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Abstract

The Elementary Effects method is a global sensitivity analysis approach for identifying (un)

important parameters in a model. However, it has almost exclusively been used where

inputs are dimensionless and take values on [0, 1]. Here, we consider models with dimen-

sional inputs, inputs taking values on arbitrary intervals or discrete inputs. In such cases

scaling effects by a function of the input range is essential for correct ranking results. We

propose two alternative dimensionless sensitivity indices by normalizing the scaled mean or

median of absolute effects. Testing these indices with 9 trajectory generation methods on 4

test functions (including the Penman-Monteith equation for evapotranspiration) reveals that:

i) scaled elementary effects are necessary to obtain correct parameter importance rankings;

ii) small step-size methods typically produce more accurate rankings; iii) it is beneficial to

compute and compare both sensitivity indices; and iv) spread and discrepancy of the simu-

lation points are poor proxies for trajectory generation method performance.

1 Introduction

Models in the biological and environmental sciences typically have many parameters [1–3].

Calibration of these often requires empirical data, which can be costly or simply impossible to

obtain (see [1] and the references therein). However, often only a small subset of parameters

have a significant influence on a specific system output [4, 5]. As such, it can be beneficial for

model development to identify unimportant parameters, so they can be set to a fixed value.

Efforts can then be concentrated on accurately estimating the most important factors. This can

greatly decrease dimensionality of the model parameter space, while increasing trust in the

model. Sensitivity analysis (SA), the study of how uncertainty in the model output can be

attributed to the different sources of uncertainty in the model inputs, is a common tool for this

[2, 6].

But what is sensitivity exactly? In a local context an unambiguous definition is readily avail-

able for continuous deterministic models in terms of partial derivatives: given an output y
dependent on inputs x1, . . ., xn, the local sensitivity of y to an input xi at a point x? in the
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parameter space is given by

si ¼
@y
@xi

�
�
�
�

x∗
; ð1Þ

supposing y is differentiable at x?. Here, si is also known as the sensitivity coefficient, and char-

acterizes the independent effect of xi, when all other inputs are held constant. If the inputs and

outputs are dimensional, the sensitivity coefficient tends to be scaled in one of two ways [1, 7,

8]. Multiplying by a ratio of reference values x0
i =y0 yields a relative sensitivity index. This index

is normalized and enables comparisons between factors with different units or values at differ-

ent orders of magnitude, but it fails to account for the variability in the input and output [1].

Alternatively, multiplying by the ratio of standard deviations σx/σy gives a variance sensitivity

index, but this approach requires information about the spread of each input and output.

Local interaction effects are typically defined in a similar way to first-order local sensitivity, by

considering mixed higher order partial derivatives. In general, interaction effects can be

defined at different scales, and no single method or scale is capable of fully characterizing

interactions in numerical simulators [9].

One-at-a-time (OAT) methods, changing one parameter at a time from a fixed base point

and assessing the effect on the model output, are commonly used local sensitivity analysis tech-

niques. This assessment may be by use of (discretized) derivatives (i.e. Eq (1)), or might simply

involve visual inspection of the model outputs [6]. Although OAT methods are still popular, it

has been suggested that local SA methods may only prove informative in very specific situa-

tions (e.g. inverse problems, or approximating a model output in a small region of output

space) [10]. In general, OAT is therefore not recommended for rigorous SA; global sensitivity

analysis methods (GSA) should be used instead [10, 11].

A variety of approaches have been proposed for GSA, leading to different notions of

(global) sensitivity [2, 12]. Sensitivity is often described as the influence of a parameter on a
model output (see e.g. [13]), but the precise form of ‘influence’ is not always stated. The ‘cor-

rect’ notion may vary on a case-to-case basis, depending on the specific goal one wants to

achieve. For example, consider the simple output Y = X1 + X2, where X1 takes values in [0, 10]

and X2 in [100, 101] uniformly. X2 contributes most to the mean magnitude of the output

Y (= 5 + 100.5), so it could be argued this parameter is most important. Alternatively, X1, hav-

ing a larger range, has the most significant contribution to the variability in the output (vari-

ance of Y ¼ 1

12
ð102 þ 12Þ). In this work the following notion of global sensitivity is

considered, which is the prevalent one in GSA: the sensitivity of output Yj to input parameter
Xi is the relative contribution of the variability in the input parameter to the variance of the out-
put. The (finite) range of an input is used here as input variability. Other notions of input and

output variability can be used, e.g. mean, standard deviation or interquartile range.

Although SA typically considers continuous inputs, inputs may also be discrete. For exam-

ple, one may have integer-valued inputs representing different scenarios. Sensitivity for models

with categorical (i.e. discrete) input variables has been considered for some approaches, such

as variance-based SA [14, 15]. For a detailed treatise of GSA, including methods that take the

complete distribution of the output into account, we refer to [1–4, 11, 16, 17] and the refer-

ences contained therein.

Here we focus on the Elementary Effects method (EE) [18], a qualitative screening method

for (un)important parameters, where the space of model outputs is characterized by a relatively

low number of strategically placed simulation points. From these points, finite differences

(called Elementary Effects) can be calculated as a measure of how the output changes when one

input changes. Finally, by aggregating these effects for each combination of input and output,
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measures of (global) sensitivity of the outputs for the inputs are obtained. EE is also capable of

detecting non-linearity or interaction effects.

As far as we are aware, descriptions of the Elementary Effects method (see e.g. [18–26])

assume models are dimensionless with inputs taking real values on the unit interval. However,

it is commonplace in practice (and in many environmental models) for models to have dimen-

sional outputs, and for inputs to take values on arbitrary intervals or of different types (real,

integer or Boolean). We therefore discuss the necessary changes to make EE applicable to gen-

eral models (Sec. 2, 3), whilst reviewing popular and recent improvements to EE. In particular,

necessary and sufficient scalings of the elementary effects to prevent erroneous rankings are

discussed, and two versions of a scaled dimensionless sensitivity measure are introduced (Sec.

4). In addition, we investigate through numerical experiments what trajectory generation

method and sensitivity measure are generally best for EE, and consider to what extent spread

and discrepancy of the set of simulation points can be used as proxies for trajectory generation

method performance (Sec. 5).

2 Elementary effects method

2.1 Original formulation (extended to general models)

Let Xi, i = 1, . . ., k be dimensional input parameters with units [Xi], taking values in [mini,

maxi] uniformly. If the parameter can only take integer values, it takes values in the set {mini,

mini + 1, . . ., maxi}. The same holds for Boolean parameters, but then mini = 0 and maxi = 1,

where 0 encodes false and 1 stands for true. xi denotes the dimensionless equivalent scaled to

the unit interval, i.e.

xi ¼
Xi � mini

maxi � mini
; ð2Þ

henceforth referred to as scaled dimensionless parameters. The assumption of uniformly dis-

tributed inputs can be relaxed to include arbitrary distributions. Scaling the sampled parame-

ter values from [0, 1] to the [mini, maxi]-interval should then be done using the corresponding

inverse cumulative density function (CDF). The dimensional outputs of interest are denoted

by Yj, j = 1, . . ., q with corresponding unit [Yj].

The parameter points used for the analysis are sampled from a regular discrete subset of the

complete scaled dimensionless parameter space (typically called O� [0, 1]k) containing pi reg-

ularly spaced points in the xi-direction, and are then transformed to the actual parameter

space. pi is also called the number of levels for parameter xi. The scaled dimensionless parame-

ter xi thus takes values in the set

xi 2
j

pi � 1
: j ¼ 0; 1; . . . ; pi � 1

� �

; ð3Þ

see Fig 1, while (using Eq (2)) the actual parameter value is an element of

Xi 2 mini þ
jðmaxi � miniÞ

pi � 1
: j ¼ 0; 1; . . . ; pi � 1

� �

: ð4Þ

This formulation restricts the choice of parameter bounds and number of levels for Boolean

and integer parameters; for the former one must set pi = 2, while for the latter, the following
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relation must be satisfied to ensure integer parameter values:

maxi � mini ¼ mðpi � 1Þ; for some m 2 N: ð5Þ

If a parameter xi takes values on the unit interval, an elementary effect of xi on an output Yj

is given by the finite difference

een
ij ¼

Yjðx1; . . . ; xi� 1; xi þ di; xiþ1; . . . ; xkÞ � YjðxÞ
di

; ð6Þ

where x = (x1, . . ., xk). Here, the superscript n is an index to distinguish different x, to empha-

size that the elementary effect can be calculated at numerous points in the parameter space. δi

is a predetermined value in the set {±1/(pi − 1), ±2/(pi − 1), . . ., ±1} such that xi + δi still lies in

[0, 1] (see S1 Appendix in S1 File). Morris [18] argues the optimal value for the step size |δi| is

pi/[2(pi − 1)], where pi is chosen to be even. This ensures equal sampling probabilities for all

discrete parameter values, as shown in Fig 1. Note that this may necessitate the use of parame-

ter-dependent values of δ and p; for Boolean parameters, one must choose pi = 2, δi = 1, but for

real and integer inputs a higher number of levels (hence δi 6¼ 1) is typically preferred. In some

cases, e.g. for an integer input parameter xi with mini = 1 and maxi = 3, Eq (5) shows it is not

possible to use the optimal value for δ as pi must be odd. To our knowledge, the current litera-

ture assumes a fixed (even) value of p and the optimal value for δ for all parameters.

Fig 1. Schematic representation of parameter sampling probabilities for a parameter xi on [0, 1] with pi = 4 levels.

