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Abstract—Low torque ripple of electrical machines is an
important requirement for many different applications. The
causes of torque fluctuations in squirrel cage asynchronous
induction motors might be a challenging task due to the com-
plex phenomena raised by the whole set of rotor bars. This
paper proposes an accurate analysis of the torque contributions
distinguishing in time-varying, synchronous and asynchronous
components. The investigation is performed by adopting a general
analytical approach based on a circuital modelling technique
for electromagnetic devices. The analysis aims to identify spatial
harmonic interactions between stator and rotor magneto-motive
forces which generate torque components. The most interesting
effects obtained from the analytical investigation are compared
and validated against finite element results for the most signifi-
cant operating points.

Index Terms—Analytical models, Harmonic analysis, Induction
motors, Torque Ripple

I. INTRODUCTION

Various methodologies for the early stage design of Squirrel
Cage Induction Motors (SCIMs) are reported in literature and
widely adopted. The success of these approaches is related to
the use of simplified mathematical models to describe the com-
plex phenomena which permit to describe the electro-magneto-
mechanical energy transformation. However, such approaches
are often based on the fundamental component of the main
quantities such as magneto-motive forces (M ), flux density
(Bgap) and currents (̄i). Whereas the fundamental harmonic
enables an accurate prediction of the performance in term
of rated torque at a given operating point, there is a lack of
informations about high order harmonic interactions between
stator and rotor and, consequently, on the currents and torque
oscillations. To fully understand the SCIM behaviours a cir-
cuital representation able to account such high order harmonics
raised by stator windings and rotor cage, is required. A general
approach to model electromagnetic devices is presented in [1]
and [2] where, under simplified assumptions, the integral form
of the Maxwell equations are applied to the region where
most of the electromechanical conversion take place, namely
the main rotor-stator air gap clearance. Application examples
of such approach are presented in [3] and [4] addressing
synchronous generators and in [5] referring to SCIMs. In
[6] an example of modelling the rotor cage based on the
concept of the Winding Functions (WFs) is presented and a
derivation of a new d−q axes model is introduced. A detailed
analytical steady state analysis of the harmonic field effects

in SCIMs is presented in [7], where plural phenomenon are
considered. Although, a detailed experimental investigation to
identify asynchronous and synchronous torques is reported in
[7], addressing three stator combinations each one featured by
19 rotor topologies, the causes of torque components and the
logical correlation between ripple and synchronous torques are
not completely investigated and highlighted.
In this paper an analytical revision of the torque components
acting in SCIMs is proposed based on a general circuital model
representation described in [5]. The main goal of this study is
to provide in depth the analysis of the torque ripple phenomena
yet using a simplified approach. It has been possible to confirm
some of the conclusions presented in [7] and extend the
analysis to determine the spatial harmonic interactions which
mainly contribute to ripple, synchronous and asynchronous
torque components. The adopted approach is presented in a
generic form that can be applied to any number of rotor bars.
The analytical conclusion are compared against Finite Element
(FE) results.

II. BACKGROUND

This section introduces the general analytical equations
which define the electro-magneto-mechanical behaviour of
electrical machines. According with the main hypotheses of
magnetically linear materials and negligible drop of magneto-
motive forces in the magnetic cores, the system of equations
which governs the electromagnetic and mechanical phenomena
can be expressed as (1) and (2), respectively.
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In (1) and (2) α is the position variable representing the
angular displacement between stator and rotor, ī is the vector
of the currents flowing in the machine phases, R is the
resistances matrix, L(α) is the inductances matrix, v̄ is the
vector of the voltages imposed to the machine phases, C is
the electromagnetic coenergy and W is the electromagnetic
torque tending to increase the angular displacement α (motor
operation). The SCIM here considered is equipped with a
symmetrical three-phase stator winding and a symmetrical
rotor squirrel-cage featuring b bars per stator pole pair. The
rotor bars are modelled as a set of b equivalent phases, each



one representing a loop delimited by adjacent bars according
to [5]. Eq (1) can be then re-written highlighting the stator
and rotor components, leading to (6), where the voltages of
the cage loops are v̄r = 0. The equations system related
to the rotor cage can be separated as in (7). Considering
an isotropic machine structure, i.e. neglecting the effects of
the slot openings, the matrix of rotor inductances Lrr turns
out composed by constant parameters and the expression (7)
can be simplified as in (3) where the term dϕ̄(α,̄is)

dt can be
represented as in (4).
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dīr
dt
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dt
(3)

dϕ̄(α, īs)
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III. STATOR AND ROTOR MAGNETO-MOTIVE FORCES

