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Abstract
In this work we present a three step procedure for generating a closed form
expression of the Green’s function on both closed and open finite quantum
graphs with general self-adjoint matching conditions. We first generalize and
simplify the approach by Barra and Gaspard (2001 Phys. Rev. E 65 016205)
and then discuss the validity of the explicit expressions. For compact graphs,
we show that the explicit expression is equivalent to the spectral decomposi-
tion as a sum over poles at the discrete energy eigenvalues with residues that
contain projector kernel onto the corresponding eigenstate. The derivation of
the Green’s function is based on the scattering approach, in which stationary
solutions are constructed by treating each vertex or subgraph as a scattering
site described by a scattering matrix. The latter can then be given in a simple
closed form from which the Green’s function is derived. The relevant scat-
tering matrices contain inverse operators which are not well defined for wave
numbers at which bound states in the continuum exists. It is shown that the
singularities in the scattering matrix related to these bound states or perfect
scars can be regularised. Green’s functions or scattering matrices can then be
expressed as a sum of a regular and a singular part where the singular part
contains the projection kernel onto the perfect scar.
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1. Introduction

Quantum graphs as metric graphs endowed with a Schrödinger operator and related similar
models have a long history in mathematics, physics and theoretical chemistry [1–7]. Due to
the simplicity of the model and the richness of properties and effects it can represent, quantum
graphs have grown into an important tool in physics and mathematics. In spectral theory, they
allow for a rigorous treatment of topics that are usually related to the study of (self- adjoint)
partial differential operators, see [8] for an introduction and overview. The scattering approach
to quantum graphs was introduced in 1997 by Kottos and Smilansky [9] and led to a wide
range of applications in quantum chaos, see [10] for an overview. In this approach, the graph
vertices are treated as scattering sites from which stationary solutions (energy eigenstates) are
constructed. This approach has also been used for many physical applications beyond quantum
chaos, including meta-material design [11], modelling the vibrations of coupled plates [12], as
well as in formulating quantum random walks [13, 14] and quantum search algorithms [15].
One advantage of the scattering approach is that eigenvalue conditions can be written in terms
of a secular equation involving the determinant of a unitary matrix of finite dimensionN, where
N typically equals twice the number of edges on the graph. Similarly, the scattering matrix of
an open quantum graph can be given in terms of a closed form expression involving finite
dimensional matrices of size N [16, 17].

In 2001, Barra and Gaspard [17] used the scattering approach to express the Green’s func-
tion of a quantum graph as a sum over trajectories in the spirit of semiclassical quantummech-
anics. At the time, it was not yet clear within the physics community what scattering matrices
are connected to matching conditions related to a well-defined self-adjoint Schrödinger oper-
ator on the metric graph. We generalize and simplify the approach [17] by using a simple
three step procedure that leads to the Green’s function for general self-adjoint matching con-
ditions for closed and open graphs with a finite number of edges. This directly provides a
number of closed form expressions that, to the best of our knowledge, have not been given
before (though implied in [17], see also [18], where closed form expressions are given for a
few simple examples). These closed forms are of great practical advantage when dealing with
explicit graphs as they sum all relevant trajectories. Moreover, they are the starting point of
an analysis of the validity and convergence of Green’s function when expressed as a sum over
trajectories. We thus hope to provide a more straightforward way of computing Green’s func-
tions on graphs. This could lead to helpful insight into the growing literature on applications for
Green’s functions on graphs that often require relatively cumbersome sums over trajectories,
see [19–21] and references therein.

We also discuss in some detail cases where the sum over trajectories fails to converge while
closed form expressions may be regularized. Indeed, when evaluating the scattering matrix on
open graphs, such as those used in the construction of the Green’s function, one must take
great care at frequencies corresponding to bound states in the continuum. These states vanish
necessarily on the scattering leads and potentially lead to singular behaviour when considering
the Green’s function. Scarring of eigenfunctions is a well-known semiclassical phenomenon in
more general systems [22]. It has been known since the work of Schanz and Kottos [23] that
quantum graphs allow for a much stronger scarring mechanism than in more general wave
systems. These so-called perfect scars are non-vanishing only on a finite subset of the edges
and vanish exactly in the remainder of the graph. They are easily constructed, for example, in
certain quantum graphs with standard (Neumann–Kirchhoff) vertex matching conditions. For
open graphs, bound states in the continuum are an example of perfect scars. Perfect scars lead
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to singularities in some invertedmatrices that are used in the construction of scatteringmatrices
and Green’s function and this implies non-convergence of the related sums over trajectories
at the corresponding wave number. We will explain that both the scattering matrix and the
Green’s function (outside the domain of the perfect scar) stay regular at these frequencies
and give suitable regularised equations. These regularized expressions may be of practical
importance even if there are no perfect scars on the graph. This is due to the far more generic
phenomenon of almost perfect scars which was also described in [23]. These are states where
the conditions for a perfect scar on a subgraph are fulfilled up to small terms leading to states
which are only slightly coupled to outgoing channels. In the scattering matrix, almost perfect
scars lead to what is known as topological resonances [24, 25]. In this context, a simplified
variant of the regularization scheme we describe here has been used to derive the tails in the
distribution of resonance widths [24].

The paper is structured as follows: in section 2, the scattering representation is introduced
for both closed and open quantum graphs. In section 3, a three step procedure for generating
a closed form expression for the Green’s function is introduced via the scattering approach.
The expression is given generally for both closed and open quantum graph. It is assumed that
the graph scattering matrix is non-singular and well defined. In section 4, a formal definition
is given for a scar state in terms of the quantum map. It is shown that the block component of
the quantum map that refers to the compact portion of the graph is non-invertible. It is shown
through a regularization of the scattering approach, that the full solution is indeed regular as it
is evaluated within a reduced space. Further analysis of the scattering states for eigenenergies
approaching a scar state are investigated appendix D. In section 5, we generate the scattered
states and the corresponding Green’s function in the presence of scars for two examples, the
open lasso, and the open star graph. We finally conclude this work in section 6 with a brief
summary and outlook.

2. The scattering approach for quantum graphs

To construct a quantum graph, we first consider a metric graph G(V,E ,L). Here, E is the set of
edges, V the set of vertices, and L= {ℓe : e ∈ E} is the graph metric containing a set of edge
lengths which are either real positive ℓe > 0 or infinite. The set of edges with finite length will
be called the set of bonds B and the set of edges with infinite length will be called the set of
leads L. We consider two types of finite graphs:

(i) Closed compact graphs where all edges are bonds and the number of edges NE = |E| is
finite. Here, both ends of each edge are connected to a vertex.

(ii) Open scattering graphs which consist of a compact graph with the addition of a finite set of
leads. The leads are connected to a single vertex at one end. One may write the edge set as
a union E = L∪B. With NL = |L| and NB = |B|, one has NE = NB +NL. For each bond
e ∈ B, we use a coordinate xe ∈ [0, ℓe] with some (arbitrary but fixed) choice of direction.
The coordinate defines a position on an edge such that xe = 0 and xe = ℓe correspond to
the vertices connected by the bond. For a lead e ∈ L, coordinates xe ∈ [0,∞) are defined
such that xe = 0 corresponds to the vertex where the lead is attached. For each edge e, we
refer to the directed edges as es with s=± indicating the direction in which xe increases
(s=+) or decreases (s=−). A point on the graph is a pair x= (e,xe) of an edge and a
coordinate.

The metric graph is turned into a quantum graph by adding a Schrödinger operator Ĥwhich
requires a set of boundary conditions on the graph vertices in order to become a self-adjoint
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problem. For this, we consider the Hilbert space L2(G)≡
⊕

e∈EL
2([0, ℓe]) of square integrable

complex-valued functions Φ(x) = {ϕe(xe)}e∈E and define[
ĤΦ(x)

]
e
=− d2

dx2e
ϕe (xe)+Ve (xe)ϕe (xe) (1)

with a potential V(x) = {Ve(xe)}e∈E , that is, a real valued scalar function defined on G. We
will only consider free Schrödinger operators, that is, negative Laplacians, whereV(x) = 0. To
ensure that the second derivative is well defined and square integrable, one needs to restrict the
domain of Ĥ to an appropriate Sobolev space. Apart from this standard restriction, the domain
of Ĥ has to be further specified by appropriate boundary conditions at each vertex v in order
for Ĥ to define a self-adjoint operator. According to a theorem by Kostrykin and Schrader [26],
the most general such boundary conditions at the vertex v may be written in the form∑

ẽ

Aeẽϕẽ (0)+Beẽ
dϕẽ
dxẽ

(0) = 0 (2)

for any e connected to v and the sum extends over edges ẽ connected to v. (We assumed here for
simplicity that xe = 0 at the vertex for each edge e connected to v.) The complex coefficients
Aeẽ and Beẽ refer to the elements eẽ of two square matrices A and B of dimension dv, the
number of edges connected to v. In [26], it was proven that the matching conditions preserve
self-adjointness if and only if two conditions are satisfied. First, the set of equations need to
be independent which means that the rectangular dv× 2dv matrix (A,B), i.e. A and B being
horizontally stacked, must have full rank dv. Second, the product AB

† = BA† is a Hermitian
matrix. The matrices A and B may be chosen independently for each vertex and we will often
write A(v) and B(v) to indicate the vertex where these matrices act.

