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Cover Letter

Dear Editor,

Free and forced vibrations of thin constrained damping composite plates with double piezo-

electric layers are investigated in the wavenumber domain. The electric potential equations are

solved for two piezoelectric layers with three passive control methods and one active control

method, and implicit governing equations described by a loading vector and a five dimensional

spectral matrix for the smart composite plates are obtained. The formulae in this work are veri-

fied by comparing the present results with those in the literature. Three passive control methods,

i.e., two smart layers with the closed circuit conditions, open circuit conditions and an dielectric

slab, do not distinctly change the natural frequencies and loss factors of the composite plate

since only a small portion of mechanical energy is converted into electrical energy. Proportional

derivative active control notably affects the natural frequencies and loss factors of the compos-

ite plate. Forced vibrations of the composite plates are characterized by plane power spectral

density (PPSD), radial power spectral density (RPSD), cylindrical-wave spectral density (CSD)

and phase angles of elastic waves for transverse displacements. We introduce three quantities

(RPSD, CSD and phase angles of the propagating waves) in this paper, which is different from

our former studies on sound and vibration of stiffened composite plates. Interesting phenomena

and mechanisms are explained in detail. The derivative gain of active control has important

effects on vibration suppression performance of the smart composite plates.

Yours sincerely

Xiongtao Cao
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Highlights

1. Free and forced vibrations of the smart sandwich plates are analytically investigated in the

wavenumber domain.

2. Three-dimensional electric potential equations of the two piezoelectric layers with four kinds

of circuit boundary conditions are solved.

3. Cylindrical-wave spectral density is used to analyze far-field vibration of the smart composite

plates.
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Abstract

Vibrations and the damping behaviour of thin constrained composite plates with double

piezoelectric layers are analytically explored by using Fourier transformation and classical lami-

nated plate theory. Electric potential equations in the double piezoelectric layers are solved with

respect to closed and open circuit boundary conditions, an exterior dielectric slab and active

control. The natural frequencies and loss factors of the constrained smart composite plates with

passive control methods are not notably changed in comparison with those of the constrained

composite plates without piezoelectric effects since vibrational energy does not efficiently con-

vert to electrical energy. The loss factors of the composite plates with active constrained damp-

ing increase and the natural frequencies have significant variations as the proportional derivative

gains increase. Transverse displacement power spectra of the piezoelectric composite plates

with active control are compared with those of the piezoelectric composite plates with passive

control showing that active control has the best suppression performance of vibrations for the

constrained laminated plates with double piezoelectric layers. Radial power spectral density,

phase angles and cylindrical-wave power spectral density are calculated. Interesting patterns of

wave propagation are explained when plane wave expansion is used to obtain Bessel cylindrical

waves.

Keywords: constrained damping layer; piezoelectric layer; composite plate; vibration;

cylindrical wave



1 Introduction

Passive constrained damping layers have excellent performance with respect to vibration

suppression of composite plates and shells in marine and aeronautic engineering. Piezoelectric

constrained damping layers can further reduce vibration of the composite structures. Smart

constrained damping composites with superior sense and drive properties have attracted a lot

of research interests recently [1]. One kind of viscoelastic layer is constrained damping, where

the layer is sandwiched by two face panels. It is in contrast to free damping, where the layer

directly covers the surface of the host structure. Free damping layers typically induce a smaller

global damping loss factor for the assembled structure. Damping materials for the constrained

damping layer are often made of butyl rubber while typical materials for free damping layers

are polymerized by chlorosulfonated polyethylene rubber.

Great efforts were devoted to studying the vibrations of constrained piezoelectric composite

damping plates. Shen [2] analytically derived the governing equations and boundary conditions

of constrained damping sandwich shells using the three-dimensional piezoelectric elastic theory

but numerical results for composite shells with a piezoelectric constrained damping layer were

not presented. Zhang and Zhang [3] studied active and passive vibration control of a host plate

with local piezoelectric constrained damping layer via the Galerkin method. The electric poten-

tial in the piezoelectric layer was described by the external control voltage. Gao and Shen [4]

derived the governing equations of constrained composite plates with a single piezoelectric layer

according to the D’Alembert principle and classical laminated plate theory. Three-dimensional

electric potential equations of the piezoelectric laminas were solved with closed and open circuit

boundary conditions. Natural frequencies and loss factors of the sandwich plates with a single

piezoelectric layer were given. Similarly, Park and Baz [5] presented the equations of motion for

the composite plates with a single active constrained damping layer on the basis of the classical

laminated plate theory and investigated transient vibration of the composite plates. However,

electric potential of the piezoelectric layer was modelled by the same method as shown in [3]

and proportional derivative active control was used. Yuan et al. [6] developed the first-order dif-

ferential equations to semi-analytically solve the vibrational responses of the circular cylindrical

shells with active constrained damping layer based on the transfer matrix method [7]. The elec-

trodes of a piezoelectric layer were divided into several segments in the circumferential direction

and the electric potential in the piezoelectric layer was assumed to be the external input electric

1



potential. The topological configurations of the electrodes affected the vibration control of the

composite plates and shells with piezoelectric lamina. Piezoelectric fibre laminas were driven

by the interdigitated electrodes in order to excite elastic waves [8–10]. Akop’yan et al. [11]

explored the vibrations of piezoelectric elements with nonuniform electrode connections. The

host plates were treated with periodic arrays of shunted piezoelectric patches in order to control

sound radiation and transmission of the composite plates [12–16]. Numerical and analytical

models were established by the wave finite element method [12] and the smeared piezoelectric

patch approach [13, 14, 16]. The finite element method was employed to examine active vi-

bration control of the composite plates and shells with piezoelectric constrained damping layers

[17–22]. Proportional derivative feedback control [18, 20–22] and linear quadratic regulator

(LQR) optimal control [19] were applied to the piezoelectric layers. Carra and Amabili [23]

investigated experimentally a rectangular aluminium plate vibrating in air or in contact with

water and used the filtered-x least mean square (FXLMS) adaptive feedforward algorithm to

realize structural vibration control of the vibration modes. Ferrari and Amabili [24] experimen-

tally examined active vibration control of a free rectangular sandwich plate using the positive

position feedback (PPF) algorithm. The amplitude reduction achieved by the non-collocated

configuration was much larger than that obtained by the nearby collocated one. Yang et al. [25]

investigated vibrations and damping performance of the hybrid carbon fibre composite pyrami-

dal truss sandwich plates with viscoelastic layers embedded in the face sheets using the modal

strain energy approach.

Many studies on vibration control of composite plates and shells with two piezoelectric

layers were performed using analytical and numerical methods [26–43]. Ray [27] derived the

governing equations of laminated shells with piezoelectric sensors and actuator layers accord-

ing to the classical laminated shell theory and assumed that the electric potential in the actuator

layer was a linear distribution through the thickness direction. LQR control was applied and the

electric potential equation of the sensor layer was neglected. Song et al. [33] presented an active

aeroelastic flutter analysis and vibration control of supersonic composite laminated plate using

classical laminated plate theory, and the electric potential was described by the same method as

in Refs. [3, 6]. Using the same theory, Arshid et al. [43] studied free vibrations of saturated

porous functionally graded circular plates integrated with piezoelectric actuators via the differ-

ential quadrature method. The governing equations of the composite thick circular plates [26],

annular functionally graded plates [28] and functionally graded laminated cylindrical shells [29]
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with double piezoelectric layers were derived by using the first-order shear deformable plate the-

ory and layerwise quadratic distribution approximations of the electric potentials. Based on the

higher-order shear deformation theory, linear and nonlinear vibrations of the composite plates

and shells with two piezoelectric layers were analyzed [30, 31, 35, 38, 40, 42] and electric po-

tential variations in the smart active layers were expressed by the assumed distribution functions

along the thickness direction.

Vibrations and sound radiation of smart cylindrical shells with two piezoelectric layers were

explored [32, 34, 36, 39] in the state space. The composite cylindrical shells were required to

be divided into several thin cylinders for the state space method. The effects of the tempera-

ture field on the vibrations of piezoelectric composite plates and shells were taken into account

[29, 39–41]. Piezoelectric constants and permittivity coefficients of the piezoelectric laminas

were significantly influenced by the temperature field which was produced by the external driv-

ing voltage as a result of electric energy dissipation. Piezoelectric effects disappeared when the

temperature was above the Curie temperature point of the piezoelectric materials. The experi-

ments of active vibration control for the composite plates and shells with arrays of piezoelectric

patches were performed and the features of active control were demonstrated [19, 44, 45]. First-

order and third-order shear deformation theories were employed to establish the governing equa-

tions of the constrained sandwich damping plates and shells [46–50]. These shear deformable

models [46, 49, 50] could be utilized in a broad frequency range and normal deformation of the

viscoelastic core in the thickness direction needed to be taken into account in the medium and

high frequency range. Vibrations of the composite plates with a periodic perforated viscoelastic

damping layer were explored by asymptotic analysis and the finite element method [51–53].

Vibrations of the constrained damping composite circular and annular plates were examined

on the basis of the assumed-mode method and the finite element method [54–56]. The dynamic

stability of the rotating sandwich annular plates with viscoelastic core was analyzed by the finite

element method and the Galerkin method [57, 58].

