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Abstract—Non-Singleton Fuzzy Logic Systems (NSFLSs) have
the potential to capture and handle input noise within the design
of input fuzzy sets. In this paper, we propose an online learning
method which utilises a sequence of observations to continuously
update the input Fuzzy Sets (FSs) of an NSFLS, thus providing
an improved capacity to deal with variations in the level of
input-affecting noise, common in real-world applications. The
method removes the requirement for both a priori knowledge
of noise levels or relying on offline training procedures to
define input FS parameters. To the best of our knowledge,
the proposed ADaptive, ONline Non-Singleton (ADONiS) Fuzzy
Logic System (FLS) framework represents the first end-to-end
framework to adaptively configure non-singleton input FSs. The
latter is achieved through online uncertainty detection applied to
a sliding window of observations. Since real-world environments
are influenced by a broad range of noise sources, which can
vary greatly in magnitude over time, the proposed technique for
combining online determination of noise levels with associated
adaptation of input FSs provides an efficient and effective
solution which elegantly models input uncertainty in the FLS’s
input FSs, without requiring changes in any other part (e.g.
antecedents, rules or consequents) of the FLS. In this paper, two
common chaotic time series (Mackey-Glass, Lorenz) are used to
perform prediction experiments to demonstrate and evaluate the
proposed framework. Results indicate that the proposed adaptive
NSFLS framework provides significant advantages, particularly
in environments that include high variation in noise levels, which
are common in real-world applications.

Index Terms—Non-Singleton Fuzzy Logic System, Adaptive
Input, Noise Estimation, Firing Strength, Online Learning

I. INTRODUCTION

NOISE (uncertainty) can be described as unwanted disrup-
tive influences in data and a broad range of noise sources

are common in real-world environments. These sources can
vary greatly in magnitude, with each source may contribute
vastly different levels of noise. Gaining insight into the level
of noise is a critical part of many applications. Thus, noise
studies are attracting considerable interest, particularly in
terms of accurate estimation and/or removal of noise from
data. However, because of the variation in the noise levels,
accurate estimation becomes a challenging task and, even
when estimation is accurate, noise removal algorithms may
still not achieve optimal performance [1]. In light of this,
methods have become established to handle noise within the
system which may provide performance benefits in decision-
making applications.

Fuzzy set (FS) theory was first introduced by Zadeh [2]
and is designed to involve intermediate degrees by means
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of membership functions (MFs) which provided the basis
for Fuzzy Logic Systems (FLSs). Thus, FLSs are considered
as robust systems in decision making under uncertainty [3]
and generally comprise three essential steps; fuzzification,
inferencing and defuzzification.

The fuzzification step maps (commonly) crisp input values
singleton or non-singleton FSs. When input data are corrupted
by noise, Non-Singleton FSs are useful to model this noise
and, generally, have the potential to deliver better results
compared to (otherwise identical) singleton fuzzy logic system
(SFLSs). [3]–[18]. In NSFLS design, the input FS models
are commonly constructed based on the level of uncertainty
or noise affecting the system inputs. In the literature, this is
achieved through two key approaches:

• A priori knowledge about the uncertainty level, for
example based on expert insight, is utilised to define
the parameters of NSFLSs offline. While efficient, this
approach is invariably dependent on the availability of
this priori knowledge, and does not allow the modelling
of levels of uncertainty which vary over time.

• Training procedures are implemented to optimise the
fuzzification stage’s parameters in an offline setting using
existing data. While such methods avoid the need for a
priori insight, they are dependent on the availability of
a training data set which accurately reflects all potential
real-world operating conditions, and, are generally limited
to the selection of one type of FS model to capture the
input uncertainty. Both of these aspects tend to prevent
NSFLSs dependent on offline optimisation from being
able to adapt to the breadth of changing uncertainty levels
inherent to real world applications.

Overall, due to the varying circumstances in real-world
applications, determining the parameters in an offline manners
is not an efficient approach to capture input uncertainty in
different, non-stationary settings. Recently, [19] introduced
a noise estimation strategy which provides a pathway to
parameterize input FSs in respect to the level of noise detected
over a specified period of time (a window). However, analysis
and time series prediction experiments in [19] were limited
to designing input FSs retrospectively, while the level of
noise injected into the given time series was kept stable for
all experiments. While the latter facilitates the experiments,
it does not reflect real world conditions where noise and
uncertainty vary, at times substantially, over time.

Other approaches have also been developed to deal with
variation in uncertainty affecting systems, such as evolv-
ing fuzzy systems [20]–[25]. Here, FLS parameters, from
antecedent and consequent FSs, to rule bases are adjusted
through some procedures. While such approaches are effective,
they are not designed to specifically reflect changes in input



IEEE TRANSACTIONS ON FUZZY SYSTEMS 2

uncertainty in the inputs FS with potentially negative effects on
FLS interpretability (e.g., changes in input uncertainty result in
changes to the antecedents). The approach put forward in this
paper is specifically designed to constrain parameter changes
in the (NS)FLSs as a result of changes in the uncertainty
affecting a system’s inputs – to the input FSs.

