introduce the
following re�nement inside of a Liquid Haskell block:

respects<fold, swap> foldSwap

:: f:Fun a b -> z:b -> x:a -> l:Mobile a -> r:Mobile a

-> { fold f z (Bin x l r) == fold f z (Bin x r l) }

The function foldSwap will be checked in the same manner as any other Liquid Haskell proof.
In addition, by adding the pre�x respects<fold, swap>, Quotient Haskell will check whether
foldSwap is a valid witness that fold respects the swap constructor. A valid witness of a quotient
being respected is simply a function whose type precisely matches the relevant respectability
theorem. As our de�nition of foldSwap is both of the correct type and a valid proof, it can be used
as an explicit witness that fold respects the swap equality constructor. Notably, there are many
circumstances that may arise where the SMT-solver of Liquid Haskell is unable to automatically
generate the necessary proof that an equality constructor is respected. In such circumstances, the
outlined explicit approach to providing the witness can be used.

As an example of using our general fold function for mobiles, we can consider using it to rede�ne
our previous sum function. To do this, we �rst de�ne a function add3 :: Int -> Int -> Int -> Int

that adds three integers, which can then be re�ected to de�ne the following proof witness:

add3Comm :: x:Int -> y:Int -> z:Int -> { add3 x y z == add3 x z y }

add3Comm x y z = trivial *** QED

In Liquid Haskell, the triviality of the above proof follows from the triviality of the commutativity
of addition. Finally, we can simply de�ne sum = fold (add3, add3Comm) 0.

3 BOOM HIERARCHY

In this section, we explore the family of datatypes comprising trees, lists, bags and sets, which are
collectively known as the Boom hierarchy [Meertens 1983]. These examples will demonstrate how
the ordering relation on quotient types can be used to practical e�ect.
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We begin this section with a notion of a tree data structure that varies from that used in our
mobiles example, in which data is only found in the leaves:

data Tree a = Empty | Leaf a | Join (Tree a) (Tree a)

This notion of tree forms the basis for de�ning all the other types in the Boom hierarchy. We begin
this exploration with a less familiar de�nition of the list datatype by means of quotienting:

data List a

= Tree a

|/ idl :: x:List a -> Join Empty x == x

|/ idr :: x:List a -> Join x Empty == x

|/ assoc :: x:List a -> y:List a -> z:List a

-> Join (Join x y) z == Join x (Join y z)

This de�nition captures the idea that lists can be obtained from trees by requiring that the Join

constructor is associative, and has Empty as the identity element. Intuitively, this de�nition of a list
can be seen as a direct translation of the algebraic de�nition of a monoid structure on a given type.
Indeed, this is precisely why lists are the free monoid on the parameter type.
This above formulation of lists might seem rather complex when compared to the standard

version: data List a = Nil | Cons a (List a). The bene�t of the above quotiented formulation
is that concatenation is given simply by the constructor Join, and thus has asymptotic runtime
complexity of O(1). For example, when we are primarily building lists by their monoid interface,
such as when using the Writer monad, this can be a more performant representation. Furthermore,
using the monoid laws on [a] we can give a well-typed unfolding toList :: List a -> [a] of tree-
based lists into standard lists, and this has runtime complexity ofO(n). As such, it can sometimes be
more performant to use this tree representation of lists when constructing them through repeated
concatenation, and subsequently apply toList when required.

Examples of functions on trees that can be re�ned to the quotiented type List include:

sum :: Tree Int -> Int

map :: (a -> b) -> Tree a -> Tree b

filter :: (a -> Bool) -> Tree a -> Tree b

In contrast, an example of a function on the Tree datatype that cannot be re�ned to a function on
lists is the following inductive subtraction function:

subtr :: Tree Int -> Int

subtr Empty = 0

subtr (Leaf n) = n

subtr (Join x y) = subtr x - subtr y

In particular, subtr does not respect the associativity condition introduced by the assoc equality
constructor, because integer subtraction is not associative.

The next datatype in the Boom hierarchy is multisets, also known as bags, which can be used to
count the number of occurrences of elements from a collection. Bags can intuitively be thought of
as lists for which the order of the elements cannot be used, which means that the Join constructor
must be commutative. Consequently, while List characterises the free monoid construction on the
parameter type, our de�nition for Bag will characterise the free commutative monoid construction.
In Quotient Haskell, we can de�ne the Bag datatype as a quotient of List as follows:

data Bag a

= List a

|/ comm :: xs:Bag a -> ys:Bag a -> Join xs ys == Join ys xs
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The de�nition of Bag is an example of further quotienting an already de�ned quotient type. Indeed,
this is precisely how the datatypes of the Boom hierarchy can be understood to form a hierarchy.
In Quotient Haskell, this hierarchy is made explicit in a typing relation derived from the evident
ordering of quotient types, which so far comprises the ordering Tree a <: List a <: Bag a. Intu-
itively, a <: b can be read as ‘every element of a is an element of b’. Furthermore, by contravariance
we also have (Bag a -> b) <: (List a -> b) <: (Tree a -> b). Importantly, this means that in
Quotient Haskell it is only necessary to re�ne a function to the greatest quotient type possible in a
given hierarchy. For example, if we were to re�ne the sum function on Tree to a function on Bag a,
then it would also be possible to apply sum to an element of type List a.

Alongside sum, map and filter, another useful function on trees that can be re�ned to a function
on bags counts the number of elements that satisfy a given property:

countIf :: (a -> Bool) -> Tree a -> Int

countIf p Empty = 0

countIf p (Leaf a) = if p a then 1 else 0

countIf p (Join x y) = countIf p x + countIf p y

In order to verify that countIf can be re�ned to a function on bags, it is necessary to check that
it respects both the comm equality constructor and all of the equality constructors given in the
de�nition of List. In particular, these laws follow from the fact that integers form a commutative
monoid under addition, and can be automatically veri�ed by Quotient Haskell.
An example of a function on trees that can be re�ned to a function on lists but not on bags, is

the following simple function that converts a tree into a list:

toList :: Tree a -> [a]

toList Empty = []

toList (Leaf a) = [a]

toList (Join x y) = toList x ++ toList y

In this example, we eliminate trees into the non-commutative monoid of the Haskell list type
equipped with concatenation. Indeed, because the toList function constructs lists using their
monoidal interface, the laws introduced by the equality constructors of List are evidently satis�ed.
However, concatenation is not commutative and hence toList cannot be re�ned to a function on
bags. Of course, we should not expect to be able to convert an arbitrary bag into a list, as this would
require a unique identi�cation of an ordering on its elements.
The �nal type in the Boom hierarchy is sets, unordered collections that can only contain each

element once. Sets can also be understood as bags for which any repeated occurrences of elements
are forgotten. In Quotient Haskell, we can de�ne the type of sets as follows:

data Set a

= Bag a

|/ idem :: xs:Set a -> Join xs xs == xs

In this de�nition, the idem equality constructor asserts that we cannot distinguish between a set
and that same set unioned with itself. Alongside the comm equality constructor introduced in the
de�nition of bags, this guarantees that repeated occurrences of an element cannot be used to
alter the behaviour of a function on sets. Note that the term Join xs xs is not a valid match term
in Haskell because of the duplicated variable xs, and therefore does not satisfy the necessary
requirement for appearing on the left-hand side of an equality constructor. However, this is indeed
valid syntax in Quotient Haskell, and is equivalent to the following formulation:

idem :: xs:Set a -> ys:Set a -> {xs == ys} -> Join xs ys == xs
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However, the original and more concise formulation of idem is generally preferable in practice, as it
does not introduce the extra precondition {xs == ys} to the type-checker.

A simple example of a function on trees that can be re�ned to a function on sets determines if a
given value is contained in a tree, and can be de�ned as follows:

contains :: Eq a => a -> Tree a -> Bool

contains x Empty = False

contains x (Leaf y) = x == y

contains x (Join t u) = contains x t || contains x u

All of the necessary properties that are required to verify that contains re�nes to a function on sets
follows from the fact that Bool forms an idempotent commutative monoid under logical disjunction.
For example, in order to show that the comm equality constructor is satis�ed we would require that
contains x (Join xs xs) == contains x xs, which unfolds to:

contains x xs || contains x xs == contains x xs

This property is then trivially true because disjunction is idempotent. We have already seen an
example of a function on trees that can be re�ned to a function on bags but not on sets, namely
countIf, because the number of occurrences of an element matters for this function.

4 RATIONAL NUMBERS

In this section we show how the rational numbers, a classic example of a quotient type, can be
captured in Quotient Haskell. The approach is quite di�erent from their typical representation
in a language such as Haskell, where a well-behaved interface is presented on an abstract type
with a hidden data representation. In contrast, by de�ning the rationals as a quotient type, their
implementation details can be exposed without comprising correctness. As discussed in this article,
this increased �exibility comes at the cost of extra proof obligations arising from quotient respect-
fulness theorems. However, in Quotient Haskell such proof obligations are automatically resolved
by the type checker when operating within the SMT-decidable logic of Liquid Haskell.
A well-known constructive de�nition of the rational numbers involves quotienting pairs of

integers representing the numerator and denominator, with the proviso that the second element
is non-zero to preclude division by zero. We can de�ne the type of non-zero integers in Liquid
Haskell by type NonZero = { n : Int | n /= 0 }. Using this type de�nition, we can then proceed
to de�ne the rational numbers with the following quotient type:

data Rational

= (Int, NonZero)

|/ eqR :: w:Int -> x:Int -> y:NonZero -> z:NonZero

-> {w * z == x * y} -> (w , y) == (x , z)

Note that the underlying type of Rational uses a re�nement predicate, n /= 0, to ensure that the
second element of a pair of integers is non-zero. More generally, Quotient Haskell allows any
rank 1 liquid type to be used as the underlying type in the de�nition of a quotient type. The above
de�nition uses the ‘cross multiplication’ approach to decide if two rationals are equal, but this is
not the only possible approach. For example, we could use a greatest common divisor function
gcd :: Int -> Int -> Int to de�ne the following equality constructor:

eqGCD :: x:Int -> y:NonZero -> (x, y) == (x `div` gcd x y, y `div` gcd x y)

While the equality constructor eqR quanti�es over four variables, eqGCD only requires quanti�cation
over two variables. However, this alternative presentation of rational numbers requires that the
de�nition of gcd be unfolded when the type checker validates many proof obligations that arise for
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common applications of rational numbers. Moreover, eqGCD requires additional work to validate its
well-formedness. In particular, it must provably be the case that if y /= 0 then y `div` gcd x y /= 0.
In practice, this approach is often less performant than simply quotienting by eqR, and can often
result in constraints being generated that require an unreasonable amount of time to be validated
by an SMT solver. Indeed, as highlighted by the example of rational numbers, performance can be
an important consideration in choosing a particular quotient representation. As such, we proceed
with our original presentation of the rationals.