Analytical solutions to the vibrations of constrained rectangular and circular composite

plates with double piezoelectric layers are rare. Only some analytical, semi-analytical and nu-

merical work examined the vibrations of constrained composite damping plates with a single

piezoelectric layer [2–5]. Cao et al. [59] investigated active control of sound radiation from

laminated cylindrical shells with a single piezoelectric layer and periodic segmented electrodes

in the wavenumber domain. Research on the vibrational and acoustic features of the piezo-

3



electric composite plates and shells is very limited in the wavenumber domain. The implicit

governing equations of the constrained composite damping plates with arbitrary smart layer-

s are derived by using the two-dimensional Fourier transform in the present work. Free and

forced vibrations of the constrained composite plates with two piezoelectric layers are analyzed

via three passive control methods and one active control method. The natural frequencies and

loss factors of the smart composite plates are given. Plane wave expansion is performed through

a cylindrical wave transform. The far-field cylindrical-wave power spectral density, radial pow-

er spectral density and phase angle pattern of the transverse displacement for the constrained

composite plates with double piezoelectric layers are explored.

2 Theoretical formulation of the wavenumber model

An infinite thin constrained composite damping plate with double piezoelectric layers is

illustrated in Fig. 1. The viscoelastic core is sandwiched between two piezoelectric laminated

face plates. The upper piezoelectric laminated panel is the constraining plate and the lower

piezoelectric laminated panel is the host plate in Fig. 1. The polarization direction of the two

piezoelectric layers is along the z axis. A sensor layer is attached at the host plate and an

actuator layer is included in the constraining plate. Electric boundary conditions of the double

piezoelectric layers can be open or closed circuit. Two piezoelectric layers can also be connected

by an external dielectric slab with uniform resistances and inductances. The dielectric slab with

periodic electrodes and the equivalent circuit architecture of one cell are shown in Fig. 2. Similar

electrode segments are uniformly distributed on the outer surfaces of the two piezoelectric layers

and the electrodes of the piezoelectric layers are connected with those of the slab according to

the same in-plane location. The voltage of the sensor layer at the lower surface of the host

plate is fed back into the actuator layer by the external power amplifiers when an active control

method is used. The factor e−iωt is suppressed throughout the paper.

The mechanical models of the composite plates and shells can be established by several

plate and shell theories. Vibrations of the active constrained sandwich plate were studied on

the basis of the classical as well as the layer-wise laminated plate theory by Park and Baz [60],

which was validated by the experiments in the low frequency range. Cao and Hua [61] showed

that the classical and the first-order shear deformable plate theories yielded the same equations

of motion for the isotropic moderately thick plate in the low frequency range. Chronopoulos and

4



Ichchou et al. [62] used the wave finite element approach to calculate the dispersion curves of a

thin orthotropic plate and compared the results with those given by the classical plate theory. It

was shown that the orthotropic plate modelled by the classical plate theory was valid from the

low to the high frequency range. The classical plate theory with von Kármán strains, the first-

order shear deformation theory and the third-order shear deformation theory were compared

with respect to nonlinear vibrations of the laminated composite rectangular plates by Amabil-

i and Farhadi [63]. Difference of nonlinear vibration arose for the thick laminated composite

plates with a ratio of thickness to length equal to 0.1. There was negligible difference for the

thin laminated composite plates with a ratio of thickness to length equal to 0.01. Amabili [64]

studied nonlinear vibrations for the laminated circular cylindrical shells using the Novozhilov

classical, higher-order shear deformation and Amabili-Reddy [65] shell theories. The Amabili-

Reddy and Novozhilov theories gave good results for the thin laminated shells with a ratio of

thickness to radius equal to 0.02. For the thick laminated shells with a ratio equal to 0.2,

the Amabili-Reddy theory should be used in order to obtain accurate results. Free and forced

vibrations of thick laminated composite plates with a ratio of thickness to length equal to 0.1

predicted by the classical and shear deformation plate theories had some discrepancies [66–68].

Liu [69] pointed out that classical plate theory could be applied to smart composite plates with a

ratio of thickness to length less than 0.1. Classical plate theory which is simpler than shear de-

formation plate theory can be used to study the vibrations of thin composite plates and shells in

the low and medium frequency range. Active control of the piezoelectric layers for constrained

sandwich plates is utilized in the low frequency range since the performance of vibration sup-

pression for the passive viscoelastic damping layer is poor in this frequency band. In the medium

and high frequency range, vibration attenuation performance of the viscoelastic damping layer

is excellent and active control is not necessary. Classical plate theory is used to establish the

vibration model of thin constrained composite damping plates with double piezoelectric layers

in this work.
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Figure 1: Thin constrained composite plate with double piezoelectric layers
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Figure 2: Dielectric slab with periodic arrays of the electrodes and the equivalent circuit model
of a cell
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2.1 Governing equations of the constrained composite plates with double piezo-

electric layers

2.1.1 Motion of smart sandwich plates

2.1.1.1 Displacement fields of the composite plates The transverse displacements of

two-face plates are assumed to be the same. In-plane and normal deformation of the viscoelastic

core is neglected and only the transverse shear deformation of the viscoelastic layer is taken into

account. These theoretical conditions are similar to those in Refs. [60, 70]. The displacements

of the constrained composite plates are described by

U(s)
j (x, y, z) = u(s)

j (x, y) +
(
z +

hv + hs

2

)
β(s)

j (x, y) ,

U(v)
j (x, y, z) = u(v)

j (x, y) + zβ(v)
j (x, y) ,

U(c)
j (x, y, z) = u(c)

j (x, y) +
(
z − hv + hc

2

)
β(c)

j (x, y) ,

U3 (x, y) = u3 (x, y) , (1)

where the subscript j is 1 or 2 denoting the translational and angular displacements in the x

and y directions, respectively. z is the global transverse coordinate of the composite plate. The

superscripts s, v and c denote physical quantities associated with the host plate, viscoelastic

layer and constraining plate. U(s)
j , U(v)

j and U(c)
j are the in-plane displacements of the compos-

ite plates. u3 is the transverse displacement of the sandwich plate. u(s)
j (x, y) and u(c)

j (x, y) are

the displacements of the medium surfaces for the two face plates. β(c)
j (x, y) and β(s)

j (x, y) are

the rotational angles of the upper and lower laminated plates. u(v)
j (x, y) and β(v)

j (x, y) are the

displacements and rotational angles of the medium surface for the damping core. According to

classical laminated plate theory, one obtains

β(c)
1 = −

∂u3

∂x
, β(s)

1 = −
∂u3

∂x
, β(c)

2 = −
∂u3

∂y
, β(s)

2 = −
∂u3

∂y
. (2)

Layerwise displacements of the piezoelectric composite plate with constrained damping layer

are shown in Fig. 3, which is similar to the displacement compatibility relation for a sand-

wich cylindrical shell with constrained damping core given by Chen and Huang [71]. Z is the

local transverse coordinate of the viscoelastic layer and two face panels in Fig. 3. Displace-

ment boundary conditions among the constraining plate, viscoelastic core and host plate can be
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Figure 3: Layerwise displacements and local coordinate system of constrained composite damp-
ing plate with double piezoelectric layers

described by

u(v)
1 =

1
2

(
u(c)

1 −
hc

2
β(c)

1 +u(s)
1 +

hs

2
β(s)

1

)
, u(v)

2 =
1
2

(
u(c)

2 −
hc

2
β(c)

2 +u(s)
2 +

hs

2
β(s)

2

)
, (3)

β(v)
1 =

1
hv

(
u(c)

1 −
hc

2
β(c)

1 −u(s)
1 −

hs

2
β(s)

1

)
, β(v)

2 =
1
hv

(
u(c)

2 −
hc

2
β(c)

2 −u(s)
2 −

hs

2
β(s)

2

)
. (4)

Substituting Eq. (2) into Eqs. (3) and (4), one obtains

u(v)
1 =

1
2

(
u(c)

1 +u(s)
1 +

hc − hs

2
∂u3

∂x

)
, u(v)

2 =
1
2

(
u(c)

2 +u(s)
2 +

hc − hs

2
∂u3

∂y

)
, (5)

β(v)
1 =

1
hv

(
u(c)

1 +
hc + hs

2
∂u3

∂x
− u(s)

1

)
, β(v)

2 =
1
hv

(
u(c)

2 +
hc + hs

2
∂u3

∂y
− u(s)

2

)
. (6)

Transverse shear strains of the viscoelastic core are expressed by

ε(v)
xz =

∂u3

∂x
+ β(v)

1 , ε(v)
yz =

∂u3

∂y
+ β(v)

2 . (7)

Transverse shear stresses of the viscoelastic core are given by

σ(v)
xz = Gv

(
∂u3

∂x
+ β(v)

1

)
, σ(v)

yz = Gv

(
∂u3

∂y
+ β(v)

2

)
, (8)
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where Gv is the complex shear modulus. Displacement-strain relation of the constraining lami-

nated plate with respect to the l−th orthotropic layer is addressed by


ε(l,c)

xx

ε(l,c)
yy

ε(l,c)
xy

 =

ε(l,0)

xx

ε(l,0)
yy

ε(l,0)
xy

 + Z


ε(l,1)

xx

ε(l,1)
yy

ε(l,1)
xy

 . (9)

For the constraining plate and the host plate, Z is defined by z− (hv + hc) /2 and z+ (hv + hs) /2

, respectively. ε(l,c)
xx , ε(l,c)

yy and ε(l,c)
xy are the normal strains in the x and y directions, and in-plane

shear strain of the l−th lamina, respectively. ε(l,0)
xx , ε(l,0)

yy , ε(l,0)
xy , ε(l,1)

xx , ε(l,1)
yy and ε(l,1)

xy are the

reduced strains of the l−th lamina and given by

ε(l,0)
xx =

∂u(c)
1

∂x
, ε(l,0)

yy =
∂u(c)

2

∂y
, ε(l,0)

xy =
∂u(c)

1

∂y
+
∂u(c)

2

∂x
,

ε(l,1)
xx = −

∂2u3

∂x2 , ε
(l,1)
yy = −

∂2u3

∂y2 , ε
(l,1)
xy = −2

∂2u3

∂x∂y
. (10)

One can obtain the displacement-strain relation of the host plate with respect to the l−th or-

thotropic layer if the superscript c is replaced with s in Eqs. (9) and (10).