In this paper, we propose a complete ADaptive, ONline
Non-Singleton (ADONiS) framework which incorporates on-
line uncertainty detection and associated parameterization of
the Non-Singleton input FSs. The proposed approach avoids
both the need for a priori knowledge of the uncertainty levels
experienced at runtime and the need for offline training, while
providing the means for systems to continuously adapt to
changing levels of uncertainty. Specifically, in the proposed
approach, input FS parameters are continuously adapted based
on information gained from an uncertainty level estimation
process which iteratively estimates uncertainty levels over a
sequence of recent observations.

As time series forecasting provides an ideal test bed for
the systematic evaluation (offering the potential to accurately
control the levels of uncertainty/noise affecting system inputs
at any given time) of techniques designed to deal with input
uncertainty, we demonstrate/explore the proposed framework
in the context of time series prediction. In the experiments,
the injection of noise into two well-known chaotic time series
(Mackey-Glass and Lorenz) is used in order to mimic real
world circumstances, where uncertainty levels vary over time.

The structure of this paper is as follows. Section II provides
background information on noise generation/estimation, fuzzy
sets and related literature. In Section III, the methodology
of the present work is provided and Section IV explains the
experimental environment. This is followed by the results and
discussion in Section V. Lastly, conclusions and a reflection
on valuable future work are provided in Section VII.

II. BACKGROUND

This section gives a brief overview of key concepts in
respect to the noise estimation technique used in this paper.
Also, Singleton and Non-Singleton FSs and approaches for
their comparison are introduced in respect to the literature.

A. Noise Generation

In the literature, noise is generally measured by the signal-
to-noise ratio (SNR) which is often expressed in decibels (dB).
While lower noise levels are represented by high SNR values,
a high level of noise is captured by low SNR values. The SNR
calculation is implemented by:

SNR = 10 ∗ log
(σ2

nf

σ2
n

)
, (1)

where σnf is the standard deviation of the noise-free dataset
and σn is the noise level.

Often, it is assumed that the values SNR and σnf are known
a priori. Thus, when the σn is sought, (1) is re-arranged as
follows:

σn =
σnf

10(
SNR
20 )

. (2)

Gaussian noise represents a generally appropriate approxi-
mation of noise in real world scenarios and it is thus one of
the common variants for noise adding procedures [1]. Here,
the mean value is set to zero and the noise level (σn) is used to
drive the standard deviation of the Gaussian distribution. Then
a random noise value is generated from the created distribution
and is added to the noise-free set (xt) as follows:

x′t = xt +N (0, σ2
n) t = 1, 2, 3....N , (3)

where x′t represents the noisy value and N (0, σ2
n) is the

Gaussian distribution to gather random noise values and N is
the number of values in the dataset. Thereby, a noisy set can
be generated for each t in the dataset.

In addition to Gaussian noise, in this paper, we also use
uniform noise as an alternative to provide a more comprehen-
sive analysis of the proposed framework behaviour. For details,
please see the supplementary materials Section S-III.

B. Noise Estimation

In the proposed framework, four main steps are proposed to
complete the process of non-singleton input FS generation. In
the second step, which is based on noise estimation, various
noise estimation techniques can be utilised. Numerous noise
estimation techniques have been developed over the years
[1,26]–[29] which utilise different models and techniques such
as maximum likelihood, deep auto encoders or principal
component analysis. In this paper, for the sake of simplicity,
one of the early noise estimation approaches, initially proposed
for images [30] is used. Here, firstly, a difference operator is
implemented over image patches and the standard deviation of
the result in each patch is calculated. Thereafter, a histogram
is evaluated in order to generate a noise level estimate (σ̂n) of
the whole image.

In this paper, a sequence of observations is used as a
(sliding) window. The difference operator is applied across
this window, following [30]:

y =
1√
2

(xi+1 − xi) ∀ i ∈Wt, (4)

where Wt is the defined window as Wt = {i | i ∈ [1, p −
1]; p ∈ N} at the time t, p is the number of values in the
defined window and y is the difference vector.

Then the standard deviation of the difference vector is
calculated as follows:

σ̂n =

√√√√ 1

p− 1

p−1∑
i=1

(yi − ȳ)2, (5)

where ȳ is the mean of the difference vector and σ̂n is the
estimated uncertainty which can be utilised as the standard
deviation of the Gaussian non-singleton input value (xt).This
estimate subsequently provides the basis for the proposed
approach to handle varying uncertainty levels affecting a
system’s inputs – without a priori knowledge or optimisation.
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C. Singleton and Non-Singleton Fuzzy Logic Systems

Generally, FLSs are completed in three steps; fuzzification,
inferencing and defuzzification, where the output set is mapped
to crisp value. In this section, we focus on the fuzzification
step in the singleton/non-singleton case, briefly reviewing both
the traditional and recently explored composition approaches
to model the interaction between input FS and antecedent FS
as part of the firing strength generation in each rule.