The self-adjointness of Ĥ implies a unitary evolution of the time-dependent Schrödinger
equation i ddtΦ(t) = ĤΦ(t). The stationary solutionsΦ(t) = e−iEtΨ satisfy the (homogeneous)
eigenproblem [(

E− Ĥ
)
Ψ(x)

]
e
=

(
E+

d2

dx2e

)
ψe (xe) = 0 . (3)

Here, E is the energy. It implies furthermore that solutions to (3) only exist for real values of E
and the set of all such (generalized) eigenvalues forms the spectrum of Ĥ. In the remainder we
will only consider the positive part of their spectrum and write E= k2 > 0 with the wave num-
ber k> 0. In the following constructions, the energy appears as a variable that is not restricted
to the spectrum.

Any solution to equation (3) fulfilling the prescribed boundary conditions at the vertices is
expressed as a superposition of counter propagating plane waves, that is,

ψe (xe) = aine−e
−ikxe + aoute+e

ikxe

= aoute−e
−ik(xe−ℓe) + aine+e

ik(xe−ℓe)

= aine−e
−ikxe + aine+e

ik(xe−ℓe) . (4)

Here, ain/oute± is the complexwave amplitude on edge e propagating in the direction of increasing

(+) or decreasing (−) xe, heading in or out of a vertex. If e is a lead only the amplitudes ain/oute±

at xe = 0 are used.
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Introducing the 2NB-dimensional diagonal length matrix

Lẽ̃ses = δeẽδs̃sℓe (5)

(where each edge length appears twice) the bond wave amplitudes can be mapped to one
another by the diagonal square 2NB-dimensional matrix

T(k) = eikL (6)

that takes account of the phase difference between wave amplitudes across all bonds, that is,

ainB = T(k) aoutB . (7)

Here, ain/outB refers to the 2NB vector of plane wave coefficients on the directed bonds.
In addition, the graph wave amplitudes can be mapped onto one another across the vertices

by taking account of the imposed vertex boundary conditions. For this one writes the matching
conditions at a given vertex v in the form of a dv× dv vertex scattering matrix Σ(v), that is,

a(v),out =Σ(v)a(v),in (8)

where a(v),in/out are dv dimensional vectors that collect all incoming/outgoing amplitudes of
plane waves on the edges e in the neighborhood of vertex v. With the prescribed boundary
conditions given in equation (2), Σ(v) takes on the form

Σ(v) (k) =−
(
A(v) + ikB(v)

)−1(
A(v) − ikB(v)

)
. (9)

For real k (E> 0), this is a well-defined unitary matrix due to the conditions on A(v) and B(v)

which imply that A(v) + ikB(v) is invertible. Note, however, that neither A(v) nor B(v) need
to be invertible by themselves (in general neither is) and one needs to take care at k= 0, for
instance, where it remains well defined as a limit. Another consequence is that the explicit
dependence on k may drop for some choices of matching conditions. Indeed, this is the case
for the so-called Neumann-Kirchhoff matching conditions most widely used in the literature
[8–10]. They require continuity of the wave function at the vertex ϕe(0) = ϕẽ(0) (for any e
and ẽ connected to v) and a vanishing sum of outward derivatives on the edges connected to
this vertex

∑
e
dϕe

dxe
(0) = 0 (where the sum is over all edges connected to v). This yields

Σ(v),NK =−I+
2
dv
Edv , (10)

where I is the identity matrix and Edv is the matrix of dimension dv with all entries equal to
one.

It is worth noting that in the physics literature including [17], the stationary problem is
often defined on a quantum graph by prescribing arbitrary unitary matrices Σ(v) at the vertices
v. While this does in general not define an operator in a Hilbert space (self-adjoint or not) this is
of obvious value for an effective description of a physical system if appropriate caution is used.
For instance, one should not expect eigenstates to be orthogonal and time-dependent solutions
obtained by superposition may not preserve probability (the norm). In some applications that
focus on spectral properties, for instance many applications in quantum chaos, these issues are
not physically relevant, see [10] and many references therein. Moreover, they may be given
physical meaning by assuming that a vertex stands for a hidden part of the system, such as
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a scattering region, thus also ‘hiding’ parts of the Hilbert space. In the following, we will
assume that scattering matrices are of the form (9) that ensures a self-adjoint operator. Most
of our results remain valid if arbitrary scattering matrices are prescribed as long as they do not
depend explicitly on the wave number.

One may combine all vertex scattering matrices into a single (directed) edge scattering
matrix Σ, such that

aout =Σ ain. (11)

Here, ain/out is a 2NB +NL dimensional vector that collects all the incoming/outgoing amp-
litudes for all graph bonds and leads. The scattering matrix elements are expressed in terms of
the individual vertex scattering matrices Σ(v), such that, after ordering the directed edges in
an appropriate way,

Σ=Π


Σ(1) 0 . . . 0
0 Σ(2) . . . 0
...

...
. . .

...
0 0 . . . Σ(NV)

=ΠΣ̂ . (12)

Here, Π is a permutation matrix that interchanges the two directions on a given edge with
matrix elements given as

Πẽ̃ses = δẽeδs̃(−s) . (13)

2.1. Compact quantum graph eigenstates in the scattering representation

In the case of a compact quantum graph, we have ain/outB ≡ ain/out. The two relations (7) and (11)
combine to give one condition,

ain = U(k) ain, (14)

forming the 2NB dimensional quantum map

U(k) = T(k)Σ(k) , (15)

where we stress that the edge scattering matrixΣ(k) can be k dependent. Non-trivial solutions
to (14) exist for wave numbers k for which the quantum map U has a unit eigenvalue, that is,
for wave numbers that satisfy the secular equation

ξ (k)≡ det(I−U(k)) = 0 . (16)

The positive (discrete) energy spectrum of the quantum graph corresponds one-to-one to the
zeros of ξ(k) with k> 0 [9, 26, 27]. The corresponding eigenstates can be obtained from (14).
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2.2. Scattering states on open quantum graphs

Let us consider the positive energy states for open quantum graphs next. Generically, these
consist of anNL-fold degenerate continuum of scattering states. Physically, theNL-fold degen-
eracy is obvious from the ability to choose NL independent incoming plane waves along the
leads. To describe the scattering states, let us write the unitary edge scattering matrix in block
form

Σ(k) =

(
Σ(k)LL Σ(k)LB
Σ(k)BL Σ(k)BB

)
=

(
I 0
0 Π

)
Σ̂(k) , (17)

where the block-indices B and L refer to 2NB directed bonds and NL leads. In the second
equality, we have expressed this explicitly in terms of the matrix Σ̂(k) defined in (12) which
is block-diagonal in the vertex scattering matrices and the permutation matrix Π that inter-
changes the two directions for any two bonds as defined in (13). For an open quantum graph,
Π only acts on bonds. Analogously to the compact case in equation (15), we introduce the
unitary quantum map for an open graph, again expressed in block form,

U(k)≡
(
U(k)LL U(k)LB
U(k)BL U(k)BB

)
=

(
Σ(k)LL Σ(k)LB

T(k)Σ(k)BL T(k)Σ(k)BB

)
. (18)

The scattering states are spanned by the NL-dimensional vector ainL of incoming plane wave
amplitudes on the leads. The outgoing amplitudes aoutL and the incoming amplitudes on the
directed bonds ainB then result from solving the set of linear equations(

a(k)outL

a(k)inB

)
=

(
U(k)LL U(k)LB
U(k)BL U(k)BB

)(
ainL

a(k)inB

)
(19)

which follows again from (7) and (11). Solving these equations, one obtains for the outgoing
amplitudes on the leads

a(k)outL = σ (k)ainL (20)

where the unitary graph scattering matrix is given as

σ (k) = U(k)LL +U(k)LB
I

I−U(k)BB
U(k)BL . (21)

The plane wave amplitudes on the directed bonds can be expressed as

a(k)inB = ρ(k)ainL (22)

with the rectangular 2NB ×NL matrix

ρ(k) =
I

I−U(k)BB
U(k)BL . (23)

The scattering matrix σ(k) is related to the matrix ρ(k) via

σ (k) = U(k)LL +U(k)LB ρ(k) . (24)

We now have the required mathematical language for constructing Green’s functions on
quantum graphs.
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One may rightfully question whether the matrix I−U(k)BB can always be inverted as
required in equations (21) and (23). This is related to the existence of bound states in the
continuum (a pure point spectrum in mathematical terms). In the absence of such bound states
U(k)BB does not have a unit eigenvalue and the expression is valid for all wave numbers k> 0.
We will return to the discussion of this expression in the presence of bound states, also known
as perfect scars, later in section 4.