2.1.1.2 Constitutive equations Constitutive relations of the l−th orthotropic layer for

the constraining plate with piezoelectric effects are described by


σ(l,c)

xx

σ(l,c)
yy

τ(l,c)
xy

 =


Q̄(l,c)
11 Q̄(l,c)

12 Q̄(l,c)
16

Q̄(l,c)
12 Q̄(l,c)

22 Q̄(l,c)
26

Q̄(l,c)
16 Q̄(l,c)

26 Q̄(l,c)
66




ε(l,c)

xx

ε(l,c)
yy

ε(l,c)
xy

 −


0 0 ē(l,c)
31

0 0 ē(l,c)
32

0 0 ē(l,c)
36




E(l,c)

1

E(l,c)
2

E(l,c)
3

 , (11)


D(l,c)

1

D(l,c)
2

D(l,c)
3

 =


0 0 0

0 0 0

ē(l,c)
31 ē(l,c)

32 ē(l,c)
36




ε(l,c)

xx

ε(l,c)
yy

ε(l,c)
xy

 +

ξ̄(l,c)

11 ξ̄(l,c)
12 0

ξ̄(l,c)
12 ξ̄(l,c)

22 0

0 0 ξ̄(l,c)
33




E(l,c)

1

E(l,c)
2

E(l,c)
3

 , (12)

where Q̄(l,c)
i j , ē(l,c)

i j and ξ̄(l,c)
i j are the reduced stiffnesses, piezoelectric coefficients and permit-

tivity coefficients, respectively. E(l,c)
1 , E(l,c)

2 and E(l,c)
3 are the electric field intensities, given

by

[
E(l,c)

1 E(l,c)
2 E(l,c)

3

]T
= −

[
∂Φ(l,c)

∂x
∂Φ(l,c)

∂y
∂Φ(l,c)

∂z

]T
, (13)

where Φ(l,c) is the electric potential of the l−th orthotropic layer. Eqs. (11) and (12) can be

9



expressed in terms of the matrices

σ(c)
l = Q(c)

l ε(c)
l −e(c)

l E(c)
l ,

D(c)
l =

(
e(c)

l

)T
ε(c)

l +ξ
(c)
l E(c)

l ,
(14)

where the stress vector σ(c)
l , strain vector ε(c)

l , electric displacement vector D(c)
l and electric

field intensity vector E(c)
l are denoted by

σ(c)
l =

[
σ(l,c)

xx σ(l,c)
yy τ(l,c)

xy

]T
, ε(c)

l =

[
ε(l,c)

xx ε(l,c)
yy ε(l,c)

xy

]T
,

D(c)
l =

[
D(l,c)

1 D(l,c)
2 D(l,c)

3

]T
,E(c)

l =

[
E(l,c)

1 E(l,c)
2 E(l,c)

3

]T
.

(15)

Similarly, constitutive relation of the l−th orthotropic layer for the host plate with piezoelectric

effects can be described by (14), and the superscript c is replaced with s.

2.1.1.3 Hamilton’s principle Neglecting the rotational inertia, one obtains the kinetic

energy of the constraining plate

Kc =
1
2

Nc∑
l=1

∫
Ω

(c)
l

ρ(c)
l

((
u̇(c)

1

)2
+

(
u̇(c)

2

)2
+ u̇2

3

)
dv, (16)

where ρ(c)
l is the density of the l−th orthotropic layer and the superscript dot denotes the

derivative with respect to time. Ω(c)
l is the volume domain of the l−th orthotropic layer and Nc

denotes the layer counts of the constraining plate, respectively. Similarly, the kinetic energy of

the host plate is expressed as

Ks =
1
2

Ns∑
l=1

∫
Ω

(s)
l

ρ(s)
l

((
u̇(s)

1

)2
+

(
u̇(s)

2

)2
+ u̇2

3

)
dv, (17)

where ρ(s)
l and Ω(s)

l are the density and volume domain of the l−th orthotropic layer for the

host plate. Ns denotes the layer counts of the host plate. The kinetic energy of the viscoelastic

core is given by

Kv =
1
2

∫
Ωv

ρv

((
u̇(v)

1

)2
+

(
u̇(v)

2

)2
+ u̇2

3

)
dv, (18)

where ρv and Ωv are the density and volume domain of the viscoelastic core, respectively.

10



According to the extended Hamilton’s principle, one obtains

∫ t1

0

 Nc∑
l=1

∫
Ω

(c)
l

δ
(
ε(c)

l

)T (
Q(c)

l ε(c)
l − e(c)

l E(c)
l

)
− δ

(
E(c)

l

)T
((

e(c)
l

)T
ε(c)

l +ξlE(c)
l

)
dv

+

Ns∑
l=1

∫
Ω

(s)
l

δ
(
ε(s)

l

)T (
Q(s)

l ε(s)
l − e(s)

l E(s)
l

)
− δ

(
E(s)

l

)T
((

e(s)
l

)T
ε(s)

l +ξlE(s)
l

)
dv

+

∫
Ωv

(
δε(v)

xz σ
(v)
xz + δε

(v)
yz σ

(v)
yz

)
dv −

∫ ∫
δuTFdxdy − δKc − δKs − δKv

]
dt = 0, (19)

where u and F are the displacement vector and external loading vector. Simplifying the first

term on the left-hand side in Eq. (19), one obtains

∫
z
δ
(
ε(c)

l

)T (
Q(c)

l ε(c)
l − e(c)

l E(c)
l

)
dz =

∫
z

(
Q(c)

l ε(c)
l − e(c)

l E(c)
l

)T
δ
(
ε(c)

l

)
dz

=




u(c)

1

u(c)
2

u3



T

NT
c +

∫
∂Φ(l,c)

∂z
dzPT

c




δε(l,0)

xx

δε(l,0)
yy

δε(l,0)
xy

 +



u(c)

1

u(c)
2

u3



T

MT
c +

∫
Z
∂Φ(l,c)

∂z
dzPT

c




δε(l,1)

xx

δε(l,1)
yy

δε(l,1)
xy

 ,
(20)

where

NT
c = JT

0 A(c) + JT
1 B(c),MT

c = JT
0 B(c) + JT

1 D(c),PT
c =

[
ē(l,c)

31 ē(l,c)
32 ē(l,c)

36

]
. (21)

The elements of the reduced stiffness matrices A(c), B(c) and D(c) for the constraining plate are

expressed as

A(c)
i j =

N∑
l=1

Q̄(l,c)
i j (hl − hl−1), B(c)

i j =
1
2

N∑
l=1

Q̄(l,c)
i j

(
h2

l − h2
l−1

)
,D(c)

i j =
1
3

N∑
l=1

Q̄(l,c)
i j

(
h3

l − h3
l−1

)
, (22)

where hl is the local Z coordinate of the top plane for the l−th lamina. Reduced stiffnesses

Q̄(l,c)
i j of the l−th orthotropic layer for the constraining plate are defined by

Q̄(l,c)
11 = Q(l,c)

11 cos4α + 2
(
Q(l,c)

12 + 2Q(l,c)
66

)
sin2αcos2α + Q(l,c)

22 sin4α,

Q̄(l,c)
12 = Q(l,c)

12 +
(
Q(l,c)

11 + Q(l,c)
22 − 2Q(l,c)

12 − 4Q(l,c)
66

)
sin2αcos2α,

Q̄(l,c)
22 = Q(l,c)

22 cos4α + 2
(
Q(l,c)

12 + 2Q(l,c)
66

)
sin2αcos2α + Q(l,c)

11 sin4α,

Q̄(l,c)
66 = Q(l,c)

66 +
(
Q(l,c)

11 + Q(l,c)
22 − 2Q(l,c)

12 − 4Q(l,c)
66

)
sin2αcos2α,

11



Q̄(l,c)
16 =

(
Q(l,c)

11 − Q(l,c)
12 − 2Q(l,c)

66

)
sinαcos3α −

(
Q(l,c)

22 − Q(l,c)
12 − 2Q(l,c)

66

)
sin3α cosα,

Q̄(l,c)
26 =

(
Q(l,c)

11 − Q(l,c)
12 − 2Q(l,c)

66

)
sin3α cosα −

(
Q(l,c)

22 − Q(l,c)
12 − 2Q(l,c)

66

)
sinαcos3α, (23)

where α is the fibre orientation angle of the lamina. The reduced piezoelectric coefficients ē(l,c)
i j

and permittivity coefficients ξ̄(l,c)
i j of the l−th orthotropic layer are given by

ē(l,c)
31 = e(l,c)

31 cos2α + e(l,c)
32 sin2α, ē(l,c)

32 = e(l,c)
31 sin2α + e(l,c)

32 cos2α,

ē(l,c)
36 =

(
e(l,c)

31 − e(l,c)
32

)
sinα cosα, ξ̄(l,c)

11 = ξ
(l,c)
11 cos2α + ξ(l,c)

22 sin2α,

ξ̄(l,c)
22 = ξ

(l,c)
11 sin2α + ξ(l,c)

22 cos2α, ξ̄(l,c)
12 =

(
ξ(l,c)

11 − ξ
(l,c)
22

)
sinα cosα, ξ̄(l,c)

33 = ξ
(l,c)
33 . (24)