As a �rst example of de�ning functions on rational numbers, we consider a simple function that
decides if a pair of integers represents a negative rational:

isNegative :: (Int, Int) -> Bool

isNegative (m, n) = (m < 0 && n >= 1) || (m > 0 && n <= -1)

We can observe that isNegative is a valid function on rational numbers, and should therefore expect
that we can re�ne its type to Rational -> Bool. A simple but important observation in Liquid
Haskell is that subtyping constraints can always be added to function inputs. The dual observation
in Quotient Haskell is that outputs of functions can always be quotiented. Both observations follow
from the subtyping rules of the type system. In this particular case, isNegative can trivially be
re�ned to a function of type (Int, NonZero) -> Bool, and the type checker of Quotient Haskell
need only consider whether it respects the eqR equality constructor. Concretely, the type checker
will automatically verify that given variables w:Int, x:Int, y:NonZero and z:NonZero along with a
precondition w * z == x * y the following unfolded condition holds:

((w < 0 && y >= 1) || (w > 0 && y <= -1)) == ((x < 0 && z >= 1) || (x > 0 && z <= -1))

Included in the large collection of functions that can be de�ned on the rational numbers are
the standard arithmetic operations. Notably, for operations that rationals are closed under, such
as addition and multiplication, it is not necessary to simplify the pair of integers to satisfy the
eqR equality constructor. As demonstrated in previous examples, Quotient Haskell can make use
of equality constructors such as eqR when eliminating into a quotient type. However, this is not
the case if we were to instead attempt to extract the numerator and denominator from a rational
number. For example, the following projection cannot be re�ned to a function on rationals:

numerator :: (Int, Int) -> Int

numerator (m, _) = m

In particular, it is not the case that if w * z == x * y then w == x, and attempting to re�ne numerator
to the type Rational -> Intwill yield a type error in Quotient Haskell. Instead, we consider re�ning
the type of the following function, which reduces a rational number to its simplest form:

reduce :: (Int, Int) -> (Int, Int)

reduce (m, n)

| m == 0 = (0, 1)

| m < 0 = (-m `div` d, -n `div` d)

| otherwise = (m `div` d, n `div` d)

where d = gcd m n

At �rst glance, it is natural to ask why the reduce function negates both elements of the pair when
the �rst element is negative. In particular, it is not immediately evident why -1 / 2 should be
considered anymore reduced than 1 / -2. Indeed, if we were to change the condition m < 0 to n < 0

the de�nition of reduce would remain equally valid. However, we cannot omit this line altogether,
and it is required in order to re�ne the type of reduce to Rational -> (Int, Int).
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The above behaviour is not a bug in Quotient Haskell’s type checker, but is essential to the
correctness of the reduce function. In particular, the respectfulness theorem resulting from the
eqR equality constructor ensures that we cannot distinguish between rational numbers such as
-1 / 2 and 1 / -2, and hence we must choose a uniform way to reduce such terms. That is, we
must choose a uniform way to handle the sign of the rational number. The approach used in the
above de�nition of reduce is to always move the sign to the denominator, however it is equally
valid to instead always move the sign to the numerator. There are other possible ways to de�ne a
reduce function that uniformly handles the sign of a rational number, such as by constructing a
triple (Bool, Nat, Nat) in which a Boolean is used to represent the sign.

In addition to the uniform handling of sign, it is crucial that the gcd function used in the de�nition
of reduce has the property that if w * z == x * y then the following two propositions hold:

abs w `div` gcd w y == abs x `div` gcd x z

abs y `div` gcd w y == abs z `div` gcd x z

This is evidently the case for any correct implementation of greatest common divisor. However,
Liquid Haskell does not currently re�ect the standard library function gcd in its type system. In
practice, this means that gcd needs to be rede�ned. Many of the standard approaches to such a
de�nition, such as Euclid’s algorithm or recursively applying the modulus function, veri�ably
exhibit the necessary property when proof by logical evaluation (PLE) is enabled in Liquid Haskell.
In Quotient Haskell, PLE is enabled by default. Importantly, the described property of the gcd

function, along with the η-rule for the product type, are precisely the equations used by Quo-
tient Haskell to verify that reduce can indeed be re�ned to reduce :: Rational -> (Int, Int).
Moreover, we can choose to further re�ne the type to reduce :: Rational -> (Int, NonZero),
whereby the second component result can veri�ably be shown to always be non-zero. Using this
de�nition of reduce, we can compose with the projections fst and snd and to obtain the functions
numerator :: Rational -> Int and denominator :: Rational -> NonZero, respectively.

5 CORE LANGUAGE

In this section we present a core language λQ , which is a variant of the lambda calculus with
patterns [Klop et al. 2008], and a Hindley-Milner type system extended with liquid and quotient
types. We introduce λQ to give a precise account of how Quotient Haskell extends the type system
of Liquid Haskell. In particular, λQ is formulated as a conservative extension to a generic underlying
liquid type system. In this way, Quotient Haskell can be understood as an implementation of λQ
for which the underlying re�nement type system is Liquid Haskell, while λQ can be understood as
an extension of λL , which was introduced to capture liquid types [Rondon et al. 2008].
The crucial features that λQ introduces to an existing liquid type system are quotients and

their typing rules. Moreover, constructors and pattern matching by means of λ-case functions are
included as the mechanism by which quotients can be used. Extending a Hindley-Milner type
system with constructors and pattern matching is straightforward, so we do not discuss the details
here. Furthermore, we only introduce the syntax and typing rules of λQ that are either novel, or
important for understanding key ideas.
A type environment Γ for λQ is a sequence of type bindings x : τ , guard predicates ϕ, and

typed quotients Q :: τ . The notation Q :: τ should be read as ‘Q is a well-formed quotient on
the underlying type τ ’. Quotients that appear in a type environment alter the notion of equality
between terms of the underlying type, and this context-sensitive notion of equality is described
in Section 7. Notably, as with the core language λL , a complete account of the typing rules for λQ
requires that we also allow guard predicates to inhabit an environment. Intuitively, guard predicates
are propositions in the re�nement logic that correspond to assumptions that hold true within the
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branches of conditionals. That is, guard predicates appear in a type environment to represent the
known truth values of conditionals in the branches of an if-expression.
In addition to guard predicates, λQ inherits the notion of a quali�er set from λL . A quali�er set

consists of all well-formed Boolean expressions that can be constructed from the environment vari-
ables. In an environment with a quali�er set Q, a well-formed re�nement predicate is a conjunction
over any subset of Q. We write Γ ⊢Q x : τ to mean that x has a liquid type τ in the environment Γ
with quali�er setQ, and Γ |= τ to mean that the type τ is well-formed in Γ. Moreover, for re�nement
predicates we write Γ ⊢Q ϕ to mean that ϕ is well-formed in Γ with quali�er set Q and Γ |= ϕ to
mean that the re�nement predicate ϕ is well-formed and provable in Γ. Finally, we write Γ ⊢Q Q :: σ

to mean that the quotient Q is de�ned on an underlying type σ in context Γ with quali�er set Q.
The details of liquid typing can be found in the original work on λL [Rondon et al. 2008].

A quotient in λQ is represented by a sequence of quanti�ed variables followed by a triple of a
re�nement predicate ϕ, a pattern p, and a term e . This quanti�ed triple is written as forall v1 ::
τ1 in · · · forall vk :: τk in ϕ ⇒ p == e , and we can think of this as an equality constructor in
which vi are variables, ϕ is the quotient precondition, p is the left-hand side of the target equality,
and q is the right-hand side. This is characterised by the two following introduction rules:

Γ |= σ Γ,v : τ ⊢Q Q :: σ

Γ ⊢Q forall v : τ in Q :: σ

Γ ⊢Q ϕ Γ ⊢Q p : σ Γ ⊢Q e : σ

Γ ⊢Q ϕ ⇒ p == e :: σ

Note that the �rst rule implicitly makes use of the weakening rule in the type system of λQ . In
particular, the judgement Γ,v : τ ⊢Q Q :: σ assumes that Γ,v : τ |= σ , which requires weakening of
the premise Γ |= σ . The necessity of the weakening rule is a consequence of the underlying type not
being allowed to depend on the terms over which the quotient varies. That is, λQ does not permit
quotient inductive families. Furthermore, an additional weakening rule is given for quotients that
asserts that every well-typed quotient in a context Γ remains well-typed in any extension of Γ.

Re�nements in a re�nement type system may depend on terms and hence come equipped with a
notion of substitution in types. In λQ , the substitution operation is extended over quotient types by
�rst de�ning substitution in quotients. In particular, for every substitution σ , i.e. a �nite map from
variables to terms v1 7→ e1; · · · ;vk 7→ ek , we de�ne substitution for quotients as follows:

(forall v : τ in Q)[σ ] := (forallw : τ in Q[v 7→ w][σ ]) w not free in σ

(ϕ ⇒ p == e)[σ ] := ϕ[σ ] ⇒ p[σ ] == e[σ ]

That is, we construct Q[σ ] in a standard way by avoiding the capture of bound variables and
by applying σ to both the precondition and equality terms that constitute Q . This de�nition of
substitution for quotients can in turn be used to de�ne substitution in quotient types by simply
applying a given substitution to both the underlying type and the quotient.

