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Abstract 

Faults can have significant, negative impacts on the operation and performance of simple and 

complex dynamic systems. Based on the integration of Bayesian network diagnostic features with 

Petri net formalism, the existing Bayesian-supported Petri net tool has demonstrated the 

flexibility of using the Petri net approach for diagnosing failure scenario of a dynamic system. 

However, studies on using the proposed hybrid Petri net approach for condition monitoring and 

early detection and diagnosis of single and multiple failures in a dynamic system with feedback 

control loops are yet to be investigated. Thus, this paper presents a methodology to address this 

research gap using the operation of a water tank level control system as a case study. The method 

combines the constructed Generalised Stochastic Petri Net (GSPN) model of the system 

operation with its corresponding fault diagnostic Petri net model, created using the proposed 

modified Bayesian Stochastic Petri Net (mBSPN) formalism. The GSPN model establishes the 

causal relationships between the system’s components and/or subsystems. It further identifies 
deviations in the sensor measurements of the observable process variables characterising the 

system operation. The information provided by the sensors in the system model are then inputted 

into the mBSPN model to diagnose the root cause of the observed deviations. The obtained 

results demonstrated the capability of using the proposed integrated Petri net methodology for 

system condition monitoring, early fault detection and diagnosis of single and multiple failures in 

a dynamic system with feedback control loops. 
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Introduction 

Dynamic systems are systems whose states change over time. They are characterised by 

complex system topologies comprising many interacting units and equipment1 such as 

component-to-component and subsystem-to-subsystem interactions. The high complexity of 

dynamic systems, including aircraft engines, nuclear reactors, and safety critical systems found 

in many technological industries, means that the failure of one or more components of these 

systems can have significant negative impacts on the operation and overall performance of the 

system.2–5 One way to detect and diagnose component failures is to use sensors to monitor the 

operational status of dynamic systems. However, using many sensors will increase cost and 

complicate the system.6–8 Therefore, in addition to using a reasonable number of monitoring 

sensors, developing a technique to aid the rapid and accurate detection and diagnosis of the 

root cause of faults in a dynamic system is also crucial in order to prevent the probable 

consequences that may result in costly incidents such as loss of lives, fire outbreak, explosions, 

and production lost.  

Many approaches have been reported in the literature for system reliability modelling 

and fault diagnosis.9 Among these approaches, Bayesian Networks (BNs) and Petri Nets (PNs) 

have gained a wider adoption due to their strengths in modelling time, dependency and dynamic 

operations in detail. For example, BN uses conditional probabilities and Bayes theorem for 

modelling failure probability and fault diagnosis for a particular scenario. On the other hand, 

PNs and its variants, such as Generalised Stochastic Petri Nets (GSPN), are flexible modelling 

tools used to study the dynamic behaviour of complex systems. Unlike BN, which can be used 

in both predictive and diagnostic capacities,10 PNs lack the ability to model uncertainty directly 

or to compute the updated probability of a random variable given the observation of other 

specific variables.11–13 Thus, this limits the modelling capacity of PN to mostly predictive 

analysis, similar to the failure analysis of the well-known conventional probabilistic 

approaches such as fault trees, reliability block diagrams and event trees, that is for computing 

system failure probability due to the failure of system components.  

To address the aforementioned limitation of PN for fault diagnosis, some researchers 

have conducted studies whose primary aim is to enhance the modelling power of PN by 

incorporating probabilistic modelling features such as reasoning algorithms, conditional 

probability and Bayes theorem into Petri net formalisms. Among these studies are the works 

of Chiachío et al.11,14, Taleb-Berrouane et al.15,16 and Zhou and Reniers16 who proposed the 

Plausible Petri Net (PPN), Bayesian Stochastic Petri Net (BSPN) and Probabilistic Petri Net 

(PPN) formalisms respectively, for modelling and analysing uncertainty, forward and 

backward reasonings. Despite the advantages of BNs over PNs for fault diagnosis, many 

discrete BNs, such as Discrete Dynamic BN (DDBN) proposed for diagnosing faults in 

complex dynamic systems, use the time-slice discretisation approach. However, using this 

approach negatively affects the computing time and accuracy of the fault diagnostic technique. 

In order to eliminate the need for time discretisation, a Generalised Continuous-Time BN 

(GCTBN) incorporating a continuous model of time was proposed by Codetta-Raiteri and 

Portinale.17 The GCTBN combined the strong features of both BNs and PNs to improve the 

performance of the fault diagnostic process.18  

  Andrews and Fecarotti19 combined the PN and BN approach in a method they named 

BP-Net, to investigate the safety effects of design and maintenance features on the performance 

of a remote unmanned wellhead platform operating over its design life. The proposed BP-Net 

is a model-to-model framework where PN was used to populate the conditional probability 

tables (CPT) in the developed BN model of the system. The proposed hybrid formalism 

overcomes limitations in conventional safety and risk analysis techniques, such as constant 

failure rates and the requirement of assuming independency among the system component 

failures. Taleb-Berrouane et al.15 also proposed a hybrid formalism known as Bayesian 
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Stochastic Petri Net (BSPN) to enhance the modelling capabilities of Stochastic PN (SPN) by 

integrating the continuous data updating capabilities of BN with SPN. The efficiency of the 

BSPN formalism for fault diagnosis was examined on a simple system with one failure scenario 

(pump failure).  Further work is required to investigate how the modelling tool could be 

extended for effective fault diagnosis of large-scale and complex systems characterised by 

feedback control loops and multiple failure scenarios.20,21 However, for dynamic systems 

whose operational performance are monitored and controlled by a supervisory control system 

(sensors, controllers, and actuators), many system component failures can lead to different 

unexpected system behaviour while the system is in operation. Besides, the presence of 

feedback control loop systems will further add complexity to the operational behaviour of the 

dynamic systems. Thus, this paper aims to propose a novel Petri net methodology suitable for 

condition monitoring and early detection and diagnosis of single and multiple failure scenarios 

in a complex dynamic system. The methodology is based on the fusion of Generalised Stochastic 

Petri Net (GSPN) model of the system operation with its fault diagnostic Petri net model, 

developed using the proposed modified Bayesian Stochastic Petri Net (mBSPN) approach. The 

modelling capability of the GSPN-mBSPN methodology was examined on a water tank level 

system whose operating conditions are monitored and controlled by the feedback control loop 

systems located at some sections of the system. The contributions of this paper can be 

summarised as follows: 

(i) An integrated system operation and fault diagnostic Petri net methodology for single 

and multiple faults diagnosis in a dynamic system with control loops is proposed. 

(ii) Proposition of new Petri net modelling features for further improvement on the 

modelling powers of Generalised Stochastic Petri net and Bayesian Stochastic Petri net 

formalisms for studying the reliability and fault diagnosis of complex dynamic systems 

with feedback control loops is made. 

(iii) The results show the accuracy of using the proposed integrated Petri net methodology 

(GSPN-mBSPN) for single and multiple faults diagnosis in a complex dynamic system. 

  The remainder of the paper is structured as follows. Section 2 presents details of the 

methodology for the condition monitoring and early detection and diagnosis of failures in a 

dynamically controlled system.  Steps of the methodology, such as the integration of the system 

operation and fault diagnostic models, Monte Carlo Simulation output analysis of the integrated 

model are described in detail. The application of the proposed methodology to water tank level 

control system is discussed in Section 3. Lastly, Section 4 gives the conclusion and a review 

for future work. 

  

Proposed methodology 

Figure 1 depicts the main steps of the Petri net methodology for the condition monitoring and 

early detection and diagnosis of faults in a dynamic system proposed in this paper. Each step 

is described in detail in the following sub-sections.  

 

Step 1: System Description and Analysis 
The system is studied to identify its structure, functional behaviour, operating states/modes, 

information about the states/modes (working and failure) and the failure data of components 

that make up the system for the purpose of defining actions and interactions among the system 

components, including the monitoring components (sensors) deployed on the system. 

 

Step 2: System Operational and Fault Diagnostic PN Module Construction 

When modelling complex dynamic systems, sectional and component-based approaches are 

often employed, as described in the works of Bartlett et al.,22,23 and Remenyte-Prescott and 

Andrews.23  A typical illustration of such an approach is depicted in Figure 2. The system is 
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first divided into sections/subsystems comprised of two or more components such that each 

one of the sections only affects a single system process variable (e.g., flow or level). A component 

PN model describing the component’s normal working and failure state/mode(s) is developed 

for each component that makes up the section. After that, an operational propagation PN model 

is constructed to establish an input-output dependency structure among connected components 

in a section. The dependency model structures are developed considering the normal working 

and failure state/modes of the connected components in the section. All the section models are 

combined to produce an overall system operation model. Within the system’s operational GSPN 

model, sensor observation and fault detection PN models are developed to detect faults or 

anomalies while the system is in operation. In the event of unexpected system behaviour, a fault 

diagnostic PN module based on modified BSPN (mBSPN) would be triggered to analyse the 

cause of any abnormality observed in the system. 

 
Figure 1. Proposed methodological framework for fault detection and diagnosis of dynamic 

systems   
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Figure 2. Framework for constructing system operational PN model for a dynamic system  
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Overview of the GSPN-mBSPN Approach. The conventional GSPN formalism24 is an extension of 

a Stochastic Petri Net with “inhibitor arcs” and “immediate transitions”. The formal definitions 

and the descriptions of the elements of the GSPN formalism used in this paper are given in the 

work of Nourredine, Menouar, Campo, et al.25 Despite the usefulness of the GSPN formalism 

and other extended PN features proposed in the literature, 9,14,20,26 such as different arc and 

place types and their corresponding transition types and firing rules, they have limitations in 

modelling the condition, early fault detection and diagnostic processes of a dynamic system 

with feedback control loops. To address this limitation, additional PN features such as 

conditional output reset place (CORP), arc (COA), transition (CRT), conditional probabilistic 

transitions (CPT), and new firing rules are introduced to extend the standard GSPN approach.  

 In addition, BSPN is one of the new PN extensions proposed by Taleb-Berrouane et al.15 It is 

a Stochastic Petri Net model extended with Bayesian Network (BN) features such as conditional 

probabilities, Bayes theorem, and data updating features. BSPN supports the use of the PN 

approach for fault diagnosis. Details on the methodology for converting a BN graph to a BSPN 

model can be found in the literature.15 Motivated by the work of Taleb-Berrouane et al.,15 the 

primary aim of this paper is to propose an integrated Petri net method for the detection and 

diagnosis of abnormalities or faults in a dynamic system with feedback control loops by 

incorporating inference sampling algorithms of a Bayesian network in a GSPN system simulation 

model. To achieve this aim, new probabilistic transition types (Independent and Dependent Non-

Observable and Observable Conditional Probabilistic Transitions; ICPT,  DCPT and DCPT*), 

firing rule, places and arc types (evidence places and arcs) are further proposed in this paper. 

These new features make it possible to use an integrated Petri net model based on GSPN and 

modified BSPN approaches for condition monitoring, fault detection and diagnosis of a dynamic 

system with feedback controls during the system operation. Table 1 shows the graphical 

representations and descriptions of the proposed new PN features together with the existing Petri 

net symbols essential for modelling operational behaviour and fault diagnostic processes of a 

dynamic system with feedback control loops using GSPN-mBSPN approach.  