3. The scattering approach to the Green’s function

The Green’s function may be considered as the integral kernel of the resolvent operator (E−
Ĥ)−1 which has singularities at the spectrum of Ĥ. It has poles at the discrete spectrum and a
branch cut along the continuous spectrum.

For a given (complex) energy E= k2 and two points x= (e,xe) and x ′ = (e ′,x ′e ′) on a
quantum graph, the Green’s function G(x,x ′,E) satisfies the inhomogeneous equation

(
E− Ĥ

)
G(x,x ′,E) = δ (x,x ′)≡

{
δ (xe− x ′e ′) if e= e ′

0 if e 6= e ′
, (25)

where Ĥ acts on x. The solution of this differential equation (25) with given self-adjoint match-
ing conditions at the vertices may not be unique or not exist at all. The latter happens when
the energy E belongs to the discrete real eigenvalue spectrum. For complex energies with a
non-vanishing imaginary part, one can always find a unique square integrable solution and this
then coincides with the integral kernel of the resolvent operator. The relation to the resolvent
operator gives rise to the symmetry

G(x,x ′;E) = G(x ′,x;E∗)
∗
. (26)

We focus on the Green’s functionG+(x,x ′,E)≡ G(x,x ′,E+)with positive real and imaginary
parts: E+ = k2+ = Er+ iEi with 0< Er ∈ R and 0< Ei ∈ R. For real energies that are not in
the (discrete or continuous) eigenvalue spectrum, we allow the imaginary part to vanish, that
is, Ei = 0, as the Green’s function is well defined in that case. Solutions at real energies in
the continuous spectrum require the limit Ei → 0+ which is always implied. If Er belongs to
the discrete eigenvalue spectrum, the Green’s function has a pole G(x,x ′;E)∼ P(x,x ′)

Ei
(with a

non-vanishing function P(x,x ′)) preventing the limit Ei → 0+ to exist. For brevity we write
E= E+ and k= k+ during the following derivations.

To construct the Green’s function, we exploit the fact that for all x 6= x ′ the solutions to
equation (25) are solutions to the homogeneous wave equation in (3). This allows one to
express the solutions again as a linear superposition of counter propagating plane waves as
express in (4). The set of unknown coefficients are then chosen to satisfy the imposed ver-
tex boundary conditions as well as the appropriate boundary conditions at the delta function
excitation x= x ′. This procedure is detailed via a scattering approach in the following.

3.1. Construction of the Green’s function for compact graphs

The Green’s function on a graph can be constructed in a three step procedure as illustrated in
figure 1.

8
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Figure 1. This three step procedure is described in detail below.

Step 1. Define the graph and the coordinate of the delta function excitation x ′ = (e ′,x ′e ′). The
delta function acts as a source which wemodel by creating an auxiliary open scattering
graph by ‘cutting out’ the excited edge e′ and replacing it with two auxiliary leads.

Step 2. Treat the auxiliary graph as a scattering site and construct a lead scattering matrix for
energy E+. This allows one to determine the two outgoing lead wave amplitudes in
terms of the two incoming wave amplitudes which are free parameters.

Step 3. Take the scattering solution on the auxiliary leads at distances x ′e ′ and ℓe ′ − x ′e ′ from
the vertices and ‘glue’ these solutions together such that the differential equation (25)
is satisfied yielding a Dirac δ-function at the position x ′. This determines all free para-
meters and results in the Green’s function G(x,x ′;E+).

Let us now go through these steps in detail:

Step 1. Consider a compact quantum graph G(V,E ,L) as defined in section 2 which we wish
to excite with a delta function at location x ′ = (e ′,x ′e ′) ∈ G. Let us denote the vertex at xe ′ = 0
as the ‘tail’ vertex vT and the vertex at xe ′ = le ′ as the ‘head’ vertex vH. We begin by cut-
ting the excited edge e′ and replacing it by two leads attached at vT and vH, respectively,
thus creating the auxiliary open scattering graph Gaux,e ′ = Gaux,e ′(V,Eaux,e ′ ,Laux,e ′), where
Eaux,e ′ = Laux,e ′ ∪ (B \ {e ′}) and Laux,e ′ = L \ {ℓe ′}. The coordinates on the leads are set to
be xT = xH = 0 at the vertices vT and vH, respectively. On each lead, the solutions are defined
as

ψT (xT) = ainT e
−ik+xT + aoutT eik+xT ,

ψH (xH) = ainHe
−ik+xH + aoutH eik+xH . (27)

Step 2. Next, we construct the scattering states on the auxiliary graph. The quantum map of
the auxiliary graph can then be written in the form equation (18) and only differs from the
quantum map (15) of G by excluding the rows corresponding to the excited edge e′. The wave
amplitudes on the two leads are mapped from incoming to outgoing wave amplitudes by the
graph scattering matrix σ(k+) as defined in (20) with matrix elements(

aoutH
aoutT

)
=

(
σ (k+)HH σ (k+)HT
σ (k+)TH σ (k+)TT

)(
ainH
ainT

)
. (28)

The incoming wave amplitudes ainH and ainT are at this stage free parameters.

Step 3. We project the set of scattering solutions from the auxiliary graph onto the original
graph by cutting the leads H and T at xT = x ′e ′ and xH = ℓe ′ − x ′e ′ , then ‘gluing’ the two ends
together forming a single bond. The solution on e′ is then

9
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ψe ′ (xe ′) =

{
ainT e

−ik+xe ′ +
(
σTHainH +σTTainT

)
eik+xe ′ for xe ′ < x ′e ′ ;

ainHe
−ik+(ℓe ′−xe ′ ) +

(
σHHainH +σHTainT

)
eik+(ℓe ′−xe ′ ) for xe ′ > x ′e ′ .

(29)

One determines ainH and ainT by fulfilling equation (25) at xe ′ = x ′e ′ ; this leads to the following
conditions:

i. continuity at xe ′ = x ′e ′

lim
α→0+

[ψe ′ (x
′
e ′ +α)−ψe ′ (x

′
e ′ −α)] = 0; (30)

ii. a discontinuity of the derivatives of the form

lim
α→0+

[
dψe ′ (x ′e ′ +α)

dxe ′
− dψe ′ (x ′e ′ −α)

dxe ′

]
= 1 . (31)

These two conditions result in a non-homogeneous system of linear equations for the two
incoming scattering amplitudes. The unique solution of this system is

ainT =
eik+ℓe ′

(
e−ik+(ℓe ′−x ′e ′ ) +σHHeik+(ℓe ′−x ′e ′ ) −σTHeik+x

′
e ′
)

2ik+ [(1− eik+ℓe ′σHT)(1− eik+ℓe ′σTH)− e2ik+ℓe ′σHHσTT)]

=
1

2ik+

[
eik+x

′
e ′

[
I

I−U(k+)

]
e ′−e

′
−

+ eik+(ℓe ′−x
′
e ′ )

[
I

I−U(k+)

]
e ′−e

′
+

]
(32a)

ainH =
eik+ℓe ′

(
e−ik+x

′
e ′ +σTTeik+x

′
e ′ −σHTeik+(ℓe ′−x ′e ′ )

)
2ik+ [(1− eik+ℓe ′σHT)(1− eik+ℓe ′σTH)− e2ik+ℓe ′σHHσTT)]

=
1

2ik+

[
eik+(ℓe ′−x ′e ′ )

[
I

I−U(k+)

]
e ′+e

′
+

+ eik+x
′
e ′

[
I

I−U(k+)

]
e ′+e

′
−

]
. (32b)

The derivation of the expressions involving (I−U(k+))−1, the resolvent matrix of the
quantum map, can be found in appendix A. Inserting (32) into (29) and extending the solu-
tion to the entire graph using (22), the Green’s function of the compact graph G can finally be
written in the form

G(x,x ′,E+) =
1

2k+i

[
δee ′e

ik+|xe−x ′e ′ | + eik+(xe−x ′e ′−ℓe+ℓe ′)
[

U(k+)
I−U(k+)

]
e+e ′+

+ e−ik+(xe−x ′e ′)
[

U(k+)
I−U(k+)

]
e−e ′−

+ eik+(xe+x
′
e ′−ℓe)

[
U(k+)

I−U(k+)

]
e+e ′−

+ e−ik+(xe+x ′e ′−ℓe ′)
[

U(k+)
I−U(k+)

]
e−e ′+

]
. (33)

This is our main result in this section. We give here for the first time a closed form expression
of the Green’s function on a graph following the recipe from Barras and Gaspard [17].