For every type τ and every quotient Q :: τ , we can form a new type that represents the quotient
of τ by Q and is denoted τ / Q . This type formation or well-formedness rule is given as follows:

Γ |= τ Γ ⊢Q Q :: τ

Γ |= τ / Q

An important property of quotient types is that every term that inhabits an underlying type τ must
also inhabit τ / Q . This simple property is captured by the following introduction rule:

Γ ⊢Q x : τ Γ ⊢Q Q :: τ

Γ ⊢Q x : τ / Q
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Note that the above rule introduces an implicit type conversion from τ to τ / Q , and hence this can
lead to ambiguity of expressions in the re�nement logic. For example, the proposition that two
terms x,y : τ are equal can be expressed as x == y, however this may not be logically equivalent
to the same expression where x and y are instead considered to be elements of τ / Q . In particular,
it is possible that the quotient Q may equate previously distinct elements x and y. As such, we will
write x ≡σ y for a given type σ to denote equality in the re�nement logic between terms two x,y
when considered as elements of σ , or simply x ≡ y if the quotient is clear from the context.

We note that together with the introduction rules for quotients, the introduction rule for quotient
types allows us to apply a sequence of quotients. That is, any valid quotientQ on an underlying type
τ is also a valid quotient on the type τ / P for any quotient P . It is essential that any sequence of
quotients of a type must be both idempotent and invariant under reordering, i.e. multiple quotients
of an underlying type must be considered together as a set. We can give a formal characterisation
of these two rules, which we term the ‘idempotent’ and ‘permutation’ rule, as follows:

Γ ⊢Q x : τ / P / P

Γ ⊢Q x : τ / P

Γ ⊢Q x : τ / Pσ (1) / · · · / Pσ (n) σ is a permutation n ≃ n

Γ ⊢Q x : τ / P1 / · · · / Pn

Alternatively, we could have used sets directly in the syntactic construction rule for quotient
types in λQ . This alternative approach would allow us to replace the two rules above with a single
typing rule corresponding to the union of sets. However, this would in turn complicate the λ-case
formation rule for quotient types that we introduce later in this section. Consequently, we continue
with the above approach in our presentation of the typing rules of λQ . We note that while a
naive implementation approach of this rule such as exhaustively checking every permutation of n
quotients is n!, in practice the number of quotients used is typically very small.
Another essential property of quotient types is a generalisation of the λ-formation rule. In

particular, we expect that any function de�ned on a quotient type that does not match on its input
is always well-typed. Concretely, this generalised λ-formation rule can be expressed as follows:

Γ, x : τ / Q ⊢Q e : σ Γ ⊢Q Q :: τ

Γ ⊢Q λx .e : (v : τ / Q) → σ

In order to give the typing rule for functions that match on their inputs, we will �rst require a
formal notion as to what it means for a particular ‘case’ of a matching function to respect a quotient.
To do this, we will de�ne a context-sensitive binary relation Γ |= • { • whose �rst element is a
�nite sequence of pairs of patterns and terms and whose second element is a quotient. We write
elements of this relation in the form λ {p1 → e1; · · · ; pk → ek } { Q , or simply λ {p → e} { Q .
This relation will characterise precisely when a particular λ-case term respects a given quotient. In
order to de�ne this relation, we �rst introduce a number of auxiliary de�nitions.

First of all, we make use of uni�cation or matching of patterns. This is a well-known concept for
lambda calculus with patterns, and we do not reintroduce this idea here. We write x ∼σ y to denote
that the terms x and y can be uni�ed, with the most general uni�er given by the substitution σ .
The property that σ is the most general uni�er is crucial to the correctness of the core language
and is necessary for the proof of Proposition 3, which requires uniqueness of the most general
uni�er. With this in mind, we continue with an inductive de�nition of the context-sensitive relation
Γ |= λ { p → e } { Q . We begin with the more involved base case, given by the following rule:

Γ ⊢Q ρ : τ Γ ⊢Q p1, . . . , pk : τ Γ ⊢Q e1, . . . , ek : υ Γ ⊢Q ρ ∼σ pk

Γ, ϕ[σ ] |= ek [σ ] ≡υ λ {p1 → e1; . . . ; pk → ek } t[σ ] ∀ i j σ ′
. pi ∼σ ′ pj ⇒ i = j

Γ |= λ { p → e } { (ϕ ⇒ ρ == t)
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Importantly, this rule makes use of the extended notion of equality in λQ described earlier in this
section. The condition ∀i j σ ′

. pi ∼σ ′ pj ⇒ i = j asserts that each pattern must be distinct up to
uni�cation. By imposing this condition we ensure there is no overlap between di�erent branches of
a λ-case, and as such there can be at most one pi that uni�es with the left-hand side of the quotient’s
equality target. Intuitively, the above rule can be understood as �rst identifying a pattern pi from a
sequence p that uni�es with the left-hand side of the equality target of a quotient. After applying
the unifying substitution, this rule checks in the re�nement logic whether the precondition of the
quotient implies the corresponding expression ei from a sequence e is equal to the right-hand side
of the equality target applied to the lambda-case function. If the outlined condition is met, then the
relation holds between the given sequences p, e and the considered quotient.
We next consider the inductive case, which simply extends the environment with a quanti�ed

variable and is characterised by the following rule:

Γ,v : τ |= λ { p → e } { Q

Γ |= λ { p → e } { (forall v : τ in Q)

The above de�nitions allow us to proceed with a formal characterisation of the λ-case formation
rule for quotient types. In particular, this rule is given as follows:

Γ |= (x : τ / Q) → σ Γ |= λ { p → e } { Q p1, . . . , pk is a complete case analysis of τ

Γ ⊢Q λ { p1 → e1; . . .; pk → ek } : (x : τ / Q) → σ

Note that we impose that any sequence of patterns used to construct a λ-case term must form a
complete case analysis of the underlying type. The formal description of this idea is well understood
for a type theory with algebraic data types, and we do not reintroduce it here. In the absence of this
condition, the partiality of λ-case functions can be used to contradict the necessary correctness
result for quotients. The λ-case formation rule is the crucial component of the typing rules for λQ
and ensures that the equality constructors of quotient types are respected by functions that match
on their input. Importantly, when only the total functions of λQ are considered it must always be
the case that there exists a pattern pi that uni�es with the left-hand target of a quotient Q .

To conclude our introduction of the typing system of λQ , we formulate and prove a correctness
result for quotients. Notably, soundness of quotient type checking follows directly from the sound-
ness of the underlying re�nement type system and the assumption that a liquid type judgement
Γ ⊢Q e : τ implies Γ ⊢ e : τ . In particular, the proof of soundness for quotient type checking follows
in the same manner as described for λL in [Rondon et al. 2008]. The correctness result for quotient
type checking states that from the typing rules for λQ , we can conclude that function congruence
correctly extends over quotients. Indeed, this is the essential and de�ning property of quotient
types. In order to state this correctness result, we begin by de�ning precisely what it means for an
arbitrary function on a quotient type to respect the relevant quotient.

De�nition. Given an environment Γ and a function Γ ⊢Q f : (x : τ ) → σ , we write Γ |= f ∗Q to
denote that f respects the quotient Q in the environment Γ, which is inductively de�ned by:

Γ,v : τ |= f ∗Q

Γ |= f ∗ (forall v : τ in Q)

Γ ⊢Q p : τ Γ ⊢Q e : τ Γ,ϕ |= f p ≡σ f e

Γ |= f ∗ (ϕ ⇒ p == e)

The above de�nition directly corresponds to the functorial action of a function on an equality that
is constructed by means of a quotient. An important property of the proposition Γ |= f ∗ Q is
invariance with respect to context extension by a binding, which is captured as follows.
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Proposition 1. Given Γ |= f ∗Q and Γ ⊢Q e : τ then we can conclude Γ, e : τ |= f ∗Q . This can be
understood as a weakening rule for the property that every function must respect the quotients of
its inputs. The proof follows by induction on the quotient Q :

• For Q = forall v : γ in P , by the inductive hypothesis we can weaken Γ,v : γ |= f ∗ P to
obtain Γ,v : γ , e : τ |= f ∗ P as required;

• For Q = ϕ ⇒ p == h, we apply the standard weakening rule for typing judgements to both
Γ ⊢Q p : τ and Γ ⊢Q h : τ to extend their context with e : τ , and similarly apply the weakening
rule for equality judgements in λQ to Γ,ϕ |= f p ≡σ f h.

An important property of the typing system of λQ and a key component in the proof of our
correctness theorem is preservation of equality under quotient rewriting. That is, when a quotient
ϕ ⇒ p == e appears in a context Γ then given any expression in Γ the two expressions that can be
constructed by substituting a free variable for either p or e should be considered equal by the type
system of λQ . We formally express this property in the following proposition.

Proposition 2. Given a typing judgement Γ,v : τ / (ϕ ⇒ p == h) ⊢Q e : σ , we can conclude
Γ; (ϕ ⇒ p == h) :: τ |= e[v 7→ p] ≡σ e[v 7→ h]. The proof follows by induction on the expression e ,
for which the interesting cases proceeds as follows:

• For e = x , if x = v then x must have type τ / (ϕ ⇒ p == h) and we can conclude p ≡ h from
the equality checking rules of λQ ;

• For e = λ {p1 → e1; . . . ; pk → ek }, for each pi where v appears freely, applying either [v 7→

p] or [v 7→ h] to e does not change ei and the equality trivially holds, otherwise we continue
our induction on ei in the appropriately extended context to obtain ei [v 7→ p] ≡σ ei [v 7→ h]

and �nally we aggregate the resulting equalities in the obvious manner to obtain an equality
between lambda-case functions.

In advance of stating our correctness result for quotients in λQ , we �rst provide a proof of a
contextual version. In particular, in Proposition 3 we assume that we are working within a context Γ
whereby all functions in Γ that are de�ned on quotient types respect the relevant quotient. From
this assumption, we can prove that any other well-typed function on quotient types that can be
constructed from this context will also respect its quotients.