 

Table 1. Description of standard and new Petri net symbols  

Petri Net Symbol Name 

 Immediate transition 

 Deterministic/Stochastic transition 

 Conditional Reset Transition (CRT)* 

 
Conditional Probabilistic Transition (CPT)*. 

That is 𝑇𝐼𝐶𝑃𝑇, 𝑇𝐷𝐶𝑃𝑇 and 𝑇𝐷𝐶𝑃𝑇∗ 

 Place  

   Token 

 Normal input/output arc 

 Inhibitor arc 

 Test arc 

 Reset arc 

 Causal arc 

 Evidence arc (EA)* 

 Conditional Output Arc (COA)* 

 Conditional output arc and reset arc (CORA)* 

 Conditional probabilistic arc (CPA)* 

*The new Petri net modelling elements features   

0

0

0 
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Formal Definition of the GSPN-mBSPN Approach. A formal definition of the GSPN-mBSPN 

methodology is presented in definition 1 while the definition of the enabling and firing rules of 

the new transition types in a GSPN-mBSPN are explained in definitions 2 and 3. 

Definition 1. A GSPN-mBSPN method is defined as 𝐺𝑆𝑃𝑁 − 𝑚𝐵𝑆𝑃𝑁 =
{𝐺𝑆𝑃𝑁, 𝑃𝑇𝑃, 𝐴𝑇𝐴, 𝑃𝐶𝑂𝑅𝑃, 𝑃𝐶𝑂𝑃 , 𝑇𝐶𝑅𝑇 , 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒, 𝐴𝑅𝐴, 𝑚𝐵𝑆𝑃𝑁, 𝐴𝐶𝑂𝐴} such that:  

1. 𝐺𝑆𝑃𝑁 is the conventional Generalised Stochastic Petri Net formalism for describing the 

operational behaviour of a dynamic system. This formalism is adopted and defined in 

Nourredine et al.25 

2. 𝑃𝑇𝑃 is a set of test places in the GSPN-mBSPN model that enhance the modelling 

efficiency of Petri net models, particularly in complex systems.  For example, they are used 

to test components’ states and system/subsystems’ states/conditions in a Petri net model of 

a dynamic system.    

3. 𝐴𝑇𝐴 is a set of test arcs such that 𝑎𝐼𝑁𝐴(𝑝𝐼𝑁𝑃 ∈ 𝑃, 𝑡 ∈ 𝑇 ) =  𝑎𝑂𝑈𝑇𝐴(𝑡, 𝑝𝑂𝑈𝑇𝑃 ∈ 𝑃) and 

𝑝𝐼𝑁𝑃( 𝑡 ) = 𝑝𝑂𝑈𝑇𝑃(𝑡)  where 𝑎𝐼𝑁𝐴(𝑝𝐼𝑁𝑃, 𝑡 ) is the weight of the input arc from the input 

place 𝑝𝐼𝑁𝑃 to the transition 𝑡, and 𝑎𝑂𝑈𝑇(𝑡, 𝑝𝑂𝑈𝑇𝑃) is the weight of the output arc from 

transition 𝑡 to the output place 𝑝𝑂𝑈𝑇𝑃. Thus, for simplicity, mathematically 𝑎𝐼𝑁𝐴(𝑡) =
𝑎𝑂𝑈𝑇𝐴(𝑡) and 𝑝𝐼𝑁𝑃(𝑡) = 𝑝𝑂𝑈𝑇𝑃(𝑡) are denoted by 𝑝𝑇𝑃(𝑡) and 𝑎𝑇𝐴(𝑡) respectively, such 

that 𝑝𝑇𝑃(𝑡) ∈ 𝑃𝑇𝑃 and 𝑎𝑇𝐴(𝑡) ∈ 𝐴𝑇𝐴. 

4. 𝑃𝐶𝑂𝑅𝑃 is a set of conditional output reset places. This special type of reset place27 acts as 

the interface for passing observed evidence from the system behavioural GSPN module of 

GSPN-mBSPN to its fault diagnostic mBSPN module. 

5. 𝑃𝐶𝑂𝑃 is a set of places known as conditional output/trigger places. These places trigger 

the fault diagnostic module when an abnormality is detected during system operation. 

6. 𝑇𝐶𝑅𝑇 represents a set of conditional reset transitions, a special type of reset transition. 

𝑇𝐶𝑅𝑇 is utilised to model fault detection when the system operating state deviates from its 

expected normal conditions. 

7. 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒 → {0, 1, 2} denotes the codes for the applied Bayesian inference 

sampling algorithms,28 such that 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒 = 1, 2, 3 denote forward/prior 

sampling, rejection sampling and likelihood weighting sampling respectively. 

8. 𝐴𝑅𝐴 is a set of reset arcs where 𝑎𝑅𝐴(𝑝𝐶𝑂𝑅𝑃 , 𝑡𝐶𝑅𝑇) is the weight of the reset arc from the 

conditional output reset place 𝑝𝐶𝑂𝑅𝑃 to the conditional reset transition 𝑡𝐶𝑅𝑇. 

9. 𝑚𝐵𝑆𝑃𝑁 is a fault diagnostic Petri net module of the GSPN-mBSPN method, formally 

defined as 𝑚𝐵𝑆𝑃𝑁 = (𝑃𝑑, 𝑇𝐶𝑃𝑇
𝑑 , 𝑇𝑦𝑝𝑒𝑡𝐶𝑃𝑇

𝑑 , 𝐹𝑐𝑝𝑡, 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒, 𝐴𝑑), where: 

a. 𝑃𝑑 is a set of places in the fault diagnostic module. 𝑃𝑑 = 𝑃𝐼𝑁𝑃
𝑑 ∪ 𝑃𝐶𝑃𝑃

𝑑 ∪ 𝑃𝐶𝑃
𝑑 ∪

𝑃𝐸𝑃
𝑑  and 𝑃𝐼𝑁𝑃

𝑑 , 𝑃𝐶𝑃𝑃
𝑑 , 𝑃𝐶𝑃

𝑑 , 𝑃𝐸𝑃
𝑑  are sets of input, conditional probabilistic, causal 

and evidence places such that {(𝑃𝐼𝑁𝑃
𝑑 ⊆ 𝑃𝐶𝑂𝑃) ∧ (𝑃𝐸𝑃

𝑑 ⊆ 𝑃𝐶𝑂𝑅𝑃) ∧ (𝑃𝐶𝑃𝑃 ⊆
𝑃𝑂𝑈𝑇𝑃

𝑑 )}. 𝑃𝑂𝑈𝑇𝑃
𝑑  is the set of output places of the transitions in the fault diagnostic 

module. 

b. 𝑇𝐶𝑃𝑇
𝑑  is a set of conditional probabilistic transitions and 𝑇𝑦𝑝𝑒𝑡𝐶𝑃𝑇

𝑑  is a function 

that assigns a type to a 𝑡𝐶𝑃𝑇
𝑑 ∈ 𝑇𝐶𝑃𝑇

𝑑  transition. 𝑇𝐶𝑃𝑇
𝑑 = 𝑇𝐶𝑃𝑇𝐼𝐶𝑃𝑇

𝑑 ∪ 𝑇𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗
𝑑 ∪

𝑇𝐶𝑃𝑇𝐷𝐶𝑃𝑇

𝑑  such that 𝑇𝐶𝑃𝑇𝐼𝐶𝑃𝑇

𝑑 , 𝑇𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗
𝑑  and 𝑇𝐶𝑃𝑇𝐷𝐶𝑃𝑇

𝑑  are sets of independent, 

dependent observable and dependent non-observable types of 𝑇𝐶𝑃𝑇
𝑑  transitions 

respectively. They represent system components, propagated system operational 

variables and states of monitoring components in the operational GSPN model of 

a dynamic system. 

c. 𝐹𝑐𝑝𝑡 is a function that assigns a conditional probability table to a transition  𝑡𝐶𝑃𝑇
𝑑 :  

𝑡𝐶𝑃𝑇
𝑑 → 𝑐𝑝𝑡𝑡𝐶𝑃𝑇

𝑑 . 
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d. 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒 is as defined in (7) 

e. 𝐴𝑑 is a set of arcs in the fault diagnostic module. 𝐴𝑑 = 𝐴𝐼𝑁𝐴
𝑑 ∪ 𝐴𝐶𝐴

𝑑 ∪ 𝐴𝐸𝐴
𝑑 ∪

𝐴𝐶𝑃𝐴
𝑑  and 𝐴𝐼𝑁𝐴

𝑑 , 𝐴𝐶𝐴
𝑑 , 𝐴𝐸𝐴

𝑑  and 𝐴𝐶𝑃𝐴
𝑑  are sets of input, causal, evidence and 

conditional probabilistic arcs such that 𝐴𝐼𝑁𝐴
𝑑 (𝑃𝐼𝑁𝑃

𝑑  x 𝑇𝐶𝑃𝑇
𝑑  ), 𝐴𝐶𝐴

𝑑 (𝑃𝐶𝑃𝑃
𝑑 (𝑇𝐶𝑃𝑇

𝑑 \

{𝑇𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗
𝑑 }) x 𝑇𝐶𝑃𝑇

𝑑 \{𝑇𝐶𝑃𝑇𝐼𝐶𝑃𝑇

𝑑 }),𝐴𝐸𝐴
𝑑 (𝑃𝐸𝑃

𝑑  x 𝑇𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗
𝑑 )and 𝐴𝐶𝑃𝐴

𝑑 (𝑇𝐶𝑃𝑇
𝑑  x 𝑃𝐶𝑃𝑃

𝑑  )  

are sets of arcs between places 𝑃𝐼𝑁𝑃
𝑑  and transitions 𝑇𝐶𝑃𝑇

𝑑 , places 𝑃𝐶𝑃𝑃
𝑑  of 

transitions 𝑇𝐶𝑃𝑇
𝑑  except for transitions 𝑇𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗

𝑑  and transitions 𝑇𝐶𝑃𝑇
𝑑  except for 

transitions 𝑇𝐶𝑃𝑇𝐼𝐶𝑃𝑇

𝑑 , places 𝑃𝐸𝑃
𝑑  and transitions 𝑇𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗

𝑑  and transitions 𝑇𝐶𝑃𝑇
𝑑  

and places 𝑃𝐶𝑃𝑃
𝑑 , respectively. The corresponding arc weights for the sets of arcs 

are given by: 

i. An 𝑎𝐼𝑁𝐴
𝑑 ∈ 𝐴𝐼𝑁𝐴

𝑑  arc weight is a function: 𝑎𝑡𝐼𝑁𝐴

𝑑 =

{1: 𝑎𝐼𝑁𝐴
𝑑 (𝑝𝐼𝑁𝑃

𝑑  x 𝑡𝐶𝑃𝑇
𝑑  )},  

ii. An 𝑎𝐶𝐴
𝑑 ∈ 𝐴𝐶𝐴

𝑑  arc weight is a function:  𝑎𝑡𝐶𝐴

𝑑 = {𝑛: 𝑛 → {0,1}, 𝑛 =

𝑚(𝑝𝐶𝑃𝑃
𝑑 ), 0 ≤ 𝑚(𝑝𝐶𝑃𝑃

𝑑 ) ≤ 1, 𝑝𝐶𝑃𝑃
𝑑 ∈ 𝑃𝐶𝑃𝑃

𝑑 (𝑡𝐶𝑃𝑇
𝑑 \𝑡𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗

𝑑 ), 𝑡𝐶𝑃𝑇
𝑑 \

𝑡𝐶𝑃𝑇𝐼𝐶𝑃𝑇

𝑑 }, where 𝑚(𝑝𝐶𝑃𝑃
𝑑 ) is the current marking of the place 𝑝𝐶𝑃𝑃

𝑑  from 

the transition 𝑡𝐶𝑃𝑇
𝑑 \𝑡𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗

𝑑  to a transition 𝑡𝐶𝑃𝑇
𝑑 \𝑡𝐶𝑃𝑇𝐼𝐶𝑃𝑇

𝑑 . 