10
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By formally expanding U
I−U =

∑∞
n=1U

n, one may express the Green’s function as a sum
over paths p on the metric graph starting at x ′ and ending at x, that is,

G(x,x ′,E+) =
1

2k+i

∑
p

Ap (k+)e
iLpk+ . (34)

Here, Lp is the metric length of the path and the amplitude Ap is the product of all scat-
tering amplitudes along the trajectory. If e= e ′, the direct path between xe ′ and x ′e ′ has
Lp = |xe ′ − x ′e ′ | and Ap = 1. Equation (34) is the starting point for the investigations in [17],
which, however, makes it necessary to do an explicit summation over all possible paths—in
general a cumbersome task. Note also that this expansion converges only if the imaginary part
of k+ is positive and these expressions thus require a limit if used for real wave numbers. This
is all well known for similar expansions into sums over paths in trace formulae and scattering
systems, we refer to the textbook [8] and references therein.

Finally, let us shortly discuss the pole structure of theGreen’s function. For a compact graph,
the eigenvalue spectrum is a discrete countable set {E0,E1, . . .}. Let us assume that there are
no degeneracies and all eigenvalues are positive, that is, En > 0. The spectral decomposition
of the Schrödinger operator Ĥ allows us to write the resolvent operator as

(
E+ − Ĥ

)−1
=

∞∑
n=0

P̂n
E+ −En

(35)

where P̂n is the projection operator onto the subspace spanned by the nth eigenvector. For the
Green’s function this implies

G(x,x ′,E+) =
∞∑
n=0

Pn (x,x ′)

E+ −En
(36)

where Pn(x,x ′) is the integral kernel of P̂n. Let us now show that (33) and (36) are indeed
equivalent. We start by considering the limit E+ → En for some given eigenvalue En = k2n and

by showing that the singular part of the Green’s function (33) in this limit is given by Pn(x,x ′)
E+−En

.
Let us extract first the singular part of the matrix

U(k+)
I−U(k+)

∼ P
−i(k+ − kn)C

. (37)

Here, P= binbin
†
is the projection matrix with matrix elements on the corresponding unit

eigenvector U(kn)bin = bin and

C= bin
†
[knL+ sin(knL)Π]bin > 0 (38)

is a positive constant andL is a 2NB dimensional diagonal matrices with diagonal entries ℓe.We
refer to appendix B for a detailed derivation of (37) and (38). With 2k+(k+ − kn)∼ E+ −En
one then finds

11
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G(x,x ′,E+)∼

(
aine−e

−iknxe + aine+e
ikn(xe−ℓe)

)∗(
aine ′

−
e−iknxe ′ + aine ′+e

ikn(xe ′−ℓe ′ )
)

C(E+ −En)

=
Pn (x,x ′)

E+ −En
, (39)

where the last equality requires that the constant C gives the correct normalization of the pro-
jection kernel Pn(x,x ′). This is equivalent to

∑
e∈E
´ ℓe
0 Pn((e,xe),(e,xe))dxe = 1 which is eas-

ily checked by direct calculation. Repeating this calculation for E+ near to all other energy
eigenvalues shows that expressions (33) and (36) have the same poles and the same residues.
Both expressions can be continued analytically to the lower half plane where the imaginary
part of the energy is negative. They are thus equivalent up to an entire function F(E), (i.e. it is
analytic in the whole complex plane). As both (33) and (36) vanish in the limit Ei →±∞, the
same must be true for their difference F(E). The entire function that vanishes in these limits
for all Er is F(E) = 0.

3.2. Construction of the Green’s function for open scattering graphs

The construction of the Green’s function on an open scattering graph follows analogously.
In this case, our assumption that the energy has a positive imaginary part together with the
requirement of square integrability leads to outgoing boundary conditions along the leads.
That is, the amplitudes of incoming plane waves need to vanish, as these would lead to expo-
nentially increasing contributions. These conditions are straight forward to implement and we
can go through the same construction as for the compact graph. A short-cut is obtained by
first replacing each lead e ∈ L by an edge of finite length with a dangling vertex of degree one
and choosing some self-adjoint boundary conditions at the dangling vertices. This results in an
auxiliary compact quantum graph as described in the previous section. The Green’s function of
the auxiliary quantum graph is then given by (33). Clearly, the solution depends on the lengths
that have been introduced for the leads as parameters. Next, one sends the introduced edge
lengths to infinity. Because the imaginary part of the wave number is positive Im k+ > 0 the
corresponding phase factors then decay as eik+ℓe → 0 as ℓe →∞. In this limit any dependence
on the arbitrary choice of boundary conditions at the dangling vertices disappears and what
remains is the Green’s function of the open graph. We refer to appendix C for the details of
the calculation which results in

G(x,x ′,E+)

=
1

2k+i



δe,e ′ e
ik+|xe−x ′

e ′ | + eik+(xe+x ′
e ′ )

[
U(k+)LL +U(k+)LB

I
I−U(k+)BB

U(k+)BL

]
ee ′

if e,e ′ ∈ L,

eik+(xe−x ′
e ′+ℓe ′ )

[
U(k+)LB

I
I−U(k+)BB

]
ee ′+

+ eik+(xe+x ′
e ′ )

[
U(k+)LB

I
I−U(k+)BB

]
ee ′−

if e ∈ L and e ′ ∈ B,

e−ik+(xe−x ′
e ′ )

[
I

I−U(k+)BB
U(k+)BL

]
e−e ′

+ eik+(xe+x ′
e ′−ℓe)

[
I

I−U(k+)BB
U(k+)BL

]
e+e ′

if e ∈ B and e ′ ∈ L,

δee ′ e
ik+|xe−x ′

e ′ | + eik+(xe−x ′
e ′−ℓe+ℓe ′)

[
U(k+)BB

I−U(k+)BB

]
e+e ′+

+ e−ik+(xe−x ′
e ′ )

[
U(k+)BB

I−U(k+)BB

]
e−e ′−

+eik+(xe+x ′
e ′−ℓe)

[
U(k+)BB

I−U(k+)BB

]
e+e ′−

+ e−ik+(xe+x ′
e ′−ℓe ′ )

[
U(k+)BB

I−U(k+)BB

]
e−e ′+

if e,e ′ ∈ B.
(40)

12
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If the energy spectrum of the graph is continuous these expressions are regular and the limit
Im k+ → 0+ can be performed by just choosing k+ → k ∈ R. A similar expression for energies
E2
− = k2− with negative imaginary parts may be obtained in the same way. More directly, it can

be obtained from the symmetry (26). Note that it will have a different limit as k− approaches
the real axis.

The energy spectrum of an open graph may contain a discrete set {E0,E1, . . .} of bound
states in the continuum. These have square integrable eigenfunctions and they thus vanish on
the leads. The Green’s function for E close to any of these energy eigenvalues will have poles
just as in the compact case that we discussed in the previous section. And the calculation there
applies here as well. If either x or x ′ is chosen on a lead the expression for the Green’s function
should remain regular as E→ En = k2n which is not obvious from the given explicit expressions
above which contain the inverse (I−U(k+)BB)

−1. We will show regularity explicitly if both
x and x ′ are on the leads. In that case the expression above reduces to

G(x,x ′,E+) =
1

2k+i

[
δe,e ′ e

ik+|xe−x ′e ′ | + eik+(xe+x
′
e ′)σ (k+)e,e ′

]
. (41)

We will show in the following section that the scattering matrix is indeed regular as k→ kn for
at a bound state. Regularity in the case that one point is on a lead and the other on a bond can
be shown as well using essentially the same tools but we will leave this to the reader.

4. Regularisation schemes for perfect scars

4.1. Bound states in the continuum

The eigenstates of a quantum graph are generally supported on all edges of a graph as long
as the graph is fully connected. However, it is not too difficult to construct graphs which have
eigenstates that are non-zero exclusively on a compact subgraph S , but vanish exactly on the
rest R of the edges. We call such an eigenstate a perfect scar of the graph. These states exist,
for example, on quantum graphs with Kirchhoff–Neumann conditions where the subgraph S
is a cycle on which all edge lengths are rationally dependent. In that case, the cycle edge
lengths are an integer multiple of a minimal length ℓe = neℓ0. At wave number k̃= 2π/ℓ0 (or
any integer multiple of it), one may then set

ψe (xe) =

{
±sin

(
k̃xe
)

if e belongs to the cycle of S;
0 if e belongs to R.