Proposition 3. Given an environment Γ such that all functions in Γ respect the relevant quotient,
i.e. every д : (x : α / P) → β ∈ Γ satis�es Γ |= д ∗ P , it follows that every constructible function
Γ ⊢Q f : (x : τ / Q) → τ ′ has the property Γ |= f ∗Q . The proof follows by induction on Q and f :

• For Q = forall v : γ in R, we �rst apply weakening (Proposition 1) to our initial assumption
to conclude that every д : (x : α / P) → β ∈ Γ has the property Γ,v : γ |= д ∗ P , then
we continue our induction with this new assumption alongside the extended environment
Γ,v : γ and the weakened term Γ,v : γ ⊢Q f : (x : τ / R) → τ ′;

• For Q = ϕ ⇒ p == h, we consider each case for f :

• For f = x and f = c , the result follows from the initial assumption;

• For f = λx .e , after unfolding de�nitions it su�ces to show that Γ,ϕ |= e[x 7→ p] ≡τ ′

e[x 7→ h] which follows directly from Proposition 2;
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• For f = λ {p1 → e1; . . . ; pk → ek }, by the condition that a well-typed λ-case must
perform a complete case analysis, there must exist precisely one pi such that pi ∼σ p and
it consequently su�ces to show that Γ,ϕ |= ei [σ ] == λ {p1 → e1; . . . ; pk → ek } h[σ ] and
since σ is the most general uni�er, this follows from the typing rule for λ-case functions.

Finally, we can now conclude our introduction of the core language λQ with the key correctness
result for quotient types, which is captured by the following theorem.

Theorem 1 (Correctness of quotienting). Every closed function in λQ of the form f : (x : τ /Q) → σ

respects the relevant quotientQ , i.e. ∅ |= f ∗Q . That is, function congruence correctly extends over
quotients. The proof is given simply by specialising Γ to the empty context in Proposition 3.

6 SUBTYPING

Quotient types in the core language λQ come equipped with an ordering relation that we use to
extend our type system with subtyping rules. In practice, these subtyping rules provide us with a
framework for deciding when it is sound to substitute one quotiented type for another. As such,
the subtyping rules for quotient types improve the reusability of code by allowing functions on
quotient types to be applied to more ‘weakly’ quotiented types subject to the ordering relation. For
example, a valid function on the propositional truncation of a type, i.e. the quotient which relates
all terms, must also respect any other quotient on the same underlying type. In this section, we
introduce the subtyping rules for quotient types in λQ .
The �rst of the λQ subtyping rules is for quotient generalisation, and asserts that any quotient

type is a supertype of its underlying type. For example, the type of lists can be understood as a
subtype of bags, or bags as a subtype of sets. This rule is formally expressed as follows:

Γ ⊢Q Q :: τ

Γ ⊢Q τ <: τ / Q

We write τ <: σ above to denote that τ is a subtype of σ . When considered alongside the λQ typing
rule for subtypes, this rule is equivalent to the introduction form for quotient types.

To introduce the next subtyping rule for quotient types, we �rst present an ordering relation on
quotients such that P <: Q means that P is a subquotient of Q , de�ned using four rules. The �rst
rule speci�es when the precondition and equality of a quotient are subsumed by another. For this
rule, we make use of a join-semilattice on patterns, whereby p ⊆σ q i� the pattern p is subsumed
by q with substitution σ . Consequently, when p ⊆σ q we have a de�nitional equality q[σ ] = p. For
example, given a constructor S : τ → τ and variables v : τ , the term S (S v) is subsumed by S v

with substitution [v 7→ S v]. We write Γ |= p ⊆σ q to denote that p is subsumed by q in context Γ,
and introduce the following subquotient rule:

Γ ⊢Q p,q, e, f : τ Γ |= p ⊆σ q Γ,ϕ |= ψ [σ ] Γ,ϕ |= e ≡τ f [σ ]

Γ |= (ϕ ⇒ p == e) <: (ψ ⇒ q == f )

In this de�nition, ≡τ is an extended notion of equality between terms of type τ that can make use
of substitutions presented by quotients, which we will de�ne in Section 7. Intuitively, the above
rule states that if one quotient is implied by another in the re�nement logic, then the former is a
subquotient of the latter. For example, given a constructor S : τ → τ and variables u,v : τ , we can
conclude (true ⇒ S (S (S v)) == S v) <: (true ⇒ S (S u) == u) using the substitution [u 7→ S v].
When two quotients quantify over a variable of the same type, the ordering relation is de�ned

by the following rule, which simply extends the context by the quanti�ed variables and checks
whether the remaining body of one quotient is a subquotient of the other:
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Γ,v : τ ,u : τ ⊢Q P <: Q

Γ ⊢Q (forall v : τ in P) <: (forall u : τ in Q)

In contrast, when two quotients are quanti�ed over types that are not de�nitionally equal, it is
possible that one is a subquotient of the other, by means of the following permutation rule:

Γ, v1 : τ1, . . . , vn : τn ⊢Q P <: Q Γ |= ∀ i . τi , τσ (i) σ is a permutation on n

Γ ⊢Q (forall v1 : τ1 in . . . forall vn : τn in P) <:

(forall vσ (1) : τσ (1) in . . . forall vσ (n) : τσ (n) in Q)

In this rule, Γ |= ∀ i . τi , τσ (i) means that when τ is reordered under the permutation σ , the type
in position i is not de�nitionally equal to the old type in the same position. This condition ensures
that the rule does not overlap with the prior rule for quotients that quantify over the same type.
That is, by imposing this constraint, we can translate these rules to well-founded induction on two
quotients. Understood in this manner, an implementation of the above rule involves constructing
two sequences of types τ1, . . . , τn and ρ1, . . . , ρn , whereby we continue until there are no more
quanti�ers or we �nd τn+1 = ρn+1, and �nally we check if ρ is a permutation of τ .

The �nal case we consider is when a subquotient quanti�es over a variable and the superceding
quotient does not. In particular, we introduce the following ordering rule for quotients:

Γ |= τ Γ,v : τ ⊢Q P <: (ϕ ⇒ p == e) v not free in ϕ, p or e

Γ ⊢Q (forall v : τ in P) <: (ϕ ⇒ p == e)

In particular, this rule holds because every quotient in λQ speci�es a proposition. That is, we should
consider forall v : τ in P to be analogous to ∀ (v : τ ). P , rather than the dependent function type
Π (v : τ ) P . If we were instead to consider a calculus for higher quotients, this subquotient rule
would not be correct. It is important that the quanti�ed variable is not free in each term of the
superceding quotient, otherwise context extension may change its meaning.

From the de�nition of our ordering relation on quotients, we can extend our subtyping rules for
quotient types in the language λQ with the following rule:

Γ ⊢Q P <: Q

Γ ⊢Q τ / P <: τ / Q

That is, a subquotienting relationship can be lifted directly to a subtyping relationship. Combining
this rule with the subtyping rule for functions yields the following important typing derivation:

Γ ⊢Q f : (τ / Q) → τ ′ Γ ⊢Q P <: Q

Γ ⊢Q f : (τ / P) → τ ′

That is, if we know that P is a subquotient of Q and that a function f respects Q , then it must also
respect P . We can similarly derive a typing rule that allows us to apply any function on a quotient
type to a term of the underlying type. For practical purposes, such as in Quotient Haskell, this
means that only the most restrictive quotient is needed in the type de�nition of a function, which
can subsequently be applied to terms inhabiting any subquotients.
Finally, the subquotient relationship can be shown to satisfy a correctness theorem that states

that if a function respects a quotient Q it must also respect any subquotient of Q . In order to prove
this correctness rule for the subquotienting relationship, we make use of Proposition 4, which is
presented in Section 7. In particular, an equality x ≡ y is invariant with respect to substitution. We
can then proceed with our correctness theorem for the subtyping rules of λQ .
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Theorem 2 (Correctness of subquotienting). Given a function Γ ⊢Q f : (x : τ ) → τ ′ and quotients
Γ |= P,Q :: τ such that Γ ⊢Q P <: Q , then if Γ |= f ∗Q it follows that Γ |= f ∗ P . The proof is by
induction on the subquotienting relation, for which the interesting case proceeds as follows:

• For ϕ ⇒ p == e <: ψ ⇒ q == r , unfolding the de�nitions for the judgement Γ |= f ∗Q and
the subquotient P <: Q yields the following four assumptions:

(1) Γ,ψ |= f q ≡τ ′ f r (2) p ⊆σ q (3) Γ,ϕ |= e ≡τ r [σ ] (4) Γ,ϕ |= ψ [σ ]

As stated in Proposition 4, a key property of equality is invariance with respect to term
substitution, and consequently by function congruence and assumption (1) we can conclude
Γ,ψ [σ ] |= f q[σ ] ≡τ ′ f r [σ ]. From assumption (2) it follows that p := q[σ ], and by function
congruence and transitivity of equality we can conclude Γ,ψ [σ ] |= f p ≡τ ′ f r [σ ]. We
proceed by applying function congruence and symmetry of equality to (3) to show that
Γ,ψ [σ ] |= f r [σ ] ≡τ f e . Finally, by transitivity of equality and by generalising the guard
predicate through (4), we can conclude Γ,ϕ |= f p ≡τ ′ f e , as required.

7 EQUALITY

Quotients that appear in a typing context introduce a substitution rule that can be used for deciding
the equality of terms during type-checking. This rule changes the notion of equality between terms,
and we write x ==τ y to represent an equality between terms of type τ in the underlying re�nement
type system, and x ≡τ y to represent the extended notion of equality in λQ that can make use of
substitutions presented by quotients. The precise de�nition of equality in the underlying re�nement
type system can vary, but it remains crucial that it is an equivalence relation. Furthermore, we
assume several additional rules hold in the underlying re�nement type system:

• (Function congruence) For every closed function ∅ |= f : (x : τ ) → τ ′, if we have an equality
Γ |= x ==τ y then we must also have an equality Γ |= f x ==τ ′ f y;

• (Equality substitution) For every term Γ ⊢Q e : τ , every equality Γ |= x ==τ ′ y and every
variable v , it must hold that Γ |= e[v 7→ x] ==τ e[v 7→ y];

• (Substitution invariance) For every equality Γ |= x ==τ y and substitution σ , the equality
must also hold under the substitution, i.e. Γ |= x[σ ] ==τ y[σ ].