iii. An 𝑎𝐸𝐴
𝑑 ∈ 𝐴𝐸𝐴

𝑑  arc weight is a function:  𝑎𝑡𝐸𝐴

𝑑 = {𝑛 ∈ ℕ: 𝑛 =

𝑚(𝑝𝐸𝑃
𝑑 ), 1 ≤ 𝑚(𝑝𝐸𝑃

𝑑 ) ≤ |𝑃𝐶𝑃𝑃
𝑑 (𝑡𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗

𝑑 )|}, where 𝑚(𝑝𝐸𝑃
𝑑 ) is the 

current marking of the evidence place 𝑝𝐸𝑃
𝑑  and |𝑃𝐶𝑃𝑃

𝑑 (𝑡𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗
𝑑 )| is the 

cardinality of the set 𝑃𝐶𝑃𝑃
𝑑  of the transition 𝑡𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗

𝑑 . Generally, 

|𝑃𝐶𝑃𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )|  is equivalent to the total number of places denoting the 

system component states, states of a propagated system operational 

variable or monitoring component states in the operational GSPN model 

of a dynamic system. 

iv. An 𝑎𝐶𝑃𝐴
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ) ∈ 𝐴𝐶𝑃𝐴
𝑑  arc weight is a function: 𝑎𝑡𝐶𝑃𝐴

𝑑 = {𝑛: 𝑛 →

{0,1}, 𝑔 (𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒, 𝑐𝑝𝑡𝑡𝐶𝑃𝑇
𝑑 , 𝑎𝐶𝐴

𝑑 (𝑡𝐶𝑃𝑇
𝑑 ), 𝑎𝐸𝐴

𝑑 (𝑡𝐶𝑃𝑇
𝑑 )) = 𝑖, 𝑖 <

|𝑃𝐶𝑃𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )|}. 𝑔 (𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒, 𝑐𝑝𝑡𝑡𝐶𝑃𝑇
𝑑 , 𝑎𝐶𝐴

𝑑 (𝑡𝐶𝑃𝑇
𝑑 ), 𝑎𝐸𝐴

𝑑 (𝑡𝐶𝑃𝑇
𝑑 )) is 

an inference sampling algorithm function to compute the index of a 

sample state from the states of a component, propagated variable or 

monitoring component based on the selected inference algorithm such 

that if 𝑔 (𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒, 𝑐𝑝𝑡𝑡𝐶𝑃𝑇
𝑑 , 𝑎𝐶𝐴

𝑑 (𝑡𝐶𝑃𝑇
𝑑 ), 𝑎𝐸𝐴

𝑑 (𝑡𝐶𝑃𝑇
𝑑 )) = 𝑖 and 𝑖 =

𝑖𝑛𝑑𝑒𝑥𝑜𝑓(𝑝𝐶𝑃𝑃
𝑑 ) in the vector of 𝑃𝐶𝑃𝑃

𝑑 (𝑡𝐶𝑃𝑇
𝑑 ) then, 𝑛 = 1 and 0 

otherwise. 

10. 𝐴𝐶𝑂𝐴: a set of conditional output arcs between 𝑇𝐶𝑅𝑇 and 𝑃𝐶𝑂𝑅𝑃 or between 𝑇𝐶𝑅𝑇 and 𝑃𝐶𝑂𝑃. 

That is 𝐴𝐶𝑂𝐴 = {𝐴𝐶𝑂𝐴(𝑇𝐶𝑅𝑇 x 𝑃𝐶𝑂𝑅𝑃) ∪ 𝐴𝐶𝑂𝐴(𝑇𝐶𝑅𝑇 x 𝑃𝐶𝑂𝑃)}. 𝑎𝐶𝑂𝐴(𝑡𝐶𝑅𝑇 ∈
𝑇𝐶𝑅𝑇 , 𝑝𝐶𝑂𝑅𝑃 ∈ 𝑃𝐶𝑂𝑅𝑃) and 𝑎𝐶𝑂𝐴(𝑡𝐶𝑅𝑇 , 𝑝𝐶𝑂𝑃 ∈ 𝑃𝐶𝑂𝑃) are the weights of 

𝑎𝐶𝑂𝐴(𝑡𝐶𝑅𝑇 x 𝑝𝐶𝑂𝑅𝑃) and 𝑎𝐶𝑂𝐴(𝑡𝐶𝑅𝑇 x 𝑝𝐶𝑂𝑃), respectively and defined as: 

a. 𝑎𝐶𝑂𝐴(𝑡𝐶𝑅𝑇, 𝑝𝐶𝑂𝑅𝑃) = {
0                                               𝑖𝑓 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒 = 0 

{𝑖 + 1| 0 ≤ 𝑖 < |𝑃𝐶𝑃𝑃
𝑑 (𝑡𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗

𝑑 )|}          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
, 

where 𝑖 is the index of the 𝑝𝐶𝑃𝑃(𝑡𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗
𝑑 ) with evidence in the vector of the 

conditional probabilistic places of transition 𝑡𝐶𝑃𝑇
𝑑  (i.e., 𝑃𝐶𝑃𝑃

𝑑 (𝑡𝐶𝑃𝑇
𝑑 )) such that 
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𝑝𝐶𝑂𝑅𝑃 → 𝑒𝐸𝑃(𝑡𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗
𝑑 ) where 𝑒𝐸𝑃(𝑡𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗

𝑑 ) is the evidence place of the 

transition 𝑡𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗
𝑑 . 

b. 𝑎𝐶𝑂𝐴(𝑡𝐶𝑅𝑇, 𝑝𝐶𝑂𝑃) = {
1            𝑖𝑓 𝑚( 𝑝𝐶𝑂𝑃(𝑡𝐶𝑃𝑇

𝑑 )) = 0 

0                                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
, where 𝑚( 𝑝𝐶𝑂𝑃(𝑡𝐶𝑃𝑇

𝑑 )) 

is the current marking of the conditional output place 𝑝𝐶𝑂𝑃 of transition 𝑡𝐶𝑃𝑇
𝑑 .  

 

 

Enableness and Firing Rules of Transitions in the GSPN-mBSPN. The definition of the enabling and 

firing rules of the new transitions types in the GSPN-mBSPN are explained in definitions 2 and 

3. 

 

Definition 2. The enableness of a transition 𝑡 in the GSPN-mBSPN is governed by the 

following conditional expression. 

𝐸𝑛𝑎𝑏𝑙𝑒𝑛𝑒𝑠𝑠(𝑡) = {
𝑇𝑟𝑢𝑒   𝑖𝑓 ∀𝑝 ∈ (𝑃𝐼𝑁𝑃(𝑡) ∨ 𝑃𝑇𝑃(𝑡)), 𝑀(𝑝) ≥ 𝑎(𝑝 x 𝑡) ∈ (𝑎𝐼𝑁𝐴 ∨ 𝑎𝑇𝐴)

𝑇𝑟𝑢𝑒                                   𝑖𝑓 ∀𝑝 ∈ 𝑃𝐼𝑁𝐻𝑃(𝑡), 𝑀(𝑝) < 𝑎(𝑝 x 𝑡) ∈ 𝑎𝐼𝑁𝐻𝐴

𝐹𝑎𝑙𝑠𝑒                                                                                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

, 

where 𝑎𝐼𝑁𝐻𝐴 is the inhibitor arc between the inhibitor place 𝑃𝐼𝑁𝐻𝑃 and transition 𝑡. 

 

Definition 3. Due to the flexibility of Petri net formalisms, the standard firing rule for an 

enabled transition 𝑡 may change if extra conditions are considered. This is the case for the 

proposed CRT and CPT transitions, where additional information is required for firing the 

transitions. In general, the firing of a transition 𝑡 in a GSPN-mBSPN model will change the 

markings of some places in the net depending on the transition and place types. For the standard 

transitions, such as immediate (𝑇𝐼𝑀𝑇), stochastic (𝑇𝑆𝑇𝑇), and deterministic (𝑇𝐷𝐸𝑇) transitions, 

the conventional transition firing rules in a 𝐺𝑆𝑃𝑁 formalism are conserved. However, given a 

generalised structure of a fault detection module within a GSPN module of a GSPN-mBSPN, 

as depicted in Figure 3, the defined firing rule of a conditional reset transition 𝑡𝐶𝑅𝑇 is given as 

follows: 

 

𝑓𝑖𝑟𝑖𝑛𝑔(𝑡𝐶𝑅𝑇): {
𝑀′(𝑝) = 𝑀(𝑝) − 𝑎𝑅𝐴(𝑝, 𝑡 ) + 𝑎𝐶𝑂𝐴(𝑡, 𝑝)                                     ∀𝑝 ∈ 𝑃𝐶𝑂𝑅𝑃(𝑡)

𝑀′(𝑝) = 𝑀(𝑝) + 𝑎𝐶𝑂𝐴(𝑡, 𝑝)                                                             ∀𝑝 ∈ 𝑃𝐶𝑂𝑃(𝑡) 
 

where 𝑀′(𝑝) and 𝑀(𝑝) are the updated and the initial marking of place 𝑝.  

 

  
Figure 3. A Generalised Structure of a Fault Detection Module of a GSPN-mBSPN 

 

Places pobi, psys, pmp and pss in Figure 3 symbolise the time interval of sensor observation, the 

system state, the abnormal state of the monitoring parameter and the state of the sensor related 

t 

𝑎𝐶𝑂𝐴(𝑡,  𝑝𝐶𝑂𝑃1) 

𝑎𝐶𝑂𝐴(𝑡,  𝑝𝐶𝑂𝑃2) 

𝑎𝐶𝑂𝐴(𝑡,  𝑝𝐶𝑂𝑃𝑛) 

1 

1 

1 

[𝑎𝑅𝐴(𝑝𝐶𝑂𝑅𝑃 , 𝑡), 
𝑎𝐶𝑂𝐴(𝑡,  𝑝𝐶𝑂𝑅𝑃)] 

1 

p
COP1

 p
CORP

 

p
COP2
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p
obi

 

p
sys

 

p
ss
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to pmp. Compared to the CRT transition, the firing rule of a CPT transition is more complex 

because it depends on the type of the CPT transition and the selected inference sampling 

algorithm. Thus, the generalised structures of the CPT transitions in the fault diagnostic module 

(mBSPN) of a GSPN-mBSPN are as depicted in Figure 4. At the same time, the defined firing 

rule for the different types of CPT transitions in the mBSPN module of a GSPN-mBSPN is 

given by the pseudo-code in Algorithm 1. As shown in Figure 4, suppose t2 is a distinct 

operational process that depends on the states of a component represented by the CPT transition 

t1. Then, the causal places (𝑃𝐶𝑃) of t2 will be the same as the conditional probabilistic places 

(𝑃𝐶𝑃𝑃) of t1. Likewise, if t3 depends on t2, then  𝑃𝐶𝑃(𝑡3) will be equal to 𝑃𝐶𝑃𝑃(𝑡2). 