The starting point of an arrow (circle) represents a sampled parameter value, the end point (triangle) represents the

perturbed value. Together they lead to an Elementary Effect (e.g. Eq (7)). Equal sampling probability means that each

discrete parameter value has an equal number of incoming arrows (indicated in red). Above: optimal choice for the

step size |δi| = pi/[2(pi − 1)] = 2/3 leads to equal sampling probabilities. Below: non-optimal choice for |δi| leads to a

higher probability of sampling interior points.

https://doi.org/10.1371/journal.pone.0293344.g001

PLOS ONE Elementary effects for models with dimensional inputs of arbitrary type and range

PLOS ONE | https://doi.org/10.1371/journal.pone.0293344 October 25, 2023 4 / 35

https://doi.org/10.1371/journal.pone.0293344.g001
https://doi.org/10.1371/journal.pone.0293344


For dimensional inputs and arbitrary input ranges we introduce the following generalized

form of the elementary effect:

EEn
ij ¼

YjðX1; . . . ;Xi� 1;Xi þ Di;Xiþ1; . . . ;XkÞ � YjðxÞ
Di

: ð7Þ

Here Δi = (maxi − mini)δi. The effect EEn
ij given by Eq (7) is dimensional with units

½EEn
ij� ¼ ½Yj�=½Xi�.

Note that the dimension of Δi is equal to the dimension of Xi. Hence, even if all pi’s and all

input parameter ranges are equal, thereby equalizing the magnitude of each Δi, one should still

refrain from dropping the index, because the units of the Δi’s might be different.

The total number of elementary effects associated with input Xi (and output Yj) is equal

to the number of parameter points for which xi� 1 − |δi|. Those are the points for which an

increase by |δi|, the other point needed for the calculation of an effect, still lies in the param-

eter space (see Fig 1). There are pi − |δi|(pi − 1) discrete values that xi may take that fulfil

xi� 1 − |δi| (all values except those larger than |δi|) and
Y

j ¼ 1; . . . ; k
j 6¼ i

pj

ð8Þ

combinations for the other parameter values, so the total number of elementary effects for

input Xi is equal to

ðpi � jdijðpi � 1ÞÞ
Y

j ¼ 1; . . . ; k
j 6¼ i

pj:

ð9Þ

This result reduces to the one in [18] (pk−1[p − |δ|(p − 1)]) if all the pi’s and δi’s are equal.

The goal in the original formulation is to estimate the distributions of these effects for each

combination of input and output. Following Morris [18], these distributions are denoted by

Fij, where the first index depicts the input and the second the output. If there is only one out-

put under consideration, we simply write Fi. It is generally not feasible (nor desirable) to cal-

culate every possible effect; for k = 50 input parameters and p = 4 and δ = 2/3 for each input,

this would amount to *1029 simulations (Eq (9)). Instead, the goal is to generate a small set

of Q = r(k + 1) simulation points, typically Q * 1000, that still provide good coverage of the

parameter space. Each Fij is then characterized by its sample mean and sample standard

deviation over r effects [18] (see Sec. 3 for more detail).

2.2 Trajectory generation using an optimized winding stairs design and

fixed step sizes

The most naive way of sampling a set of r effects for each of the k inputs would be to randomly

sample r base points in O. Since the calculation of each effect requires two output values, this

would require a total number of 2rk simulations. However, by generating trajectories in

parameter space (Figs 2 and 3) and using each point (except for the start and end) for the cal-

culation of not one, but two effects, the number of required simulations decreases to r(k + 1).

This approach is an example of a ‘winding stairs’ design (Fig 2). Alternatively, one can use a

‘radial design’ (Fig 4), leading to star-shaped trajectories in parameter space (described further

in Section 2.3).
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The following is an adaptation of the description by Morris [18]; notation differs slightly,

and we account for allowing parameter-dependent step sizes δi. All calculations in this section

are done on O, the discrete unit hypercube, using the scaled dimensionless quantities (xi, δi,

etc.). After a trajectory is generated on O, one simply transforms it to the actual parameter

space using Eq (2). A winding stairs trajectory is a semi-random walk through O which has the

following properties:

• there is exactly one value change in each dimension;

• the value in dimension i changes from xi to xi + δi or vice versa, with equal probability;

Fig 2. Realisation of trajectories in a winding stairs design with (red) and without (green) random column

permutations. Here, k = 3 and we set p = 4 and δ = 2/3 for all parameters. Effects are calculated using both endpoints

of the arrows, as indicated in green. a) Trajectories in the discrete unit hyperspaceO. Green is without column

permutation, red is with column permutation. b) Trajectory (with column permutation) in the actual parameter space.

X1, X2 and X3 take values in [0, 4/3], [1/3, 1] and [0, 1], respectively.

https://doi.org/10.1371/journal.pone.0293344.g002
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• the order in which dimension steps are taken is semi-random. Starting with the order

sequence [x1, x2, . . ., xk] (meaning the first step is in the x1-direction, the second in the x2-

direction, and so forth), all elements are randomly permuted, but only with other elements

that have the same corresponding δi and pi. For example, if we have 3 input parameters,

where δ1 = δ2 6¼ δ3 and p1 = p2 6¼ p3, there are two (2!) possible sequence orders: [x1, x2, x3]

and [x2, x1, x3].

Fig 3. Example of an optimal set of trajectories for k = 2,r = 4, p = 4 and |δ| = 2/3 for both parameters.

https://doi.org/10.1371/journal.pone.0293344.g003

Fig 4. Radial design sample in the unit cube with k = 3 parameters.

https://doi.org/10.1371/journal.pone.0293344.g004
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A winding stairs trajectory Tn can be fully characterized by the matrix B?

n, given by:

B?

n ¼ Jkþ1;1xinit þ
1

2
B0Dþ Jkþ1;k

� �
diagðjδjÞ

� �

P: ð10Þ

Row j represents the j-th scaled dimensionless parameter point in the trajectory, while col-

umn i refers to the value of scaled dimensionless parameter xi. Jn,m is the n × m matrix of ones,

diag(|δ|) is the k × k diagonal matrix containing the (scaled dimensionless) step sizes |δi| and P

is a k × k random column permutation matrix in which columns i and j may be permuted only

if the corresponding parameters have the same number of levels, i.e. if pi = pj. D is a k × k diag-

onal matrix where each diagonal element is either +1 or -1 with equal probability. xinit is a 1×k
row vector containing an initial scaled dimensionless parameter point, randomly sampled

from the restricted subset of O denoted by {0, 1/(pi − 1), . . ., 1 − |δi|}
k (to ensure that xi + |δi|

still lies in the unit interval), where the power denotes a Cartesian product. Finally, the (k + 1)

× k matrix B0 is given by

B0 ¼

� 1 � 1 � 1 � � � � 1

1 � 1 � 1 � � � � 1

1 1 � 1 � � � � 1

1 1 1 . .
.

� 1

..

. ..
. ..

. . .
.

� 1

1 1 1 � � � 1

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

: ð11Þ

Note that 1

2
½B0Dþ Jkþ1;k�diagðjδjÞ is a (k + 1) × k matrix where column i is given by either

j±ij
...
j±ij
0
...
0

9=
; i times

or

0
...
0
j±ij
...
j±ij

i times

&
777777774

9=
;

(12)

with equal probability and independent of the other columns, i.e. if we ignore the random per-

mutation matrix P, the value of scaled dimensionless parameter i would either start at xinit,i or

xinit,i + |δi|, change to xinit,i + |δi| or xinit,i after the i-th step in the trajectory, respectively, and

then remain the same in the rest of the steps. Thus, the permutation matrix randomly changes

the sequence of parameter steps. Fig 2 depicts two trajectories, without and with random col-

umn permutations. Multiple trajectories can be put in matrix form by simply concatenating

the r B?

n-matrices:

~B ¼

B?

1

B?

2

..

.

B?

r

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: ð13Þ

The question now is how to create a good coverage of the parameter space with a relatively

low number of trajectories. Campolongo et al. [19] introduced a simple but effective strategy
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called ‘optimized trajectories’, (OT) which is described here, as it is commonly used: M random

trajectories are generated, typically M� 1000, and the subset of size r�M with the largest dis-

persion in the input space is selected. Typically, r ranges between 4–20 (likely due to historical

computational limitations), although recent papers [27, 28] indicate it might be worthwhile to

increase this number at the expense of additional runtime. The notion of spread of a set of tra-

jectories is defined via the following measure of distance between two trajectories:

dml ¼

Xkþ1

i¼1

Xkþ1

j¼1

kxm
i � xl

jk2; for m 6¼ l;

0 otherwise;

8
><

>:
ð14Þ

where xm
i denotes the i-th point of the m-th trajectory, i.e. dml is the sum of the geometric dis-

tances between all the couples of points of two trajectories [19]. The optimal set of trajectories

is then found using a brute force approach, by considering the measure of spread given by

Dk1...kr
¼

Xr

i; j ¼ 0

i 6¼ j

d2

kikj
ð15Þ

for all combinations of r trajectories out of M, denoted by the vector of trajectory indices (k1,

. . ., kr), where ki 2 {1, . . ., M} and k1 < . . .< kr. Campolongo et al. [19] use the square root of

this quantity, but that does not affect the location of the maximum. Finally the set of r trajecto-

ries with the highest value of Dk1...kr
is selected. We simply call this maximal value D in what fol-

lows, i.e.,

D ¼ max½Dk1...kr
; fk1; . . . ; krg � f1; . . . ;Mg�: ð16Þ

Fig 3 depicts a realisation of the optimized trajectories approach containing r = 4 trajecto-

ries for k = 2 scaled dimensionless parameters with p = 4 levels. This process is computationally

taxing, since it involves calculating r
2

� �
distance measures dml and the spread Dk1...kr

M
r

� �
times.