Crucially, while x ==τ y is a proposition in the re�nement logic, x ≡τ y is a judgement in the
type system. Consequently, in λQ the de�nition of Γ |= ϕ di�ers from the underlying liquid type
system. In particular, any equality x ==τ y that appears in the logical proposition ϕ is lifted to
the extended notion of equality x ≡τ y. For example, we check the judgement Γ |= x == y ⇒ ψ

by checking whether either Γ ̸ |= x ≡ y or Γ |= ψ . Intuitively, our extended notion of equality can
make use of quotients that appear in a context in order to transform the original equality by means
of substitutions. This decidable process results in building a new equality in the re�nement logic
which can then be checked by an SMT-solver.

Importantly, our extended notion of equality is strictly weaker than that of the underlying liquid
type system, and this property is expressed by the following rule:

Γ ⊢Q x,y : τ Γ |= x ==τ y τ is not a quotient type

Γ |= x ≡τ y

That is, two terms are considered equal in the language λQ if they are equal in the underlying
re�nement type system. Consequently, for any term that inhabits a type that has not been quotiented,
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the notion of equality in λQ and the underlying re�nement logic is identical. However, for terms
that inhabit a quotient type, it is necessary to extend our notion of equality to make use of the
equalities introduced by quotients. To do this, we begin by giving a formal account of when a
context is extended by a quotient in the process of equality checking.
In contrast to types and guard predicates, we make use of a more involved form of context

extension for quotients that ensures a given context contains only the most general form of a
quotient. As discussed later in this section, this is necessary to ensure termination of equality
checking in our type system. As such, given a context Γ and quotient Q :: τ , we write Γ,Q for
regular context extension and Γ;Q for the more involved notion. In order to de�ne Γ;Q , we will
consider three separate cases concerning whether Γ already contains a quotient P :: τ that is related
to Q by a subquotient relationship. A complete account of the ordering rules for quotients is given
in Section 6, and we write Q <: P to mean that Q is a subquotient of P . We begin by considering
the case when there does not exist a quotient P :: τ in Γ such that Q is related to P by means of
the subquotient relationship. In this case, we simply apply the usual notion of context extension
and as such we have Γ;Q = Γ,Q . The two remaining cases consider when there exists a quotient
P :: τ in Γ such that either Q <: P or P <: Q . In the case when Q <: P , then Γ is left unchanged and
we de�ne Γ;Q = Γ. In turn, for P <: Q we replace P in Γ with Q . Using this notion of extending a
context by a quotient, we can state the following equality rule for quotient types:

Γ ⊢Q x,y : τ / (ϕ ⇒ p == e) Γ; (ϕ ⇒ p == e) :: τ |= x ≡τ y

Γ,ϕ |= x ≡τ /(ϕ⇒p==e) y

This rule states that two terms inhabiting a quotiented type are to be considered equal when they
are equal as inhabitants of their underlying type in a context extended by their quotient. Note that
the rule formulated above only considers quotients that do not contain bindings, and indeed, this is
the only form of a quotient that may be used to extend a context. For the case of quotients that
contain bindings, the following equality rule applies:

Γ ⊢Q x,y : τ / (forall v : σ in Q) Γ,v : σ ⊢Q x ≡τ /Q y

Γ ⊢Q x ≡τ /(forall v :σ in Q ) y

That is, for quotients with bindings we simply consider equality in the context extended by the
bindings. The �nal equality rule we introduce to the typing system of λQ corresponds to checking
the equality of terms in a context containing a compatible quotient. This rule allows us to rewrite
an equality using a quotient in a given context, and is formulated as follows:

Γ ⊢Q x,y,p, e : τ Γ |= ϕ[σ ] Γ |= y ≡τ e[σ ] x ⊆σ p

Γ; (ϕ ⇒ p == e) :: τ |= x ≡τ y

Wewrite x ⊆σ p here to denote that a term x is subsumed by the pattern p with substitution σ . With
this in mind, the above rule states that any two terms x,y : τ are considered equal in a context Γ if
there is a compatible quotient ϕ ⇒ p == e :: τ in Γ such that p subsumes x with substitution σ ,
and such that y can be show to be equal in the underlying re�nement type system to the term
obtained by applying σ to e . Furthermore, we have an additional symmetric rule whereby we check
if p instead subsumes y and x ≡τ e[σ ], which is otherwise identical to the above rule.

In order to establish that our extended notion of equality is an equivalence on terms, we require
an additional axiomatic rule for transitivity of equality as de�ned on quotient types:

Γ ⊢Q x,y, z : τ / Q Γ |= x ≡τ /Q y Γ |= y ≡τ /Q z

Γ |= x ≡τ /Q z
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Crucially, if the equality of the underlying re�nement type system is an equivalence relation then
so is our extended notion of equality in λQ . Re�exivity of equality follows evidently from the rule
that every equality in the underlying re�nement type system infers equality under our extended
notion of equality. Transitivity is given by the axiomatic rule postulated above, while symmetry
follows from the fact that the third equality rule can be symmetrised. Later in this article, we make
use of the fact that our extended notion of equality is indeed an equivalence relation in correctness
proofs for both quotients and a subquotienting relation.

A practical implementation for type-checking that applies the equality rules for λQ requires that
we handle cases for which there is more than one compatible quotient. Importantly, the manner
in which we extend a context by a quotient ensures that a context will only ever contain a single
instance of a quotient. In addition, when a quotient is applied during equality checking it is removed
from the context. When considered together, these properties ensure that every equality checking
path will terminate for terms that inhabit a quotient type. As such, given that a context Γ can only
contain a �nite number of quotients of the form Q :: τ , then if Γ has n such quotients there can be
at most n! di�erent paths to consider for equality checking. This pathological case occurs when
every permutation of quotients Q1 :: τ , . . . ,Qn :: τ ∈ Γ corresponds to a is sequence of rewrites.
For example, if the left-hand side of the equality produced by each Qk were simply a variable, then
each quotient would evidently unify with any term of type τ , and consequently every permutation
would indeed specify a valid sequence of rewrites. In practice, however, the number of quotients
that appear in a context for a type is typically small, and as such exhaustively checking each valid
permutation does not present an issue even in the pathological case.
As an example of how the extended equality rule of λQ is applied in practice, recall that in

Section 3 we de�ned a type List by quotienting an underlying type Tree. To check that the map

function on trees re�nes to a function on lists, we must show it respects the quotients of List. One
such quotient is the left-identity law idl :: x:List a -> Join Empty x == x, and to show that map
respects idl we must show map f (Join Empty x) == map f x. After normalising the term on the
left, the stated equality becomes Join Empty (map f x) == map f x. Importantly, when considering
the re�nement of map to a function on lists, this is an equality between terms of the quotient
type List. Consequently, when checking whether this equality holds we �rst extend our context
by the quotients of List, and then check if the pattern appearing on the left of the equality target
of any of these quotients subsumes either Join Empty (map f x) or map f x. We can observe that
the left identity law has precisely this form, as Join Empty x subsumes map f x with substitution
x 7→ map f x. Finally, we check whether map f x == x[x 7→ map f x], or simply map f x == map f x,
which holds de�nitionally. This same sequence of steps can similarly be used to show that map
respects each of the quotients of List and as such map is re�nable to a function on lists.
We conclude our discussion on the extended notion of equality used in the type system of λQ

by discussing and giving a formal account of three essential properties of equality substitution,
substitution invariance and function congruence. The �rst of these properties we consider is
substitution invariance which is critical for the correctness of the subquotienting relation de�ned
in Section 6. Concretely, we state this property as follows:

Proposition 4. Given a context Γ and a substitution σ , then for every equality Γ |= x ≡τ y we have
Γ |= x[σ ] ≡τ y[σ ]. In the case when τ is not a quotient type, the proof follows from the substitution
invariance property of the underlying equality. Otherwise, the proof follows by inversion whereby
we consider each of the extended equality rules.

In addition to being invariant under substitution, equality in λQ must also be respected by the
substitution operator. Intuitively, this means that if two terms are equal then substituting them for
a variable in any expression should produce two equal terms, and is stated as follows:
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Proposition 5. For every equality Γ |= x ≡τ y, term Γ ⊢Q e : σ and any choice of variable u, we
can construct an equality Γ |= e[u 7→ x] ≡ e[u 7→ y]. The proof follows by induction on e and is
evident for each case after suitably unfolding the de�nition of substitution.

The �nal property of equality we consider is function congruence, which we describe in two parts.
Firstly, in Proposition 6 we consider open terms whereby we assume that we are working in a
context which respects the congruence law for functions. We then specialise to the empty context
in Proposition 7 to state the true congruence property for closed functions.

Proposition 6. Given a context Γ with function congruence, i.e. for every function f : (x : τ ) →

τ ′ ∈ Γ and every equality Γ |= x ≡τ y we can construct an equality Γ |= f x ≡τ ′ f y, then every
constructible function in Γ must also obey the function congruence rule. In order to prove this
we must show that for every function Γ ⊢Q f : (x : τ ) → τ ′ and every equality Γ |= x ≡τ y, we
can conclude Γ |= f x ≡τ ′ f y. The proof follows by induction on f and we consider only the
interesting cases whereby f is either a λ function or a λ-case function. In both cases, after unfolding
de�nitions we can observe that the proof follows evidently from Proposition 5.

Proposition 7. For every closed function ∅ ⊢Q f : (x : τ ) → τ ′ and every equality ∅ ⊢Q x ≡τ y,
we can show that there is an equality ∅ ⊢Q f x ≡τ ′ f y. The proof follows immediately by simply
instantiating the context in Proposition 6 to the empty context.