 

 

 

 

 

 

 

 

Figure 4. Generalised Structure of (a) Independent Conditional Probabilistic Transition, (b) 

Dependent Non-observable Conditional Probabilistic Transition and (c) Dependent 

Observable Conditional Probabilistic Transition 
 

Algorithm 1: Pseudo-code for Firing Conditional Probabilistic Transitions 

Parameter definitions: A uniform distribution 𝒰(0, 1), input places vector 𝑃𝐼𝑁𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ) of a 

conditional probabilistic transition 𝑡𝐶𝑃𝑇
𝑑 , conditional probabilistic places vector  𝑃𝐶𝑃𝑃

𝑑 (𝑡𝐶𝑃𝑇
𝑑 ) 

of a transition 𝑡𝐶𝑃𝑇
𝑑 , evidence places vector 𝑃𝐸𝑃

𝑑 (𝑡𝐶𝑃𝑇
𝑑 ) of a transition 𝑡𝐶𝑃𝑇

𝑑 , causal places 

vector 𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ) of a transition 𝑡𝐶𝑃𝑇
𝑑 , 𝑀′ (𝑃𝐶𝑃

𝑑 (𝑡𝐶𝑃𝑇
𝑑 )) is the vector of the current marking of 

the places in 𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ), 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 is a variable to store the index of an observed place in 

𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ) of a transition 𝑡𝐶𝑃𝑇
𝑑 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑛𝑑𝑒𝑥 is the index of a place 𝑝𝐶𝑃𝑃

𝑑  in 𝑃𝐶𝑃𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ) that 

will receive a token during the execution of transition 𝑡𝐶𝑃𝑇
𝑑 , 𝑓𝑖𝑟𝑒𝑡𝑒𝑠𝑡 is a Boolean variable 

to test if transition 𝑡𝐶𝑃𝑇
𝑑  may or may not fire, 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒 is the selected code of a 

Bayesian inference sampling algorithm, 𝑐𝑝𝑡𝑡𝐶𝑃𝑇
𝑑  is the conditional probability table of a 

transition 𝑡𝐶𝑃𝑇
𝑑 , 𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑟𝑎𝑛𝐹𝑖𝑟𝑒𝑠 is a variable for counting the number of times that 

transition 𝑡𝐶𝑃𝑇
𝑑  has fired, 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑊𝑒𝑖𝑔ℎ𝑡 is a variable for updating the value of the token 

in the place 𝑝𝐶𝑃𝑃 (𝑡𝑜𝑘𝑣𝑎𝑙𝑝𝐶𝑃𝑃
) after transition 𝑡𝐶𝑃𝑇

𝑑  has fired and 𝑉𝐴𝐿𝑡𝐶𝑃𝑇
𝑑  is the vector of 

the currently selected probability entries (attributed to places in 𝑃𝐶𝑃𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )) from 𝑐𝑝𝑡𝑡𝐶𝑃𝑇
𝑑  

based on the vector of the current marking (𝑀′ (𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ))) of the places in 𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ). 

Sub-sub-sub-Algorithm 1: Function Get_CPT_Row() Pseudo-code 

//Obtain rows 𝑀′ (𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )) and 𝑉𝐴𝐿𝑡𝐶𝑃𝑇
𝑑  from the 𝑐𝑝𝑡𝑡𝐶𝑃𝑇

𝑑  

1. Initialise 𝑀′(𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )) = {}         

//Populate 𝑀′(𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )) with the current marking of 𝑝𝐶𝑃 in 𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )                   

2. for each 𝑝𝐶𝑃 𝐢𝐧 𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ) do:             //Note 𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ) = {}, if 𝑡𝐶𝑃𝑇
𝑑 = 𝑡𝐶𝑃𝑇𝐼𝐶𝑃𝑇

𝑑  

𝑎𝑡3𝐶𝑃𝐴
 𝑎𝑡3𝐶𝑃𝐴

 

(a)                                              (b)                                              (c) 

p
CPPn

 

t1 

p
INP

 

p
CPP1

 

1 

𝑎𝑡1𝐶𝑃𝐴
 

p
CPPn

 

t3 

p
INP

 

p
CPP1

 

1 

p
CPn

 p
CP1

 

p
EP

 

p
CPPn

 

t2 

p
INP

 

p
CPP1

 

1 

p
CPn

 p
CP1

 

𝑎𝑡2𝐶𝐴1
 

𝑎𝑡1𝐶𝑃𝐴
 𝑎𝑡2𝐶𝑃𝐴

 𝑎𝑡2𝐶𝑃𝐴
 

𝑎𝑡2𝐶𝐴2
 𝑎𝑡3𝐶𝐴1

 𝑎𝑡3𝐶𝐴2
 

𝑎𝑡3𝐸𝐴
 



11 
 

3.      insert 𝑀′(𝑝𝐶𝑃) 𝐢𝐧 𝑀′(𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ))     

4. endforeach       

5. Initialise 𝑉𝐴𝐿𝑡𝐶𝑃𝑇
𝑑 = {}                                        

//Find 𝑀′ (𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )) in 𝑐𝑝𝑡𝑡𝐶𝑃𝑇
𝑑  to Obtain the current 𝑉𝐴𝐿𝑡𝐶𝑃𝑇

𝑑  

6. 𝑉𝐴𝐿𝑡𝐶𝑃𝑇
𝑑 ← 𝑐𝑝𝑡𝑡𝐶𝑃𝑇

𝑑 [𝑀′ (𝑃𝐶𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ))] 

7. if (𝑉𝐴𝐿𝑡𝐶𝑃𝑇
𝑑 = ∅) then: 

8.    Output a message “The current causal places markings could not be found, check to   

   see if all the possible causal places markings are included in the 𝒄𝒑𝒕𝒕𝑪𝑷𝑻
𝒅 ” 

9.    Reset 𝑓𝑖𝑟𝑒𝑡𝑒𝑠𝑡 ← 𝑓𝑎𝑙𝑠𝑒  
10. endif 

11. return 𝑓𝑖𝑟𝑒𝑡𝑒𝑠𝑡 

Sub-sub-Algorithm 1: Function Get_Sample_One() Pseudo-code 

12. call 𝐺𝑒𝑡_𝐶𝑃𝑇_𝑅𝑜𝑤()  function                            //Sub-sub-sub-Algorithm1 call 

13.    if ((𝑓𝑖𝑟𝑒𝑡𝑒𝑠𝑡 = 𝑡𝑟𝑢𝑒) and (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑛𝑑𝑒𝑥 = −1)) then: 

14.         Initialise local variable 𝑐𝑢𝑚 ← 0.0 

15.         𝑟 ← 𝒰(0, 1)                                                    //Sample a random value 𝑟 from 𝒰(0, 1) 

16.         Initialise local variable 𝑖 ← 0 

17.         while 𝑖 < 𝑠𝑖𝑧𝑒𝑜𝑓(𝑉𝐴𝐿𝑡𝐶𝑃𝑇
𝑑 ) do:          

18.               𝑐𝑢𝑚 ← 𝑐𝑢𝑚 + 𝑉𝐴𝐿𝑡𝐶𝑃𝑇
𝑑 [𝑖] 

19.               if (𝑐𝑢𝑚 > 𝑟) then: 

20.                   𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑛𝑑𝑒𝑥 ← 𝑖 
21.                   break 

22.               endif 

23.                   𝑖 ← 𝑖 + 1    

24.          endwhile     
25.    endif  

26.    return 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑛𝑑𝑒𝑥                           

Sub-sub-Algorithm 2: Function Has_Evidence() Pseudo-code 

27. if  ((𝑃𝐸𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ) ≠ ∅) 𝐚𝐧𝐝 (𝑀′(𝑃𝐸𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )[0]) ≤ 𝒔𝒊𝒛𝒆𝒐𝒇 (𝑃𝐶𝑃𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )))) then: 

28.     𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ← 𝑀′(𝑃𝐸𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )[0]) − 1        //Obtain evidence for a 𝑡𝐶𝑃𝑇𝐷𝐶𝑃𝑇∗
𝑑  transition 

29. elseif (𝑃𝐸𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ) ≠ ∅) then: 

30.     Output a message “Out of range: the number of the variable state places in the    

    system behavioural model must be equal to the number of the conditional 

probabilistic places of the transition in the fault diagnostic module”     

31.     Reset 𝑓𝑖𝑟𝑒𝑡𝑒𝑠𝑡 ← 𝑓𝑎𝑙𝑠𝑒   
32. endif 

33. return 𝑓𝑖𝑟𝑒𝑡𝑒𝑠𝑡 

Sub-Algorithm 1: Procedure Compute_Forward_Sampling_One() Pseudo-code 

34. call Get_Sample_One()  function                             //Sub-sub-Algorithm 1 

Sub-Algorithm 2: Procedure Compute_Rejection_Sampling_One() Pseudo-code 

35. call Get_Sample_One()  function                             //Sub-sub-Algorithm 1 

36. call Has_Evidence()       function                             //Sub-sub-Algorithm 2 

//Check if the current sampled variable state is consistent with the observed evidence 

37. if ((𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑛𝑑𝑒𝑥 ≠ 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒) 𝐚𝐧𝐝 (𝑓𝑖𝑟𝑒𝑡𝑒𝑠𝑡 ≠ 𝑓𝑎𝑙𝑠𝑒)) then: 



12 
 

38.     Reset 𝑓𝑖𝑟𝑒𝑡𝑒𝑠𝑡 ← 𝑓𝑎𝑙𝑠𝑒                                  
39. endif     

Sub-Algorithm 3: Procedure Compute_Likelihood_Weighting_Sampling_One() Pseudocode 

40. call Has_Evidence() function                           //Sub-sub-Algorithm 2 

if (𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ≠ −1) then:                             //Check if there is an observed evidence 

41.     𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑛𝑑𝑒𝑥 ← 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 

42.     call Get_Sample_One() function             //Sub-sub-Algorithm1 

43.     if  (𝑓𝑖𝑟𝑒𝑡𝑒𝑠𝑡 ≠ 𝑓𝑎𝑙𝑠𝑒) then: 

44.          𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑊𝑒𝑖𝑔ℎ𝑡 ← 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝑉𝐴𝐿𝑡𝐶𝑃𝑇
𝑑 [𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒]      

45.     endif        

46. elseif  (𝑓𝑖𝑟𝑒𝑡𝑒𝑠𝑡 ≠ 𝑓𝑎𝑙𝑠𝑒) then: 

47.      call Get_Sample_One()  function      //Sub-sub-Algorithm 1  

48. endif     

The Main Algorithm: Procedure Transition_Fire() Pseudo-code 

//Initialise the firing variables: 

49. 𝑓𝑖𝑟𝑒𝑡𝑒𝑠𝑡 = 𝑡𝑟𝑢𝑒; 

50. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑛𝑑𝑒𝑥 = −1 

51. 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 = −1 

52. 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑊𝑒𝑖𝑔ℎ𝑡 = 1.0 

//Determine the new index value of the Conditional Probabilistic Place to be marked 

53. if (𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒 = 1) then:               //1: Forward/Prior Sampling Algorithm 

54.     call Compute_Forward_Sampling_One() procedure                         //Sub-Algorithm 1 

55. elseif (𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒 = 2) then:       //2: Rejection Sampling Algorithm 

56.     call Compute_Rejection_Sampling_One() procedure                       //Sub-Algorithm 2 

57. elseif (𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒 = 3) then:     //3: Likelihood Weighting Algorithm 

58.     call Compute_Likelihood_Weighting_Sampling_One() procedure  //Sub-Algorithm3                                                 

59. else  

60.     Output a message “The Inference Method Code not configured in this software,   

    forward sampling algorithm is executed” 

61.    Compute_Forward_Sampling_One() procedure is called              //Sub-Algorithm 1 

62. endif 

//Conventional firing rule applies to the input Places 

63. for each 𝑝𝐼𝑁𝑃 𝐢𝐧 𝑃𝐼𝑁𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 ) do:   

64.      𝑀′(𝑝𝐼𝑁𝑃) ← 𝑀(𝑝𝐼𝑁𝑃) − 𝑎𝐼𝑁𝐴
𝑑 (𝑝, 𝑡𝐶𝑃𝑇

𝑑 )     

65. endforeach  
      //Conditional firing rule applies to the conditional probabilistic place based on the  

//value of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑛𝑑𝑒𝑥 obtained from the sampling algorithm 

66. if (𝑓𝑖𝑟𝑖𝑛𝑔𝑡𝑒𝑠𝑡 = 𝑡𝑟𝑢𝑒) then:  

67.       𝑝𝐶𝑃𝑃 ← 𝑃𝐶𝑃𝑃
𝑑 (𝑡𝐶𝑃𝑇

𝑑 )[𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑛𝑑𝑒𝑥] 

68.      𝑀′(𝑝𝐶𝑃𝑃) = 𝑀(𝑝𝐶𝑃𝑃) + 𝑎𝐶𝑃𝐴
𝑑 (𝑡𝐶𝑃𝑇

𝑑 , 𝑝)     

    //Update token value of place 𝑝𝐶𝑃𝑃 if the inference algorithm is likelihood weighting 

69.     if (𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑑𝑒 = 3) then: 

70.         𝑡𝑜𝑘𝑣𝑎𝑙𝑝𝐶𝑃𝑃
← 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑊𝑒𝑖𝑔ℎ𝑡 

71.     endif 

      //Update the transition fire counter. 𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑟𝑎𝑛𝐹𝑖𝑟𝑒𝑠 is incremented by 1 if     

     //𝑓𝑖𝑟𝑖𝑛𝑔𝑡𝑒𝑠𝑡 = 𝑡𝑟𝑢𝑒  

72.     𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑟𝑎𝑛𝐹𝑖𝑟𝑒𝑠 ← 𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑟𝑎𝑛𝐹𝑖𝑟𝑒𝑠 + 1 

73. endif   
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Illustrative Example of the Fault Diagnostic Process of the GSPN-mBSPN Methodology. A simple 

system is used to illustrate how the fault diagnostic process of the proposed GSPN-mBSPN 

methodology works. The system has three components: a valve, an operator, and a flow sensor. 

Figure 5 shows the Bayesian network graph of this system. The valve can be in three states: 

normal, stuck open, or stuck closed. The operator can perform two actions: open or close the 

valve. The flow sensor can measure the flow rate through the valve. The probability distribution 

for the states of the components are in the form of marginal probability (MPT), or input 

conditional probability table (iCPT) as depicted in the Figure 5. Based on the generalised 

structure of a conditional probabilistic transition (CPT), the mBSPN equivalents of the BN 

graph of Figure 5 is shown in Figure 6.   

 

 
Figure 5. A Bayesian network graph of a simple system29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. mBSPN model of the BN graph in Figure 5 
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When a fault occurs in the system, places 𝑝𝐼𝑁𝑃1, 𝑝𝐼𝑁𝑃2, and 𝑝𝐼𝑁𝑃3 will be marked with a token 

each, enabling the transitions 𝑡1, 𝑡2 and 𝑡3 in the mBSPN module of the GSPN-mBSPN 

approach. The level of dependency between system components and process variables 

determines the firing order of these transitions. To assign priorities to the transitions, the 

example study involves one level of dependency, where the states of V and O influence the 

state of F (Figure 5). Consequently, transitions t1 and t2 in Figure 6 have an equal, higher 

priority than transition t3. During transition enabling and firing check, either 𝑡1 and 𝑡2 will be 

randomly selected for firing. At this stage, the algorithm proceeds with the procedure 

Transition_Fire(), which involves invoking an inference sampling algorithm based on the 

chosen inference code at the beginning of the simulation of a GSPN-mBSPN model. For 

example, the procedure Compute_Rejection_Sampling_One() is called for the case when the 

inference algorithm code is 2: rejection sampling. Within 

Compute_Rejection_Sampling_One(), the function Get_Sample_One() is utilised to generate a 

sample state for a component or process variable using the Marginal Probability Table (MPT) 

of the component or the input Conditional Probabilistic Transition (iCPT) of the process 

variable. The function Get_CPT_Row() is called inside Get_Sample_One() to select a 

probability row entry required for sampling the index of a conditional probabilistic place (CPP) 

in the vector of the CPP places of a CPT transition that will get a token when the transition is 

fired. In Get_CPT_Row(), the vector container for storing the current marking of the causal 

places of a CPT transition is first emptied. Then, if the transition is not independent, the 

markings of its causal places are stored in the vector container. However, since both t1 and t2 

are independent conditional probabilistic transitions, the containers for their causal place 

markings remain empty. The probability row entry selected from the MPTs of t1 and t2 

corresponds to the probability attribution of the CPP associated with the states of the 

components modelled by the CPT transitions. The next step involves generating  a random 

number 𝑟 from a uniform distribution 𝒰(0, 1) comparing it iteratively with the firing 

probability of the CPT transition (selected from its MPT or iCPT) to determine the current 

index of the CPP that will get a token after firing. For example, if the current index for t1 is 0, 

a token will be added to place VN. Similarly, if the current index for t2 is 1, the Conditional 

Probabilistic Place OO of t2 will receive a token upon firing.  

 Subsequently, Compute_Rejection_Sampling_One() checks if the firing CPT transition has 

evidence using the function Has_Evidence(). If it is an observable CPT transition, evidence is 

set for it based on its evidence place, 𝑝𝐸𝑃 current marking. Then, the previously determined 

current index and evidence values of the CPT transition are compared. Inconsistency between 

the sampled index using the input and the observed real evidence leads to setting the firetest 

variable to false and returned. Then, Transition_Fire() is continued and a token is removed 

from the input place of the CPT transition. A token is also deposited in one of its CPPs 

depending on firetest value. If firetest is false, no CPP gets a token. If firetest is true, a CPP at 

index “current index” gets a token. Every CPT transition is expected to deposit a token in one 

of its CPPs when it fires. But in rejection sampling, this depends on the firetest value. If firetest 

is false for a CPT transition, the sample is lost for that time instant and the CPT transitions are 

reanalysed at another observation time point. In the case study example, suppose t1 and t2 fire 

successfully with current indexes 0 and 1 at an observation time 𝜏. Then, the causal places 

marking t3 will be {𝑉𝑁, 𝑉𝑆𝑂, 𝑉𝑆𝐶; 𝑂𝐶, 𝑂𝑂 } = {1,0,0,0,1}. The probability row for this 

marking  t3’s iCPT is {0.99, 0.01}. This probability row is used in the function 

Get_CPT_Row() to determine the “current index” for  for the firing operation of t3. 
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Steps 3 and 4: Monte Carlo Simulation Analysis and Results of a GSPN-mBSPN Model  

A GSPN-mBSPN model can be analysed using Monte Carlo simulation (MCS). Several 

simulation runs are needed to evaluate some performance metrics of a GSPN-mBSPN 

simulation model. During each simulation run, the marking of places and the number of times 

transitions fired in the model are recorded at each timestep. These recorded values are used to 

calculate performance metrics such as average failure, reliability and posterior probabilities of 

components at each timestep over the entire simulation runs. Figure 7 depicts a flowchart for 

performing a number of time steps MCS simulation analysis on a GSPN-mBSPN integrated 

model proposed in this paper. The embedded functions tagged A, B and C are self-contained 

processes during the simulation. However, due to the space limitation, the flowcharts of these 

processes are omitted in this paper. The flowchart for the time steps MCS analysis of a GSPN-

mBSPN model can be implemented in a programming language such as C++, which is adopted 

in this paper.  

 
Figure 7. Flowchart of the Monte Carlo simulation analysis of a GSPN-mBSPN model 
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Application of the Proposed Methodology 

 

The System Description 

Figure 8 shows a diagram of a simple water tank level control system for testing the 

methodology proposed in Section 2 of this paper. This system was taken from the work of 

Hurdle et al.30 To diagnose the water tank system for any abnormality, the faults that could 

occur for each of the components of the water tank system need to be defined. Thus, Table 2 

depicts a list of the system components’ possible states, including their failure states/modes. 

The water tank system can operate in either of two modes: active or dormant. In the active 

mode, considered in this paper valve V2 in the system is opened manually to draw water from 

the tank, and valve V1 is opened by controller C1 to replenish water in the tank if the water 

level detected by sensor S1 falls below the required level and closed if the required level has 

been reached. On the other hand, valve V3 can only open automatically by controller C2 if a 

critical water level that can cause overflow is detected in the tank by sensor S2. A further 

detailed description of this system can be found in the published articles by Hurdle et al.,30 and 

Lampis and Andrews.31 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Schematic Diagram of the Water Tank Level Control System30
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Table 2. The system components states failure mode 

Component  Operational State 

Code 

Failure Mode (s) 

State Code 

Description 

Main Supply (MS)  WA MSNW WA: Water available 

MSNW: No water in 

the main supply 

Valves V1, V2 and 

V3 

 𝑉𝑖𝑊(𝑉𝑖𝑂  or 𝑉𝑖𝐶), 

where 𝑖 = 1 … ,3 

 

𝑉𝑖𝐹𝐶 or 𝑉𝑖𝐹𝑂  𝑉𝑖𝑊: Valve 𝑉𝑖 working 

𝑉𝑖𝑂: Valve 𝑉𝑖 open 

𝑉𝑖𝐶: Valve 𝑉𝑖 closed 

𝑉𝑖𝐹𝐶: Valve 𝑉𝑖 fails 

closed  

𝑉𝑖𝐹𝑂: Valve 𝑉𝑖 fails 

opened 

Controllers C1 and 

C2 

 𝐶𝑖𝑊 (𝐶𝑖𝐿  or 𝐶𝑖𝐻), 

where 𝑖 = 1 … ,2 

 

𝐶𝑖𝐹𝐿  or 𝐶𝑖𝐹𝐻  

 