The differential operator matrices J0 and J1 are defined as

J0 =


∂
∂x 0 0

0 ∂
∂y 0

∂
∂y

∂
∂x 0

 , J1 =


0 0 − ∂2

∂x2

0 0 − ∂2

∂y2

0 0 −2 ∂2

∂x∂y

 . (25)

According to Eqs. (10) and (13), one obtains

[
δε(l,0)

xx δε(l,0)
yy δε(l,0)

xy

]T
= δ

(
J0

[
u(c)

1 u(c)
2 u3

]T)
= −J0

[
δu(c)

1 δu(c)
2 δu3

]T
,(26)[

δε(l,1)
xx δε(l,1)

yy δε(l,1)
xy

]T
= δ

(
J1

[
u(c)

1 u(c)
2 u3

]T)
= J1

[
δu(c)

1 δu(c)
2 δu3

]T
, (27)

δ
(
E(c)

l

)T
= −δ

[
∂Φ(l,c)

∂x
∂Φ(l,c)

∂y
∂Φ(l,c)

∂z

]
. (28)

Substituting Eqs. (26) and (27) into Eq. (20), one obtains

∫
z
δ
(
ε(c)

l

)T (
Q(c)

l ε(c)
l − e(c)

l E(c)
l

)
dz

= −
([

u(c)
1 u(c)

2 u3

] (
JT

0 A(c) + JT
1 B(c)

)
+

∫
∂Φ(l,c)

∂z
dzPT

c

)
J0

[
δu(c)

1 δu(c)
2 δu3

]T

+

([
u(c)

1 u(c)
2 u3

] (
JT

0 B(c) + JT
1 D(c)

)
+

∫
Z
∂Φ(l,c)

∂z
dzPT

c

)
J1

[
δu(c)

1 δu(c)
2 δu3

]T
.(29)

Similarly, simplifying the third term on the left-hand side in Eq. (19), one obtains

∫
z
δ
(
ε(s)

l

)T (
Q(s)

l ε(s)
l − e(s)

l E(s)
l

)
dz
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=




u(s)

1

u(s)
2

u3



T

NT
s +

∫
∂Φ(l,s)

∂z
dzPT

s




δε(l,0)

xx

δε(l,0)
yy

δε(l,0)
xy

 +



u(s)

1

u(s)
2

u3



T

MT
s +

∫
Z
∂Φ(l,s)

∂z
dzPT

s




δε(l,1)

xx

δε(l,1)
yy

δε(l,1)
xy

 ,
(30)

where

[
NT

s MT
s

]
=

[
JT

0 A(s) + JT
1 B(s) JT

0 B(s) + JT
1 D(s)

]
,PT

s =

[
ē(l,s)

31 ē(l,s)
32 ē(l,s)

36

]
. (31)

The elements of the reduced stiffness matrices A(s), B(s) and D(s) for the host plate are ex-

pressed as

A(s)
i j =

N∑
l=1

Q̄(l,s)
i j (hl − hl−1), B(s)

i j =
1
2

N∑
l=1

Q̄(l,s)
i j

(
h2

l − h2
l−1

)
,D(s)

i j =
1
3

N∑
l=1

Q̄(l,s)
i j

(
h3

l − h3
l−1

)
. (32)

The governing equations of the constrained composite plate with double piezoelectric layers can

be obtained by simplifying Eq. (19), which derives seven equations of motion for the composite

plate shown in Fig. 1. It is necessary to further simplify the seven integral-differential hybird

equations which are difficult to solve. The following derivations are required to find the solutions

to the electric potential equations expressed by ũ(c)
1 , ũ(c)

2 , ũ(s)
1 , ũ(s)

2 and ũ3 in order to get the

simplified governing equations.

2.1.1.4 Solution to the electric potential equations According to Eq. (19), one obtains

the electric potential equation of the constraining plate with a single smart layer

−ē(l,c)
31

∂2u3

∂x2 − ē(l,c)
32

∂2u3

∂y2 − 2ē(l,c)
36

∂2u3

∂x∂y

−
(
ξ̄(l,c)

11
∂2Φ(l,c)

∂x2 + 2ξ̄(l,c)
12

∂2Φ(l,c)

∂x∂y
+ ξ̄(l,c)

22
∂2Φ(l,c)

∂y2 + ξ̄(l,c)
33

∂2Φ(l,c)

∂z2

)
= 0. (33)

Similarly, the electric potential equation of the host plate with a single smart layer is described

by

−ē(l,s)
31

∂2u3

∂x2 − ē(l,s)
32

∂2u3

∂y2 − 2ē(l,s)
36

∂2u3

∂x∂y

−
(
ξ̄(l,s)

11
∂2Φ(l,s)

∂x2 + 2ξ̄(l,s)
12

∂2Φ(l,s)

∂x∂y
+ ξ̄(l,s)

22
∂2Φ(l,s)

∂y2 + ξ̄(l,s)
33

∂2Φ(l,s)

∂z2

)
= 0. (34)
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According to Eq. (12), one obtains the electric displacement D(l,c)
3 of the constraining plate

D(l,c)
3

∣∣∣∣
Z=hpc

= ē(l,c)
31

∂u(c)
1

∂x
+ ē(l,c)

36

∂u(c)
1

∂y
+ ē(l,c)

32

∂u(c)
2

∂y
+ ē(l,c)

36

∂u(c)
2

∂x

−hpc ē
(l,c)
31

∂2u3

∂x2 − hpc ē
(l,c)
32

∂2u3

∂y2 − 2hpc ē
(l,c)
36

∂2u3

∂x∂y
− ξ̄(l,c)

33
∂Φ(l,c)

∂z
, (35)

where hpc is the local Z coordinate of the piezoelectric layer in the constraining plate. Similarly,

one obtains the electric displacement D(l,s)
3 of the host plate

D(l,s)
3

∣∣∣∣
Z=hps

= ē(l,s)
31

∂u(s)
1

∂x
+ ē(l,s)

36

∂u(s)
1

∂y
+ ē(l,s)

32

∂u(s)
2

∂y
+ ē(l,s)

36

∂u(s)
2

∂x

−hps ē
(l,s)
31

∂2u3

∂x2 − hps ē
(l,s)
32

∂2u3

∂y2 − 2hps ē
(l,s)
36

∂2u3

∂x∂y
− ξ̄(l,s)

33
∂Φ(l,s)

∂z
, (36)

where hps is the local Z coordinate of the piezoelectric layer in the host plate. The two-

dimensional Fourier transform and inverse Fourier transform are defined by

f̃
(
kx, ky

)
=

∫ +∞

−∞

∫ +∞

−∞
f (x, y) e−ikx xe−ikyydxdy,

f (x, y) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
f̃
(
kx, ky

)
eikx xeikyydkxdky. (37)

Taking the Fourier transform with respect to Eq. (33), one obtains the solution in the wavenum-

ber domain

Φ̃(l,c) = −
ē(l,c)

31 k2
x + ē(l,c)

32 k2
y + 2ē(l,c)

36 kxky

ξ̄(l,c)
11 k2

x + 2ξ̄(l,c)
12 kxky + ξ̄

(l,c)
22 k2

y

ũ3 + c1ek(c)
p1z
+ c2ek(c)

p2z
, (38)

where c1 and c2 are the coefficients of the electric potential for the constraining plate. k(c)
p1 and

k(c)
p2 are given by

k(c)
p1 =

 ξ̄(l,c)
11 k2

x + 2ξ̄(l,c)
12 kxky + ξ̄

(l,c)
22 k2

y

ξ̄(l,c)
33


1/2

,

k(c)
p2 = −

 ξ̄(l,c)
11 k2

x + 2ξ̄(l,c)
12 kxky + ξ̄

(l,c)
22 k2

y

ξ̄(l,c)
33


1/2

. (39)

Similarly, the solution to Eq. (34) in the wavenumber domain is described by

Φ̃(l,s) = −
ē(l,s)

31 k2
x + ē(l,s)

32 k2
y + 2ē(l,s)

36 kxky

ξ̄(l,s)
11 k2

x + 2ξ̄(l,s)
12 kxky + ξ̄

(l,s)
22 k2

y

ũ3 + c3ek(s)
p1z
+ c4ek(s)

p2z
, (40)
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where c3 and c4 are the coefficients of the electric potential for the host plate. c1, c2, c3 and

c4 are determined by the electric boundary conditions. k(s)
p1 and k(s)

p2 are given by

k(s)
p1 =

 ξ̄(l,s)
11 k2

x + 2ξ̄(l,s)
12 kxky + ξ̄

(l,s)
22 k2

y

ξ̄(l,s)
33


1/2

,

k(s)
p2 = −

 ξ̄(l,s)
11 k2

x + 2ξ̄(l,s)
12 kxky + ξ̄

(l,s)
22 k2

y

ξ̄(l,s)
33


1/2

. (41)

According to Eqs. (38) and (40), one obtains

∫ hc2

hc1

∂Φ̃(l,c)

∂z
dZ =

[
c1 c2

]  ek(c)
p1hc2 − ek(c)

p1hc1

ek(c)
p2hc2 − ek(c)

p2hc1

 ,
∫ hs2

hs1

∂Φ̃(l,s)

∂z
dZ =

[
c3 c4

]  ek(s)
p1hs2 − ek(s)

p1hs1

ek(s)
p2hs2 − ek(s)

p2hs1

 ,
(42)

∫ hc2

hc1

Z
∂Φ̃(l,c)

∂z
dZ =

[
c1 c2

] 
hc2ek(c)

p1hc2 − e
k(c)

p1 hc2

k(c)
p1
− hc1ek(c)

p1hc1 + e
k(c)

p1 hc1

k(c)
p1

hc2ek(c)
p2hc2 − e

k(c)
p2 hc2

k(c)
p2
− hc1ek(c)

p2hc1 + e
k(c)

p2 hc1

k(c)
p2

 , (43)

∫ hs2

hs1

Z
∂Φ̃(l,s)

∂z
dZ =

[
c3 c4

] 
hs2ek(s)

p1hs2 − e
k(s)

p1 hs2

k(s)
p1
− hs1ek(s)

p1hs1 + e
k(s)

p1 hs1

k(s)
p1

hs2ek(s)
p2hs2 − e

k(s)
p2 hs2

k(s)
p2
− hs1ek(s)

p2hs1 + e
k(s)

p2 hs1

k(s)
p2

 . (44)

where hc1 and hc2 are the local Z coordinates of the lower and upper surfaces for the piezo-

electric layer of the constraining plate, respectively. hs1 and hs2 are the local Z coordinates of

the lower and upper surfaces for the piezoelectric layer of the host plate, respectively.