(42)

Here the signs ± can be chosen to satisfy the flux conservation condition.
Since the union of S andR make up the total graph G, it is natural to express the quantum

map in the block-form

U(k) =

(
U(k)RR U(k)RS
U(k)SR U(k)SS

)
(43)

with appropriate permutations applied. In general there is perfect scar on the subgraph
S at energy E= k2 > 0, if the block U(k)SS has an eigenvector ainS with unit eigenvalue
U(k)SSainS = ainS . The unitarity of the full quantum map then implies that U(k)RSainS = 0 van-
ishes. One may extend ainS to an eigenvector of the full map by setting ainR = 0 resulting in the
vanishing of wave amplitudes on edges that do not belong to S .

13
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For open graphs, a perfect scar at a wavenumber k0 > 0 is a bound state in the continuum
and this situation is again straight forward to construct, such as by using the cycle example
above. In this case, one may take R to contain all leads and S to be a sub-graph containing a
sub-set of the finite bonds.

Throughout the previous sections, we assumed that the matrix I−U(k)BB is invertible,
which it is generically the case as U(k)BB is a block of a unitary matrix. However, a perfect
scar exists, if and only if U(k)BB has an eigenvalue one at the wave number k= k0. Even in
the case of ‘almost’ perfect scars (with small nonzero entries for ainR), matrix inversion may
cause large numerical errors when inverting I−U(k)BB. To deal with this issue, we describe a
regularisation scheme of the scattering matrix in the following section. This is important when
dealingwith open quantum graphs andwhen constructingGreen’s function both in the compact
and open case. The approach may also be used to find the regular part of the Green’s function
in compact quantum graphs when the energy is in the eigenvalue spectrum. (By regular part,
we refer to the Green’s function where the contribution from the pole at the energy has been
removed.)Wewill focus on the regularization of the scattering matrix, as the other applications
can all be derived from there when needed.

4.2. Regularization of the scattering approach at a bound state

Wewill show in this section that scattering solutions of the form (20) are well defined at k= k0
even in the presence of a bound state at that wave number. We show in appendix D that the
scattering matrix can be regularised across a whole k interval containing k0.

Consider a non-degenerate bound state at wave number k= k0 with wave amplitudes binB
such that,

U(k0)BB binB = binB . (44)

As discussed in the previous section, the unitarity of the quantum map U(k) implies

U(k0)LB b
in
B = 0 and binB

†
U(k0)BL = 0, (45)

that is, incoming waves ainL in the leads can not couple into the bound state binB and the bound
state can not couple back out. Let us assume for simplicity that the perfect scar described by
binB is not degenerate and introduce the idempotent, Hermitian 2NB × 2NB projection matrix

P≡ binBb
in
B
†

(46)

and its orthogonal complement

Q= I−P . (47)

The methods below can be generalised to situations where more than one perfect scar exists
at the same wave number k0, such as, if all edge lengths are rationally related in a large graph
with Neumann–Kirchhoff matching conditions. Writing equation (22) in the form

(I−U(k)BB)a
in
B = U(k)BL ainL, (48)

we find that the solution ainB is not unique at k= k0 as both

P(I−U(k0)BB) = 0 and PU(k0)BL = 0, (49)

14
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which follows directly from (45). This implies, that for any solution ainB of equation (48), ainB +
αbinB, α ∈ C, is also a solution. However, a unique solution ãinB exists for the reduced system
of equations

YQ (k0) ãinB = U(k0)BL ainL with YQ (k0) =Q(I−U(k0)BB)Q. (50)

As YQ(k0)binB = 0, its standard inverse does not exist. One may invert it in the subspace ortho-
gonal to binB. Let us define (with mild abuse of notation)

YQ (k0)
−1

=Q
I

I−QU(k0)Q
Q (51)

as the unique 2NB × 2NB matrix with by YQ(k0)−1YQ(k0) =Q= YQ(k0)YQ(k0)−1 and
YQ(k0)−1P= 0= PYQ(k0)−1. As U(k0)LBP= 0, one obtains a well-defined scattering solu-
tion for equation (20), that is,

a(k)outL = U(k0)LB ãinB. (52)

We may thus write the scattering matrix (21) in the form

σ (k0) = U(k0)LL +U(k0)LBYQ (k0)
−1U(k0)BL . (53)

For an in-depth discussion of the regularity of the scattering matrix as k→ k0, see D.

5. Worked examples

In this section we explicitly construct the scattering matrices of two open quantum graphs
which contain perfect scars. Expressions for the Green’s function on the leads follow directly
using (41).

5.1. Open lasso

Consider the open lasso quantum graph illustrated in figure 2. The coordinate x1 ⩾ 0 runs along
the lead with x1 = 0 at the vertex v1 and the coordinate x2 ∈ [0, ℓ2] runs along the loop such
that x2 = 0 and x2 = ℓ2 are the endpoints at the vertex v1. At the vertex, we enforce Neumann
boundary conditions, as expressed in (10), leading to the quantum map written in block form
as

U(k) =


− 1

3
2
3

2
3

2eikℓ2
3

2eikℓ2
3 − eikℓ2

3

2eikℓ2
3 − eikℓ2

3
2eikℓ2
3

≡

(
ULL ULB

U(k)BL U(k)BB

)
. (54)

In the construction of the scattering matrix and the Green’s function, one needs to invert the
matrix I−U(k)BB which yields

I
I−U(k)BB

=

 3−2eikℓ2

(eikℓ2−1)(eikℓ2−3)
− eikℓ2

(eikℓ2−1)(ekℓ2−3)

− eikℓ2

(eikℓ2−1)(eikℓ2−3)
3−2eikℓ2

(eikℓ2−1)(eikℓ2−3)

 (55)
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Figure 2. An open lasso graph constructed from two edges e1 and e2 where e1 is a lead
and e2 is an bond. Both edges are connected to the same vertex v1 where edge e2 has
both ends connected forming a loop wherein bound states can exist in the continuum.

and is well defined as long as eikℓ2 6= 1, that is, if k 6= kn = 2πn/ℓ2 for n= 1,2, . . .. The reason
for this is the existence of perfect scars on the loop which here lead to bound states in the
continuum of scattering states. These bound state wave functions are given as

ψe1 (x1) = 0, (56a)

ψe2 (x2) =

√
2
ℓ2

sin(knx2) . (56b)

The continuum of scattering states exists for all wave numbers k> 0 and is given by

ψe1 (x1) = e−ikx1 +σ (k)eikx1 , (57a)

ψe2 (x2) = ρ(k)2+1 e
ik(x2−ℓ2) +ρ(k)2−1 e

−ikx2 . (57b)

where

ρ(k) =
I

I−U(k)BB
U(k)BL =

 2eikℓ2
3−eikℓ2

2eikℓ2
3−eikℓ2

 (58)

and

σ (k) = ULL +ULBρ(k) =
3eikℓ2 − 1
3− eikℓ2

. (59)

While the matrix I
I−U(k)BB

is used to find ρ(k) and σ(k) in the scattering approach the poles
at k= kn have disappeared in the final results. Note that bound states and scattering states
are trivially orthogonal due to their symmetry under x2 7→ ℓ2 − x2 (which can be viewed as a
mirror symmetry of the lasso). The bound states are odd under this symmetry asψ1(x1) = 0 and
ψ2(x2) =−ψ2(ℓ2 − x2) at wave numbers kn. The scattering states are even under this symmetry
for all wave numbers k> 0 as

ψe2 (x2) =
4eikℓ2/2

3− eikℓ2
cos

(
k
2x2 − ℓ2

2

)
= ψ2 (ℓ2 − x2) . (60)

For completeness, we give the full Green’s function for this example below, where xe (or x ′e ′)
are either on the lead (e= e1) or on the loop (e= e2). Following on from the last line in (40),
one obtains, using the expressions in (54) and (55),
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Figure 3. A 3-star with one lead consists of a central vertex v1 with three edges en,n=
1,2,3, attached. Here, e1 is a lead and the other two edges e2 and e3 are bonds of lengths
ℓ2 and ℓ3 ending in vertices v2 and v3.