The balanced three phase currents circulating in a symmetric
set of three stator phases can be represented as in (5).

is,ξ(t) = Is sin
(
wst−

2πξ

3

)
with ξ = 1, 2, 3 (5)

Considering an isotropic structure, the stator magneto-motive
force Ms can be written as a product between the harmonics
summation of the stator winding functions representative of
the coils distribution and the corresponding currents giving
in turns after manipulation the form reported in (8), where
γ is the coordinate in the stator angular reference frame,
N̄s is the vector composed by the stator WF phases, p is
the number of pole pairs, ws is the angular pulsation of
the stator currents and 6h±1γs is the displacement of each
spatial harmonic. The stator magneto-motive force Ms can
be represented as a summation of forward travelling spatial
harmonics of 6h + 1 order and backward travelling spatial
harmonics of 6h− 1 order. Assuming that the rotor rotates at
constant speed according to α(t) = wst (1 − s), where s is
the slip, the flux linked to the qth rotor coil loop, raised by
the stator currents, can be calculated by applying (10), where

Bgs is the flux density in the air-gap imposed by the stator
currents, rg is the air-gap radius, l is the stack length of the
machine, εg is the air-gap thickness and Nr,q is the winding
function related to the qth loop.

ψq(t) = l rg

∫ 2π

0
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It is important to note that in case of isotropic structure
the spatial spectrum of Bgs features only the harmonics
composing the spectrum of Ms. The WF Nr,q of a generic
q rotor loop reported in (10) can be represented as a spatial
harmonics decomposition according to (12).

Nr,q(γ, α) =

∞∑
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kNr cos
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When substituting (12) in (10), due to the effect of integration
from 0 to 2pi only the matching spatial harmonics in (8) and
(12) produce a contribution to the flux linkage, thus providing
an excitation term to (3). Since the latter is a linear-differential
equation with constant parameters with respect to īr, at steady
state the rotor current waveforms feature a periodic trend
whose spectrum includes only the time harmonics provided
by (4), i.e. the ones matching the above condition. Therefore,
keeping into account the assumed symmetry of the rotor cage,
the currents flowing in the cage loops at steady state are
expected to consist in a symmetrical set as in (9), where
the qth loop current is highlighted and 6h±1Ir and 6h±1γsr
assume the appropriate values. The magneto-motive force
Mr = N̄r(γ)T īr correlated with this group of currents can be
calculated as in (15), where h̃ = (6h± 1) = 1, 5, 7, 11, 13, ....
A simplified exponential form can be written rearranging (15)
as in (16) where it can be observed that the two sums over
q produce a not zero result when k ∓ h̃ = zb with z ∈ Z,
respectively. Furthermore, both the summations can be not
zero for the same k, h̃ values when b is even and both k
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and h̃ are odd multiples of b/2. In other words, for the
spatial harmonic of order multiple of b/2, the rotor reaction is
described by a pulsating magneto-motive force contribution.

IV. TORQUE RIPPLE ANALYSIS

In this section, the interactions between stator and rotor spa-
tial harmonics are investigated, aiming to assess their impact
on the torque components. The torque of a generic electrical
machine can be calculated as the derivative of the coenergy
C(α, ī) with respect to the position α at fixed currents ī, as
reported in [1]. In a magnetically-linear scenario, C(α, ī) can
be calculated either from the inductance matrix as in (13) or
integrating the electromagnetic energy density stored in the air
gap volume as in (14).
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For analytical purposes, the second expression of the torque,
(14), is taken into account because it does not require the
computation of the inductance matrix and it allows to better
link the harmonic interactions between the stator and rotor
magneto-motive forces, namely Ms and Mr. Eq. (14) can
be rearranged as (17), taking the derivative with respect to
the rotor angular position α inside the integral. Substituting