1) Singleton and Non-singleton Fuzzy Sets: In the fuzzifi-
cation step of FLSs, a given crisp input is transformed into an
input fuzzy set. Assume that I is a fuzzy set in the universe
of discourse X where a FS µI(x) takes values in the interval
[0,1], formulated as:

I = {x, µI(x) | ∀x ∈ X} . (6)

Singleton sets (Fig. 1) are characterised by a single value x
with a membership of 1 as follows:

µI(x) =

{
1 if x ∈ I
0 if x /∈ I .

(7)

Generally, input data is distorted by noise in real-world
applications. Hence, capturing the noise becomes critical, and
this can be done by associating input data (x) with non-
singleton FSs (Fig. 1). Conceptually, it is assumed that the
incoming input x is the value which is likely to be correct
but because of existing uncertainty, neighbouring values of
x have also potential to be correct. As we go away from
the input x value, the possibility of being correct value is
decreasing [6]. Non-singleton FSs can thus capture input
uncertainty in an efficient manner, without requiring changes
to other (unrelated) parts of the FLSs, such as antecedents or
consequents. As a example, a non-singleton Gaussian input FS
associated with a given crisp input x is formulated as follows:

µI(x) = exp

[
−1

2

(
x− xi
σ

)2
]
, (8)

where σ is the width or standard deviation of the FS which can
be a given (σn) or estimated (σ̂n) to capture the uncertainty
level inputs and xi are the neighbouring values of the mean
which is located at x.

In practice when it is assumed that a system’s inputs are
subject to low levels of uncertainty, the width or σ values
of the associated Gaussian NSFLSs is intuitively small, while
largeσ values are used to model larger levels of uncertainty. It
is important to note that while Gaussian NSFLSs provide an
easy and efficient means to model uncertainty levels affecting
system inputs, they of course represent a very basic approxi-
mation of the actual uncertainty affecting a system’s inputs.

2) Determining the Firing Strength in NSFLSs: In the
inference step of FLSs, inputs and antecedent MFs are pro-
cessed for all the system’s rules. Throughout this processing,
the firing strength of each rule is generated based on the
interaction/composition of antecedents and input FSs.

Fig. 1. Singleton and Non-Singleton Gaussian FSs

Let us assume there are two given fuzzy sets, A (an-
tecedent) and I (input), on a universe of X , i.e.:

A = (x, µA(x)|x ∈ X)

I = (x, µI(x)|x ∈ X) .
(9)

In the singleton and non-singleton cases, the standard
inference approach [3] is for the firing strength to be equal to
the maximum membership degree of the intersection between
input (I) and antecedent sets (A).

While this approach is standard for singleton inference, a
broad body of work has explored the use of other approaches
to establishing what is effectively the compatibility between
FSs through various measures of similarity [31]–[35]. More
recently, in the context of input uncertainty handling in NS-
FLSs, a variety of methods have been explored to faithfully
capture the interaction between input and antecedent MFs
[15]–[18,36]. Here, these approaches have been shown to
provide superior modelling of uncertainty in comparison to
the standard composition approach. More detailed explanation
of these approaches can be found in the supplementary ma-
terials Section S-I. In this paper, we therefore contrast both
the traditional composition approach, as well as alternatives,
including the similarity based (sim-NS), centroid based (cen-
NS) and subsethood based (sub-NS) approaches, and provide
brief background for each below:
• Similarity based NSFLSs: Turksen et al. [37,38] pro-

posed the Approximate Analogical Reasoning Schema
(AARS) for firing strength generation. In these studies,
different measures are proposed to be used between the
FSs and the similarity (SAARS) is calculated. Thereafter
Raha et al. [39,40] extend the work by proposing a new
similarity measure. Chen et al. [41,42] employ similarity
measures and a tpre-defined hreshold value (τ0). If the
calculated similarity is greater than τ0, the given rule
is fired. [16] explored the use of similarity measures to
generate the firing strength in NSFLSs in order to better
capture interaction between input and antecedent FSs.
In [17], a recently introduced similarity measure [43],
designed to minimise aliasing (where different FSs result
in the same degree of similarity) is also explored.

• Centroid based NSFLSs: The centroid-based inferenc-
ing approach or cen-NS, focuses on the area of intersec-
tion between input and antecedent MFs. In [15,36], the
centroid of the intersection between input and antecedent
MFs is calculated. Then, the membership degree in the
antecedent FS corresponding to the centroid on the inter-
section is used as the firing strength.