𝐶𝑖𝑊: Controller 𝐶𝑖 

working perfectly 

𝐶𝑖𝐿: Controller 𝐶𝑖 is 

low 

𝐶𝑖𝐻: Controller 𝐶𝑖 is 

high 

𝐶𝑖𝐹𝐿: Controller 𝐶𝑖 

failed low 

𝐶𝑖𝐹𝐻: Controller 𝐶𝑖  
failed high 

Operator (OP)  OPP OPA OPP: OP present to 

open valve 𝑉2 

OPA: OP absent to 

open valve 𝑉2 

Pipes (P1, 

P2,…,P6) 

 𝑃𝑖𝑁𝐵 (where 𝑖 =
1 … ,6) 
 

𝑃𝑖𝐹 or 𝑃𝑖𝐵  𝑃𝑖𝑁𝐵: Pipe 𝑃𝑖 is not 

blocked  

𝑃𝑖𝐹: Pipe 𝑃𝑖 is leaking 

𝑃𝑖𝐵: Pipe 𝑃𝑖 is blocked 

Level sensors (S1 

and S2)  

 𝑆𝑖𝑊 (𝑆𝑖𝐿  or 𝑆𝑖𝐻), 

where 𝑖 = 1 … ,2 

 

𝑆𝑖𝐹𝐿  or 𝑆𝑖𝐹𝐻  

 

𝑆𝑖𝑊: Sensor 𝑆𝑖 

working perfectly 

𝑆𝑖𝐿: Sensor 𝑆𝑖 is low 

𝑆𝑖𝐻: Sensor 𝑆𝑖 is high 

𝑆𝑖𝐹𝐿: Sensor 𝑆𝑖  failed 

low 

𝑆𝑖𝐹𝐻: Sensor 𝑆𝑖  failed 

high 

Tank  TN 𝑇𝐿  or 𝑇𝑅  𝑇𝑁: Tank is okay, no 

failure 

𝑇𝐿: Tank is leaking 

𝑇𝑅: Tank is ruptured 

Both TL and TR are not 

considered in this 

paper 
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Developing the GSPN Module of a GSPN-mBSPN Model of a Dynamic System  

A GSPN-mBSPN model of a dynamic system, in this case the water tank level control system, 

is created based on the type of the modelling elements (places and transitions) and the arcs 

connecting them. Timed transition(s) with input and output places of type “component” and 

without test/inhibitor places form a system component GSPN module. Besides, immediate 

transitions with common input and output places of type “component” and test/inhibitor places 

of type “normal” form a GSPN module for a system monitoring parameter. However, 

immediate transitions having common input and output places of type “component” and 

test/inhibitor places equivalent to the input and output places of a lower-level GSPN module 

form an interconnection GSPN module for the propagation of a process variable. The input and 

output places of a GSPN module represent either the states of a component, monitoring 

parameter or propagated variable in the GSPN-mBSPN model of the water tank system. An 

incremental hierarchical approach was used to build the whole GSPN-mBSPN model. 

However, due to the mutual inter-dependencies between GSPN modules of the component, 

system monitoring parameter and propagated variables, the Petri net models were drawn using 

the following pattern filled notations for shared places similar to the colour-coded notations for 

shared places used by Boussif and Ghazel.32 The subsequent section describes the GSPN 

modules developed for the various components and subsystems of the water tank level control 

system.  

 
 
The System Operating Mode Petri Net Model. The Petri net module for the operating mode of the 

water tank system is depicted in Figure 9 and represents part of the initial conditions required 

before a simulation can begin. A token in place p1 means the presence of an operator attempting 

to manually opens valve V2 to demand water from the tank. Thus, the system changes from 

the dormant state (place p2) to the active state (place p3). Conversely, if no operator is present 

to demand water from the tank (no token in place p1), the system switches from the active to 

the dormant state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The system operating mode Petri net module 
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The Component Petri Net Model. Following the system modelling steps discussed in step 2 of 

section 2, Figure 10 depicts the Petri net model for the working and failure state/modes of the 

types of the system components with single (e.g., pipes) and multiple (e.g., sensors, controllers 

and valves) failure states. Using the generalised Component Petri net model constructions 

depicted in Figure 10, the Petri net models for the modelled components of the water tank 

system including the states of an operator comprises of  37 component state/mode places and 

22 failure state/mode transitions. For example, in Figure 10(b), a token in place pw means a 

component is in a normal operational working state and the movement of the token from place 

pw to pfm1 when transition tttf fired after time ttf1 signifies the change in the component state 

from working to failure mode 1 state. At the beginning of the system operation, it is assumed 

that all components are working properly with the valves V1, V2 and V3 in closed states and 

the other components in their normal working states. In addition, constant failure times are 

assumed for all the components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Petri net models for single (a) and multiple (b) operational states components 

 

The Process Variable (Water Level) State Changes PN. In this paper, discrete places are 

used to represent the states/condition of the modelling entities, and the operation of the water 

tank level control system consists of both discrete (component states) and continuous (process 

variable states) variables. Thus, there is a need to develop a Petri net model to represent the 

continuous process variable states in discrete forms based on the operational reading of the 

level sensors monitoring the system process variable (water level in the tank). Figure 11 shows 

a generalised Petri net structure for the system process variable state changes. One token in the 

place “Tank portion with water” represents a unit volume of water in a tank. One token in the 

tank level air place “Tank portion filled with air” represents a free space of unit volume in a 

tank not occupied by water. Places p1 to pn correspond to the discretised states of a system 

process variable. The switching between the states of a system process variable is represented 

by the transitions t1 to tn, and are governed by the weights (a1 to an) of the test arcs between 

the places “Tank portion with water” and “Tank portion filled with air”, and the transitions t1 

 (a) 

pws tttf 

Working state (CWS) Failed state (CFS) 

pfs 

Time to failure 

    (b) 

tttf1 pfm1 

Failure mode (CFM) 1  Working 

Mode 1 Time to failure (ttf1) 

tttf2 
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component operating state 
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to tn. To construct the Petri net model for the system tank level states, the following 

assumptions were made: 

i. The height of the tank is assumed to be equal to 2 m, and its cross-sectional area equal 

to 3.1415 m2. 

ii. It is assumed that the flow rate in section 1 is the same as the flow rate in section 2 of 

the system, but the flow rate in section 3 is twice the flow rate in section 1. The flow 

rate in section 1 is assumed to be Q = 0.006283 m3/s. 

iii. It is assumed that overflow starts when the water level in the tank rises above 95 % of 

the tank level (that is, >95 % of 2 m = >1.9 m). 

iv. The initial water level in the tank is assumed to be in the normal range and equals 80 % 

of the tank level (that is, 80 % of 2 m = 1.6 m). 

v. The level of water in the tank is discretised as empty (TLE), low (TLL), normal (TLN), 

high (TLH), very high (TLVH) and full (TLF). 

vi. It is assumed that at every time step of 0.25 seconds, the increase or decrease in the tank 

level or volume is equal to 0.0005 m or 0.00157075 m3, which in turn is equivalent to 

1 token increase or decrease in the number of tokens in a particular tank level place. 

Thus, for the tank level state discretisation Petri net model, the following configurations 

depicted in Table 3 were used to increase and decrease the water level in the tank.  

Using the generalised Petri net structure for the system process variable state changes depicted 

in Figure 11, the Petri net module for the water level state changes of the water tank system 

comprises of 8 places (2 auxiliary places for the system process variable states and 6 tank level 

discretised states places) and 10 transitions for switching between tank level discretised states. 

 

Table 3. Tank level discretisation configurations 
Level Discretisation  Height of Water in 

the Tank (m) 

Water Volume Capacity (m3) Equivalent token 

Empty 0 0 0 

Low <=1.5 <=4.71225 <=3000 

Normal >1.5 and <1.7 >4.71225 and <5.34055 >3000 and <3400 

High >=1.7 >=5.34055 >=3400 

Very high >=1.9 >=5.96885 >=3800 

Full =2.0 =6.28300 =4000 
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Figure 11. The generalised Petri net structure for the system process variable state changes 

 

The Operational States Changes PN. The operational states changes models are developed by 

considering the working or failure modes of a component and the states of the inputs (e.g., the 

states of the immediate upstream components or process variable status change) connected to 

the component. Figures from 12 to 14 show the generalised Petri net modules for the 

operational states changes of a level sensor, controller and valve in the water tank system. The 

PN modules in Figure 12 are developed by considering the state of the water level in the tank 

and the working or failure modes of the sensor monitoring the water level. The presence of a 

token in either place p1, p2 or p3 and in the two shared places at the left-side in Figure 12 

means a sensor (e.g., S1) has not failed and reads the water level inside the tank corresponding 

to the observed actual tank level state. In case of the failure of a level sensor (e.g., S1 failed 

low, S1FL), the sensor will ignore the true level of water in the tank and produces a reading 

corresponding to the current failure mode of the sensor as depicted by the Petri net structure at 

the right-side in Figure 12.  

A token in either place p1 or p2 in Figure 13 means a controller (e.g., C1) is sending a 

command signal (open or close depending on the operating state of the sensor and the state of 

the controller) to a valve (e.g., V1). In case of controller failure (e.g., C1 failed high, C1FH), 

the controller will ignore the actual command and send a spurious command to the valve based 

on the failure mode of the controller as depicted by the Petri net structure at the right-side in 

Figure 13. Likewise, a token in either place p1 or p2 in Figure 14 means a valve (e.g., V1) is 

in an operating mode (e.g., open or close depending on the operating signal command received 

from the controller and the current mode of the valve. If the valve has failed (e.g. V1 failed 

close, V1FC), the valve will ignore the controller’s actual command, and the valve will 

spuriously switch from the current operating mode to another or remain in the current mode 

depending on the occurred failure mode (i.e., firing of either transition t3 or t4 in Figure 14). 

The Petri net model for the remaining level sensor (S2), controller (C2) and valves (V2 and 

V3) in the water tank system has similar Petri net structures depicted in Figures 12, 13 and 14, 

respectively. Thus, they are omitted from this paper. However, based on the generalised PN 

structure depicted in Figures 12 to 14, the Petri net models for the operational state changes of 

the sensors, controllers and valves in the water tank system comprise of 16 operating state 

places and 40 operating state change transitions. 
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Figure 12. Working and failure operational state change PN models of a sensor 

 

Figure 13. Working and failure operational state change PN models of a controller   

 

  
Figure 14. Working and failure operational state change PN model of a valve  

 

The Flow Propagation PN. Figure 15 shows the generalised PN structure for flow propagation 

e.g., inflow of water through one of the flow propagation components (that is pipelines P1) in 

section 1 of the water tank system. The model is developed by considering the working and the 

failure states of the component and the component states/operational modes of the immediate 

upstream component(s) connected to the component. In this case, places are created to 

represent all possible states of the material flowing through the component (e.g., flow or no 

flow of water). Besides, immediate transitions are created for switching between these places 

depending on the state of the component and/or the state/mode of the immediate upstream 

components connected to each of the immediate transitions. For example, in Figure 15, the 

shared place representing state of a current component (e.g., pipe P1) and the shared place for 

denoting the state of the immediate upstream component (e.g., water in the main supply) 

connected to the current component are connected to transition t1. A token in each of the shared 

places and place p1 will enable transition t1. Thus, when t1 is fired, the status of the current 

component will change from propagation variable state 1 (e.g., no flow) to state 2 (e.g., flow, 
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place p2). The same Petri net structure in Figure 15 and the explained procedure is employed 

for the flow of process variable (water) through the remaining pipes and valves in the water 

tank system. Considering the generalised PN structure depicted in Figure 15, the Petri net 

models for the flow propagation in the water tank system comprises of 18 flow state places and 

27 flow states changes transitions describing flows in the input and output flow sections of the 

water tank system. 