2.1.2 Double piezoelectric layers with closed circuit boundary conditions

Electric boundary conditions of two piezoelectric layers with closed circuit connection are

described by

Φ(l,c)
∣∣∣
Z=hc1

= 0, Φ(l,c)
∣∣∣
Z=hc2

= 0, Φ(l,s)
∣∣∣
Z=hs1

= 0, Φ(l,s)
∣∣∣
Z=hs2

= 0. (45)

Substituting Eqs. (38) and (40) into Eq. (45) with the Fourier transform, one obtains

 c1

c2

 =
 ek(c)

p1hc1 ek(c)
p2hc1

ek(c)
p1hc2 ek(c)

p2hc2


−1  1

1

 ē(k,c)
31 k2

x + ē(k,c)
32 k2

y + 2ē(k,c)
36 kxky

ξ̄(k,c)
11 k2

x + 2ξ̄(k,c)
12 kxky + ξ̄

(k,c)
22 k2

y

ũ3, (46)
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 c3

c4

 =
 ek(s)

p1hs1 ek(s)
p2hs1

ek(s)
p1hs2 ek(s)

p2hs2


−1  1

1

 ē(k,s)
31 k2

x + ē(k,s)
32 k2

y + 2ē(k,s)
36 kxky

ξ̄(k,s)
11 k2

x + 2ξ̄(k,s)
12 kxky + ξ̄

(k,s)
22 k2

y

ũ3. (47)

Thus, the electric potentials in the two piezoelectric layers are expressed by the transverse dis-

placement spectra ũ3.

2.1.3 Double piezoelectric layers with open circuit boundary conditions

Electric boundary conditions of two piezoelectric layers with open circuit connection are

described by

D(l,c)
3

∣∣∣∣
Z=hc1

= 0, D(l,c)
3

∣∣∣∣
Z=hc2

= 0, D(l,s)
3

∣∣∣∣
Z=hs1

= 0, D(l,s)
3

∣∣∣∣
Z=hs2

= 0. (48)

Similarly, substituting Eqs. (35), (36), (38) and (40) into Eq. (48) with the Fourier transform,

one obtains

 c1

c2

 =
 ξ̄

(l,c)
33 k(c)

p1ek(c)
p1hc1 ξ̄(l,c)

33 k(c)
p2ek(c)

p2hc1

ξ̄(l,c)
33 k(c)

p1ek(c)
p1hc2 ξ̄(l,c)

33 k(c)
p2ek(c)

p2hc2


−1

 ē(l,c)
31 ikx + ē(l,c)

36 iky ē(l,c)
32 iky + ē(l,c)

36 ikx hc1 ē(l,c)
31 k2

x + hc1 ē(l,c)
32 k2

y + 2hc1 ē(l,c)
36 kxky

ē(l,c)
31 ikx + ē(l,c)

36 iky ē(l,c)
32 iky + ē(l,c)

36 ikx hc2 ē(l,c)
31 k2

x + hc2 ē(l,c)
32 k2

y + 2hc2 ē(l,c)
36 kxky




ũ(c)
1

ũ(c)
2

ũ3

 ,
(49) c3

c4

 =
 ξ̄

(l,s)
33 k(s)

p1ek(s)
p1hs1 ξ̄(l,s)

33 k(s)
p2ek(s)

p2hs1

ξ̄(l,s)
33 k(s)

p1ek(s)
p1hs2 ξ̄(l,s)

33 k(s)
p2ek(s)

p2hs2


−1

 ē(l,s)
31 ikx + ē(l,s)

36 iky ē(l,s)
32 iky + ē(l,s)

36 ikx hs1 ē(l,s)
31 k2

x + hs1 ē(l,s)
32 k2

y + 2hs1 ē(l,s)
36 kxky

ē(l,s)
31 ikx + ē(l,s)

36 iky ē(l,s)
32 iky + ē(l,s)

36 ikx hs2 ē(l,s)
31 k2

x + hs2 ē(l,s)
32 k2

y + 2hs2 ē(l,s)
36 kxky




ũ(s)
1

ũ(s)
2

ũ3

 .
(50)

Thus, the electric potentials in the two piezoelectric layers are determined by the displacement

spectra of composite plates.
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2.1.4 Double piezoelectric layers connected by a dielectric slab with uniform resistances

and inductances

Double piezoelectric layers are connected by a dielectric slab with uniform resistances and

inductances which are used to dissipate electric energy. Electric boundary conditions are given

by

Φ(l,c)
∣∣∣
Z=hc2

− Φ(l,s)
∣∣∣
Z=hs1

= (R − iωL)
dq
dt
, dq = D(l,c)

3

∣∣∣∣
Z=hc2

∆S , (51)

D(l,s)
3

∣∣∣∣
Z=hs1

= D(l,c)
3

∣∣∣∣
Z=hc2

, Φ(l,c)
∣∣∣
Z=hc1

= 0, Φ(l,s)
∣∣∣
Z=hs2

= 0, (52)

where R and L are the distributed resistances and inductances of the dielectric slab. ∆S and

q are the infinitesimal area and the induced charges of the piezoelectric layers. Introducing the

resistance coefficient ρR and inductance coefficient CL, one obtains

R = CR/∆S , L = CL/∆S ,CR = lrρR, (53)

where lr is the thickness of the external dielectric slab. Substituting Eq. (53) into Eq. (51), one

obtains

Φ(l,c)
∣∣∣
Z=hc2

− Φ(l,s)
∣∣∣
Z=hs1

= −iω (CR − iωCL) D(l,c)
3

∣∣∣∣
Z=hc2

, (54)

Substituting Eqs. (35), (36), (38) and (40) into Eqs. (52) and (54) with the Fourier transform,

one obtains

[
c1 c2 c3 c4

]T
= G−1E

[
ũ(s)

1 ũ(s)
2 ũ3 ũ(c)

1 ũ(c)
2

]T
, (55)

where the elements Gi j of the matrix G are given by

G11 = ξ̄
(l,c)
33 k(c)

p1ek(c)
p1hc2 ,G12 = ξ̄

(l,c)
33 k(c)

p2ek(c)
p2hc2 ,G13 = −ξ̄(l,s)

33 k(s)
p1ek(s)

p1hs1 ,G14 = −ξ̄(l,s)
33 k(s)

p2ek(s)
p2hs1 ,

G21 = ek(c)
p1hc1 ,G22 = ek(c)

p2hc1 ,G23 = 0,G24 = 0,G31 = 0,G32 = 0,G33 = ek(s)
p1hs2 ,G34 = ek(s)

p2hs2 ,

G41 = ek(c)
p1hc2 −

(
iωCR + ω

2CL
)
ξ̄(l,c)

33 k(c)
p1ek(c)

p1hc2 ,

G42 = ek(c)
p2hc2 −

(
iωCR + ω

2CL
)
ξ̄(l,c)

33 k(c)
p2ek(c)

p2hc2 ,G43 = −ek(s)
p1hs1 ,G44 = −ek(s)

p2hs1 , (56)
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the elements Ei j of the matrix E are given by

E11 = −ē(l,s)
31 ikx − ē(l,s)

36 iky, E12 = −ē(l,s)
32 iky − ē(l,s)

36 ikx,

E13 =
(
hc2 ē(l,c)

31 − hs1 ē(l,s)
31

)
k2

x +
(
hc2 ē(l,c)

32 − hs1 ē(l,s)
32

)
k2

y + 2
(
hc2 ē(l,c)

36 − hs1 ē(l,s)
36

)
kxky,

E14 = ē(l,c)
31 ikx + ē(l,c)

36 iky, E15 = ē(l,c)
32 iky + ē(l,c)

36 ikx,

E21 = 0, E22 = 0, E23 =
ē(l,c)

31 k2
x + ē(l,c)

32 k2
y + 2ē(l,c)

36 kxky

ξ̄(l,c)
11 k2

x + 2ξ̄(l,c)
12 kxky + ξ̄

(l,c)
22 k2

y

, E24 = 0, E25 = 0,

E31 = 0, E32 = 0, E33 =
ē(l,s)

31 k2
x + ē(l,s)

32 k2
y + 2ē(l,s)

36 kxky

ξ̄(k,s)
11 k2

x + 2ξ̄(k,s)
12 kxky + ξ̄

(k,s)
22 k2

y

, E34 = 0, E35 = 0,

E41 = 0, E42 = 0, E43 = −
(
iωCR + ω

2CL
) (

hc2 ē(l,c)
31 k2

x + hc2 ē(l,c)
32 k2

y + 2hc2 ē(l,c)
36 kxky

)
,

E44 = −
(
iωCR + ω

2CL
) (

ē(l,c)
31 ikx + ē(l,c)

36 iky
)
,

E45 = −
(
iωCR + ω

2CL
) (

ē(l,c)
32 iky + ē(l,c)

36 ikx
)
. (57)

2.1.5 Double piezoelectric layers with proportional derivative active control

LQR optimal control [19, 27], FXLMS adaptive algorithm [23] and PPF control [24, 44,

45] are employed in the modal space in order to suppress vibrations of the composite plates

and shells with single-input single-output or multi-input multi-output configurations. It is com-

plicated to perform single-input single-output feedback control in the wavenumber domain by

using the Fourier and inverse Fourier transforms since point forces with feedback control can

excite a great many coupled waves with different wavenumbers. The control strategies of LQR,

FXLMS and PPF are not easy to apply. However, a proportional derivative control strategy for

smart composite plates and shells with dense periodic feedback arrays [59] in the wavenumber

domain can be used to avoid the difficulties in achieving the control methods of LQR, FXLMS

and PPF. This is the reason why the proportional derivative control method is used in this work.