Glasso
(
x,x ′,E+

)

=
1

2k+i



eik+|xe1−x ′e1 | + eik+(xe1+x ′e1) 3eik+ℓ2−1
3−eik+ℓ2

if e= e1 and e ′ = e1,

2
3−eik+ℓ2

eik+xe1
(
eik+x ′e2 + e−ik+(x ′e2−ℓ2)

)
if e= e1 and e ′ = e2,

2
3−eik+ℓ2

eik+x ′e1

(
eik+xe2 + e−ik+(xe2−ℓ2)

)
if e= e2 and e ′ = e1,

eik+|xe2−x ′e2 | + 2eik+ℓ2(
eik+ℓ2−1

)(
eik+ℓ2−3

) [(
2− eik+ℓ2

)
cos(k+ (xe2 − x ′e2))

−cos(k+ (xe2 + x ′e2 − ℓ2))] if e= e2 and e ′ = e2.

(61)

5.2. Scattering states for an open 3-star with one lead

Consider the open T-junction quantum graph as illustrated in figure 3. We choose the three
coordinates such that xn = 0 for n= 1,2,3 at the central vertex v1 with xn = ℓn at vertices
vn,n= 2,3. We enforce Kirchhoff-Neumann boundary conditions at the central vertex as
expressed in (10) andDirichlet boundary conditions at v2,v3, that is,Σ(vn) =−1,n= 2,3, lead-
ing to the quantum map

U(k) =



− 1
3 0 0 2

3
2
3

2eikℓ2
3 0 0 − eikℓ2

3
2eikℓ2
3

2eikℓ3
3 0 0 2eikℓ3

3 − eikℓ3
3

0 −eikℓ2 0 0 0

0 0 −eikℓ3 0 0


≡
(

ULL ULB
U(k)BL U(k)BB

)
. (62)

Computing the scattering matrix and Green’s function in the scattering approach require that
one inverts the matrix I−U(k)BB which is given as
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I
I−U(k)BB

=
1
D


3− e2ikℓ3 −2eik(ℓ2+ℓ3) −

(
1+ e2ikℓ3

)
eikℓ2 2eikℓ2

−2eik(ℓ2+ℓ3) 3− e2ikℓ2 2eikℓ3 −
(
1+ e2ikℓ2

)
eikℓ3

−
(
3− e2ikℓ3

)
eikℓ2 2eik(2ℓ2+ℓ3) 3− e2ikℓ3 −2e2ikℓ2

2eik(ℓ2+2ℓ3) −
(
3− e2ikℓ2

)
eikℓ3 −2e2ikℓ3 3− e2ikℓ2


(63)

where

D= 3− e2ikℓ2 − e2ikℓ3 − e2ik(ℓ2+ℓ3) . (64)

Note that for e2ikℓ2 = e2ikℓ3 = 1, one has D= 0 making the inverse not well defined. This can
only happen if the bond lengths are rationally related, then giving rise to a set of bound state
in the continuum that vanish on the lead and are a sinusoidal wave along the two bonds with a
node on the vertex v1. In either case the scattering states are given by

ψe1 (x1) = e−ikx1 +σ (k)eikx1 , (65a)

ψe2 (x2) = ρ(k)2+1 e
ik(x2−ℓ2) +ρ(k)2−1 e

−ikx2 (65b)

ψe3 (x3) = ρ(k)3+1 e
ik(x3−ℓ3) +ρ(k)3−1 e

−ikx3 (65c)

where

ρ(k) =
I

I−U(k)BB
U(k)BL =

2
D


eikℓ2

(
1− e2ikℓ3

)
eikℓ3

(
1− e2ikℓ2

)
−e2ikℓ2

(
1− e2ikℓ3

)
−e2ikℓ3

(
1− e2ikℓ2

)

 (66)

and

σ (k) = ULL +ULBρ(k) =
D∗

D
e2ik(ℓ2+ℓ3) . (67)

The scattering states are then given as

ψe1 (x1) = e−ikx1 +
D∗

D
ei[k(x1+2ℓ2+2ℓ3), (68a)

ψe2 (x2) =
2
(
1− e2ikℓ2

)(
1− e2ikℓ3

)
D

sin(k(ℓ2 − x2))
sin(kℓ2)

, (68b)

ψe3 (x3) =
2
(
1− e2ikℓ2

)(
1− e2ikℓ3

)
D

sin(k(ℓ3 − x3))
sin(kℓ3)

. (68c)

The scattering matrix is continuous due to 1+σ(k) = 2(1−e2ikℓ2 )(1−e2ikℓ3 )
D . It is straight for-

ward to check that the scattering states also behave well near e2ikℓ2 = e2ikℓ3 = 1. Given the
above scattering matrix constructions, the Green’s function can be derived analogously to the
previous example from equation (40).
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6. Conclusion

To conclude, we present a simple three step procedure for generating the Green’s function
on both closed and open finite quantum graphs. The procedure exploits the standard scatter-
ing approach wherein the infinite sum of trajectories between a given source point and receiver
point on the graph involves the inverse of a block component of the matrix defining the graph’s
quantum map. Generically, this matrix is sub-unitary and its inverse is well defined. Using this
scattering representation, a closed form expression for the Green’s function is given here for
the first time.We also discuss the possibility of perfect scars and bound states in the continuum
for which the existing approaches (based on sums over trajectories) diverge. We show that our
closed expressions can be regularized in these cases. This regularization scheme is important
also on a practical level, as scattering matrices of generic quantum graphs with NK matching
conditions which do not have any exact bound states still have resonances. These can be arbit-
rarily close to bound states and they can lead to large errors in numerical investigations if not
treated with care.

We restricted ourselves here to the positive energy domain, mainly to keep the discussion
concise and relevant—generalizations to the negative energy domain follow along the same
ideas, but require extra care as scattering matrices are no longer unitary. A more relevant
extension of our results would be to graphs which do not have a finite number of edges (such
as infinite periodic quantum lattices).
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Appendix A. Derivation of coefficients in the Green’s function in terms of the
resolvent matrix of the quantum map

For any given edge e ∈ E , we will denote its complement as

Ee ≡ E \ {e} . (A.1)

Analogously, we write Be = B \ {e} if e ∈ B or Le = L\ {e} if e ∈ L. For any given edge e,
we may nowwrite the quantummap in block form (after appropriate reordering of the directed
edges), that is,

U=

(
Uee UeBe

UBee UBeBe

)
, (A.2)

where Uee, UeBe , UBee and UBeBe are matrices of dimension 2× 2, 2× 2(NB − 1), 2(NB −
1)× 2 and 2(NB − 1)× 2(NB − 1), respectively. Eliminating the ainB components in (14), we
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can write the quantization condition with the help of the unitary 2× 2 matrix U(k)red,e defined
as

Ured,e = Uee+UeBe (I−UBeBe)
−1UBee. (A.3)

We also define an alternative reduced secular function

ξ (k)red,e ≡ det
(
I−U(k)red,e

)
, (A.4)

which is related to ξ(k) defined in (16) through the identity

ξ (k) = ξ (k)red,e det(I−U(k)BeBe) . (A.5)

The relation above is obtained using the decomposition

I−U=

(
I−Ured,e −UeBe (I−UBeBe)

−1

0 I

)(
I 0

−UBee I−UBeBe

)
. (A.6)

Note that the reduced quantum map Ured,e is related to the quantum scattering matrix σ(k)
introduced in equation (28) by

Ured,e =

(
Ured,e
e+e+ Ured,e

e+e−

Ured,e
e−e+ Ured,e

e−e−

)
= eikℓe

(
σTH σTT
σHH σHT

)
. (A.7)

In order to obtain the second line in (32), we note that the denominator in these expressions
can be written in terms of the reduced secular function of the compact graph, that is,

[(
1− eikℓe ′σHT

)(
1− eikℓe ′σTH

)
− e2ikℓeprimeσHHσTT

]
= ξ (k)red,e

′
, (A.8)

where we use the e′ notation as in section 3.1.
By writing out the resolvent of the reduced 2× 2 quantum map, that is,

I
I−Ured,e ′ ≡

1−Ured,e ′

e ′+e
′
+

−Ured,e ′

e ′+e
′
−

−Ured,e ′

e ′−e
′
+

1−Ured,e ′

e ′−e
′
−

−1

=
1

ξred,e ′

1−Ured,e ′

e ′−e
′
−

Ured,e ′

e ′+e
′
−

Ured,e ′

e ′−e
′
+

1−Ured,e ′

e ′+e
′
+

 , (A.9)

we can relate the terms in (32) to matrix elements of the inverse of the reduced quantum map
using again (A.7). The expressions as given in equation (32) are now obtained observing in
addition