• Subsethood based NSFLSs: In [44], a subsethood mea-
sure is utilised in conjunction with a threshold, similarly
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Fig. 2. The main steps of implemented the sliding window noise estimation
framework

to [41,42]. In [18] the authors explored the use of sub-
sethood in NSFLSs (without using a threshold) to drive
the rules’ firing strengths.

In recent years, cen-NS and sim-NS have been applied to
real-world unmanned aerial vehicle (UAV) control applications
[45]–[47], showing performance increases under varying noise
conditions in respect to SFLSs and NSFLSs employing tradi-
tional inference.

In the NSFLS literature, several studies focus on the fuzzi-
fication step of NSFLSs to tune parameters. Initial work
was carried out to change NSFLS parameters dynamically by
implementing a training process [4,5]. Later on, [48] proposed
to use FLSs to expedite the convergence speed of the NSFLSs
training. A recent study on fault classification in electrome-
chanical switch systems, proposed to use Set-Membership to
achieve higher convergence speed in the training of NSFLSs
[49] as well. While these studies achieved promising results,
they mainly rely on offline training procedures for better
performance. However, as noted above, real world applications
are often subject to changing conditions affecting a system’s
inputs and associated uncertainty at run-time. Apart from of-
fline training studies, [50] suggested using a weighted moving
average (WMA) to update the input x value. After gathering
updated input values, input FSs are constructed over this new
input. However, similarly to the offline case, it is assumed that
the synthetic and stable noise levels are known a priori.

III. ADAPTIVE ONLINE NON-SINGLETON (ADONIS)
FLS FRAMEWORK

A. General Framework Structure

We propose a general framework to configure NSFLSs
suitable for real-world applications where noise/uncertainty
levels affecting system inputs vary in magnitude over time,
such as is commonplace in areas such as signal processing,
robotics and forecasting. The framework has four steps:

1) Define the size of the frame: The size of the frame over
which to collect a sequence of observations, is defined.
The frame size can be dynamically set or be stable.
For example, when using sensors, such as in a robotics
context, the size of the frame may be selected in respect
to the sampling rate of the sensors or based on a fixed
time frame. Another approach, such as in a time series
context, a search algorithm can be used to determine an
optimal frame size.

2) Estimate the uncertainty: After collecting a sequence of
observations, estimate the uncertainty level across the
gathered values. Note that, in this step, based on design

choice, different uncertainty estimation techniques can be
used. According to the input structure of the NSFLS, the
uncertainty detection can be implemented by considering
different features such as actual input variance vs ex-
pected variance, over time, for each input individually or
together. In this paper, in order to detect noise levels, the
algorithm in Section II-B is used as an example.

3) Construct Input FSs: Employ the estimated uncertainty
level to construct the non-singleton input FS for the
subsequent (next) iteration of the FLS. For example,
Gaussian FSs can be used and the detected uncertainty
can be used as the σ value of the Gaussian input FSs.

4) Advance the defined frame: After constructing the input
FS(s) for the current iteration of the FLS, the FLS output
is computed and the time frame is advanced.

The four-step process enables the proposed framework to
adapt to variation in the levels of uncertainty affecting a
system’s inputs. At each time step, inputs are associated
with a given non-singleton FS, for which the parameters are
determined directly by the levels of uncertainty detected within
the preceding time frame (See Figs. 3 and 5).The flowchart
of this generic approach can be seen in Fig. 2. Employing a
uncertainty detection technique to construct input FSs provides
two main advantages to the NSFLS framework: (i) it removes
the requirements for a priori knowledge of uncertainty levels
(and their variation); and (ii) it provides the capacity for adapt-
ing to changes in the levels of uncertainty affecting a system
(e.g. in respect to varying environmental circumstances).

In this paper, we proceed to develop one specific instance
of the general framework for time series analysis as shown in
the next section.

Algorithm 1: Constructing adaptive input FSs by means
of sliding window noise estimation and (4) and (5) [30].
Input : the input value xt at the most recent time step
Output: the corresponding input FS It for the input xt

1 Function noiseEstimation(wt):
2 index← 1;
3 y ← [] . y is the list for the difference list;
4 repeat
5 y[index]← 1√

2
(wt[index+ 1]− wt[index]);

6 index = index+ 1;
7 until index = p− 1;
8 σ̂n ← s.d(y) . Standard deviation of the y;
9 return σ̂n ;

10 Function fuzzifyInput(xt, σ̂n)):
11 It ← Gaussian FS with mean xt and s.d. σ̂n;
12 return It ;
13 t← 0;
14 repeat
15 p← frameSize . Defining the frame size;
16 wt ← [xt−p+1, xt]; . wt is the current frame;
17 σ̂n ← noiseEstimation(wt) ;
18 It ← fuzzifyInput(xt, σ̂n) ;
19 t← t+ 1 ;
20 until xt = end;
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(a) Constructing input FS under low level of noise (b) Constructing input FS under high level of noise

Fig. 3. Illustration of constructing input FSs based noise estimation in a sliding window.