Ms and Mr with the corresponding expressions (8) and (16),
the torque contributions can be represented in a compact
form as reported in (18). The integral result of the first and
second components, considering the stator ξth and the rotor
qth terms, are reported in (19) and (20), respectively. Also in
this case, following the procedure used fo the analysis of the
rotor magneto-motive contributions, only the spatial harmonic
components having the same order can possibly lead to a
not zero result. The second term of the torque expression,
(18), can be written in the symbolic form: xTAx, where the
matrix A is composed by the elements coming from (20).
Since such matrix is actually anti-symmetric (AT = −A),
the quadratic product xTAx = 0. This result confirms that in
a isotropic scenario the currents circulating only in the rotor
bars cannot produce any torque component: therefore, only the
first term of (18) has an impact on the torque. The last step
to achieve the final expression of the torque is multiplying
the matrix, resulting from (19) by the stator and rotor current
vectors, where the latter is expressed as in (9). After further
manipulation, the torque expression turns out to be composed
by four different terms as shown in (23). Each one featured
by a different coefficient defining the speed pulsation of the
relative component according to (21) and (22).
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) ∂Mr(γ, α, īr)
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V. CASE STUDY

The analytical investigation introduced so far is general
and can be potentially adopted for any number of bars,
stator winding layout and easily extended also for multi-three
phase configurations. As proof of the concepts, the conclusive
equations are applied to a 3-phase SCIM with a rated power of
11 kW, 2 pole pairs, distributed single layer stator winding (Y-
connected) with 3 stator slots per pole per phase and equipped
with a set of 14 rotor bars per pole pair (b = 14).

Figure 1. Motor under investigation: structure and mesh layout

VI. RESULTS

For the considered case study, the equations resulting from
the general analytical model have been implemented in order
to evaluate the behaviour of the all torque contributions. Even
though, the amplitude and frequency values of the torque har-
monic amplitudes are affected by the operating point (defined
by the slip value, s), the stator and rotor spatial harmonic
interactions responsible of such components do not change as
they depend only by the geometrical motor layout: windings
arrangement and number of bars. Figure 2 and Figure 4 show
a graphical illustration of the harmonic contributions included
in (8), (9), (16) and (23) at s = 0.02 (rated slip) and s = 6/7,
when the stator windings are supplied at rated frequency
(f = 50Hz) . All the quantities represented in the figures,
except for the first column, are normalized with respect to the
fundamental pulsation of the rotor current: wr = 2π fr with
fr = 1Hz. In the first column to the left, the spatial harmonic
orders of Ms and their travelling speeds are reported: the red
points represent the forward rotating harmonics and the blu
points the backward ones. In the second column the green

Figure 2. Harmonic orders investigation: Stator magneto-motive force Ms, rotor current ij , rotor magneto-motive force Mr and torque W (α, ī): Slip = 0.02



Figure 3. Ripple pulsation due to different spatial harmonic orders interaction.

stars markers indicate the pulsations of the currents induced
in the rotor loops, correlated to each stator spatial harmonic.
The third column shows the travelling speeds of each spatial
harmonic of the rotor magneto-motive force, Mr produced by
the related stator spatial harmonics: the red points highlight
the forward travelling waves, whereas the blue represents the
backward ones. In the last column, the markers are located
where stator and rotor spatial harmonics of the magneto-
motive forces interact with each other leading to torque
components: the blue diamond markers represent harmonic
interactions producing a non-zero average torque, whereas the
red square markers represent ripple components. It is worth to
observe that each (6h ± 1)th stator spatial harmonic induces
the rotor to react with a spatial harmonic of the same order,
rotating at the same speed and direction, leading to a non-zero
average torque. In addition, due to the number of rotor bars un-
der each pole pair (b = 14), each 7th, 35th, 49th, ... harmonic
gives rise two component of rotor magneto-motive forces and
therefore two torque components. Finally, independently from
the operating condition, each harmonic of the stator spatial