I
I−Ured,e ′

=

[
I

I−U

]
e ′e ′

, (A.10)

which follows, for example, from the decomposition (A.6).
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Appendix B. Details on the pole contribution to the Green’s function in
compact graphs

In this appendix, we want to give a detailed derivation of equations (37) and (38) that define the
pole contribution of the Green’s function at an energy eigenvalue En = k2n. With the orthogonal
projector Q= I−P let us start by writing

U(k+)
I−U(k+)

=−I+
1

χ(k+)
P+P

I
I−U(k+)

Q+Q
I

I−U(k+)
P+Q

I
I−U(k+)

Q (B.1)

where

χ(k+) =

(
bin

† I
I−U(k+)

bin
)−1

(B.2)

and we have used that P= binbin
†
is a rank one projector. We will show that, as k+ → kn, the

only singular term in (B.1) is contained in 1
χ(k+)P. Writing

I
I−U(k+)

(P+Q)(I−U(k+)) = I, (B.3)

and multiplying it from left and right with either P or Q results in four equations that may be
solved for

χ(k+) = bin
†
[
I−U(k+)−U(k+)Q

I
I−QU(k+)Q

QU(k+)

]
bin (B.4a)

P
I

I−U(k+)
Q=

1
χ(k+)

PU(k+)Q
I

I−QU(k+)Q
Q (B.4b)

Q
I

I−U(k+)
P=

1
χ(k+)

Q
I

I−QU(k+)Q
QU(k+)P (B.4c)

Q
I

I−U(k+)
Q=Q+

1
χ(k+)

Q
I

I−QU(k+)Q
QU(k+)PU(k+)Q

I
I−QU(k+)Q

Q

(B.4d)

using standard properties of orthogonal projectors such asP2 = P,Q2 =Q, andPQ=QP= 0.
Now let us write k= kn+ δk and consider δk→ 0 using the Taylor expansion

U(kn+ δk) = U(kn)+
dU
dk

(kn) δk+O
(
(δk)2

)
. (B.5)

The derivative of the quantummapU(k) can be performed explicitly. The latter depends on the
wave number via phases ei kℓe on each edge e, and in general also via an explicit k dependence
of the vertex scattering matrices. For the vertex scattering matrices of the form (9), one finds,
using standard matrix algebra,

d
dk

Σ(v) (k) =
1
2k

(
I−Σ(v) (k)2

)
. (B.6)

Then the derivative of U(k) = eikLΠΣ gives

dU
dk

(k) = iLU(k)+
1
2k

[
eikLΠ−U(k)e−ikLΠU(k)

]
. (B.7)
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At this stage we may identify that the constant C stated in (38) is just

C=
1
i
bin

† dU
dk

(kn)bin . (B.8)

The expressions (B.5) and (B.7) have the following implications

PU(k+ δk)Q= O(δk) (B.9a)

QU(k+ δk)P= O(δk) (B.9b)

χ(k+ δk) =−iCδk+O
(
(δk)2

)
(B.9c)

such that P I
I−U(k)Q, Q I

I−U(k)P and Q I
I−U(k)Q are not singular in the limit δk→ 0 and we are

left with the singular part

U(kn+ δk)
I−U(kn+ δk)

=
1

−iCδk
P+O

(
(δk)0

)
(B.10)

which is equivalent to the equation (37) we wanted to proof in this appendix.

Appendix C. Details of the derivation of the Green’s function in open
scattering graphs

In this appendix, we give details how the Green’s function (40) for an open scattering graph
G can be derived from the Green’s function (33) of an auxiliary compact graph Gaux by send-
ing the edge lengths of those edges turning into leads to infinity. Note that one has to send
the lengths to infinity while the imaginary part of k+ is positive. The auxiliary graph Gaux is
obtained from the open graph G by replacing each lead by an edge of finite length with a vertex
of degree one at the other end. For simplicity, we will put Neumann-Kirchhoff conditions at the
vertices of degree one, the final results will not depend on this choice. For the sake of this deriv-
ation, we will bend the use of notation and continue to refer to ‘leads’ and ‘bonds’ of the aux-
iliary graph. Let us also introduce the NL-dimensional diagonal matrix LL = diag(ℓe : e ∈ L)
that contains the edge lengths of the leads. We start from the Green’s function for the auxil-
iary graph (33). It contains four matrix elements of the matrix R= Uaux

I−Uaux where we denote
the (2(NB +NL)-dimensional) quantum map of the auxiliary graph by Uaux in order to distin-
guish it from the (2NB +NL-dimensional) quantum map U of the open graph. We suppress
the dependence on k+ here, as it can be reintroduced easily at the end of the calculation. The
standard way to continue the calculation would be to decompose the involved matrices into
blocks that correspond to three sets of directed edges: directed bonds B, outgoing leads L+

and incoming leads L−. For the quantum map of the auxiliary graph the structure of the graph
then implies

Uaux =

Uaux
L+L+

Uaux
L+L−

Uaux
L+B

Uaux
L−L+

Uaux
L−L−

Uaux
L−B

Uaux
BL+

Uaux
BL−

Uaux
BB

=

 0 TLULL TLULB
TL 0 0
0 UBL UBB

 (C.1)

where four blocks vanish due to the connectivity of the auxiliary graph, the other four blocks
can been identified with corresponding blocks of the quantum map of the open graph and
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we introduced TL ≡ eik+LL , an NL-dimensional diagonal matrix that contains the auxiliary
lengths of the leads in the phase. Note, that TL → 0 as the auxiliary lengths are sent to infinity.
Writing the identity Uaux = R−UauxR in terms of its blocks one may express the blocks of R
in the form

R=

RL+L+
RL+L− RL+B

RL−L+
RL−L− RL−B

RBL+
RBL− RBB



=


TLσ

I
I−T2

Lσ
TL TLσ

I
I−T2

Lσ
TL

I
I−σT2

L
ρout

I
I−T2

Lσ
TL

T2
Lσ

I−T2
Lσ

T2
L

I
I−σT2

L
ρout

ρin I
I−T2

Lσ
TL ρin I

I−T2
Lσ

UBB
I−UBB

+ρinT2
L

I
I−σT2

L
ρout

 (C.2)

whereσ ≡ ULL +ULB
I

I−UBB
UBL is the scattering matrix of the open graph, ρin = I

I−UBB
UBL

and ρout = ULB
I

I−UBB
.

To proceed one chooses two points x= (xe,e) and x ′ = (xe ′ ,e ′) on the auxiliary graph Gaux

and expresses the Green’s function (33) of Gaux in terms of appropriate matrix elements of R
and then performs the limit TL → 0. Let us do this explicitly for e,e ′ ∈ L and write (33) for
this case in the form

2k+i G
aux (x,x ′,E+) = δe,e ′ e

ik+|xe−x ′e ′ | + eik+(xe−x ′e ′)
[
T−1
L RL+L+

TL
]
ee ′

+ e−ik+(xe−x ′e ′)
[
RL−L−

]
ee ′

+ eik+(xe+x
′
e ′)
[
T−1
L RL+L−

]
ee ′

+ eik+(xe+x
′
e ′)
[
RL−L+TL

]
ee ′

= δe,e ′ e
ik+|xe−x ′e ′ | + eik+(xe−x ′e ′)

[
σT2

L
I−σT2

L

]
ee ′

+ e−ik+(xe−x ′e ′)
[

T2
Lσ

I−T2
Lσ

]
ee ′

+ eik+(xe+x
′
e ′)
[
σ

I
I−T2

Lσ

]
ee ′

+ eik+(xe+x
′
e ′)
[

I
I−T2

Lσ
T2
L

]
ee ′

(C.3)

where we may now send the edge lengths of the leads to infinity TL → 0. This results in

2k+i G(x,x ′,E+) = δe,e ′ e
ik+|xe−x ′e ′ | + eik+(xe+x

′
e ′)σee ′ (C.4)

which is equivalent to the given expression for the open Green’s function (40) if both points
are on the leads. The other cases can be derived in the same way. This calculation is equivalent
to formally expanding the Green’s function of the auxiliary graph as a sum over trajectories.
Sending the lengths of the leads to infinity is equivalent to only summing over trajectories that
never travel through any lead from one end to the other—summing just these trajectories then
gives back (40).

Appendix D. Regularity of the scattering matrix σ at a bound state in the
continuum

Following on from the discussion in section 4.2, we show here that the singularity of the scat-
tering matrix σ(k) and the coupling matrix ρ(k), equations (21) and (23), in the presence of
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a perfect scar (described by the eigenvector b0) can be lifted and that the solution is regular
across a whole k interval containing k0.