The output voltage of the sensor layer in the host plate is amplified by the external power cir-

cuits, which is fed back into the actuator layer to drive the constraining plate. Electric boundary

conditions can be described by

Φ(l,c)
∣∣∣
Z=hc1

= 0, Φ(l,c)
∣∣∣
Z=hc2

= Ve, D(l,s)
3

∣∣∣∣
Z=hs1

= 0, Φ(l,s)
∣∣∣
Z=hs2

= 0, (58)

where Ve is the external control voltage. Proportional derivative control method is used to
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control vibrations of the smart composite plate

Ve = −
(
Gp − iωGd

)
Φ(l,s)

∣∣∣
Z=hs1

, (59)

where Gp and Gd are the proportional and derivative gains, respectively. Substituting Eqs. (38)

and (40) into Eq. (58) with the Fourier transform, one obtains

[
c1 c2 c3 c4

]T
=

(
G(2)

)−1
E(2)

[
ũ(s)

1 ũ(s)
2 ũ3 ũ(c)

1 ũ(c)
2

]T
, (60)

where the elements G(2)
i j of the matrix G(2) are given by

G(2)
11 = ek(c)

p1hc1 ,G(2)
12 = ek(c)

p2hc1 ,G(2)
13 = 0,G(2)

14 = 0,

G(2)
21 = ek(c)

p1hc2 ,G(2)
22 = ek(c)

p2hc2 ,G23 =
(
Gp − iωGd

)
ek(s)

p1hs1 ,G24 =
(
Gp − iωGd

)
ek(s)

p2hs1 ,

G(2)
31 = 0,G(2)

32 = 0,G(2)
33 = ξ̄

(l,s)
33 k(s)

p1ek(s)
p1hs1 ,G(2)

34 = ξ̄
(l,s)
33 k(s)

p2ek(s)
p2hs1 ,

G(2)
41 = 0,G(2)

42 = 0,G(2)
43 = ek(s)

p1hs2 ,G(2)
44 = ek(s)

p2hs2 , (61)

the elements E(2)
i j of the matrix E(2) are defined by

E(2)
11 = 0, E(2)

12 = 0, E(2)
13 =

ē(l,c)
31 k2

x + ē(l,c)
32 k2

y + 2ē(l,c)
36 kxky

ξ̄(k,c)
11 k2

x + 2ξ̄(l,c)
12 kxky + ξ̄

(l,c)
22 k2

y

, E(2)
14 = 0, E(2)

15 = 0,

E(2)
21 = 0, E(2)

22 = 0, E(2)
23 =

ē(l,c)
31 k2

x + ē(l,c)
32 k2

y + 2ē(l,c)
36 kxky

ξ̄(l,c)
11 k2

x + 2ξ̄(l,c)
12 kxky + ξ̄

(l,c)
22 k2

y

+
(
Gp − iωGd

) ē(l,s)
31 k2

x + ē(l,s)
32 k2

y + 2ē(l,s)
36 kxky

ξ̄(l,s)
11 k2

x + 2ξ̄(l,s)
12 kxky + ξ̄

(l,s)
22 k2

y

, E(2)
24 = 0, E(2)

25 = 0,

E(2)
31 = ē(l,s)

31 ikx + ē(l,s)
36 iky, E

(2)
32 = ē(l,s)

32 iky + ē(l,s)
36 ikx,

E(2)
33 = hs1 ē(l,s)

31 k2
x + hs1 ē(l,s)

32 k2
y + 2hs1 ē(l,s)

36 kxky, E
(2)
34 = 0, E(2)

35 = 0,

E(2)
41 = 0, E(2)

42 = 0, E(2)
43 =

ē(l,s)
31 k2

x + ē(l,s)
32 k2

y + 2ē(l,s)
36 kxky

ξ̄(l,s)
11 k2

x + 2ξ̄(l,s)
12 kxky + ξ̄

(l,s)
22 k2

y

, E(2)
44 = 0, E(2)

45 = 0. (62)

2.2 Solutions in the wavenumber domain

Substituting Eqs. (7), (8), (29), (30), (42)-(44) and (46)-(47) or (49)-(50), (55) or (60) into

Eq. (19), performing Fourier transform and taking the variational operation, one obtains five

governing equations for the constrained laminated plates with double piezoelectric layers. Solv-

ing the governing equations, one finds the natural frequencies and loss factors of the composite
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plates with small damping using

ωR =

√
Re

(
ω2) = 2π f , η = Im

(
ω2

)
/Re

(
ω2

)
. (63)

For the vibrations of composite plates with large damping, Re
(
ω2

)
in Eq. (63) can be negative.

Therefore, the natural frequencies and loss factors of the composite plates should be defined by

ωR = Re (ω) = 2π f , η = Im (ω) /Re (ω) . (64)

The natural frequencies defined in Eqs. (63) and (64) are almost the same, but the loss factor in

Eq. (63) is nearly twice as large as that in Eq. (64) with respect to the vibrations of composite

plates with small damping. If a transverse unit point force fp located at the point (x0, y0) acts

on the composite plate, the Fourier transform of the external force is written as

f̃p = e−i(kx x0+kyy0). (65)

Substituting Eq. (65) into the governing equations of the composite plates in the wavenumber

domain, one obtains the transverse displacement spectra ũ3
(
kx, ky

)
. The plane power spectral

density (PPSD) of transverse displacements for the composite plates with respect to kx and ky

is defined by

PPSD = 20 log
(∣∣∣∣ũ3

(
kx, ky

)∣∣∣∣ /Ur

)
, (66)

where the reference wavenumber displacement Ur is given by 10−9m3

2.3 Cylindrical-wave spectral density of large circular composite plate in the

cylindrical coordinate system

Taking the inverse Fourier transform of ũ3
(
kx, ky

)
with respect to kx and ky, one obtains

the transverse displacement of the smart plates

u3 (x, y) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
ũ3

(
kx, ky

)
eikx xeikyydkxdky. (67)
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Transforming the rectangular coordinate system into the cylindrical coordinate system, one ob-

tains

x = α3 cosα2, y = α3 sinα2, (68)

where α2 and α3 are the circumferential angle and radial coordinate, respectively. kx and ky

can be described by

kx = k cosψ, ky = k sinψ, (69)

where k and ψ are the radial wavenumber and the propagation directivity angle of elastic waves.

Substituting Eqs. (68) and (69) into Eq. (67), one obtains

u3 (α2, α3) =
1

4π2

∫ +∞

0

∫ 2π

0
ũ3 (k cosψ, k sinψ) eikα3 cos(α2−ψ)kdkdψ. (70)

Expanding the exponential factor in Eq. (70), one obtains

eikα3 cos(α2−ψ) =

+∞∑
m=−∞

Jm (kα3) eim(α2−ψ+π/2) =

+∞∑
m=−∞

Jm (kα3) eimα2e−imψeimπ/2, (71)

where m is an integer and Jm (kα3) is the Bessel function of the first kind with order m. In the

far-field of transverse displacement for the smart plate, Jm (kα3) can be expressed in asymptotic

form for large k as

Jm (kα3) =
H(1)

m (kα3) + H(2)
m (kα3)

2
≈

(
2

πkα3

)1/2

cos
(
kα3 −

πm
2
− π

4

)
=

(
1

2πkα3

)1/2

ei(kα3− πm
2 −

π
4 ) +

(
1

2πkα3

)1/2

e−i(kα3− πm
2 −

π
4 ). (72)

Substituting Eqs. (71) and (72) into Eq. (70), one obtains

u3 (α2, α3) ≈ 1
4π2

+∞∑
m=−∞

∫ +∞

0

∫ 2π

0
ũ3 (k cosψ, k sinψ) e−imψk1/2 ei(kα3− πm

2 −
π
4 )

√
2πα3

dkdψeimπ/2eimα2

+
1

4π2

+∞∑
m=−∞

∫ +∞

0

∫ 2π

0
ũ3 (k cosψ, k sinψ) e−imψk1/2 e−i(kα3− πm

2 −
π
4 )

√
2πα3

dkdψeimπ/2eimα2 . (73)

The first and second terms on the right-hand side of Eq. (73) represent the outgoing elastic

waves and inwardly going waves, respectively. Cylindrical-wave spectral density (CSD) of the
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transverse displacement for the composite plates in the far field is defined by

CSD =

∣∣∣∣∣∣ 1
(2π)5/2

∫ 2π

0
ũ3 (k cosψ, k sinψ) e−imψk1/2dψ

∣∣∣∣∣∣ . (74)

Energy of the transverse displacement for the composite plate is given by [61]

∫ ∞

−∞

∫ ∞

−∞
u3u∗3dxdy =

1
4π2

∫ ∞

−∞

∫ ∞

−∞
ũ3ũ∗3dkxdky, (75)

where the star symbol denotes the complex conjugate. Substituting Eq. (69) into Eq. (75), one

obtains

∫ ∞

−∞

∫ ∞

−∞
u3u∗3dxdy =

1
4π2

∫ +∞

0

∫ 2π

0
ũ3 (k cosψ, k sinψ) ũ∗3 (k cosψ, k sinψ) kdkdψ. (76)

The radial power spectral density (RPSD) of the transverse displacement for the composite plate

with regards to (k, ψ) is defined by

RPSD =
|ũ3 (k cosψ, k sinψ)| k1/2

2π
. (77)

CSD in Eq. (74) can be used to distinguish which kinds of the cylindrical waves with special

circumferential wavenumber dominate transverse vibration of the composite plates. RPSD in

Eq. (77) can be employed to identify the propagation directions and energy of the elastic waves.