 

 
Figure 15. The flow propagation PN model at a section of a system 

 

Petri Net Models for a System Process Variable (e.g., Tank Level) State Updating and the Section 4 

(Overspill Tray) of the Water Tank System. The first three Petri net modules in Figure 16 depict 

generalised PN models of flow of a process variable (e.g., water) into a monitored process 

system (e.g., flow of water into the tank through the inlet pipe P2: the test place to transition t1 

when transition t2 fired) or out of the system through the auxiliary downstream flow 

propagation components (e.g., flow of water out of the tank through the normal outlet pipe P4: 

the test place to transition t3 and the safety outlet pipe P6: the test place to transition t5 when 

transitions t4 and t7 fired, respectively) connected to flow control components (e.g., valves V1, 

V2 and V3 ). Transition t6 in the third Petri net module in Figure 16 will fire if there is still at 

least one token in the place p2 and there is no more process variable left in the process system 

to flow out of the safety out-flow section of the system. The first three Petri net models in 

Figure 16 are constructed such that the expected amount of a process variable to flow in and 

out of a monitored process system at each time step is first determined (token(s) in places p1, 

p2 and p3) based on the cross-sectional areas of the inlet and the auxiliary outlet flow 

propagation components. For the considered case study system, a unit of water (1 token) based 

on the water flow rate (0.00157075 m3 per 0.25 second) flows into or out of the tank depending 

on whether there is free space in the tank (at least one token in place “Tank portion filled with 

air” from the system process variable state changes PN module) or water is left in the tank (at 

least a token in place “Tank portion with water” from the system process variable state changes 

PN module). However, if deterministic transitions t1, t3, and t5 do not fire at the current time 

step, it means there is no possibility of water flowing via the auxiliary flow propagation 

components (that is in-flow via pipe P2, and out-flows via pipes P4 and P6).  

The Petri net model at the bottom right of Figure 16 models the presence of water in 

the overspill tray as a result of a fault which resulted in an overflow. The transition t8 will fire 

if a process variable is not leaving the monitored process system through the auxiliary out-lets 

flow propagation components (e.g., no out-flow via pipes P4 and P5 of the water tank system 
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when no token is present in both the flow states shared places from the operational state changes 

PN modules of pipes P4 and P5), and the shared place “state of a monitoring component in an 

in-flow section” from the system process variable state updating PN model has a token while 

the system is already filled-up with a process variable (that is a token in a shared place from 

the system process variable state changes PN model denoting the full state of the process 

system). Thus, firing of transition t8 implies that an overflow has occurred, and place p4 will 

store the level of the spilled process variable (e.g., water) contained in the tray underneath the 

tank. With the given generalised PN modules depicted in Figure 16, the Petri net models for 

the system process variable (tank level) state updating and the section 4 (overspill tray) of the 

water tank system comprises of 4 places (3 monitoring water flow state places, and 1 

monitoring overspilled water level place), and 8 transitions (3 deterministic transitions for 

possible flow rates computation, 3 immediate transitions for tank level state updating, 1 

auxiliary immediate transition and 1 immediate transition for the occurrence of overflow). 
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Figure 16. PN models for the process variable state updating and overspill tray 
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Sensor Readings Observation and Fault Detection Petri Net Models. The Petri net module for the 

observation operation is used to reveal the actual condition of sensor reading outcomes at each 

section of the system. To continuously monitor failures in the system, the sensor readings 

observation Petri net modules are executed at every time step. Figure 17 shows an example 

Petri net structure for the observation operation. The time step observation is carried out using 

the loop p1-t1-p2-t2. Transition t1 is a deterministic transition with an observation time interval 

equal to the time step (0.25 s). Following the development of the sensor reading observation 

PN model, the fault detection PN models for the states of the observable monitoring 

components (flow and level sensors) in the system are developed using the generalised PN 

structure in Figure 3 which was described in sub-section formal definition of the GSPN-

mBSPN approach in section 2. In summary, the fault detection Petri net modules for the water 

tank system comprises of 4 evidence places, 36 conditional output places and 12 conditional 

reset transitions (6 each for the system active and dormant operational modes).  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 17. The sensor observation PN model 

 

The Developed Modified BSPN Fault Diagnostic PN Model of the Water Tank System 

The first part of the proposed GSPN-mBSPN fault detection and diagnostic Petri net 

methodology for a dynamic system entails the development of the system’s behavioural model 

(i.e., the GSPN module of the GSPN-mBSPN approach). This has been presented in the first 

sub-section of this section for a simple case study (water tank level control system). The second 

part of the method involves the development of the fault diagnostic model (i.e., the mBSPN 

module of the GSPN-mBSPN approach) for the case study system. The mBSPN model is used 

to obtain the most likely components responsible for the observed faults/abnormalities in the 

operation of the system. All the transitions in the developed mBSPN module are conditional 

probabilistic transitions (CPTs) developed using the generalised structures of the different 

types of CPT transitions described in Figure 4 under the sub-section formal definition of the 

GSPN-mBSPN approach in section 2. The parameters for characterising the CPT transitions in 

the mBSPN module depend on the types of the CPT transitions. The independent CPTs are 

characterised by the prior failure probabilities of the states of system components. On the other 

hand, the parameters for describing the dependent non-observable and observable CPTs are the 

input conditional probability tables (iCPTs). The prior failure probabilities of the independent 

CPTs in all the system sections are depicted in Table 4. The iCPTs for the dependent non-

observable and observable CPTs are determined based on the logic gates (AND, OR and NOT) 

representing the dependency structures of the system operational model. As stated in section 2 

of this paper, the firing rules of the CPT transitions are governed by the selected approximate 

inference algorithms before the model simulation. The total number of conditional probabilistic 

places and CPT transitions in the developed mBSPN module of the water tank system are 85 

and 36, respectively.  

t1 

t2 

p2 

p1 
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Table 4. Prior probabilities of the system mode, components and process variable states 

Component State/Failure Mode Code (Prior Probability) 

Operator State OPP (1.0) OPA (0.0) - - - - 

Main Supply W (0.999) NW (0.001) - - - - 

Pipes P1, P2 … P6 NB (0.9) B (0.1) - - - - 

Sensor S1 and S2 W (0.905) FL (0.0475) FH (0.0475) - - - 

Controller C1 and C2 W (0.8) FL (0.1) FH (0.1) - - - 

Valve V1, V2 and V3 W (0.8) FO (0.1) FC (0.1) - - - 

Tank Level State E (0.0) L (0.0) N (1.0) H (0.0) VH (0.0) F (0.0) 

 

System simulation and fault diagnostic analysis of the water tank system 

To assess the correctness and validity of the GSPN-mBSPN model of the water tank system, 

which aims to facilitate condition monitoring and enable early detection and diagnosis of single 

and multiple component failures, a custom C++ Monte Carlo Simulation (MCS) program was 

created. The GSPN module of the GSPN-mBSPN model simulates system behaviour during 

normal operation and operation during the considered fault scenarios. Based on the description 

of the water tank system’s normal behaviour, the simulation results obtained (water level and 

flow rates) demonstrate the correctness of the GSPN-mBSPN model of the water tank system 

and validate the effectiveness of the developed program in modelling and simulating a GSPN-

mBSPN model of a dynamic system similar to the one described in this paper. The diagnostic 

accuracy of the GSPN-mBSPN approach will be assessed by comparing its results with those 

obtained from the HUGIN software33 when applied to the water tank system model. The 

mBSPN module of the GSPN-mBSPN model of the water tank system diagnoses the cause of 

the faults using the sensor readings (evidence) from the GSPN simulation model describing the 

system operation. Therefore, the effects that the component faults would have on the system 

process variable (water level) and the input-and-output variables (flow) were observed by 

simulating the operation of the water tank level control system under single and multiple 

component failure scenarios using the simulation input parameters depicted in Table 5. The 

fault scenarios were investigated when the system was in the active mode of operation.  

 

Table 5. Simulation parameters   
Parameter Value 

System mode Active 

Required volume of water in the tank 5.0264 m3 

Flow rate at section 1 (VF1) and section 2 (VF2) 0.006283 m3/s 

Flow rate at section 3 (VF3) 0.012566 m3/s 

Simulation duration 100 s 

Timestep 0.25 s 

Number of simulations 30, 000 

Diagnostic inference algorithm Rejection Sampling (RS) and Likelihood 

weighting (LW) inference algorithms (A) 

 

 



28 
 

Simulation and diagnostic results of single component failure scenarios. One of the cases of single 

component failure scenarios is used to test the accuracy of the diagnostic results of the inference 

algorithms: rejection sampling (RSA) and likelihood weighting (LWA) inference algorithms 

implemented in this paper. As depicted in Figure 18, with the system in the ACTIVE mode and 

the initial volume of water inside the tank set to the normal required level, it is expected that 

starting from time t = 0.25 s, there should be flow (F) of water out of the tank in section 2, 

constant flow (CF) of water into the tank at section 1 and no water flow (NF) at section 3 of 

the system since the current level of water in the tank has not reached the safety level. Also, as 

shown in the figure, no water (NW) is inside the TRAY due to overflow, leaking or fracture, 

and the level of water inside the tank remains constant from time t = 0.25 to 60 s.  

However, starting from time t = 60 s, the failure of one of the components in section 1 

of the system, for example, valve V1 failed closed causes no flow in the section, as depicted in 

Figure 18. Consequently, this failure causes the volume of water in the tank to start decreasing 

at time t = 60 s since water is flowing out of the tank via valve V2 at section 2, and no more 

water is entering the tank through valve V1 at section 1.   

 

 
Figure 18. Flow and level sensors measurements when valve V1 failed closed at 60 s 

 

To demonstrate the diagnostic capability of the implemented inference sampling 

algorithms, Figure 19 depicts the average posterior probabilities of the failure state/mode of 

the components in Section 1 of the water tank system that could be responsible for no flow at 

the section when valve V1 failed closed at t = 60 secs using the LWA. Similar trends were 

observed for the RSA and thus omitted in this paper. The diagnostic results were generated 

with an average time of 3 minutes  when the model was simulated 30, 000 times on a Windows 

10 64-bit Intel(R) Core (TM) i3 system with a 3.60 GHz processor and 8.00 GB of RAM. 

Running 30, 000 simulations ensures the accuracy of the results presented in Figure 19 within 

± 5 % precision and 95 % confidence interval (CI) levels, as indicated by the convergence 

graph in Figure 18 for the posterior probability of no water in the main supply, being the 

component with the lowest failure probability (0.001). The 95 % CI for the average  posterior 

probability of no water in the main supply is in the interval [0.0017, 0.0019]. As shown in 

Figure 19, the posterior probabilities of blockage in pipes P1 and P2, valve V1 failed closed, 

and controller C1 failed high are significantly higher than the posterior probabilities of the 

remaining components in the section. The presence of valve V1 failed closed among the list of 

the possible causes of no flow in section 1 of the system shows that the proposed methodology 
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is accurate and could be used to diagnose single component failures with known observable 

effects on the system process variable (water level).  