D.1. Closed expressions for Pρ(k)

First, we decompose the internal graph amplitudes of a scattering solution (22), that is, a(k)inB =
ρ(k)ainL, into components parallel and orthogonal to b0,

Pa(k)inB +Qa(k)inB = (Pρ(k)+Qρ(k)) ainL, (D.1)

where the projection operator and its orthogonal component are defined in (46) and (47).
Starting from equation (48), we write

P(I−U(k)BB)(P+Q) ainB = PU(k)BL ainL,

Q(I−U(k)BB)(P+Q) ainB =QU(k)BL ainL,

which yields (
binB

†
(I−U(k)BB)b

in
B

)
·PainB −PU(k)BBQainB = PU(k)BL ainL, (D.2a)

−QU(k)BBPa
in
B +YQ (k)QainB =QU(k)BL ainL, (D.2b)

where YQ(k) has been defined in (50) We have defined YQ(k)−1 in (51) as the inverse on the
reduced space spanned by Q. Note that these definitions are here extended to wave numbers

close to k0 while P andQ do not depend on k. We used the general relation PAP= (binB
†
AbinB) ·

P for a square matrix A. After rearranging (D.2b) by multiplying with YQ(k)−1 and replacing
a(k)inB by ρ(k)ainL, we obtain

Qρ(k) = YQ (k)
−1U(k)BBPρ(k)+YQ (k)

−1U(k)BL . (D.3)

Given that binB
†
(I−U(k)BB)binB in (D.2a) is a scalar and after replacing QainB by Qρ(k)ainL

using (D.3), one obtains after some further manipulations

Pρ(k) = P
I+U(k)BBYQ (k)

−1

bin†B

[
I−U(k)BB −U(k)BBYQ (k)

−1U(k)BB

]
binB

U(k)BL . (D.4)

In order to analyse the scattering solutions in the vicinity of the bound state, we consider
wave numbers k close to k0 in the limit δk≡ k− k0 → 0 in the matrices σ(k) and ρ(k). By
construction we have YQ(k)binB = 0 and YQ(k)−1 has been defined on the subspace spanned
by the projector Q in order to remove the pole at k0. For wave numbers k sufficiently close
to k0 this definition remains well defined due to the (assumed) non-degeneracy of U(k) as the
matrix is then free of poles.

D.2. Expansion of Pρ(k) around k= k0

We will show in the following that, as k→ k0 in (D.4), the denominator
bin†B

[
I−U(k)BB −U(k)BBYQ(k)−1U(k)BB

]
binB vanishes but so does the numerator. We will

show this for vertex scattering matrices of the form (9) by performing a Taylor expansion of
both expressions around k= k0. For this, we need to find explicit expressions for the deriv-
ative of the blocks of the quantum map U(k). The calculation of these is similar to the one
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performed in appendix B using equation (B.6). When this equation is applied here to the full
quantum map U, one obtains

d
dk

U(k) =

(
0 0
0 iL

)
U(k)+

1
2k

[(
I 0
0 eikLΠ

)
−U(k)

(
I 0
0 e−ikLΠ

)
U(k)

]
, (D.5)

where L and exp(−ikL) are 2NB- dimensional diagonal matrices with diagonal entries ℓe and
exp(−ikℓe), respectively. Setting k= k0 + δk, we find the expansions

U(k0 + δk)BB = U(k0)BB + iδkLU(k0)BB +
δk
2k0

(
eik0LΠ−U(k0)BB e

−ik0LΠU(k0)BB
)

− δk
2k0

U(k0)BLU(k0)LB+O
(
(δk)2

)
(D.6a)

U(k0 + δk)BL = U(k0)BL + iδkLU(k0)BL − δk
2k0

U(k0)BB e
−ik0LΠU(k0)BL

− δk
2k0

U(k0)BLU(k0)LL +O
(
(δk)2

)
. (D.6b)

As binB is a normalized eigenvector of U(k0)BB with eigenvalue one and as U(k0)LBbinB = 0,

binB
†
U(k0)BL = 0 due to the unitarity of U(k0), one gets

binB
†
U(k0 + δk)BB b

in
B = 1+ iδkbinB

†
(
L+

sin(k0L)
k0

Π

)
binB +O

(
(δk)2

)
(D.7)

and

binB
†
U(k0 + δk)BBYQ (k0 + δk)−1U(k0 + δk)BBb

in
B = O

(
(δk)2

)
. (D.8)

The last two equations together give

binB
† [I−U(k)BB −U(k)BBYQ (k)

−1U(k)BB

]
binB

= −iδk binB
†
[
L+

sin(Lk0)
k0

Π

]
binB + O

(
(δk)2

)
. (D.9)

Analogously one finds

PU(k0 + δk)BL = iPLU(k0)BL δk−P
δk
2k0

e−ik0LΠU(k0)BL +O
(
(δk)2

)
(D.10)

and

PU(k0 + δk)BBQ= δk P
[
iLU(k0)BB +

1
2k0

Π
(
eik0L − e−ik0LU(k0)BB

)]
Q+O

(
(δk)2

)
(D.11)

which together yield
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P
(
I+U(k)BBYQ (k)

−1
)
U(k)BL

= iδk P
[
L− 1

2k0i
Πe−ik0L

]
U(k0)BL

+ iδk P
[(

LU(k0)BB +Π
eik0L − e−ik0LU(k0)BB

2k0i

)
YQ (k0)

−1
]
U(k0)BL +O

(
(δk)2

)
.

(D.12)

Finally, we show that the term binB
†
(L+ 1

k0
sin(k0L)Π)binB in (D.9) does not vanish. This is

essential for the limit limδk→0Pρ(k+ δk) to be well defined (and finite). Indeed one has

binB
†
(
L+

sin(k0L)
k0

Π

)
binB =

∑
e∈B

ℓe
(
|be+ |2 + |be− |2

)
+

sin(k0ℓe)
k0

(
b∗e+be− + b∗e−be+

)
(D.13)

which is a sum over positive terms as (for k0 > 0)∣∣∣∣ sin(k0ℓe)k0ℓe

(
b∗e+be− + b∗e−be+

)∣∣∣∣< ∣∣∣(b∗e+be− + b∗e−be+
)∣∣∣⩽ |be+ |2 + |be− |2

using the Cauchy–Schwartz inequality.
This means that the limit Pρ(k0)≡ limδk→0Pρ(k0 + δk) is well defined and we obtain to

leading order

Pρ(k0) =
P
[
1
2iΠe−ik0L − k0L−

(
k0LUBB +Π eik0L−e−ik0LUBB

2i

)
Y−1
Q

]
binB

†
[k0L+ sin(k0L)Π]binB

U(k0)BL . (D.14)

For quantum graphs with vertex matching conditions leading to vertex scattering matrices
not depending on the wave number, (such as Neumann–Kirchhoff boundary conditions), this
simplifies further to

Pρ(k0) =−PL
I+U(k0)BBYQ (k0)

−1

binB
†
L binB

U(k0)BL . (D.15)

Likewise, it can be shown that Qρ in (D.3) and the scattering matrix in (24) are also well
defined in an interval containing k0. In the limit k→ k0, we obtain for the latter the result (53)
as expected.

In this regularization, we have explicitly used equation (B.6) which is valid precisely for
scattering matrices that come from a self-adjoint matching condition. So one may wonder
whether it is valid for the large amount of physical quantum graph models that define the
quantum graph in terms of arbitrary prescribed scattering matrices (as for instance in [17]). In
most of these physical cases, the scattering matrices are assumed to be constant with respect
to k which implies that the right-hand side of equation (B.6) vanishes. It is easy to see that this
leads to some simplifications in the following formulas and leads to a well-defined regularized
scattering matrix. If one prescribes scattering matrices with some dependency on the wave
number then the regularity of the scattering matrices in the presence of bound states cannot
be guaranteed in general. However if the scattering matrix is an effective description derived
from a more detailed self-adjoint system (whether that is a graph or a different type of model),
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then there exists a well-defined scattering matrix both physically and mathematically basically
because the spectral decomposition of self-adjoint operators is always based on orthogonal
projections, such that scattering states are always orthogonal to bound states. Showing the
regularity in this case will require an analogous projection method but will generally require
its own analysis. Vice versa a non-regular scattering matrix may be an indicator that a model
is not physical in all respects (which does not necessarily mean that the model is bad as long
as its limitations are known).

Our assumption that the perfect scar is non-degenerate may also be lifted but leads to more
cumbersome calculations—if the perfect scars do not overlap, one may regularise by first reg-
ularizing the scattering matrices of the corresponding non-overlapping subgraphs and then
build up the full scattering matrix from there. Otherwise the rank one projector P needs to be
replaced by higher rank projectors.
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