Especially the latter figure quickly becomes prohibitively large; for M = 1000 and r = 25,
1000

25

� �
� 1049 values of Dk1...kr

need to be calculated. Little computer memory is needed, since

only the maximum value D thus far and the new value of Dk1...kr
need to be stored, and optimal

sets of trajectories can be generated beforehand and independently of the actual model simula-

tions. Nevertheless, the brute force approach is not feasible in practice. Khare et al. [21],

although they use the tag ‘OT’, actually employ a different method, which we call Efficient

Optimized Trajectories (EOT): for each of M initially generated trajectories, generate a set of r
trajectories by successively adding those with the highest spread w.r.t. to those already in the

set. This leads to M sets of r trajectories from which the set with the highest total spread is

selected. In algorithmic terms:
EOT:
Step 1: Generate M trajectories {T1, . . ., TM}
Step 2: for i = 1 to M

Set Si
1
¼ Ti;

for j = 2 to r
Si
j ¼ Tk, where k ¼ argmaxn¼1;:::;MðDðS

i
1
; :::;Si

j� 1
;TnÞÞ;

end
Save spread Di ¼ DðSi

1
; :::;SirÞ.

end
Step 3: Pick the set of trajectories fSi

1
; :::;Sirg with the highest spread

Di.
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This produces a local spread maximum, which may be less than the global maximum, but

greatly reduces computational cost; see Table 1. With this approach, we were able to replicate

the computation times reported in Fig 3 of [21]. While none of the well-known papers (such as

[19, 29]) explicitly mention this more efficient algorithm, it is likely that most papers have in

fact employed EOT instead of the brute force OT approach (Ruano et al. [20] being the excep-

tion). We employ EOT in this study.

In (E)OT, the trajectory starting points are sampled randomly. Selecting these points

through Latin Hypercube Sampling (LHS) or a quasi-random (QR) sequence should increase

the spread and coverage of the r selected trajectories. However, exploratory numerical experi-

ments (not shown here) showed no significant change compared to a random sample (see also

[19]). Apparently, the benefits of generating a large pool of M trajectories outweigh those of

LHS or QR sampling.

2.3 Trajectory generation using a radial design and a QR-sequence

(extended to general models)

A popular alternative to generating trajectories in a ‘winding stairs’ approach is to use a radial

design [30]. The key difference is that in a radial design steps are taken from the same base

point (Table 2). This approach is essentially r OAT-designs with different base points. Each

point unequal to the base point differs in exactly one (unique) coordinate from the base point

(Fig 4). An important difference between the radial design as described here and in e.g. [29,

30] and the standard winding approach for EE ((E)OT) is that the former no longer makes use

of fixed step sizes |δi|. Instead, a step size may take any value in (0, xi] (step to the left) or

(0, 1 − xi] (step to the right), and step sizes in the same direction may differ in magnitude for

Table 2. Radial sampling design versus winding stairs sampling design without random column permutations. k
inputs are considered here, resulting in k + 1 points in parameter space. The base point is given by (a1, a2, . . ., ak). In

OT the ai are elements from a discrete set and bi = ai ± |δi|, whereas in the radial design (as in [30]) ai and bi can take

any value in [0, 1]. Table adapted from [30].

Radial Point Winding

a1, a2, a3, . . ., ak x1 a1, a2, a3, . . ., ak

b1, a2, a3, . . ., ak x2 b1, a2, a3, . . ., ak

a1, b2, a3, . . ., ak x3 b1, b2, a3, . . ., ak

a1, a2, b3, . . ., ak x4 b1, b2, b3, . . ., ak

. . . . . . . . .

a1, a2, a3, . . ., bk xk+ 1 b1, b2, b3, . . ., bk

https://doi.org/10.1371/journal.pone.0293344.t002

Table 1. Runtime for generating the set of trajectories for different combinations of k (number of parameters)

and r (number of trajectories). †: M = 200 trajectories. *: initial pool of M = 500 trajectories. ‘n/a’: these take many

weeks to complete (extrapolated from the k = 10, r = 4 case) and are thus not shown. ‘Standard’ Sobol Radial is repre-

sentative for all QR-based approaches as listed in Section 5. All computations were done on a HP Zbook Studio G4

computer.

Runtime (seconds)

k r OT† EOT† EOT* ‘Std’ Sob. rad.

10 4 14 2.9 11 <0.001

20 8 n/a 5.5 25 0.001

50 20 n/a 21 165 0.002

100 40 n/a 91 1130 0.006

https://doi.org/10.1371/journal.pone.0293344.t001
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different base points. As such, the number of levels pi are obsolete in this method. The steps δi

(now a function of the specific trajectory) are not predefined, but calculated a posteriori.

To ensure a uniform distribution of the r base points in the parameter space, a quasi-ran-

dom (QR) or low-discrepancy sequence is typically used; see e.g. [29, 30] for examples in radial

EE, and [31, 32] and Section 5.1 for more on QR sequences in general. QR sequences are

designed to produce point sets that cover a space both efficiently (i.e. with a low amount of

points) and evenly (i.e. approximating a uniform distribution).

Sobol sequences are the most popular choice of QR sequence. These sequences use polyno-

mials over the field Z2 to form successively finer uniform partitions of the unit interval and

then reorder the coordinates in each dimension. To initialize the algorithm, a set of so-called

direction numbers is required; we use those provided by Joe and Kuo [33]. The built-in func-

tion SobolSequenceGenerator in the Apache Commons Math 3.6.1 Java library is used to gen-

erate QR vectors. We do not give a detailed description here, but refer to [33–35], Chapter 5,

for details.

We also consider the recently presented Rd sequences [36], which may have more favour-

able properties of rapid and uniform coverage [36, 37]. As far as we are aware, this sequence

has not been used in GSA so far. The Rd sequence in k dimensions fzngn2Nþ
is simply given by

zn ¼ a0 þ nα mod 1; n ¼ 1; 2; 3; . . . ; ð17Þ

where α0 is a fixed offset (1

2
in this work) and

α ¼
1

�k
;

1

�
2

k

; . . . ;
1

�
k
k

 !

;

in which ϕk is the unique positive root of the generalized golden ratio equation

xkþ1 ¼ xþ 1:

For numerical purposes, ϕk can either be estimated through Newton iteration, or by trun-

cating the identity

�k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ . . .

kþ1
pkþ1

q
kþ1

r
kþ1

s

:

The QR sequence of choice is used to generate a set of r base points (as r × k matrix A) and

a set of r perturbation vectors (r × k matrix B). In principle, there are two ways of filling the

matrices A and B. One can generate a r × 2k-matrix, where each row is an element of a 2k-

dimensional QR sequence, and subsequently set A to be the left half of the matrix and B the

right half. This is the correct approach, and is used in [29, 30] and in this work. Alternatively,

one can generate a 2r × k-matrix by concatenating 2r elements of a k-dimensional QR

sequence, and use the top half for A and the bottom half for B. However, we found that this

leads to erratic and non-converging behavior (errors in preliminary tests (not shown here) did

not decrease with increasing r), so this approach should be avoided. It is not exactly clear why

this happens, but it is likely to be related to the fact that subsequent points in a QR sequence

(hence, subsequent rows in A and B) are dependent. In the case of Sobol QR, Campolongo

et al. [29] note it might be worthwhile to use a shifted perturbation vector, i.e. to generate a
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(r + q) × 2k-matrix, and match base point Ai (i = 1, . . ., r) with perturbation vector Bi+q, i.e.,

A1 B1

...
...

A1+q B1+q

...
...

Ar+q Br+q

0
BBBBBBBBBB@

1
CCCCCCCCCCA

.

In particular q = 4 is reported to give “good results” [29], which is adopted in this work.

Nevertheless, in Sobol QR it may happen that one of the elements of the perturbation vector

coincides with its base point counterpart, i.e. Aij = Bi+q,j for some j = 1, . . ., k. The row vector

[Ai+q, Bi+q] is discarded and regenerated when this happens.

For integer and Boolean inputs, arbitrary step sizes are not allowed, since they may lead to

non-integer/Boolean sampling points (Eq (5)). To ensure allowable base points, we propose

using the number of levels pi and step size |δi| from the OT approach to pin the base point

coordinates for integer/Boolean inputs to a discrete value as in Eq (3) and then use corre-

sponding step size |δi|. That is, given a base coordinate xi in [0, 1] generated by a QR sequence,

we transform the coordinate to a discrete value ~xi by:

~xi ¼
1 if xi ¼ 1;

bpixic

pi � 1
else:

(

ð18Þ

While this quantity is not necessarily integer/Boolean, the coordinate in the actual parame-

ter space is (using Eq (5)):

Xi ¼ ðmaxi � miniÞ~xi þmini

¼ nðpi � 1Þ~xi þmini

¼
maxi if xi ¼ 1;

nbpixic þmini else;

(

for some n 2 N, which is an integer/Boolean. Pinning the perturbed coordinate does not

work, because there is a high probability (1/pi) the pinned perturbed coordinate will coincide

with the base point coordinate (leading to a step size of 0 and an undefined elementary effect

in that direction). For example, if p = 4 the base coordinate xi = 0.3 will be pinned to ~xi ¼ 1=3,

but any perturbed coordinate in [1/4, 1/2] will be pinned to this same value. Therefore, we step

with fixed step size |δi| (or |Δi|) (in the direction that keeps the perturbed point in the parame-

ter space).

To distinguish the sampling strategies described here when testing them in Section 5, we

refer to the radial design where all points are generated with a Sobol QR sequence by ‘standard’
Sobol radial and the equivalent using an Rd QR sequence by ‘standard’ Rd radial. Correspond-

ing winding designs are indicated by the postfix winding instead of radial:‘standard’ Sobol
winding and ‘standard’ Rd winding. Moreover, as a computationally efficient alternative to

EOT (see Table 1), one could use QR sequences to generate the base points, and then trans-

form them regardless of type (real, integer, Boolean) to a discrete value as in (3) (for a given

chosen pi) and step with fixed step size |δi| in a radial or winding design, as described above.