 

 

 
Figure 19. Timestep posterior probability of section 1 components failure state/modes with 

the no flow observation via section 1 of the system 

 

 
Figure 20. The posterior probability of no water in the main supply over the 30, 000 

simulations  

 

Table 6 summarises the results of the posterior probabilities of all the single component 

failure scenarios tested using LWA. Similar results are also obtained for the case of fault 

diagnosis with the RSA algorithm but are not presented due to brevity. As depicted in the table, 

it could be observed that single component failure scenarios whose effects correlate to the 

expected sensor symptoms at the sections of the system are hidden. Some of these failures 

could only be revealed if the component failure causes the level of water inside the tank to fall 

below or rise above the predefined low, high or very high set points (i.e., <1.5, >1.7 or >1.9 

m), respectively.  
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Table 6. Average posterior probabilities of single component failure scenarios based on 

failure diagnosis using likelihood weighting inference algorithm 
Section Component Inserted Failure  Flow Sensors 

Observation 

Probability Successfully 

Diagnosed? Prior Posterior 

1 Pipe P2 Blocked No flow 0.1 0.1187 Yes 

Valve V1 Failed Closed No flow 0.1 0.1212 Yes 

Failed Opened Flow* 0.1 --- No 

Pipe P1 Blocked No flow 0.1 0.1204 Yes 

Controller C1 Failed High No flow 0.1 0.0327 Yes 

Failed Low Flow* 0.1 --- No 

Sensor S1 Failed High No flow 0.0475 0.0486 Yes 

Failed Low Flow* 0.0475 --- No 

Main Supply MS No Water No flow 0.001 0.0011 Yes 

2 Pipe P4 Blocked No flow 0.1 0.3694 Yes 

Pipe P3 Blocked No flow 0.1 0.3701 Yes 

Valve V2 Failed Closed No flow 0.1 0.3657 Yes 

Failed Opened Flow* 0.1 --- No 

3 Valve V3 Failed Opened Flow 0.1 0.4472 Yes 

Failed Closed No flow* 0.1 --- No 

Controller C2 Failed High Flow 0.1 0.4173 Yes 

Failed Low No flow* 0.1 --- No 

Sensor S2 Failed High Flow 0.0475 0.1889 Yes 

Failed Low No flow* 0.0475 --- No 

Pipe P5 Blocked No flow 0.1 --- No 

Pipe P6 Blocked No flow 0.1 --- No 

*Hidden Failure Cases 

 

Note that in each case there were other components that had an increase in their posterior 

probability, but the failure that was inserted appeared at the top of that list, with the highest 

posterior probability. 

 

Validation of the Fault Diagnostic Capability of the GSPN-mBSPN Model. The fault diagnostic 

capability of the GSPN-mBSPN model was validated using a case involving the absence of 

flow through section 1 of the water tank system. The Bayesian network (BN) graph for the 

entire water tank system was drawn using the HUGIN software. However, only the BN graph 

for section 1 of the tank system is presented in Figure 21 for simplicity. To assess the 

effectiveness of the proposed GSPN-mBSPN method for fault diagnosis, evidence was applied 

to the “FV1_Status” node in the BN graph, indicating a state of “no flow” in section 1 of the 

tank system. The HUGIN software generated posterior probabilities (in percentage) for the 

states of the components in section 1, as revealed on the left-hand side of Figure 21. Although, 

as expected, there is an increase in the states of the posterior probability of the components that  

could be responsible for no flow in the section 1 of the water tank system. However, there are 

some differences in the posterior probabilities of the GSPN-mBSPN simulation output in Table 

6 from the obtained results from the HUGIN software. This can be due to the precision and 
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confidence interval issues of the Monte Carlo Simulation employed in the GSPN-mBSPN 

approach. However, the percentage difference is small, as shown in Table 7. Consequently, it 

can be concluded that the proposed GSPN-BSPN fault detection and diagnostic methodology 

is reliable, and its features hold promise for enhancing fault detection and diagnosis in complex 

systems. 

 

 
Figure 21. The Bayesian Network Graph of Section 1 of the Eater Tank System  

 

 

Table 7. Comparison between the the posterior probabilities of the GSPN-mBSPN model 

and the HUGIN posterior probability results 
Component Name Failure State/Mode GSPN-mBSPN 

Probability 

HUGIN 

Probability 

Absolute % Difference 

Pipe P2 Blocked (B) 0.1187 0.1205 1.49378 

Valve V1 Failed Closed (FC) 0.1212 0.1205 0.00578 

Pipe P1 Blocked 0.1204 0.1205 0.08300 

Controller C1 Failed High 0.0327 0.0327 0.00000 

Sensor S1 Failed High 0.0486 0.0489 0.61300 

Main Supply MS No water 0.0011 0.0012 8.33300 

 

 

Simulation and diagnostic results of multiple components failure scenarios. Several cases of multiple 

components failures in the water tank level control system were tested. However, to 

demonstrate the capability of the proposed methodology for multiple faults diagnosis, ten cases 

of multiple component failures (one component fault from Section 1, 2 and 3) that could cause 

continuous rise in the tank’s water level are taken as examples. Note, all faults occur at the 

same time. For illustration, Figure 22 shows the observed pattern of flow sensors rates and 

volume of water in the tank and overspill tray when sensor S1 failed low and valve V2 failed 

closed starting at time t = 60 secs of the system operating time. The concurrent failure of sensor 

S1 (failed low) and valve V2 (failed closed) at t = 60 secs causes continuous flow and flow 



32 
 

stoppage at sections 1 and 2 of the system, respectively. This is evident from the observed flow 

patterns depicted in Figure 22. Consequently, as shown in the figure, these failures will cause 

the volume of water in the tank to start increasing at time t = 60 secs since water is not flowing 

out of the tank via section 2 and there is a continuous supply of water into the tank at section 1 

of the system.   
 

 

 
Figure 22. Flow and level sensors measurements when sensor S1 failed low and valve V2 

failed closed at 60 s 

 

Table 8 summarises the results of the average posterior probabilities of ten cases of 

multiple components failure scenarios taking as examples to illustrate the capability of the 

proposed Petri net methodology for multiple faults diagnosis. Similar results are also obtained 

for the combination of other possible multiple failure scenarios but are omitted from this paper. 

As depicted in the tables, it could be observed that the average posterior probabilities of the 

components at Sections 1 and 2 of the tank system that could be responsible for the rise in the 

water level in the tank have increased.  

Besides, it was observed that there was not a lot significant difference between the prior 

and the posterior probabilities of the Section 3 components (Pipe P5 blocked) listed among the 

inserted faults in all the cases tested, excluding case 2, where the inserted fault from Section 3 

is Sensor S2 failed low which also follow a similar pattern as in the other instances where pipe 

P1 is blocked. This is because this section only starts its functional operation if there has been 

a failure (s) that has caused the level of water in the tank to rise above the very high set-point 

which will occur from time t = 210 secs based on the simulation input parameters assumed in 

this study. However, if any of the components in section 3 have failed, it is expected that the 

average posterior probabilities of the failed component (e.g., pipe P5 blocked in this case) will 

significantly increase. The little changes in the prior and the posterior probabilities of pipe P3 

blocked in the example cases listed in Table 8 showed the capability of the proposed Petri net-

based fault diagnostic methodology for computing marginal probabilities of system variables 

in a dynamic system with some unrevealed faults.  
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Table 8. Average posterior probabilities of multiple component failure scenarios based on 

failure diagnosis using likelihood weighting inference algorithm  
Case Component Inserted Failure  Flow Sensors 

Observation 

Probability Successfully 

Diagnosed? Prior Posterior 

1 Pipe P3 Blocked No flow 0.1 0.3533 Yes 

 Pipe P5 Blocked No flow 0.1 0.0667 No 

 Sensor S1 Failed Low Flow 0.0475 0.06 Yes 

2 Pipe P3 Blocked No flow 0.1 0.3280 Yes 

 Sensor S1 Failed Low Flow 0.0475 0.0720 Yes 

 Sensor S2 Failed Low No flow 0.0475 0.0160 No 

3 Valve V2 Failed Closed No flow 0.1 0.3219 Yes 

 Pipe P5 Blocked No flow 0.1 0.1164 Yes 

 Sensor S1 Failed Low Flow 0.0475 0.0616 Yes 

4 Sensor S1 Failed Low Flow 0.0475 0.0647 Yes 

 Pipe P4 Blocked No flow 0.1 0.3453 Yes 

 Pipe P5 Blocked No flow 0.1 0.1511 Yes 

5 Pipe P3 Blocked No flow 0.1 0.2991 Yes 

 Controller C1 Failed Low Flow 0.1 0.1251 Yes 

 Pipe P5 Blocked No flow 0.1 0.1022 Yes 

6 Valve V2 Failed Closed No flow 0.1 0.4412 Yes 

 Controller C1 Failed Low Flow 0.1 0.1471 Yes 

 Pipe P5 Blocked No flow 0.1 0.0588 No 

7 Pipe P4 Blocked No flow 0.1 0.3553 Yes 

 Pipe P5 Blocked No flow 0.1 0.1118 Yes 

 Controller C1 Failed Low Flow 0.1 0.1053 Yes 

8 Pipe P3 Blocked No flow 0.1 0.2993 Yes 

 Valve V1 Failed Opened Flow 0.1 0.1250 Yes 

 Pipe P5 Blocked No flow 0.1 0.1022 Yes 

9 Valve V2 Failed Closed No flow 0.1 0.4012 Yes 

 Valve V1 Failed Opened Flow 0.1 0.1250 Yes 

 Pipe P5 Blocked No flow 0.1 0.1111 Yes 

10 Valve V2 Failed Closed No flow 0.1 0.3412 Yes 

 Valve V1 Failed Opened Flow 0.1 0.1250 Yes 

 Pipe P5 Blocked No flow 0.1 0.0688 No 
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Conclusion 

This paper proposes a condition monitoring, early fault detection and diagnostic Petri net 

methodology for diagnosing single and multiple faults in a dynamic system using a water tank 

level control system as a case study. The method was based on integrating Generalised and 

modified Bayesian Stochastic Petri Nets (GSPN-mBSPN) formalisms. First, a model 

describing the operational behaviour of the system was constructed using GSPN formalism. 

Then, a diagnostic model was constructed for the water tank system using a modified BSPN 

approach proposed in this paper. The GSPN and the mBSPN models were then integrated to 

aid real-time detection and diagnosis of faults in the system. This was achieved using newly 

proposed Petri net modelling features such as conditional reset and probabilistic transitions. 

The obtained posterior probabilities of the root causes of system failure scenarios showed the 

effectiveness and accuracy of using the proposed integrated Petri net methodology for single 

and multiple faults diagnosis in the considered water tank level control system. Due to the 

limited number of monitoring sensors and the points where they were deployed on the case 

study system, the proposed method fails to detect some cases of hidden faults. Thus, future 

research aims to improve the approach used for fault detection in the proposed methodology. 

Furthermore, additional component failures could also be considered, such as tank rupture and 

leakages at different tank levels. The methodology could be further enhanced by automatically 

generating the conditional probability tables required in the fault diagnostic model through the 

system simulation model. 
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