B. A specific framework instance for time series prediction

In this paper, we focus on applying the proposed ADONiS
framework to the context of time series prediction as an
initial area of the application enabling efficient evaluation
and demonstration. As such, we provide an instance of the
four generic ADONiS framework steps tailored to time series
prediction:

1) Define the size of the frame: The size of a frame –
effectively a sliding window, is defined, and a sequence
of observations collected, as illustrated using red dashed
lines in Fig. 3. In this paper, the window size is referred as
p, with discrete values within the window being referred
to as [xt−p+1, xt], where t is the last observed value at
time t.

2) Estimate the uncertainty: After capturing the input data
within the sliding window, the noise level over the
gathered values is estimated. In this paper, we employ
the noise estimation approach detailed in Section II-B.

3) Construction of Input FSs: The uncertainty estimate from
the previous step is leveraged to inform the non-singleton
FSs which is associated with the last input in the frame
for the next iteration of the FLS.

4) Advance the defined frame: The NSFLS input FS is
generated for the current window. Thereafter, the defined
window is advanced by one step and the same procedure
is repeated.

Algorithm 1 presents the pseudo-code of the proposed
adaptive input FSs fuzzification in the context of time series
analysis.

Fig. 3 visualises how each non-singleton input FS is con-
structed according to the estimated noise levels by using the
proposed sliding window procedure. Fig 3a illustrates a sample
instance where a low level of noise leads to a narrow width/s.d.

in the input FS. In the second illustration, Fig. 3b, the noise
level is higher than the previous sample which results in wider
input FSs, in turn providing the capacity to handle the level
of noise. An animated illustration of the complete process can
be seen in the media materials available online.

The following section focuses on the evaluation and demon-
stration of the proposed framework through a series of time
series prediction experiments and analyses.

IV. EXPERIMENTS

As part of the experiments, two commonly used chaotic
(Mackey-Glass and Lorenz) time series are used to implement
time series forecasting. In order to generate the respective
datasets, initially 2000 samples (from t = −999 to t = 1000)
are generated and, in order to avoid fluctuations in the initial
part of the time series, only the last 1000 (from t = 1 to t =
1000) points are preserved for use in the experiments.

Specifically, the Mackey-Glass (MG) time series is gener-
ated by using the nonlinear time delay differential equation:

dx(t)

dx)
=

ax(t− τ)

1 + x10(t− τ)
− bx(t), (10)

where a, b and n are constant real numbers, t is the current
and τ the delay time. For τ > 17, (10) is known to exhibit
chaotic behaviour. In this paper τ = 30 , a = 0.2 and b = 0.1.

The Lorenz Time series [51] is derived from a model of the
earth’s atmospheric convection flow heated from below and
cooled from above. It is described using nonlinear differential
equations as follows:

ẋ = σ(y − x) ẏ = x(p− z)− y ż = xy − bz, (11)

(a) Stable Noise (b) Mixed Stable Noise (c) Variable Noise

Fig. 4. Illustration of the three instances of a test time series generated with different noise level scenarios.
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Fig. 5. A sample set of the all generated input FSs in the Mixed Stable Noise series (Fig. 4b). Note: the inset figure it tilted for better visibility.

where the dots denote the next values for the three variables
x, y, z in the time series. σ, b and p are respectively set to 10,
8
3 and 28, as suggested in [51].

In order to make a comprehensive and fair comparison
between the proposed adaptive framework and non-adaptive
NSFLSs, we consider four different key aspects, from training
to testing, fuzzification and prediction which are captured as
part of two experiments (each split into two sub-stages) in Fig.
6. We proceed by providing additional detail for each of the
key design aspects.

1) Training: One of the most common training techniques
for FLS rule generation – the one-pass Wang-Mendel method
is implemented on the first 70% of the time-series samples,
using a commonly adopted FLS architecture [52] with seven
antecedents based on evenly spaced MFs. The prediction is
implemented by using nine past points and the 10th value is
predicted. The details of the model training can be found in
the supplementary materials S-II.

Two key training approaches are explored in this paper to
generate system rules: Noise-Free Time Series based training
and Noisy Time Series based training, where the latter is based
on the same time series sample which has however been
subjected to the injection of a predefined level of noise as
detailed in the given experiments.

2) Test Set Generation: In order to test the performance
of the proposed adaptive NSFLSs, the remaining 30% of the
time series dataset is used in three different scenarios: using
a stable 10 dB level of noise (see Fig. 4a); a mixed scenario
where the noise varies from a very low and stable 20 dB to
a period of high, but stable 0 dB, before returning to 20 dB
(see Fig. 4b); the low and high noise levels from the previous
testing series are perturbed randomly in magnitude (by 10 dB)
itself which is illustrated in Fig. 4c.