These approaches are denoted by the prefix ‘pinned’ instead of ‘standard’.
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2.4 Alternative approaches to trajectory generation

To further address the computational expense of the combinatorial optimization problem in

Campolongo’s optimal trajectory strategy [19], to enhance uniform coverage of the parameter

space and to further increase accuracy in sensitivity rankings, a number of alternative sampling

designs have been proposed, discussed here for completeness.

Ruano et al.’s modified optimal trajectories scheme (MOT) [20] checks only a subset of all

possible trajectory sets, leading to a considerable reduction of computation time (compared to

OT and EOT) but at the cost of deteriorating parameter space coverage (compared to both OT

and EOT) [21]. Khare et al. [21] introduce Sampling for Uniformity (SU), which aims to gen-

erate simulation points that are close to the asserted input parameter distributions, whilst also

maximizing trajectory spread. SU outperforms EOT and MOT in some benchmark tests on

computation time, uniformity and screening effectiveness, but scores lower on maximizing

trajectory spread. Khare et al. [21] also list a number of older approaches. For a number of

recent approaches (including cluster sampling), the reader is referred to [26, 38–41] and the

references therein.

3 Sensitivity measures

In the original formulation, each distribution of effects Fij (as presented in Sec. 2) is character-

ized by its sample mean and sample standard deviation over r effects [18]:

mij ¼
1

r

Xr

n¼1

EEn
ij; ð19Þ

sij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r � 1

Xr

n¼1

ðEEn
ij � mijÞ

2

s

: ð20Þ

A large magnitude of the mean μij indicates a great influence of input Xi on output Yj, while

a large standard deviation σij indicates substantial interaction terms and/or non-linearity are

present in output Yj. While this may not provide a full characterisation of the distribution (e.g.

if it is not symmetric), the typical low number of observations (r * 6 − 20) [19–21] generally

prohibits more detailed specification. Campolongo et al. [19] proposed to also consider the

mean of the absolute effects, m?ij to filter out potential cancelling of terms:

m?ij ¼
1

r

Xr

n¼1

jEEn
ijj: ð21Þ

This measure has become one of the most prevalent, and is used in one of our new measures

(Sec. 4.4).

In recent years, a number of alternative sensitivity measures or ways to aggregate effects

have been proposed. These aim to provide more stable results (i.e. fewer changes in parameter

importance ranking as the number of trajectories (r) is varied), allow for different interpreta-

tions of the effects, or produce results that better align with the notion of sensitivity. Menberg

et al. [28] obtained more stable ranking results by using the median value of the absolute

effects, χij, instead of the mean (Eq (21)). The idea is that this measure is less sensitive to outli-

ers (or a lack thereof) if the effects have a skewed and/or long-tailed distribution, since the

number of effects per input parameter in EE is typically low [19–21]. Saltelli et al. [11] argue

that one should always take the scaled dimensionless step size δi (2 [0, 1]) instead of the actual

step size Δi (2 [mini, maxi]) to calculate elementary effects (reiterated in 2018 by Feng et al.
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[42]). This amounts to a multiplication of the effect in Eq (7) by maxi − mini. A more detailed

treatise of effect scaling is given in Section 4. To remove output scale effects, Wang et al. [43]

introduce the normalized absolute effect for dimensionless parameters

Pn
ij ¼

jEEn
ijj

Pk
l¼1
jEEn

ljj
; ð22Þ

where the normalization is over the inputs at the n-th trajectory. This leads to a normalized

global sensitivity index for the i-th parameter given by

tij ¼
1

r

Xr

n¼1

Pn
ij ¼

1

r

Xr

n¼1

jEEn
ijj

Pk
l¼1
jEEn

ljj
: ð23Þ

In other words, τij is obtained by first normalizing effects and then averaging over trajecto-

ries. Finally, by averaging over different outputs, Wang et al. [43] argue a measure for the aver-

age sensitivity of a parameter on multiple output variables is found as:

bi ¼
1

J

XJ

j¼1

tij ¼
1

rJ

XJ

j¼1

Xr

n¼1

jEEn
ijj

Pk
l¼1
jEEn

ljj
; ð24Þ

where J is the number of outputs. We would argue the use of this last measure is questionable

for most practical applications; suppose two parameters exhibit opposite sensitivities for two

outputs, being very sensitive for one output but not sensitive for the other, the average measure

would attribute a moderate importance to both factors, while in practice both are important.

Alternatively to Eq (23), Wu [40] first averages the absolute effects, and then normalizes these

quantities, leading to the relative importance evaluation index for dimensionless parameters

Sij ¼
m?ij

Pk
l¼1
m?lj
¼

Pr
n¼1
jEEn

ijj
Pk

l¼1

Pr
n¼1
jEEn

ljj
; ð25Þ

where m?ij is the mean of the absolute effects (Eq (21)). To determine what parameters are

important and unimportant (for a given output Yj), the Sij’s are sorted in ascending order lead-

ing to a sequence Si1 j < Si2 j < . . . < Sikj. The q non-influential parameters (inactive variables
in [40]) are then those for which

Xq

m¼1

Simj <
h

100
;
Xqþ1

m¼1

Simj �
h

100
; ð26Þ

where h is a predefined percentage, e.g. 30%. A higher (lower) unimportance threshold h
therefore leads to more (less) unimportant parameters. Influential parameters on a given out-

put (active variables in [40]) are those with a relative importance evaluation index above a pre-

determined threshold S0j. Following [40],

S0jðhÞ ¼ bm0j þ 3bs0j ð27Þ

is used, where bm0j and bs0j are the sample mean and standard deviation of the q Sij’s
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corresponding to inactive variables, (i.e. variables that correspond to Simj that satisfy Eq (26)).

Thus,

bm0j ¼
1

q

Xq

m¼1

Simj; ð28Þ

bs0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q � 1

Xq

m¼1

ðSimj � bm0jÞ
2

s

: ð29Þ

This means that the importance threshold S0j is a function of the q unimportant Sij’s, and

consequently a function of the threshold h through Eq (26). This ensures a significant differ-

ence between important and unimportant parameters. Changing the importance threshold

S0j(h) (given h), e.g. by increasing (decreasing) the number of standard deviations, will

decrease (increase) the number of important parameters, but does not influence the number

of unimportant parameters. Both Wu [40] and Wang et al. [43] do not consider the standard

deviation of the effects σij, but purely base parameter importance rankings on mean effects.

Finally, several papers use the ratio of (absolute) mean and standard deviation of the effects

instead of their separate magnitudes to characterize parameter sensitivity, e.g. [20, 28, 44]. As

an example, Menberg et al. [28] define four regions: if for a given output m?ij=sij < 0:1, the

effects are linear, if 0:1 < m?ij=sij < 0:5 they are considered monotonic, 0:5 < m?ij=sij < 1 con-

stitutes the ‘almost monotonic’ region and finally if m?ij=sij > 1, the effects are non-linear and/

or non-monotonic. Yang et al. [44] consider parameters to have non-linear effects if

jmij=sijj > 2=
ffiffi
r
p

, where r is the number of independent samples for each parameter. We do

not use these ratios in this work.

4 Scaling of effects

The Elementary Effects method as described above works well for dimensionless models

where all inputs take values in [0, 1]. In practice, however, many models are dimensional and/

or their inputs take values on non-unit intervals. This may lead to erroneous ranking results,

as is shown in the examples below. To alleviate this issue, the effects must be scaled or the

model must be made dimensionless. The latter is not always a feasible option, especially in

biology or environmental sciences where models may have over 100 parameters. In that case,

it is difficult to find all the dimensionless quantities, and even if those are known, it may be dif-

ficult to translate the sensitivity of the dimensionless quantities back to sensitivity of the origi-

nal parameters. In this section, we present new results to demonstrate what types of scaling

work and which do not.

Following Sin and Gernaey [27], we split the scaling of the effects in two, considering sepa-

rately scaling in the input- and output direction. We denote the scaled effects by

cEEn
ij ¼ EEn

ij

cxi

cyj

; ð30Þ

where cxi
and cyj

are the scaling of model factors and outputs, respectively. Since the mean

(median) of the scaled absolute effects is the same as the scaled mean (median) of the absolute

effects (e.g. for the mean 1

r

Pr
n¼1
jcEEn

ijj ¼ m
?
ij � cxi

=cyj
), we will simply write the latter in what

follows.
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4.1 Scaling effects in Xi-direction

The necessity of scaling effects in the Xi-direction in dimensional models, or in models where

parameters take values on non-unit intervals, becomes evident with the following two exam-

ples. Firstly, let YðX1;X2Þ ¼ X2
1
þ X2 be the output of interest. Assume both X1 and X2 are

dimensional. It follows that their dimensions are [X1] and [X1]2, respectively. By definition of

an elementary effect we have

EEn
1
¼

YðX1 þ D1;X2Þ � YðX1;X2Þ

D1

¼
ðX1 þ D1Þ

2
þ X2 � ðX2

1
þ X2Þ

D1

¼ D1 þ 2X1

ð31Þ

and similarly

EEn
2
¼

YðX1;X2 þ D2Þ � YðX1;X2Þ

D2

¼ 1; ð32Þ

where X1 and X2 are arbitrary values. The first effect has dimension [X1], so the magnitude of

the effect depends on the chosen units. On the other hand, the effect of the second parameter

is a dimensionless constant. The same holds for the measures by which parameters are typi-

cally ranked (effect mean (Eq (19)) and standard deviation (Eq (20))): μ2 = 1 and σ2 = 0, while

the measures for X1 depend on the units of that parameter. In other words, if one does not

scale the effects, one can choose units such that μ1� μ2 (e.g. km), making it appear like a

parameter is relatively unimportant, but one can just as well select units such that the opposite

is true (e.g. mm), indicating the parameter is in fact the most important one.