8 IMPLEMENTATION

In order to demonstrate the utility of the quotient types of the core language λQ in a practical
setting, we have developed Quotient Haskell. In particular, Quotient Haskell is an extension to
Liquid Haskell that adds quotient types through the mechanism of datatype re�nement, and
checks whether functions de�ned on quotient types respect the necessary equations by generating
constraints for an SMT solver. More speci�cally, our implementation of Quotient Haskell makes
notable changes to Liquid Haskell parsing, syntax trees, equality constraint generation for quotient
types, and type-checking and constraint generation for case expressions.
The �rst step of the Liquid Haskell pipeline that is modi�ed by our implementation is the

parser. In particular, the parser is extended to support the syntax illustrated by the examples in
Sections 2, 3 and 4. As expressed in these examples and the core language presented in Section 5,
in Quotient Haskell we require that the left-hand side of an equality appearing in the codomain of
an equality constructor is a pattern. In practice, this requirement ensures that when type-checking
a case expression for which an element of a quotiented type is the scrutinee, proof requirements
corresponding to equality constructors can be either unfolded or erased. The syntax for equality
patterns in Quotient Haskell is formally speci�ed by the following grammar:

lpat ::= var variables
| literal literals
| qcon lpat1 ... lpatk constructors (k ≥ 0)
| qcon { qvar1 = lpat1, ..., qvark = lpatk } records (k ≥ 0)
| ( lpat ) parenthesised pattern
| ( lpat1, ..., lpatk ) tuples (k ≥ 1)

In the above formulation of the lpat syntax, we write var, literal, qvar, qcon to denote the Haskell
non-terminals for variables, literals, quali�ed variables and quali�ed constructors, respectively.
The lpat rule can be understood as a more restricted version of the Haskell grammar rule for
patterns that can appear on the left-hand side of a function. In particular, some patterns do not
make sense for equality constructors, such as wildcards, irrefutable patterns and as-patterns.
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We now turn to the syntax for equality constructors. For this de�nition, we make use of the
Haskell non-terminals expr and cxt, which correspond to Haskell expressions and typeclass contexts.
In addition, we use the Liquid Haskell non-terminal rbind, which corresponds to dependent bindings
of a variable, which can appear to the left of an arrow. We also use bpred, which corresponds to
bare predicates in Liquid Haskell, which are propositions surrounded by braces such as {x == y}.
The syntax for an equality constructor is then given by the following rule, where j,k ≥ 0:

eqcons ::= var :: [(cxt) =>] rbind1 -> · · · -> rbindj -> pred1 -> · · · -> predk -> lpat == expr

Notably, the eqcons rule allows for quanti�ed variables to be constrained by typeclasses. A typeclass
context that appears in an equality constructor can be used to further constrain when respectability
theorems are generated. In particular, after matching a case alternative with the left-hand side of
an equality, Quotient Haskell will only generate the resulting respectability theorem if there exists
the necessary instances for each of the matched variables.
To de�ne the syntax for quotient types, we use the Liquid Haskell non-terminal stype, which

corresponds to re�nement types excluding bindings and bare predicates, and the Haskell non-
terminal simpletype, which corresponds to the name of a type followed by type variables. The
syntax for quotient type de�nitions is then given by the following rule, where k ≥ 1:

quotty ::= data simpletype = stype |/ eqcons1 |/ · · · |/ eqconsk

In addition to the above syntax for quotient constructors, Quotient Haskell has syntax for providing
explicit proofs that equality constructors are respected, where k ≥ 0:

quotproof ::= respects <qvar,qvar> var :: rtype1 -> · · · -> rtypek -> { expr == expr }

Quotient type de�nitions and explicit proofs of respectability, as speci�ed by quotty and quotproof

respectively, are only valid within a Liquid Haskell block.
To support the above extensions, the syntax trees within Liquid Haskell are modi�ed to include

both quotient constructors and explicit quotient respectability proofs. In Liquid Haskell, a datatype
re�nement must typically have the same name as the datatype being re�ned. However, for quotient
types the name must instead be unique with respect to any other type constructors in scope. As
such, we extend the type-checking environment with the names of any quotient type constructors.
Moreover, the names of quotient constructors must be unique with respect to any term identi�ers
in scope. After parsing and construction of the type-checking environment, each of the required
checks associated with quotients are performed during the existing re�nement checking phase. In
the remainder of this section we describe the core steps involved in quotient type checking.

Quotient Wellformedness. The wellformedness check for each quotient ensures that the domain
of each equality constructor is well-formed, and that both sides of the target equality are terms
of the underlying type. We also check that both the name of a quotient type and its quotient
constructors are unique in the scope. The name of a quotient type must be unique with respect to
type constructors, while quotient constructors must be unique with respect to term identi�ers.

Equality Lifting. As described in Section 7, to make use of the equalities introduced by quotients
within arbitrary re�nements, it is necessary to extend the notion of equality between terms that
inhabit a quotient type. To do this, Quotient Haskell includes a transformation step that traverses
every re�nement type in the type-checking environment. We proceed with a description of this
transformation as it applies to each re�nement type. Firstly, we consider the underlying re�nement
predicates which contain an equality between terms of a quotient type. For each such equality,
we generate a set of implication expressions by rewriting the equality with suitable quotients, as
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described in Section 7, and adding the preconditions of each used quotient as the antecedent of the
implication. We then replace this equality with the generated disjunction when constructing the
constraint to be passed to the SMT solver. For example, consider the following quotient type that
represents a list of integers for which any integer ≤ 0 acts as a unit:

data Positives

= [Int]

|/ unit :: xs:[Int] -> x:{ x:Int | x <= 0 } -> x :: xs == xs

Intuitively, we can understand this type as ensuring that we can only consider the strictly positive
integers within a list. In addition, we consider a function f of the following form:

f :: xs:Positives -> x:{ x:Int | (x + 1) :: xs == xs } -> ...

The precise codomain and de�nition of f are not important here. Instead, we focus on the argument x,
which has a re�nement type whose predicate is given by an equality between terms of a quotient
type. In particular, xmust be an integer such that when x+1 is prepended to a term of type Positives
it does not change the list. This equation evidently does not hold for the underlying type of lists of
integers. However, as we are considering an equality between terms of a quotient type, we must
also consider the equality constructors, in this case unit. The equality lifting transformation is
precisely the approach by which Quotient Haskell includes equality constructors in its logic.
Equality lifting involves considering every possible sequence of rewrites by means of suitable

equality constructors. In particular, an equality constructor can be used to rewrite an equation
of the form x == y precisely when the left-hand side of the equality constructor’s target equality
uni�es with either x or y. This rewrite occurs by �rst applying the unifying substitution to both
equalities, then composing them, and �nally building an implication from the preconditions of the
equality constructor to the composite equality. For example, this approach can be used to rewrite
the equation (x + 1) :: xs == xs using the unit equality constructor. This rewrite is possible
because (x + 1) :: xs uni�es with the left-hand side x :: xs of the target equality of unit, with
substitution x := x + 1. We then proceed to apply this substitution to the equality target of unit
to obtain the equation (x + 1) :: xs == xs. Finally, we compose the two equations and build an
implication from the precondition of unit to the composite equality and obtain the proposition
{ x + 1 <= 0 } => xs == xs. Notably, in Liquid Haskell this logical proposition is simply equivalent
to { x + 1 <= 0 }. This proposition is combined by disjunction with all other valid sequences of
rewrites. For example, after equality lifting is applied, the type of the term f becomes

f :: xs:Positives -> x:{ x:Int | (x + 1) :: xs == xs || x + 1 <= 0 } -> ...

Note that rewriting using a quotient may change the number of free variables in a re�nement pred-
icate. Consequently, this step occurs when generating the constraints from re�nement predicates,
in which predicates and their variables are used to construct independent de�nitions.

Quotient Respectability. Our implementation of Quotient Haskell covers two possible cases when
considering quotient respectability: re�ned functions that take a term of a quotient type as input
and do not match on that input, and case expressions that match on a single variable. We are
interested only in cases where we have been provided with a type declaration that asserts that
the input being considered must inhabit a quotient type. For functions that do not match on their
quotiented input, we require no additional checks beyond those imposed by Liquid Haskell. As
such, we only need consider matching functions and case expressions.

In the GHC API that is used by Liquid Haskell, both matching functions and case expressions are
represented by single argument case expressions that match at most one level deep. In particular,
we intuitively think of this representation as taking the form
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let x = e in case e of { p_1 -> e_1; ...; p_k -> e_k }

where each pi is either a variable or a constructor applied to a �nite number of variables. In the
proceeding transformation phase, Liquid Haskell transforms such case expressions into a sequence
of conditional expressions, which make use of both distinguished testing predicates and selection
functions for constructors to remove the let-binding and the free variables introduced by each
case pattern. However, in the checking phase, the prior representation of case expressions are
maintained and this representation is more suitable for checking quotient respectability.

A particularly useful consequence of working with case expressions that only permit matching
on a single layer is the simpli�cation of the uni�cation check between the patterns of the case
expression and the left-hand side of a quotient’s equality target. In particular, we need only check
whether either pattern is a mere variable, or the leading constructors match. The construction of
the unifying substitution is similarly straightforward in this setting. With this in mind, we proceed
to check quotient respectability of single argument case expressions as follows:

• We �rst check if the type of the scrutinee of the case expression is in the typing environment,
and if this is a quotient type we proceed to check respectability, otherwise we are done;

• For each match p → e of the case expression we �lter the relevant quotients by whether the
left-hand side of their target equality uni�es with p;

• For each quotient that passes the �lter we apply the unifying substitution to both the right-
hand side of the quotient’s target equality and the expression e;

• We extract the re�nements from the quotient’s domain, from which we construct a logical
implication that states that if the conjunction of these re�nements hold then e is equal to the
original case expression applied to the right-hand side of the quotient’s target equality;

• If e is known to inhabit a quotient type, then for each quotient such that e uni�es with the
left-hand side of its equality target we apply the equality lifting transformation;

• We include the constructed constraint in the .smt2 output generated by Liquid Haskell.

Note that the constraint generated by the above procedure will be a proposition quanti�ed over the
free variables that appear in the disjunction of the generated logical expressions. It is important
that we normalise the terms that appear in the generated constraints, and as such the proof-by-
logical-evaluation feature of Liquid Haskell is always enabled in Quotient Haskell.