In the experiments, two different noise types (Gaussian and
uniform noise) are used to analyse the proposed framework.

Due to the page limitation, we only show the experiments
with Gaussian noise results in the main paper, while the
results for the uniform noise experiments are presented in the
supplementary materials Section S-III.

3) Fuzzification: In this part, both the proposed adaptive
input FS generation approach, and, a simpler a priori input FS
definition approach are used:

The proposed Adaptive technique follows the ADONiS
framework as outlined in Section III. Since the forecasting is
done with nine past points, we define the window size (p) to
be nine and the noise estimation calculation (5) is implemented
on the past nine points [xt−9+1, xt]. Then the estimated
noise (σ̂n) is used as the standard deviation parameter of the
xt non-singleton Gaussian input FSs. Thus, fuzzification is
implemented in an online learning manner and the input FSs
are adapted without requiring any a priori knowledge about
the noise levels. In Fig. 5, the adaptive framework is shown
as implemented on the Mixed Stable Noise (Fig. 4b) and the
generated input FSs (as generated step-by-step across the time
series prediction process) are visualised.

As a point of reference, the inputs FSs are designed
manually giving rise to four different comparative systems:
a singleton FLS using singleton input FSs, and three distinct
NSFLSs, using input FSs configured for 20 dB (σ20), 10
dB (σ10) and 0 dB (σ0) noise levels respectively. In the
experiments, the comparison of each variant is provided to
ensure that the proposed adaptive fuzzification technique is
challenged against different non-adaptive approaches.

4) NSFLS Prediction: After generating the adequate input
FSs to be associated with the most recent crisp input to the
(NS)FLSs, the last 9 input FSs are processed to predict the
next crisp point in the time series (and thus the crips input for
the next iteration). An overall view of the generated input FSs
over time can be seen in Fig. 5. In the used (NS)FLS models,
the min and max operators are used for the t-norm and

Fig. 6. Experiments 1 and 2, each with its two sub-stages.
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Fig. 7. Experiment 1.1- MG Noise-free trained standardNSFLS, with Adap-
tive and Non-Adaptive fuzzification, sMAPE prediction result comparison.
Confidence intervals shown as black lines

t-conorm respectively. Then the centre of gravity technique is
utilised in the defuzzification step. The details of the NSFLS
configuration can be found in the

supplementary materials S-II. The performance of each FLS
is assessed using the the Symmetric Mean Absolute Percent
Error (sMAPE) [53] which provides a result between 0%
and 200%. Also, as one the most common error measures,
Mean Square Error (MSE) based results are included in the
supplementary materials Sections S-IV and S-V. Because of
the randomisation in the noise adding procedures, each time
series is generated 30 times and at the end of each experiment
set the average sMAPE values are provided in the main
manuscript, while the MSE results are provided (together with
further detail on the NSFLS models) in the supplementary
materials Section S-IV due to the space limitation.

As shown in Fig. 6, two main experiments are conducted. In
Experiment 1, the proposed adaptive framework is compared to
the standard, non-adaptive NSFLS approach with pre-defined
input FS standard deviations (for pre-defined noise levels). In
Experiment 2, four different inference architectures (standard,
cen-NS, sim-NS, and sub-NS, see Section II-C) are used in the
proposed ADONiS framework and the results are compared to
explore the performance of the proposed adaptive framework
in respect to these different architectures.

V. RESULTS

Results are discussed separately for both Experiments 1
and 2 summarised in Fig. 6. Also, as mentioned in Section
IV-2, in order to analyse the proposed framework behaviour
under different noise types, experiments are conducted using
both Gaussian and uniform noise. The results for the latter are
included in the Supplementary Materials Section S-III.

Fig. 8. Experiment 1.1-Lorenz Noise-free trained standardNSFLS,with Adap-
tive and Non-Adaptive fuzzification, sMAPE prediction result comparison.

Fig. 9. Experiment 1.2 - MG Noisy trained standard NSFLS, with Adaptive
and Non-Adaptive fuzzification, sMAPE prediction result comparison.

A. Experiment 1 - Adaptive and Non-Adaptive Comparison

In Experiment 1, prediction results for the ADONiS frame-
work are compared to different trials of non-adaptive NSFLSs.

1) Experiment 1.1 Noise-Free Training: Experiment 1.1 is
conducted separately for both MG and Lorenz time series. The
models are trained by using noise-free datasets for each time
series and then the three test datasets (Fig. 4) are used for
individual forecasting experiments.

First, the Stable Noise test series (Fig. 4a) is used to compare
the adaptive and non-adaptive approaches. The prediction
results are reported at the left-hand side of Fig. 7 for MG and
Fig. 8 for Lorenz Time series. As can be seen, the adaptive
fuzzification prediction results are quite similar to the σ20 and
σ10 fuzzification value results and provide generally low error
(which is intuitive as 10dB noise was injected into this time
series), while the singleton approach and the σ0 fuzzification
lead to higher error levels.