Secondly, let Y = X1 + X2, with X1 2 [0, 20] and X2 2 [9, 11], so that the inputs have equal

mean but different standard deviation. Clearly X1 contributes most significantly to the variabil-

ity in the output. However, the unscaled effects for both parameters equal 1. Only by scaling

can we obtain results consistent with our notion of sensitivity; see Table 3.

4.2 What scaling to use in Xi-direction?

The following does not require dimensionality of the model, but only supposes that the inputs

take values on non-unit intervals.

Again let Y = X1 + X2, with X1 2 [0, 20] and X2 2 [9, 11] uniformly. Take p1 = p2 = 4 and

|δ1| = |δ2| = 2/3 and consider the 4 trajectories as depicted in Fig 3. As is shown in Table 3,

scaling by the distributional mean of the input and the distributional standard deviation of the

input or parameter range results in different rankings. Scaling by the distributional mean gives

that both parameters contribute equally to the output mean, when our notion of sensitivity

Table 3. The right scaling must be chosen so that the results agree with the notion of sensitivity. EE applied to Y = X1 + X2, with X1 2 [0, 20] and X2 2 [9, 11], p1 = p2 =

4 and |δ1| = |δ2| = 2/3. Four trajectories are considered, as depicted in Fig 3. The effects are scaled by cð1Þxi
¼ ðmaxi þminiÞ=2, cð2Þxi

¼ ð½ðmaxi � mini þ 1Þ
2
� 1�=12Þ

1=2
or

cð3Þxi
¼ maxi � mini. In all cases σi = 0.

EEn
i � c

k
xi
; k ¼ 1; 2; 3

EEn
i cð1Þxi

(input mean) cð2Þxi
(input std) cð3Þxi

(input range)

i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

(Scaled) elementary effect (Eq (7)), μi (Eq (19)) or m?i (Eq (21)) 1 1 10 10 6.06 0.82 20 2

https://doi.org/10.1371/journal.pone.0293344.t003
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should require that Y is more sensitive to X1. On the other hand, scaling by the distributional

standard deviation or input parameter range does show that X1 contributes most significantly

to the variation in the output. We thus conclude, based on the examples presented here and

existing literature (e.g. [11, 42]), that scaling by a function of the input range

(cxi
¼ cxi
ðmaxi � miniÞ) gives the desired results. The simplest such scaling is

cxi
¼ maxi � mini, which is used here. There might be cases where another scaling might be

preferred. For instance, if the input parameter is normally distributed (*N (μ, σ)), it might

make more sense to scale by the standard deviation. Alternatively one could think about how

to systematically set maxi/mini, e.g. as μ ± 2σ. This is not further explored in this work. Impor-

tantly, there is a significant drawback of scaling by a property of the input distribution, thereby

making the effects directly dependent on this property, when there is uncertainty about that

distribution.

4.3 Scaling effects in output direction

Scaling in the output direction does not affect relative results for a given output, since it just

amounts to a multiplication of all effects by the same constant. Reasons for scaling neverthe-

less are i) to non-dimensionalize the effects and/or ii) to normalize the effects or measures to

enable comparisons between outputs. The key difference between scaling in the input and

output direction is that the inputs have a known (albeit assumed) distribution, while the out-

puts have an unknown distribution. This means that one can use sample-independent scal-

ings for the inputs, such as the range, distributional mean or standard deviation, which is

desirable when constructing a consistent sensitivity measure. For the outputs, one is limited

to scalings that depend on sample-dependent values. One can think of mean or standard

deviation of the model outputs at the sampled points, or the difference between smallest and

largest output value across the sampled space. Alternatively, scalings based on empirical data

may exist; for a crop model, biomass could be scaled by the mean biomass from field trials,

but also this type of scaling is sample-dependent. As such, sensitivity measures involving

scaling in the output-direction are best avoided. In the setting of Eq (30) this is equivalent to

taking

cyj
¼ 1; ð33Þ

which is done in this work.

4.4 A new sensitivity measure

Many of the alternative measures described in Section 3 (e.g. those proposed in [40, 43]),

involve averaging or normalisation over elementary effects or effect measures. While this may

be logical for dimensionless models, the summation of quantities with potentially different

dimensions such as those in Eqs (22)–(25), cannot be interpreted. Moreover, most measures

mentioned in Section 3 lack any scaling of the effects, potentially leading to erroneous ranking

results. We therefore propose a synthesis of existing measures, resulting in a scaled, dimen-

sionless and normalized measure agreeing with our notion of sensitivity, whilst preventing

erroneous ranking results in dimensional models or models with inputs of arbitrary type and

range. Taking either the mean of the absolute effects (m?ij; Eq (21)) or the median of the absolute

effects (χij, following [28]), we scale (following [11]) by

cxi
¼ maxi � mini; ð34Þ
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and normalize (following [40]), leading to the sensitivity measures

Sm?ði; jÞ ¼
m?ijcxi

Pk
l¼1
m?ljcxl

; ð35Þ

or

Swði; jÞ ¼
wijcxi

Pk
l¼1
wljcxl

ð36Þ

respectively. Note that ½wijcxi
� ¼ ½m?ijcxi

� ¼ ½Yj�. Hence, the measures (35) and (36) are dimen-

sionless, independent of scaling in the output direction and are consistent with our notion of

sensitivity. Furthermore, the measures take values in [0, 1] and sum to unity (for each output).

This allows for the standardized way of identifying the (un)important parameters as described

by Wu [40] (Eq (26)). Note that the measures (35) and (36) resemble a discretized version of

the differential importance measure introduced by Borgonovo and Apostolakis [45]. Fig 5

shows a visualization of this approach for an example set of 50 sensitivity indices under differ-

ent unimportance levels (i.e. h-values in Eq (26)).

We do not use the standard deviation of the effects in this work, but instead focus on the

median or mean of the absolute effects. Nevertheless, an interesting open question is how one

should integrate the standard deviation into the analysis. One could for example consider a

quantity analogous to the normalized sensitivity measures in Eqs (35) and (36):

Ssði; jÞ ¼
si;jcxi

Pk
l¼1
sl;jcxl

: ð37Þ

where σi,j is as in Eq (20). The question is how one should reconcile the two rankings (Sμ*(i, j)
or Sχ(i, j) and Sσ(i, j)), especially when parameters score high on one but low on the other. The

work by Borgonovo and Rabitti [46] might be of interest, as they show s2
ij is a biased estimator

of the Sobol total sensitivity index (in the case of fixed step sizes). We leave this question for

further research.

Fig 5. Visualisation of (un)important parameters and ranking. Considered here is an example set of sensitivity indices for 50 input parameters.

Parameters are ordered based on Sχ (Eq (36)). Vertical lines show the unimportance threshold for h = 5 and 25% using Eq (26), i.e. all parameters to the

left of said line are unimportant. Horizontal lines show the corresponding importance thresholds S0ðhÞ ¼ bm0 þ 3bs0 (Eqs (28) and (29)) for these h-

values, i.e. parameters above this line are deemed important. Note that for h = 5%, all parameters are either important or unimportant; for h = 25%,

there is one parameter that is neither.

https://doi.org/10.1371/journal.pone.0293344.g005
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5 Comparing trajectory generation strategies & sensitivity

measures

In this section we investigate which trajectory generation method, in combination with which

of the sensitivity measures (Eqs (35) and (36)), is best for EE. Nine trajectory generation meth-

ods can be distilled from Section 2. First, five winding stairs designs:

w1. EOT (Enhanced optimized trajectories as employed by Khare et al. [21]);

w2. ‘standard’ Sobol winding (for real-valued inputs: generate all points by Sobol QR [33]; for

integer/Boolean type inputs: generate base value by Sobol QR, transform to nearest discrete

value as in Eq (3), then step by δi in a winding design);

w3. ‘pinned’ Sobol winding (for all inputs: generate base value by Sobol QR, transform to near-

est discrete value as in Eq (3), then step by δi in a radial design);

w4. ‘standard’ Rd winding (w2., but with Rd QR sequence);

w5. ‘pinned’ Rd winding (w3., but with Rd QR sequence);

and secondly four radial designs:

r1. ‘standard’ Sobol radial (w2., but using a radial design);

r2. ‘pinned’ Sobol radial (w3., but using a radial design);

r3. ‘standard’ Rd radial (r1., but with Rd QR sequence [36]);

r4. ‘pinned’ Rd radial (r2., but with Rd QR sequence).

Saltelli et al. [30] showed that ‘standard’ Sobol radial is the better strategy (compared to

‘standard’ Sobol winding) when estimating the Sobol total sensitivity index (S3 Appendix in S1

File, Eq. (S19)) for a selected set of test functions with k = 10 input parameters. Campolongo

et al. [29] showed for a maximum of 20 factors (and r = 2–8) that ‘standard’ Sobol radial is also

more accurate than OT in identifying (un)important parameters. In Section 5.3 and 5.4 we

extend these results by estimating Sobol total senstivity indices and computing parameter

rankings, respectively.

Furthermore, even though most trajectory generation approaches are based on maximizing

spread and/or minimizing discrepancy (i.e. maximizing uniform parameter space coverage),

the relation between spread/discrepancy and ability to correctly rank parameters, identify (un)

important factors or calculate sensitivity indices has not yet been ascertained as far as we are

aware. We therefore investigate to what extent spread and discrepancy can be used as proxies

for sampling technique performance. We do this by calculating the spread and discrepancy of

the set of simulation points generated by several trajectory generation methods, and compar-

ing these with the results in Section 5.3 and 5.4.