To demonstrate the above procedure, we consider the example of the map function as re�ned on
the quotient type List given in Section 3. In particular, only the de�nition

map f (Join x y) = Join (map f x) (map f y)

is relevant here, as the remaining de�nitions for map do not match with any of the quotients of
List. When checking whether map is well-typed when re�ned to List, the �rst step of the above
procedure is to check respectability, because List is a quotient type. In the next step, we �lter the
quotients of List to obtain only those that match with Join x y, which in this case happens to be
every quotient for List. After the third step of the procedure, we obtain equations corresponding
to the quotients idl, idr and assoc. For example, after proof-by-logical-evaluation the equation
generated for idl is Join (map f x) Empty == map f x. As the quotients of List do not contain
any re�nements in the domain, we continue with the quotient substitution step. In the proceeding
steps, we �rst con�rm that the result type of map is a quotient type, which in this case is again
List. We then apply all possible rewrites, as constructed from the quotients of List, to each of the
generated equations. For example, we can rewrite Join (map f x) Empty == map f x using the idl
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quotient to obtain a new equation map f x == map f x. Finally, we generate constraints by taking
the disjunction of equations built for each quotient. Continuing with our example of idl, we would
generate a respectability constraint of the following form:

f:(a -> b) -> x:Mobile a ->

Join (map f x) Empty == map f x || map f x == map f x || ...

This constraint will pass the SMT checking phase because the expression map f x == map f x holds
de�nitionally. Consequently, the map function is shown to respect the idl function, and similar
constraints are generated and shown to hold for both idr and assoc.

Quotient Subtyping. In practice, when types are checked rather than being inferred, subtyping rules
need only be considered when type-checking function application. Because quotient types cannot
yet be inferred in Quotient Haskell, this translates to a simple extension of the function application
case of Liquid Haskell’s constraint generation algorithm. In particular, our extension is relevant
in the case when the function being applied takes a quotient type as input, and the argument it
is applied to is of a di�erent quotient type. We proceed by checking whether for every quotient
of the argument’s type, there is a quotient of the function’s input type that supercedes it with
respect to the ordering relation on quotients given in Section 6. If this is the case, then we retype
the argument to the input type of the function and continue with constraint generation. Otherwise,
constraint generation fails and we report a type-checking error.
To reduce the performance cost of automatically deciding quotient subtyping, it is possible to

cache the computed results of the subtyping relation for quotient types. In particular, quotient
types in Quotient Haskell can be uniquely identi�ed by their name, and caching can hence be
achieved using a map from pairs of names to the results of the subtyping relation. Consequently,
the performance cost of automatically inferring subtyping between quotient types is primarily
determined by a one-time check of the subquotienting rules described in Section 6. In practice, this
means that automatically inferring subtyping for quotient types does not usually have a signi�cant
impact on the runtime of the type checker, while improving ease of use.

Performance of Type Checking. The implementation of Quotient Haskell includes simple optimisa-
tions such as caching of the subtyping relation for quotient types, and erasure of trivial respectability
theorems. In practice, we have found that the additional typing features of Quotient Haskell do
not usually have a signi�cant impact on time performance. For most practical examples, including
those presented in this article, time performance is dominated by the external SMT solver.

9 RELATED WORK

Re�nement and quotient types, along with their implementations, have been extensively studied
in the literature. This prior work underpins the development of Quotient Haskell, which can be
understood as extending a re�nement type system with quotient types.

Re�nement Types are types equipped with a subtyping predicate from an SMT-decidable logic
[Bengtson et al. 2011; Rushby et al. 1998]. As such, re�nement types utilise a restricted form of
dependency in which bound variables can appear in the body of a predicate. Implementations of
re�nement type systems have been developed for many popular languages, including ML [Freeman
and Pfenning 1991], OCaml [Kawaguchi et al. 2010], and Haskell [Vazou et al. 2013]. Our core
language λQ is introduced as a conservative extension to a generic underlying re�nement type
system, and supports the typing extensions of our practical implementation Quotient Haskell. The
key idea is to translate the equational laws required by functions de�ned on quotient types into
predicates in the underlying re�nement logic. With this translation, we can utilise any suitable
solver for the re�nement logic to assist in the proof of quotient laws. Moreover, in order to make
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use of the equations described by quotients, we presented an extension of equality from a mere
proposition in the re�nement logic to a statement in the type system.

Liquid Haskell is an implementation of a bounded liquid type system [Rondon et al. 2008; Vazou
et al. 2015] for Haskell, which adds termination checking to ensure correctness of re�nement
typing in a lazy setting [Vazou et al. 2014]. As introduced in this article, Quotient Haskell is an
extension of the Liquid Haskell type system with quotient typing rules from the core language λQ .
By developing Quotient Haskell as an extension to Liquid Haskell, quotients and subtypes can be
utilised together and the elimination laws for quotients can make use of existing automation and
rewriting developed for Liquid Haskell [Grannan et al. 2022; Vazou et al. 2017].

Quotient Types are types that are equipped with a distinguished notion of equality that may
di�er from the trivial, de�nitional equality for that type [Hofmann 1995; Li 2015]. Developing a
well-behaved theory of quotient types for dependently typed languages has been an ongoing subject
in the literature [Abbott et al. 2004; Nogin 2002]. A key di�culty that arises when introducing
quotient types to intensional type theories is the preservation of canonicity. In particular, when
quotients are added to a type system by means of axiomatic rules, it may be possible to construct
closed terms that do not compute to a canonical form by means of the elimination rule for the
equality type. This axiomatic approach to quotients is precisely the approach adopted by the type
system of λQ . However, this issue does not arise in λQ , because equality does not constitute a type
with its own elimination form but rather a judgement in the type system.

Quotient types can be further generalised to quotient inductive families, quotient inductive-
recursive types, or quotient inductive-inductive types [Altenkirch et al. 2018; Altenkirch and Kaposi
2016; Kaposi et al. 2019]. Of particular note is quotient inductive families, whereby an inductive
family can be thought of as a generalised algebraic datatype (GADT) that can additionally be
indexed by a type, for example lists indexed by their length. A possible extension to λQ is the
addition of typing rules for generalised algebraic quotient types, which in turn would describe how
to extend Quotient Haskell with quotients for GADTs.

Implementations of Quotient Types include the higher-inductive types of Cubical Agda [Vezzosi
et al. 2019], the HoTT library of Lean [van Doorn et al. 2017] and the axiomatic quotients in the
Lean standard library [de Moura et al. 2015], a quotient types library for Coq [Cohen 2013], various
implementations in Isabelle [Kaliszyk and Urban 2011; Paulson 2006; Slotosch 1997], quotient types
by means of equivalence relations in NuPRL [Constable et al. 1986], and laws in Miranda [Thompson
1986]. Existing implementations have largely focused on the use of quotient types in proof assistants.
However, several practical use cases for quotient types have been highlighted in the literature that
may translate to general-purpose functional programming, such as the Boom hierarchy [Meertens
1983] and domain-speci�c languages with equational laws [Altenkirch and Kaposi 2016]. A crucial
drawback of existing implementations for quotient types are the manual proof obligations required
by every function that is de�ned on a quotient type. In practice, these proof obligations can become
unnecessarily burdensome, especially in cases where the proofs can be derived in a systematic
manner. Quotient Haskell, and the core language λQ , were developed to address this drawback by
making use of the well-known theory of re�nement type systems to introduce quotients whose
elimination laws can be handled by a suitable solver for the underlying re�nement logic.

Automation for Quotient Types has been explored in the Isabelle quotient package, with a focus
on transferring terms and properties from an underlying type to a corresponding quotient type
[Hu�man and Kunčar 2013; Kaliszyk and Urban 2011]. In particular, implicit coercion from an
underlying type to a quotient type is termed ‘lifting’, while automatically translating properties from
one to the other is referred to as ‘transfer’. As a consequence of quotient types being implemented as
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an internalised package, the automation of lifting and transfer is achieved in Isabelle by non-trivial
proof automation tactics. In contrast, Quotient Haskell adds support for quotient inductive types by
extending the Liquid Haskell type-checker. Consequently, in Quotient Haskell the lifting property
simply arises from the introduction rule for quotient types, and the transferal of proofs follows from
the de�nition of the conservative extension of equality in Section 7. As such, while the automation
for quotient types in Isabelle addresses the problems of lifting and transfer, Quotient Haskell instead
addresses the problem of automating the proofs of respectability theorems for quotient types.
NuPRL is a proof development system that provides support for both quotient types and proof

automation [Constable et al. 1986; Nogin 2002]. In NuPRL, quotient types are constructed by
de�ning a new equality for a type using an equivalence relation, and this construction is provided
as an operation on types. However, this approach is known to have a key drawback, namely that
quotients of inductive types with a non-�nite number of inductive positions often require the
axiom of choice to construct their elimination map. In contrast, the quotient inductive types of
Quotient Haskell do not have this issue. For example, such types can be used to prove properties
of the Cauchy real numbers [Univalent Foundations Program 2013] and the weak delay monad
[Chapman et al. 2019] without the need for the axiom of choice. Moreover, in contrast to Quotient
Haskell, the quotient operation in NuPRL requires that a user constructs an explicit equivalence
relation with proof witnesses for the necessary laws.

10 REFLECTION

Existing systems that support quotient types have primarily focused on the goal of formalising
mathematical theories. Quotient Haskell adds a new point to the design space, focusing on the
use of quotient inductive types in a general purpose programming language. This is achieved by
integrating quotient types into Haskell in a manner that reduces proof obligations arising from
their use, thereby allowing users to focus on programming rather than proof. In this section, we
re�ect on the design, practical use and limitations of the Quotient Haskell system.