Second, the Mixed Stable Noise test series (Fig. 4b) is used.
The sMAPE result comparisons are provided in the middle of
Figs. 7 and 8 which show that the adaptive technique has
a clear performance benefit over each case of non-adaptive
systems. We note that the reason for the poor performance of
the singleton FLS is most likely due to the high ’drop-out’ of
rules arising from the adopted rule learning method; however,
this is beyond the scope of the current paper.

Third, the more challenging test series (Variable Noise as
shown in Fig. 4c) is used in testing. with results shown in
part of Figs. 7 and 8. Here, again, the adaptive technique
outperforms each of the non-adaptive systems.

2) Experiment 1.2 Noisy Training: After completing three
sets of experiments with the noise-free trained models, a more

Fig. 10. Experiment 1.2 - Lorenz Noisy trained standard NSFLS, with Adap-
tive and Non-Adaptive fuzzification, sMAPE prediction result comparison.
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Fig. 11. Experiment 2.1 - MG Noise-Free Trained Advanced standard, cen-
NS, sim-NS and sub-NS prediction results with adaptive NSFLSs.

challenging context is established training the models with
noisy datasets. Three training datasets, which follow a similar
structure as the corresponding test datasets, are generated. For
example, if the model will be tested with the Mixed Stable
noise from Fig. 4b, the training dataset is generated based on
the same structure and noise levels. The sMAPE results are
shown in Fig. 9 for MG and Fig. 10 for Lorenz Time series
predictions

In these experiments, first, 10 dB noise is injected into the
training datasets and the system rule generation is completed.
Thereafter, the corresponding Stable Noise test dataset which
includes 10 dB noise is used in the testing. The sMAPE results
are shown in Fig. 9 and Fig. 10. We note that the adaptive and
the two non-adaptive (σ20 and σ10) fuzzification techniques
produce similar sMAPE results.

For the second scenario, another training dataset is gen-
erated to correspond to the Mixed Stable Noise time series
structure (Fig. 4b). This training series is used to generate
system rules, and the resulting systems are tested using the
Mixed Stable Noise. The results for both adaptive and non-
adaptive systems are shown in Fig. 9 and Fig.10. Though
a variety of pre-fixed σ values are evaluated as bases of
comparison for the adaptive technique, the proposed adaptive
technique has the the lowest sMAPE values.

Further, for the third case, a similar dataset to the Variable
Noise (Fig. 4c) dataset is used for training. As the results in
Fig. 9 and Fig. 10 show, the adaptive approach produces the
lowest or close to the lowest sMAPE values.

B. Experiment 2 - ADONiS using advanced NSFLS inference

In Experiment 2, advanced NSFLS cen-NS, sim-NS and
sub-NSand the standard NSFLS (see Section II-C) archi-
tectures are compared when used in conjunction with the
ADONiS framework. In each variant of the experiments, first,
the standard technique is implemented and then the same
experiments are repeated by using cen-NS, sim-NS and sub-
NScomposition methods within the NSFLSs. As shown in Fig.
6, individual experiments are conducted for noise-free and
noisy training respectively, for both the MG and Lorenz time
series.

1) Experiment 2.1 Noise-Free Training: The models are
trained by using noise-free training for both MG and Lorenz
time series and subsequently evaluated for all three noise
scenarios captured in Fig. 4. The results for all three scenarios
and both time series are shown in Figs. 11 and 12.

Fig. 12. Experiment 2.1 - Lorenz Noise-free trained advanced standard, cen-
NS, sim-NSand sub-NSprediction results with adaptive NSFLSs.

As can be seen in the figures, when the sub-NS approach
is used with the adaptive strategy, it produces slightly better
sMAPE values than the rest of sim-NS, cen-NS and standard
NSFLSs counterparts.

2) Experiment 2.2 Noisy Training: In the noisy training
experiments (See Figs. 13 and 14), while the sub-NS shows
better performance under stable noise level in testing, the sim-
NS outperforms it under unstable Mixed Stable Noise and
Variable Noise testing conditions.

VI. DISCUSSION

When the model rules are generated as part of noise-free
training (Experiment 1.1, see Figs. 7 and 8), the noise levels
in the test series can be considered as unexpected/unseen for
the model. When a stable 10 dB noise level is used in the
testing dataset, there are no substantial differences between
the adaptive and some non-adaptive systems for the MG and
Lorenz experiments. As the test series contains 10 dB noise
level, manually adjusting input FSs to the 10 dB σ10 values
can be argued to provide an unfair or at least unreasonable
advantage to the non-adaptive technique in the sense that in
the real world, of course, the actual level of noise/uncertainty
cannot commonly be known in advance. In contrast, the
proposed adaptive framework does not require any a priori
information about the noise levels. We note that the proposed
adaptive framework is shown to be best able to handle unseen
noise levels in comparison to the non-adaptive variants.