We do not need to compare all 9 trajectory generation strategies in all experiments. First of

all, w3 and w5 (‘pinned’ Sobol/Rd winding) are extremely similar to w1 (EOT), the only differ-

ence being the way the base points are sampled, hence we only look at w1 (whenever computa-

tionally feasible) in what follows and assume the results hold for w3 and w5 as well. Secondly,

to compare the performance of designs using Sobol sequences versus those using Rd sequences,

it suffices to include only a subset of variants; here w2, r1, r2 and r3 are considered. To summa-

rize, in Section 5.1–5.4 below we consider trajectory generation methods w1 (whenever com-

putationally feasible), w2, r1, r2 and r3. In addition we include r4 in Section 5.1 and w4 in

Section 5.3.
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5.1 Spread and discrepancy of sampling strategies

The spread D (Eqs (14 and 15)) measures how far apart trajectories are, but does not necessar-

ily indicate how well the points uniformly cover the parameter space. Discrepancy is a quantity

that measures the uniformity of finite point sets [31]. It originated in the field of QR sequences

(or low-discrepancy sequences), where the goal is to generate sequences with high uniformity.

More information is provided in S2 Appendix in S1 File. In this work we use the L2-based

wrap-around discrepancy W2 [47, 48], given in closed form by

W2
2
ðN; kÞ ¼ �

4

3

� �k

þ
1

N2

XN

n¼1

XN

m¼1

Yk

i¼1

3

2
� jxðnÞi � xðmÞi j � ð1 � jx

ðnÞ
i � xðmÞi jÞ

h i� �

;

ð38Þ

where N denotes the number of points and k is the dimension of the parameter space. The

lower the discrepancy, the better the set of points covers the space uniformly.

For sampling strategies w1, w2, r1, r2, r3 and r4, the spread (14) and (15) and discrepancy

(38) are calculated for various combinations of k (the number of input parameters) and r (the

number of trajectories). In particular, we vary r between 4 and 100 while fixing k to 50 (Fig 6),

and vary k between 10 and 150 while fixing r to 6, 10, 20 or 35 (Fig 7). This covers the range of

numbers of inputs and trajectories which are used in practice whilst being computationally

feasible. Runtime restricts the number of initial trajectories in EOT (especially for large k); in

Fig 6 the pool therefore contains M = 500 elements, while in Fig 7 it contains only M = 200 ele-

ments; preliminary experiments (not shown here) showed a negligible difference in spread

and discrepancy upon enlarging this pool.

Fig 6. Discrepancy ~W 2
2

(left) and spread ~D (right) for different sampling strategies. The number of model inputs k = 50, while the number

of trajectories r varies. ‘Standard’ Sobol winding has the overall lowest discrepancy, EOT has the overall highest spread.

https://doi.org/10.1371/journal.pone.0293344.g006
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The spread (Eq (16)) is scaled by the number of elements in its expression, i.e.,

~D ¼
D

r
2

� �
k½ðkþ 1Þ

4
þ ðkþ 1Þ

2
�
: ð39Þ

Fig 7. Discrepancy ~W 2
2

(left) and spread ~D (right) for different sampling strategies. In these figures, the number of model inputs k varies,

while the number of trajectories r is fixed. ‘Standard’ Sobol winding has the overall lowest discrepancy, EOT and ‘pinned’ Sobol/Rd radial have

the overall highest spread.

https://doi.org/10.1371/journal.pone.0293344.g007
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The discrepancy (Eq (38)) is scaled by the number of points in a trajectory times the

expected squared discrepancy of a random uniform sample of size r(k + 1), i.e.,

~W 2
2
ðrðkþ 1Þ; kÞ ¼

rW2
2
ðrðkþ 1Þ; kÞ
3

2

� �k
� 4

3

� �k

¼
W2

2
ðrðkþ 1Þ; kÞ

ðkþ 1ÞE½W2
2
ðU rðkþ1Þ; kÞ�

:

ð40Þ

These scalings ensure that all results are the same order of magnitude.

Results. Our simulations (Figs 6 and 7) reveal the following orderings for spread and

discrepancy:

Ordering of sampling strategies based on spread: The different sampling strategies are

ordered (from largest to smallest spread) as follows: 1) EOT; 2) ‘pinned’ Sobol/Rd radial; and

with a significant margin 3) ‘standard’ Sobol/Rd radial and ‘standard’ Sobol winding.

Ordering of sampling strategies based on discrepancy:‘standard’ Sobol winding is always

among the strategies with smallest discrepancy. The ordering of the other sampling strategies

depend on the number of input factors k (and to a lesser extent on the number of trajectories

r). Nevertheless, for sufficiently large k (≳ 50), they are ordered (from smallest to largest dis-

crepancy) as follows: 1) ‘standard’ Sobol winding & EOT; 2) all others. For low k (≲ 15), they

are ordered as follows: 1) ‘standard’ Sobol winding; 2) ‘standard’ Sobol/Rd radial 3) ‘pinned’

Sobol/Rd radial; 4) EOT. In the intermediate range for k, ‘standard’ Sobol winding is the strat-

egy with the lowest discrepancy, with the other techniques following in a k- and r-dependent

order.

The scaled discrepancy (for fixed r and varying k) seems to exhibit limiting behavior as k
grows large (Fig 7).

5.2 Test functions

In the subsequent two sections, four test functions are used. The K- and G*-functions are two

commonly used dimensionless test functions, and are considered in Saltelli et al. [30], whose

experiment we revisit. The six-dimensional test function f6 has been previously presented in

[3, 16]. The Penman-Monteith equation [49] is a dimensional equation describing

evapotranspiration.

The K-function with k inputs is given by

KðxÞ ¼
Xk

i¼1

ð� 1Þ
i
Yi

j¼1

xj; ð41Þ

where x 2 [0, 1]k uniformly. The G*-function is given by

G∗ðx; a;α; ηÞ ¼
Yk

i¼1

ð1þ aiÞj2ðxi þ Zi � I½xi þ Zi�Þ � 1j
ai þ ai

1þ ai
; ð42Þ

where I[�] is the integer part, ai, αi > 0 and ηi 2 [0, 1] for i = 1, . . ., k. The xi are assumed to be

uniformly distributed in [0, 1]. Table 4 lists the values for a and α for different k. The K-func-

tion contains less non-linearity than the G*-function. Likewise, the low-dimensional versions

(i.e. with k = 10) are more ‘difficult’ than their high-dimensional counterparts (i.e. k = 75 for

the K-function and k = 50 for the G*-function) because the additional parameters are all rela-

tively unimportant; for the G*-function, this is in part due to the choice of constants in

Table 4. As both test functions only contain multiplications of inputs, this has a dampening
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effect on the output. The six-dimensional test function f6 [3, 16] is given by:

g1ðx1Þ ¼ � sin ðpx1Þ � 0:3 sin ð3:33px1Þ; ð43Þ

g2ðx2Þ ¼ � 0:76 sin ðpðx2 � 0:2ÞÞ � 0:315; ð44Þ

g3ðx3Þ ¼ � 0:12 sin ð1:05pðx3 � 0:2ÞÞ

� 0:02 sin ð95:24px3Þ � 0:96;
ð45Þ

g4ðx4Þ ¼ � 0:12 sin ð1:05pðx4 � 0:2ÞÞ � 0:96; ð46Þ

g5ðx5Þ ¼ � 0:05 sin ðpðx5 � 0:2ÞÞ � 1:02; ð47Þ

g6ðx6Þ ¼ � 1:08; ð48Þ

f6ðxÞ ¼
X6

i¼1

giðxiÞ; ð49Þ

where x 2 [0, 1]6 uniformly. Note that this model is purely additive, which causes QR radial

and winding methods to produce identical results: f6(x + δi) − f6(x) = gi(xi + δi)−gi(xi), so effects

are the same for a radial and winding design (given the underlying QR sequences are the

same). As an example of an environmentally relevant dimensional test case with non-unit

input ranges, we consider the Penman-Monteith equation for evapotranspiration [49], given

in energy flux rate form by:

ET ¼
DETAET þ racpgaVPD
DET þ gð1þ ga=gsÞ

½Wm� 2�; ð50Þ

where ΔET is the rate of change of saturation specific humidity with air temperature, AET is the

difference between net irradiance and ground heat flux (i.e. the available energy), ρa is the dry

air density, cp is the specific heat capacity of air, VPD denotes the vapor pressure deficit, ga rep-

resents air conductivity, γ is the psychromatic constant and gs represents stomatal conductiv-

ity. The units and ranges of the input parameters are listed in Table 5.

Table 4. Values of a and α for the G*-function (Eq (42)) for different numbers of inputs k.

k a α

10 {0, 0.1, 0.2, 0.3, 0.4, 0.8, 1, 2, 3, 4} αi = 2 for

i = 1, . . ., 10.

50 {0, 0.1, 0.2, 0.3, 0.4, 0.8, 1, 2, 3, 4, αi = 2 for

0, 0.1, 0.2, 0.3, 0.4, 0.8, 1, 2, 3, 4, i = 1, . . ., 10;

0, 1, 2, 3, 4, 8, 10, 20, 30, 40, αi = 0.2 for

0, 2, 4, 6, 8, 16, 20, 40, 60, 80, i = 11, . . ., 50.

0, 5, 10, 15, 20, 40, 50, 100, 150, 200}

https://doi.org/10.1371/journal.pone.0293344.t004
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5.3 Comparing trajectory generation methods for estimating Sobol total

sensitivity indices

Here we compare the ability of different trajectory generation methods to estimate the Sobol

total sensitivity index STi
(see S3 Appendix in S1 File for details) for the K-, G*-, and Penman-

Monteith functions presented in Section 5.2. While this paper focuses on EE, not Sobol/vari-

ance-based SA, this test is valuable because i) analytical values for the Sobol total indices are

readily available (or can easily be approximated); and ii) we may expect results to carry over to

ranking parameters in the EE framework (S3 Appendix in S1 File). Related work has recently

been published by Hoyt and Owen [52], who compare radial and winding schemes in the con-

text of computing the mean dimension (which can be expressed as a sum of Sobol indices).