Usability of quotient types in a general purpose language was the guiding principle in the design
choices of Quotient Haskell. There are three key design choices that were made. First of all, and
most importantly, the system is built on top of a re�nement type system, in this case Liquid Haskell.
This approach allows us to take advantage of existing work and infrastructure on proof automation
for re�nement types, such as the generation of subtyping constraints and their translation into an
SMT-decidable form. Moreover, extending Liquid Haskell with support for quotient types allows
for interoperability with subtypes, which provides a more expressive type system while retaining
the bene�ts of proof automation. In practice, many programming use cases involve both quotient
types and subtypes, so being able to use them in combination is important.
Secondly, the system supports a particular class of quotient types known as quotient inductive

types. This approach allows users to de�ne equational laws alongside an underlying data type
without requiring the explicit construction of an equivalence relation. In particular, quotient
inductive types can be understood as extending the notion of equality in a manner that implicitly
preserves its underlying properties, such as the equivalence relation and function congruence laws.
As we have seen in the practical example sections, using quotient inductive types provides a simple
and natural approach to de�ning types with equational laws.

And �nally, the system introduces syntax and typing rules for quotient types that allow the reuse
of existing data de�nitions without the need to rede�ne the constructors. For example, the type of
mobiles is de�ned in Section 2 by quotienting an existing type for trees, with the same constructor
names Leaf and Bin used for both the original and quotiented type. Crucially, this means that any
function on mobiles can also be used on trees, without the need to explicitly convert between the
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two types. In contrast, existing systems that implement quotient inductive types, such as Cubical
Agda, require unique data constructors for each type. Consequently, functions on a quotient type
cannot be reused on a type that only holds the underlying data without explicit conversion. For
example, in the case of mobiles, this would mean introducing new constructors for the mobile type,
and using conversion functions when applying a function on mobiles to trees.

Applications were the central motivation for the development of Quotient Haskell. In addition to
the applications presented in Sections 2, 3 and 4 we have explored a range of further examples,
including modular arithmetic, coordinate systems, e�cient data structures, and domain speci�c
languages with equational laws. We brie�y describe two of these examples below, and plan to focus
on additional applications of quotient types as part of our further work.

Polar coordinates are typically represented by a pair of numbers corresponding to a magnitude
and an angle. For example, in Haskell we might choose to de�ne type Polar = (Double, Int),
where the angle is given to one degree of accuracy. However, this de�nition allows multiple repre-
sentations of the same point in the space. In particular, the point represented by (r, a) can also be
represented by (-r, -a), and by any pair constructed by adding or subtracting a multiple of 360 de-
grees. This problem can be avoided by bounding the two polar components using subtyping, by de�n-
ing type Magnitude = {r : Double | r >= 0} and type Angle = {a : Int | a >= 0 && a < 360}.
However, this representation brings its own problem, namely that operations on angles may need
to normalise their results. To avoid this issue, we can represent polar coordinates as a quotient
type, which can be achieved in Quotient Haskell as follows:

data Polar

= (Magnitude, Int)

|/ turn :: r:Magnitude -> a:Int -> (r, a) == (r, a `mod` 360)

In this de�nition, the turn equality constructor captures the property that the full rotation of a
point around the origin does not change that point. To illustrate the utility of representing polar
coordinates as a quotient type, consider the following rotation operation:

rotate :: Int -> Polar -> Polar

rotate x (r, a) = (r, a + x)

This de�nition is well-typed in Quotient Haskell, because the turn equality constructor is respected
as a consequence of eliminating into the Polar type. In contrast, the de�nition would be ill-typed if
polar coordinates were instead represented by the type (Magnitude, Angle) of bounded magnitudes
and angles. Making the de�nition type correct would require that the rotate function normalises
the resulting angle, which impacts on both simplicity and e�ciency.
Another application of quotient types, and in particular quotient inductive types, is the rep-

resentation of domain-speci�c languages with equational laws. To demonstrate this, we con-
sider how Quotient Haskell can be used to add η-expansion to the (untyped) lambda calculus.
In particular, we use a de Bruijn representation where variables are natural numbers given by
type Nat = {n : Int | n >= 0}, and de�ne terms of the lambda calculus as follows:

data Expr = Var Nat | Lam Nat Expr | App Expr Expr

To state the η-expansion law, we require a predicate isNotFree :: Nat -> Expr -> Bool, which
asserts that a given variable is not free in a given term. This predicate can easily be de�ned by
induction on the terms of Expr. Using these two de�nitions, we can then de�ne the following
quotient type in which η-expansion is explicitly given by an equality constructor:

data LambdaExpr

= Expr
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|/ eta :: f:LambdaExpr -> v:Int -> {isNotFree v f} -> Lam v (App f v) == f

A key operation for the lambda calculus is β-reduction, which for the underlying type Expr can
take the form of a function reduce :: Expr -> Expr. A correct de�nition of reduce should have
the property reduce (Lam v e) == Lam v (reduce e). Indeed, this property typically forms the
de�ning equation for reduce in the Lam case. As such, if we assume a correct de�nition, the type of
reduce can be re�ned to LambdaExpr -> LambdaExpr in Quotient Haskell. Notably, this re�nement
is only possible by eliminating into LambdaExpr and not Expr. To construct a well-typed function
from LambdaExpr to Expr would require η-expansion to be explicitly applied.

Limitations are an important practical consideration for users of Quotient Haskell. Below we
consider a number of limitations and their practical consequences.
First of all, without function extensionality, i.e. the principle that two functions are equal if

they are equal for all arguments, it is not possible to prove some equalities that might otherwise
be expected to hold. In practice, this issue can arise when the type checker attempts to resolve
an equality that involve higher-order functions. For example, in Liquid Haskell the equation
map (1+) xs == map (+1) xs cannot be shown without function extensionality. Naively extending
Liquid Haskell by adding function extensionality as an axiom is known to be inconsistent, however,
solutions to this problem have been explored [Vazou and Greenberg 2022]. At present, Quotient
Haskell does not support reasoning with function extensionality when checking respectability
theorems for quotient types. As we have seen, the lack of this feature does not preclude interesting
and useful examples of quotient types, but we plan to consider in future work how function
extensionality can be added to Quotient Haskell without compromising consistency.
Secondly, quotients of Generalised Algebraic Data Types (GADTs) are not currently supported

in Quotient Haskell. GADTs allow inductive types to be indexed by other types, which enhances
the expressivity of the type system by allowing data constructors to make use of additional type
information. For example, a GADT of kind Expr :: Type -> Type that represents a simple form of
well-typed expressions can be de�ned as follows:

data Expr a where

Val :: a -> Expr a

Add :: Expr Int -> Expr Int -> Expr Int

Eq :: Expr Int -> Expr Int -> Expr Bool

If :: Expr Bool -> Expr a -> Expr a -> Expr a

In particular, the type of each constructor ensures that it can only be applied to arguments of
suitable types, ensuring that expressions are always well-formed. Support for quotients of GADTs
would allow equations to be introduced between expressions indexed by the same type. In the case
of Expr, this would allow equations such as the following to be added:

ifTrue :: t:Expr a -> f:Expr a -> If (Val True) t f == t

commute :: m:Expr Int -> n:Expr Int -> Add m n == Add n m

Such equations would then need to be respected by functions de�ned on expressions, such as
a well-typed evaluation function eval :: Expr a -> a. Adding support for GADTs to Quotient
Haskell would enhance the space of examples that can be considered.

Thirdly, while the underlying logic of both Liquid Haskell and Quotient Haskell is SMT-decidable,
the type checker may still be unable to automatically prove some statements. This can occur for
two key reasons: generated constraints may not be solvable in reasonable time, and theorems that
require inductive reasoning cannot always be solved. The �rst of these problems can require users
to make design choices to minimise the complexity of generated constraints. In Quotient Haskell,
this can mean designing equality constructors with fewer quanti�ed variables and preconditions.
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Further work on automatically optimising and minimising generated SMT constraints can assist in
reducing the design burden for users. Meanwhile, the second problem can be observed in Liquid
Haskell by considering associativity of list concatenation, which cannot be automatically proved.
This issue is similarly present in Quotient Haskell, and while proof by logical evaluation (PLE)
can assist in some cases, there is not yet a precise classi�cation of which inductive proofs can be
automated. In practice, this means that generated respectability theorems that require inductive
reasoning to prove will often require manual proofs. Quotient Haskell provides such a manual
proof mechanism for respectability theorems, as demonstrated in Section 2.

And �nally, at present Quotient Haskell has a limited error reporting system. In the case that a
respectability theorem cannot be proven by the type checker and is not manually provided, a user
is given a simple error message describing which equality constructor was not respected, followed
by a generic Liquid Haskell error detailing the constraints. Improvements to the error reporting
system of Quotient Haskell are a subject for future development work.

11 CONCLUSION AND FURTHER WORK

In this article, we presented a core language that supports practical programming with quotient
types. This is achieved by extending an established core language that supports liquid types with a
class of quotients whose proof obligations can be automatically discharged by the type checker. In
particular, this class has the property that the equational laws that functions on quotients must
satisfy can be translated into a collection of constraints that can be decided by an SMT solver.
Furthermore, we showed how the equations constructed by quotients can be exploited by the type
system, which is an essential aspect of having proper support for quotient types. More speci�cally,
we extended the notion of equality in the re�nement logic of the underlying liquid type system by
adding substitution rules corresponding to each quotient.
The above ideas are realised in practice by Quotient Haskell, a proof-of-concept extension of

Liquid Haskell with quotient types. We presented a range of examples demonstrating the use of
quotients for practical programming, including mobiles (commutative binary trees), the Boom
hierarchy (lists, trees, bags and sets), and the rational numbers.
There are many interesting topics for further work. First of all, at present Quotient Haskell

requires explicit typing declarations when using quotient types, and cannot infer them from untyped
expressions. As such, a possible improvement is to extend the constraint generation phase to include
the possibility of typing judgements that include quotients, and consequently to allow quotient
types to be automatically inferred. Secondly, we could generalise the range of types that can be
quotiented by including additional features of (Liquid) Haskell, such as GADTs and re�nement
polymorphism. Moreover, we could also generalise the subquotient relationship given in Section 6
to relate a wider range of quotients, and hence improve the reusability of functions de�ned on
quotient types. And �nally, it is important to consider possible improvements to the practical
aspects of the system, such as error messages and IDE support.
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