magneto-motive force generates a torque ripple contribution
interacting with all the rotor magneto-motive forces having
the same space spatial periodicity but raised by stator spatial
harmonics with a different order. These last interactions exist
because the rotor bars are not infinite, and the cage reaction
introduces new frequency components in the space harmonics
of the magnetic field in the airgap. For example, in Figure 2,
the 13th order harmonic of Ms (first column) induces in the
rotor a current at 587wr (second column) which creates a
1st order harmonic of Mr rotating at −636wr speed (third
column). This spatial harmonic interacts with a same order
stator spatial harmonic which rotates at −50wr, producing a
torque pulsation at wripple = −636wr + 50wr = −586wr
(fourth column). The same concept can be repeated for the all
the harmonics of the stator magneto-motive force.
Different combinations of harmonic orders can be considered
as part of the same group, which contributes to the same
ripple frequencies, as highlighted in red squares for wripple =
−586wr, in Figure 2. However, it is reasonable expecting
that the most significant rotor or stator spatial harmonics
producing torque ripple are the ones interacting with the rotor
or stator fundamental magneto-motive force, circled in black,
in Figure 2.
Equation (23) permits also to analyse the ripple pulsations
according with the slip value. In Figure 3 such behaviour
is shown by highlighting the harmonic interactions between
the main stator spatial harmonics and the first rotor spa-
tial harmonic. From this analysis it is possible to describe
an additional phenomenon. In particular, given a group of
harmonic interactions producing a ripple torque component
at nominal speed, the same interactions generate an average
torque component for a specific value of the rotor speed. These

Figure 4. Harmonic orders investigation: Stator magneto-motive force Ms, rotor current ij , rotor magneto-motive force Mr and torque W (α, ī): Slip = 6/7



torque contributions are also known with the name of ”syn-
chronous torques” [7]. In fact, from a detailed analysis of the
equations given by the model, it is possible to note that these
interactions generate a torque ripple that gradually reduces its
frequency until the rotor speed reaches the synchronising value
for the considered family of torque interactions. For example,
as shown in Figure 3, the first rotor harmonic produced by the
13th stator harmonic, at slip = 6/7, is synchronized with
the first stator harmonic giving in turns an average torque
value while for slip 6= 6/7 the interaction result in a torque
ripple oscillation. This phenomena is in common for all the
harmonics part of the group producing at rated slip the torque
oscillation at wripple = −586wr (circled in red, in Figure 2)
and an average torque at slip = 6/7 (circled in blue, in
Figure 4). The same behaviour is repeated for all the harmonic
groups raising the same torque pulsation at rated slip which
end up synchronized at different slip values.
The analytical conclusions reported above, have been validated

by FE transient analysis. In Figure 5, results provided by the
simulations are displayed for the rated operating condition
s = 0.02 and for s = 6/7 in term of rotor bar current
waveforms and torque profile with their respective spectra.
It can be noticed that the frequencies of both bar current
and torque ripple were correctly predicted by the theoretical
analysis, for both the operating condition, confirming the
validity of the analytical model.

VII. CONCLUSION

In this paper, an in-deep analysis of the torque contributions
in squirrel cage induction machines has been carried out. The
study was based on a revision of the analytical expressions
used to describe the harmonic interactions between stator and
rotor. The equations of the magneto-motive force of both stator
and rotor windings have been analysed, describing the torque
components and highlighting the harmonic orders interactions
that generate them. The causes of the torque ripple components
are identified and their correlations with the synchronous

Figure 5. Linear FE results: a) Rotor bar current waveform and spectrum at slip = 0.02 b) torque profile and spectrum at slip = 0.02 c) Rotor bar current
waveform and spectrum at slip = 6/7 b) torque profile and spectrum at slip = 6/7



torques are pointed out. The analytical model was applied to
a particular case study of induction machine, and validated by
means of FE simulations. The comparison of the results for
different operating points exhibits a perfect agreement between
the analytical and the FE model, in terms of both rotor bar
current and torque spectra.
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