Numerical estimation of Sobol indices. The STi
of an output Y are estimated from a set of

sample points using the Jansen estimator [53, 54]:

bSTi
ðYÞ ¼

1

2r

Xr

j¼1

h
YðAjÞ � YðAðiÞBj

Þ
i2

bV ðYÞ
;

ð51Þ

where bV ðYÞ approximates the total variation, and is given by (following [30]):

bV ðYÞ ¼
1

2r � 1
�

�
Xr

j¼1

½YðAjÞ � Y0�
2
þ
Xr

j¼1

½YðBjÞ � Y0�
2

 !

;

ð52Þ

Y0 ¼
1

2r

Xr

j¼1

YðAjÞ þ
Xr

j¼1

YðBjÞ

 !

: ð53Þ

Here Y(Aj) is the value of Y at the j-th base point, Y(Bj) is the value of Y at the j-th row of B,

and YðAðiÞBj
Þ is the value of Y at the perturbed value in the xi-direction. The perturbed points

are not taken into account for the estimated total variance bV ðYÞ, because that would lead to a

biased estimate. S3 Appendix in S1 File lists an alternative common estimation procedure for

bV ðYÞ.
Test setup. Performance of the sampling techniques is measured by the mean absolute

error (MAE) of the absolute difference between the estimated (Eq (51)) and analytical Sobol

Table 5. Units, input ranges and Sobol total indices STi of the input parameters of the Penman-Monteith equation for evapotranspiration (Eq (50)).

Param. Units mini maxi STi Source

ΔET kPa C˚−1 0.05 0.4 0.0225 [50]

AET W m−2 0 400 0.0467 [51]

ρa kg m−3 1.1 1.3 0.0081

cp J kg−1 C˚−1 1000 1050 0.0007

VPD kPa 0.3 3 0.6420

ga m s−1 0.0133 0.25 0.1108 [51]

γ kPa C˚−1 0.065 0.07 0.0013

gs m s−1 0.005 0.02 0.2929 [51]

https://doi.org/10.1371/journal.pone.0293344.t005

PLOS ONE Elementary effects for models with dimensional inputs of arbitrary type and range

PLOS ONE | https://doi.org/10.1371/journal.pone.0293344 October 25, 2023 24 / 35

https://doi.org/10.1371/journal.pone.0293344.t005
https://doi.org/10.1371/journal.pone.0293344


total sensitivity indices over 50 replications of the full experiment with r trajectories, given by

MAE ¼
1

50k

X50

j¼1

Xk

i¼1

�
�
�bSTi
� STi

�
�
�: ð54Þ

By (full) experiment we mean the set of simulations and corresponding outputs required to

calculate all k Sobol total sensitivity indices once. The analytical Sobol total indices STi
for the

K- and G*-function are given in the S1 File (Eqs. (S20)–(S23)). For the Penman-Monteith Eq

(50), they are approximated using the Sensobol package [55] in R (default settings) on a base

sample size of 217 (see Table 5). Uniqueness of the replicates is ensured in the following ways.

For the K-function and Penman-Monteith equation, a different part of the QR-sequence is

used in each replicate, i.e. the first replicate uses elements 1 to r, the second replicate uses ele-

ments r + 1 to 2r, etc. For the G*-function, we use the same part of the QR sequence each time,

but randomly sample the values of ηi in Eq (42), i = 1, . . ., k, since the total sensitivity index is

independent of ηi. Differences with the experiment in [30] are listed in S3 Appendix in S1 File.

For the low-dimensional K- and G*-function (k = 10), the MAE is calculated for r = 186, 372,

745 and 1489 trajectories, as in [30]. In the higher-dimensional tests (i.e. K-function with

k = 75, G*-function with k = 50 inputs), the number of trajectories is lowered to r 2 [3, 100] to

keep the experiment computationally feasible. For the Penman-Monteith equation, we use

r 2 [2, 100], allowing inclusion of EOT. It was not computationally feasible to apply EOT in

the K- and G*-function tests, but its behavior is expected to resemble the ‘pinned’ Sobol radial

method as these methods are very similar (see start of Sec. 5). To assess the variability in esti-

mating STi
caused by the randomness in the G*-function (as the ηi’s are randomly sampled),

the MAE is calculated five times for k = 10 (resulting in a total of 5 � 50 = 250 replicates of the

full experiment) and 9 times for k = 50 (450 replicates).

Results. For the K-function (k = 10; Fig 8(a)) differences between our ‘standard’ Sobol

results and Saltelli et al.’s are caused by using improved direction vectors [33] in the Sobol QR

sequence (the equivalent of a pseudo random seed). ‘Pinned’ Sobol radial is not visible in the

plot, as the MAEs of this approach were much larger than the plot range (� 0.08). Our results

do not show that a radial design unconditionally outperforms a (Sobol) winding design, which

is reported in [30]; instead it depends on the chosen QR sequence. For this test function, sam-

pling techniques with a small step size (QR radial/winding) are better than those with a large

step size (‘pinned’ Sobol, EOT), with MAE values being 7–20 times smaller for small step size

methods. Although there is significant variation present in the G*-function (k = 10, Fig 8(b)),

indicating that 50 replicates might be low, it is clear that the ‘pinned’ method employing a

large step size performs worse. Moreover, for this more non-linear function radial designs

have lower errors (25 − 40% lower MAE) than their winding counterparts, which is consistent

with [30]. For both the K- and G*-function (k = 10), the Rd sequence performs similar to or

worse than Sobol sequences. In the higher-dimensional tests (i.e. K-function with k = 75, G*-
function with k = 50 inputs; Fig 9), we discard the Rd-based sampling strategies as these per-

formed equal to or worse than their respective equivalent using a Sobol sequence in the lower-

dimensional tests. Surprisingly, ‘pinned’ Sobol radial seems to perform better (up to 70%

lower MAE) than ‘standard’ Sobol winding for the G*-function with 50 inputs (as opposed to

the k = 10 case), although the standard deviation bounds are large and overlap for low r. Nev-

ertheless, ‘standard’ Sobol radial still results in the lowest MAE (up to 80% lower than

‘pinned’). In the 75-dimensional K-function differences between ‘standard’ Sobol radial and

‘standard’ Sobol winding are negligible, but ‘pinned’ Sobol radial again shows a significantly

higher MAE (up to 10 times). Results for the K-function with k = 50 and k = 100 are not

shown, but are similar to the k = 75 case. Results for the Penman-Monteith function (Fig 10)
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show a negligible difference between a radial and winding design and between a Sobol or Rd

QR-sequence, but significantly larger errors for large step-size methods (‘Pinned’ Sobol radial

and EOT; up to 20 times higher MAE). Finally, our results suggest spread and discrepancy are

not useful proxies of trajectory generation strategy performance. Comparing the ordering of

the different strategies based on spread/discrepancy (Sec. 5.1, Figs 6 and 7) with those based

on the MAE (Figs 8–10), it is clear that the orderings are almost opposite in the case of spread,

and there is only a partial agreement in the case of discrepancy (for low k, ‘pinned’ methods

are correctly estimated to exhibit higher errors).

Fig 8. MAE for Sobol total sensitivity index of K-function (a) and G*-function (b); k = 10 parameters. (a): MAE (Eq (54)) of 50 replicates of the

complete experiment with r = 186, 372, 745, 1489 trajectories applied to the K-function (Eq (41)). Green lines show results obtained by Saltelli et al.

[30]. In (a), ‘pinned’ Sobol radial produced larger errors than the plot range shown here. (b): Mean MAE (Eq (54)) ± 1 std bounds of 250 (5 � 50)

replicates of the complete experiment applied to the G*-function (Eq (42) and Table 4 with k = 10).

https://doi.org/10.1371/journal.pone.0293344.g008

Fig 9. MAE for Sobol total sensitivity index of K-function (k = 75 parameters; (a)) and G*-function (k = 50; (b)). (a): MAE (Eq (54)) of 50

replicates of the complete experiment with r = 3, 6, 10, 20, 50, 100 trajectories applied to the K-function (Eq (41)). (b): Mean MAE (Eq (54)) ± 1 std

bounds of 450 (9 � 50) replicates of the complete experiment applied to the G*-function (Eq (42) and Table 4 with k = 50).

https://doi.org/10.1371/journal.pone.0293344.g009
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5.4 Comparing parameter importance rankings from estimated Elementary

Effects and rigorous Sobol sensitivity

While it may be expected that the ability to accurately estimate STi
(of one approach relative to

others) generally translates to an equal ability to rank parameters and/or identify (un)impor-

tant parameters [56], the latter should be tested separately. Furthermore, estimating Sobol sen-

sitivity indices does not give any information about the performance of EE aggregation

methods (e.g. m?i or χi). Therefore, we revisit the aforementioned test functions and sampling

strategies, but now with a focus on the ability of the EE-based sensitivity measures Sμ* and Sχ

to correctly rank the inputs when compared to Sobol sensitivity rankings.