In Experiment 1.2, we explore the scenario where pre-
defined noise levels are employed during training (Figs. 9
and 10). The latter provides a more realistic replication of
a real world context in comparison to noise-free training,
nevertheless it still does not account for the fact that noise
levels commonly vary (rather than staying constant) in the
real world. Even though we test the NSFLSs with a series of
noise levels which include the actual noise levels for which
the non-adaptive NSFLSs were training, the proposed adaptive
technique produces either the lowest or close to the lowest
sMAPE values in all scenarios.

In addition the Gaussian type noise injection, Experiment
1.1 and 1.2 are repeated under uniform noise and the results
are provided in the supplementary materials Section S-III.
As can be seen in those results, the proposed framework
shows the similar prediction performance as Gaussian noise
type and it generally outperforms manually designed NSFLS
counterparts.
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Fig. 13. Experiment 2.2 - MG Noisy Trained Advanced standard, cen-NS,
sim-NSand sub-NSprediction results with adaptive NSFLSs.

As a core part of the rationale underpinning this paper is
the strong focus on appropriate managing uncertainty affecting
system inputs, we have explored (Experiment 2) a series of
recently proposed advanced NSFLS architectures designed to
effectively exploit the interaction between input and antecedent
MFs. As shown in Figs. 11 and 12, the sub-NS architecture
can achieve slightly better sMAPE values against to any other
advanced NSFLSs under noise-free training. Figs. 13 and 14
show that in the noisy training conditions both sub-NS and
sim-NS have a performance benefit.

In order to assess the statistical reliability of these results,
a series of paired sample t-tests are conducted. Divergence
of results are found depending upon type of error measure
used (sMAPE vs MSE), and according to noise levels both
in testing and training. However, in general sub-NS is found
to be the best performing technique. This is particularly true
within the noise-free training conditions, in which it performs
significantly better than all other measures in 10 out of 12
conditions. In noisy training conditions, sub-NS is found to be
the significantly better in only 3 out of 12 conditions, while
sim-NS is found to be best in 8. The detailed results can be
found in the supplementary materials Section S-V.

Based on these experiments which show that the standard
NSFLS composition approach is always outperformed, there
is strong potential for combining the proposed ADONiS
framework with the advanced NSFLS inference architectures
in real world application with varying noise levels.

Overall, the experiments show that while in some
specific (constant and low-noise) cases, offline (pre-defined)
fuzzification for a noise level of σ20 or σ10 is superior,
for cases where the uncertainty levels are unstable, the
proposed ADONiS framework delivers superior results across
the extensive variety of scenarios explored. The proposed
ADONiS framework technique adjusts input FSs dynamically,
in an online manner, which directly benefits applications
subject to unstable and/or unknown noise levels as are
common in real-world circumstances.

VII. CONCLUSION AND FUTURE WORK

In this paper, for the first time, a complete framework
(ADONiS) is proposed to dynamically configure NSFLS input
FSs, in an online manner, by applying an uncertainty detection
technique to a sequence of recent observations. Acknowl-
edging the fact that in the real world, sources of (varying

Fig. 14. Experiment 2.2 - Lorenz Noisy trained advanced standard, cen-NS,
sim-NS and sub-NS prediction results with adaptive NSFLSs.

levels of) uncertainty are pervasive, a variety of different train-
ing/testing scenarios were explored to systematically evaluate
the proposed framework. The results from the comparison of
the proposed Adaptive and Non-adaptive techniques suggest
that the proposed approach of dynamically changing input
FSs is a suitable approach for handling input uncertainty in
real-world applications, particularly where input noise levels
may vary. Further, four recently introduced advanced variants
of NSFLSs, designed to capture the interaction of input and
antecedent FSs with high fidelity, are evalauted in conjunction
with ADONiS. Here, the results show that combining ADO-
NiS with advanced NSFLS inference mechanisms can deliver
better uncertainty handling and results in comparison to the
traditional NSFLS inference.

In the future, due to the increased modelling capabilities of
type-2 fuzzy logic in handling uncertainty, an extended design
with the capacity not only to model changing uncertainty lev-
els, but also the rate of change of these levels, will be explored.
Further, we will seek to expand the experimental evaluation of
the proposed and similar frameworks to different noise types,
going beyond the Gaussian and uniform noise models used in
this paper. Also, evolving fuzzy systems and parameter opti-
misation algorithms such as grid search will be investigated to
determine the appropriate window size to be used in different
application contexts of ADONiS, including more complex
applications, such as multi-variate time series with different
types of noise or robotic sensor applications such as [47].
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