3 Numerical results

The material parameters of the sandwich plates considered in the following are listed in

Table 1, where h is the thickness of the lamina. The piezoelectric layer is made of PZT ma-

terial. Piezoelectric and dielectric constants e31, e32, ξ11, ξ22 and ξ33 of the smart layer are

−6.5C/m2, −6.5C/m2, 1.503×10−8F/m, 1.503×10−8F/m, 1.3×10−8F/m, respectively. Free

vibrations of the constrained composite damping plate with a single piezoelectric layer investi-

gated by Gao and Shen [4] are used here to compare with the present results. The constrained

piezoelectric composite plate [4] is composed of two face plates with a damping core described

in Table 1. The constraining plate is the PZT piezoelectric layer, the material of the host plate

is listed as ”lamina 1” in Table 1. The length a and width b of the rectangular sandwich plate

in the x and y directions are 0.3m and 0.4m, respectively. kx and ky of the simply supported
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Table 1: Material parameters of the sandwich plates
Material E1 (GPa) E2 (GPa) ν12 ρ

(
kg/m3

)
h (mm) α (Rad)

PZT 49 49 0.3 7500 1 0
Lamina 1 70 70 0.33 1104 3 0

Damping core 2.5088 (1 − 0.5i) 2.5088 (1 − 0.5i) 0.4 999 2 0
×10−3 ×10−3

Boron-epoxy 207 20.7 0.3 2000 3 0

Table 2: Natural frequencies and loss factors of the constrained composite damping plate with-
out piezoelectric effects

(m, n) f (Hz) [4] η [4] f (Hz) present solution η present solution
(1, 1) 113.3 8.41 × 10−2 113.3 8.41 × 10−2

(1, 2) 224.6 4.72 × 10−2 224.6 4.73 × 10−2

(1, 3) 409.4 2.73 × 10−2 409.5 2.72 × 10−2

(2, 1) 310.9 3.52 × 10−2 310.9 3.52 × 10−2

(2, 2) 421.8 2.65 × 10−2 421.8 2.65 × 10−2

(2, 3) 606.4 1.88 × 10−2 606.6 1.88 × 10−2

(3, 3) 934.7 1.23 × 10−2 934.9 1.23 × 10−2

composite plate are mπ/a and nπ/b, respectively. Natural frequencies and loss factors of the

piezoelectric sandwich plates are calculated using Eq. (63).

The natural frequencies and loss factors of the constrained sandwich plate without piezo-

electric effects are listed in Table 2. The natural frequencies and loss factors of the composite

plate with piezoelectric effects under the open circuit boundary conditions are given in Table

3. The present results are in good agreement with those from Gao and Shen’s work [4] al-

so in Tables 2 and 3. We conclude that the formulae used in this work are feasible and valid.

Piezoelectric effects of the single piezoelectric layer do not make a significant impact on the nat-

ural frequencies and loss factors of the constrained composite plate with open circuit boundary

conditions.

Table 3: Natural frequencies and loss factors of the constrained composite damping plate with
a single piezoelectric layer

(m, n) f (Hz) η f (Hz) open circuit, η open circuit,
open circuit [4] open circuit [4] present solution present solution

(1, 1) 113.4 8.44 × 10−2 113.4 8.44 × 10−2

(1, 2) 224.8 4.73 × 10−2 224.8 4.73 × 10−2

(1, 3) 409.7 2.73 × 10−2 409.8 2.72 × 10−2

(2, 1) 311.1 3.52 × 10−2 311.2 3.52 × 10−2

(2, 2) 422.1 2.65 × 10−2 422.1 2.65 × 10−2

(2, 3) 606.9 1.87 × 10−2 607.0 1.87 × 10−2

(3, 3) 934.4 1.23 × 10−2 935.6 1.23 × 10−2
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3.1 Free vibrations of the constrained piezoelectric composite plate with closed

or open circuit boundary conditions

The constrained composite damping plate in Table 3 is still employed in the following

discussion but the bottom surface of the isotropic host plate is attached to the piezoelectric layer

listed in Table 1. The natural frequencies and loss factors of the constrained composite damping

plate with double piezoelectric layers are depicted in Table 4. Electric boundary conditions

of the two smart layers are closed or open circuits. The natural frequencies and loss factors

of the composite plate without piezoelectric effects (called by ’bare plate’) are also shown in

Table 4. The natural frequencies of the composite plate with open circuit boundary conditions

have the largest frequency values in compared to the other cases. Piezoelectric effects of double

piezoelectric layers play a minor role in free vibration of the passive constrained composite

plate. The reason why the natural frequencies are shifted up from those of the bare plate for

the open circuit condition and back down for the closed circuit condition in Table 4 is due to

different contributions of the electric potentials in the piezoelectric layers with open or closed

circuits to the governing equations of the smart composite plate. Using the material parameters

of the piezoelectric layers and simplifying Eq. (46), one obtains

 c1

c2

 =
 ek(c)

p1hc1 ek(c)
p2hc1

ek(c)
p1hc2 ek(c)

p2hc2


−1  1

1

 ē(k,c)
31

ξ̄(k,c)
11

ũ3. (78)

Similarly, simplifying Eq. (49), one obtains

 c1

c2

 = 1

ξ̄(k,c)
33 k(c)

p1

 ek(c)
p1hc1 −ek(c)

p2hc1

ek(c)
p1hc2 −ek(c)

p2hc2


−1  ē(k,c)

31 ikx ē(k,c)
32 iky hc1 ē(k,c)

31 k2
x + hc1 ē(k,c)

32 k2
y

ē(k,c)
31 ikx ē(k,c)

32 iky hc2 ē(k,c)
31 k2

x + hc2 ē(k,c)
32 k2

y




ũ(c)
1

ũ(c)
2

ũ3



=

 ek(c)
p1hc1 −ek(c)

p2hc1

ek(c)
p1hc2 −ek(c)

p2hc2


−1 

ikx

k(c)
p1

iky

k(c)
p1

hc1

(
k2

x+k2
y

)
k(c)

p1

ikx

k(c)
p1

iky

k(c)
p1

hc2

(
k2

x+k2
y

)
k(c)

p1




ũ(c)
1

ũ(c)
2

ũ3


ē(k,c)

31

ξ̄(k,c)
33

. (79)

By using the parameters in Tables 1 and 4, the elements in Eq. (79) have the following relation

hc1

(
k2

x + k2
y

)
k(c)

p1

≪ kx

k(c)
p1

,
hc1

(
k2

x + k2
y

)
k(c)

p1

≪
ky

k(c)
p1

,
hc1

(
k2

x + k2
y

)
k(c)

p1

≪ 1. (80)

24



Table 4: Natural frequencies and loss factors of the constrained composite damping plate with
double piezoelectric layers

(m, n) f (Hz) η f (Hz) η f (Hz) η

open circuit open circuit closed circuit closed circuit bare plate bare plate
(1, 1) 123.7 5.40 × 10−2 122.4 5.45 × 10−2 122.3 5.45 × 10−2

(1, 2) 249.8 2.92 × 10−2 247.0 2.95 × 10−2 246.8 2.95 × 10−2

(1, 3) 459.4 1.64 × 10−2 454.3 1.67 × 10−2 453.9 1.67 × 10−2

(2, 1) 347.6 2.14 × 10−2 343.7 2.17 × 10−2 343.4 2.17 × 10−2

(2, 2) 473.4 1.60 × 10−2 468.1 1.62 × 10−2 467.7 1.62 × 10−2

(2, 3) 683.0 1.12 × 10−2 675.2 1.14 × 10−2 674.7 1.14 × 10−2

(3, 1) 720.2 1.06 × 10−2 712.1 1.08 × 10−2 711.5 1.08 × 10−2

(3, 2) 846.0 0.91 × 10−2 836.3 0.93 × 10−2 835.7 0.92 × 10−2

(3, 3) 1055.5 0.73 × 10−2 1043.5 0.74 × 10−2 1042.7 0.74 × 10−2

Therefore, ũ(c)
1 and ũ(c)

2 play an important role in c1 and c2 of Eq. (79). It is shown that

contributions of ũ3 to c1 and c2 in Eq. (78) are much larger than that of ũ3 to c1 and c2 in Eq.