Correlation coefficients. Following [54], the following coefficients are used to ascertain

how well the predicted EE-based rankings match with the analytical rankings. The analytical

rankings are based on the (approximated) analytical values of the Sobol total sensitivity indices

(S3 Appendix in S1 File Eqs. (S20)-(S23); Table 5). Firstly, the Kendall (τ-a) correlation coeffi-

cient [57], given by

rkendallðx; yÞ ¼
# concordant pairsð Þ � # disconcordant pairsð Þ

k
2

� �

¼
2

kðk � 1Þ

X

i<j

signðxi � xjÞsignðyi � yjÞ;

ð55Þ

where x and y are sets of observations (in our case analytical and estimated ranks), is a measure

of correlation between estimated and actual ranking. It gives equal weight to all ranks. [54]

uses the τ-b coefficient, which accounts for ties. Ties do not occur in these rankings, however,

so here the simpler τ-a variant is used.For the second coefficient, the ranks are transformed to

Savage scores. The score of a parameter with rank j becomes [54]

sj ¼
Xk

i¼j

1

i
; ð56Þ

Fig 10. MAE (Eq (54)) for Sobol total sensitivity indices of the Penman-Monteith function for evapotranspiration

(k = 8 parameters; Eq (50)). MAE is calculated over 50 replicates of the complete experiment with r = 3, 6, 10, 20, 50,

100 trajectories.

https://doi.org/10.1371/journal.pone.0293344.g010
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e.g. if k = 3 and the parameters are ranked from most to least important as x1, x2, x3, the respec-

tive Savage scores are 11

6
, 5

6
and 1

3
. Subsequently the Pearson correlation coefficient of these

transformed quantities (here again denoted by x and y) is calculated, which is given by [54]

rpearsonðx; yÞ ¼

n
Pn

i¼1
xiyi �

Pn
i¼1

xi

Pn
i¼1

yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

i¼1
x2

i � ð
Pn

i¼1
xiÞ

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

i¼1
y2

i � ð
Pn

i¼1
yiÞ

2

q :
ð57Þ

ρpearson assigns more weight to correctly identifying the most important parameters. Both

ρkendall and ρpearson take values in [−1, 1], with 0 indicating no correlation at all, and 1 meaning

the estimated and actual rankings are identical.

Test setup. Uniqueness of the 50 replicates is obtained as in Section 5.3. The number of

trajectories is restricted to practical values, i.e. r = 2, 4, 6, 10, 15, 25, 40, 100. EOT is not shown

for models with k = 50 out of computational considerations.

Results. As expected, almost all sampling strategies are capable of accurately ranking the

input parameters of the K-function (both for k = 10 and k = 50) with a low number of trajecto-

ries (Figs 11(a), 11(b) and 12(a), 12(b))). The only exceptions are EOT and ‘pinned’ Sobol

radial based on the mean of absolute effects m?i for k = 10, which nevertheless still reach Pear-

son correlations over 0.9. The case of the G*-function is more interesting (Figs 11(c), 11(d)

and 12(c), 12(d)). Approaches based on the median χi generally perform equal or better than

their counterparts based on m?i , especially in ranking important parameters (k = 10: ρpearson

between 2% lower and 57% higher). For k = 10 (Fig 11(c) and 11(d)) EOT consistently yields

among the lowest correlations, both based on m?i and χi. Interestingly, ‘standard’ Rd radial gives

among the highest correlations for both k = 10 and k = 50, while it was inferior in estimating

total sensitivity indices. For the f6-function the methods employing small step sizes (‘standard’

Sobol/Rd radial or winding) clearly outperform large step size methods (EOT and ‘pinned’

Sobol radial) (Fig 13). There are no clear differences between Sobol and Rd QR sequences.

Median-based small step-size approaches result in higher Pearson correlations (up to 34%),

but roughly equal Kendall correlations. Results for the Penman-Monteith equation paint a

different picture (Fig 14). Approaches based on the mean m?i clearly outperform their counter-

parts based on the median χi. Differences between sampling strategies are small (Sμ*: less than

0.1 difference in ρkendall for r> 10), although EOT generally results in the lowest correlations

and ‘Pinned’ Sobol radial performs best. Fig 14 also highlights the need for scaling the effects;

without scaling, no strategy is capable of accurately ranking the input parameters (all Kendall

correlations less than 0.5).

To summarize, small step size methods (‘standard’) generally perform better than or equal

to large step size methods (EOT/‘pinned’). There is no one sensitivity measure that always

results in the highest correlations; our results indicate Sμ* (based on the mean of absolute

effects) might in some cases be preferable, but in other cases Sχ (based on the median of abso-

lute effects) yields higher correlations between analytical and calculated rankings. Notably,

‘standard’ Rd radial performs well across the range of r tested for the G*-function, making it an

interesting trajectory generation method for further research. Finally, the results in this section

are further proof that spread and discrepancy are poor proxies of trajectory generation

method performance (see Sec. 5.1 and Figs 6 and 7).

6 Conclusion

In this work, we looked at the Elementary Effects (EE) sensitivity analysis method in the con-

text of unscaled dimensional models with potentially arbitrary input types (real, integer,
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Boolean). We showed that where model parameters are dimensional or take values on non-

unit intervals it is necessary to scale the effects in the input direction by a function of the

input parameter range, e.g. maxi − mini, to avoid erroneous ranking results. Existing

descriptions, software implementations and numerous (including very recent) applications of

elementary effects methods do not take scaling or parameter units into account, which may

yield results that are wrong. However, scaling by (a function of) the input parameter range has

the significant drawback of making the effects directly dependent on the input range, making

it of paramount importance to choose parameter bounds with care. Scaling in the output

direction is not required to ensure consistent rankings, and is best avoided since these scalings

are necessarily dependent on sampled simulation points or experimental data. We propose

two new dimensionless normalized measures based on existing literature (similar to the

differential importance measure in [45]): Sχ (Eq (36), based on the median of absolute

effects) and Sμ* (Eq (35), based on the mean of absolute effects). Because the measures are

normalized, they allow for a standardized way of identifying (un)important parameters (as

described in [40]).

Fig 11. Correlations ρkendall (Eq (55)) and ρpearson (Eq (57)) between estimated and actual parameter rankings for the K-function (Eq (41);

(a)-(b)) and G*-function (Eq (42) and Table 4; (c)-(d)) with k = 10 parameters. The Pearson correlation assigns more weight to important

parameters. The means of the correlation coefficients are shown, based on 50 replicates of the full experiment.

https://doi.org/10.1371/journal.pone.0293344.g011
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We evaluated the ability of 9 trajectory generation methods to calculate Sobol total sensitivity

indices for 4 different test functions (extending the experiment in [30] (Figs 8–10)), and subse-

quently assessed the ability of the new EE-based sensitivity indices (given a trajectory genera-

tion method) to rank parameters for the 4 different test functions (Figs 11–14). This revealed:

• Methods employing the mean-based measure Sμ* (Eq (35)) can perform approximately equal

to (Figs 11 and 12), better than (Fig 14), or worse than (Fig 13(c)) those using the median-

based measure Sχ (Eq (36)). In contrast, [28] finds that median-based measures result in

more stable ranking results.

• Small step size methods (i.e. those using step sizes dictated by QR sequences) generally per-

form equal to or better than large step size methods (e.g. EOT, ‘pinned’ versions) (Figs 8–10

and 13).

• There is no consistent and clear difference between methods employing a Sobol QR

sequence versus those using the new Rd sequence. Nevertheless, the performance of the Rd

sequence in the G*- and f6-functions (Figs 12(c), 12(d) and 13) in combination with its sim-

ple description merits further research into its potential applications.

Fig 12. Correlations ρkendall (Eq (55)) and ρpearson (Eq (57)) between estimated and actual parameter rankings for the K-function (Eq (41);

(a)-(b)) and G*-function (Eq (42) and Table 4; (c)-(d)) with k = 50 parameters. The Pearson correlation assigns more weight to important

parameters. The means of the correlation coefficients are shown, based on 50 replicates of the full experiment.

https://doi.org/10.1371/journal.pone.0293344.g012
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• While [30] concludes a radial design is the preferred choice over a winding design, our

results show no consistent and clear distinction between the two, except in the G*-function

(Fig 9(b)) where radial designs are slightly better.

• The Penman-Monteith evapotranspiration example clearly shows the importance of scaling

EE-based sensitivity indices to obtain correct rankings (Fig 14).

Fig 13. Correlations ρkendall (Eq (55)) and ρpearson (Eq (57)) between estimated and actual parameter rankings for the f6-function (Eq (49)).

The Pearson correlation assigns more weight to important parameters. The means of the correlation coefficients are shown, from 50 replicates of

the full experiment. Note that ‘standard’ Sobol radial (yellow) and winding (green) produce identical results (given a sensitivity measure), as the

test function is purely additive; only the yellow line is visible.

https://doi.org/10.1371/journal.pone.0293344.g013

Fig 14. Correlations ρkendall (Eq (55)) and ρpearson (Eq (57)) between estimated and actual parameter rankings for the Penman-Monteith function

for evapotranspiration (Eq (50)). The Pearson correlation assigns more weight to important parameters. The means of the correlation coefficients are

shown, from 50 replicates of the full experiment. The middle figure shows ρkendall using unscaled effects, leading to incorrect rankings.

https://doi.org/10.1371/journal.pone.0293344.g014
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Our recommendation is therefore to always compute both sensitivity measures, and to

further investigate the output data if the resulting rankings differ significantly. A small

step size method is preferred, but it does not seem to be important whether one uses a

Sobol or Rd QR sequence, or whether one uses a winding or radial design.

Finally, we showed that trajectory spread and discrepancy of the set of simulation points

are poor predictors for the ability of a trajectory generation method to correctly rank

parameters, identify (un)important inputs or calculate sensitivity indices. This raises the

question of what are good proxies of performance, and whether basing sampling techniques

on spread maximisation (e.g. EOT) or discrepancy minimization should be avoided. Recent

work by Lo Piano et al. [58] on the trade-off between explorativity (the fraction of non-

repeated coordinates in the design) and economy (the number of elementary effects obtained

from a given number of simulations) could be an alternative to considering spread and dis-

crepancy, although the designs in our work have both equal explorativity and economy.

In the future, it would be interesting to investigate more QR-sequences than Sobol and Rd,

and to investigate further the performance of small versus large step size methods. Neverthe-

less, this work provides modellers with an up-to-date formulation of EE for general mod-

els, thereby aiding model development in the biological and environmental sciences.
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