(79). According to Eqs. (42)-(44), Eqs. (29)-(30), Eqs. (78)-(79) and the simplified formulae

of Eqs. (47) and (50), it is found that the electric potentials of the piezoelectric layers affect the

governing equations of the smart sandwich plate by the transverse displacement spectra ũ3 with

respect to closed circuit boundary conditions. Those affect the equations of motion of the smart

sandwich plates by the in-plane displacement spectra ũ(c)
1 , ũ(c)

2 , ũ(s)
1 and ũ(s)

2 in the case of

the open circuit boundary conditions. These two coupling effects of the piezoelectric layers will

produce different bending stiffnesses and cause increase of the natural frequencies in comparison

with those of the bare plate. The piezoelectric layers with open circuit boundary conditions

give rise to larger natural frequencies than those with closed circuit boundary conditions since

bending stiffnesses of the smart sandwich plate with open circuit boundary conditions are larger

than those with closed circuit boundary conditions.

3.2 Free vibrations of a constrained composite damping plate with sensor and

actuator layers under feedback control

The natural frequencies and loss factors of a constrained composite plate with sensor and

actuator layers connected by an external dielectric slab with uniform resistances and induc-

tances are presented in Table 5. Natural frequencies of the constrained composite damping plate

have small differences in comparison with those shown in Table 4 when the external resistances

and inductances are connected to the two piezoelectric layers. The loss factors are also only

slightly changed, as shown by the results presented in Tables 4 and 5. The dielectric slab with
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Table 5: The natural frequencies and loss factors of the constrained composite damping plate
with sensor and actuator layers connected by an external dielectric slab with uniform resistances
and inductances

(m, n) f (Hz) η f (Hz) η

CR = 100, CL = 0 CR = 100, CL = 0 CR = 0, CL = 1 CR = 0, CL = 1
(1, 1) 123.4 5.11 × 10−2 124.1 5.45 × 10−2

(1, 2) 249.2 2.42 × 10−2 250.0 2.97 × 10−2

(1, 3) 459.0 1.20 × 10−2 459.7 1.68 × 10−2

(2, 1) 347.1 1.65 × 10−2 347.8 2.19 × 10−2

(2, 2) 473.0 1.16 × 10−2 473.6 1.63 × 10−2

(2, 3) 682.7 0.77 × 10−2 683.2 1.14 × 10−2

(3, 1) 720.0 0.73 × 10−2 720.4 1.09 × 10−2

(3, 2) 845.8 0.62 × 10−2 846.2 0.93 × 10−2

(3, 3) 1055.4 0.49 × 10−2 1055.7 0.75 × 10−2

uniform resistances and inductances doesn’t remarkably affect the free vibrational features of

the smart composite plates. The natural frequencies and loss factors of the piezoelectric con-

strained sandwich plate with CR ∈ [0, 100] and CL ∈ [0, 1] are close to those in the case of

(CR = 100,CL = 0) and (CR = 0,CL = 1). The results from CR ∈ [0, 100] and CL ∈ [0, 1]

are not markedly different in comparison with those shown in Table 5. Therefore, the natural

frequencies and loss factors of the constrained composite damping plate with resistance and

inductance parameters CR ∈ [0, 100], CL ∈ [0, 1] are not listed in Table 5. The electrical

energy stored in the double piezoelectric layers is much smaller than the mechanical energy of

the composite plate.

The natural frequencies and loss factors of the constrained composite damping plate with

sensor and actuator layers are listed in Table 6 when proportional derivative active control is em-

ployed. The loss factors of the smart plate with Gp = 0 and Gd = 0.2 are much larger than those

given in Tables 4 and 5. Gd has thus significant influence on the damping characteristics of the

composite plate. The natural frequencies of the composite plate with Gp = 200 and Gd = 0

are smaller than those shown in Tables 4 and 5. Gp primarily affects the natural frequencies of

a smart composite plate and leads to a moderate increase of the damping factors. In Table 6, the

natural frequencies of the composite plate with Gp = 200 and Gd = 0 are almost between those

of the composite plate with
(
Gp = 0,Gd = 0.2

)
and those with

(
Gp = 200,Gd = 0.2

)
, and the

damping factors further rise for
(
Gp = 200,Gd = 0.2

)
. Active control of the constrained damp-

ing layer changes the free vibration features of the composite plate and has better performance

on vibration suppression than that based on passive control.

The effects of Gd on the natural frequencies and loss factors of the propagating waves
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Table 6: The natural frequencies and loss factors of the constrained composite damping plate
with sensor and actuator layers under active control

(m, n) f (Hz) η f (Hz) η f (Hz) η

Gp = 0, Gp = 0, Gp = 200, Gp = 200, Gp = 200, Gp = 200,
Gd = 0.2 Gd = 0.2 Gd = 0 Gd = 0 Gd = 0.2 Gd = 0.2

(1, 1) 128.6 4.01 × 10−1 89.2 2.91 × 10−1 87.2 9.08 × 10−1

(1, 2) 259.2 4.52 × 10−1 215.0 1.22 × 10−1 217.2 6.59 × 10−1

(1, 3) 476.2 4.77 × 10−1 424.5 6.27 × 10−2 433.8 5.83 × 10−1

(2, 1) 360.5 4.67 × 10−1 312.8 8.45 × 10−2 318.2 6.10 × 10−1

(2, 2) 490.6 4.78 × 10−1 438.5 6.07 × 10−2 448.2 5.81 × 10−1

(2, 3) 707.3 4.88 × 10−1 648.0 4.14 × 10−2 664.8 5.58 × 10−1

(3, 1) 745.8 4.89 × 10−1 685.2 3.91 × 10−2 703.3 5.55 × 10−1

(3, 2) 875.6 4.93 × 10−1 810.9 3.32 × 10−2 833.1 5.48 × 10−1

(3, 3) 1091.8 4.97 × 10−1 1020.4 2.64 × 10−2 1049.3 5.41 × 10−1

defined by (m = 1, n = 1) and (m = 1, n = 2) are shown in Fig. 4 for Gp = 0. Note that

natural frequencies and loss factors are calculated using Eq. (64) since the loss factors can

be larger than 1. Natural frequencies of the propagating waves increase in the beginning and

afterwards decrease as Gd rises. However, loss factors are slightly reduced in the beginning and

subsequently increase. Damping of the composite plate increases distinctly when Gd is larger

than 0.1. The natural frequencies have larger values when Gd is between 0.2 and 0.3. The

influence of Gp on the natural frequencies and loss factors of the propagating waves is shown in

Fig. 5 for Gd = 0.2. The natural frequencies decrease and the loss factors increase as Gp grows.

The bending stiffnesses of the piezoelectric constraining layer reduce as Gp increases. Gp

results in a moderate rise of the damping factors. In Table 6 and Fig. 4, an appropriate derivative

gain Gd can attenuate vibrations of the composite plates to a great extent. The derivative gain

Gd has good performance on vibration suppression of the composite plates and shells with

piezoelectric layers [6, 29, 60, 72–75]. The piezoelectric sandwich damping plate has excellent

damping features when Gd increases from 0.6 to 1.0 in Fig. 4(b). Active control of the smart

composite plates with large derivative gains can thus easily give rise to large damping. Li and

Yang [72] explored active control of vibrations for piezoelectric laminated cylindrical shells

with sensor and actuator layers in detail using the state space method and showed the excellent

features of vibration reduction via the derivative feedback control. Derivative gain Gd is more

favourable to suppress vibrations of the smart sandwich plates than proportional gain Gp by

comparing Fig. 4(b) with Fig. 5(b). The damping effects of the piezoelectric sandwich damping

plates with proportional derivative control strategy on suppression of transverse vibrations are

better than those of the passive sandwich damping plates.

27



0 0.2 0.4 0.6 0.8 1
60

80

100

120

140

160

180

200

220

240

260

280

300

G
d

F
re

qu
en

cy
  f

 (
H

z)

 

 

frequency at m=1, n=1, G
p
 = 0

frequency at m=1, n=2, G
p
 = 0

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

G
d

Lo
ss

 fa
ct

or
 η

 

 

loss factor at m=1, n=1, G
p
 = 0

loss factor at m=1, n=2, G
p
 = 0

(b)

Figure 4: (a) Effects of Gd on the natural frequencies of the propagating waves (m = 1, n = 1)
and (m = 1, n = 2); (b) Effects of Gd on the loss factors of the propagating waves (m = 1, n = 1)
and (m = 1, n = 2)
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Figure 5: (a) Effects of Gp on the natural frequencies of the propagating waves (m = 1, n = 1)
and (m = 1, n = 2); (b) Effects of Gp on the loss factors of the propagating waves
(m = 1, n = 1) and (m = 1, n = 2)
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3.3 Forced vibrations of the constrained composite damping plate with double

piezoelectric layers under active control

PPSD of the transverse displacement for the constrained composite damping plate with

double piezoelectric layers driven by a unit point force located at the origin is shown in Fig.

6 at 1kHz. The average transverse displacement of the constrained composite plate with(
Gp = 0,Gd = 0

)
is the largest compared with other PPSDs shown in Figs. 6(b)-6(d). The trans-

verse vibrations of the composite plate with
(
Gp = 0,Gd = 0.2

)
and

(
Gp = 200,Gd = 0.2

)
are

notably suppressed. The average transverse displacement of the composite plate with Gp = 200

and Gd = 0.2 has the smallest value of those shown in Fig. 6. CSD of the far-field transverse

displacement for the constrained laminated damping plate with double piezoelectric layers un-

der active control at 1kHz has only one strip pattern and the only circumferential wavenumber

m is 0. Elastic waves of the transverse displacement in the constrained laminated damping plate

with two piezoelectric layers are independent of the circumferential wavenumber since the ex-

citing point force is located at the origin of the local coordinate system for the host plate. ũ3 of

the smart composite plate with transversely isotropic materials is only associated with the radial

wavenumber k. The dominant spectral distribution is between radial wavenumbers k = 35 and

k = 40 in Fig. 6(d).

The governing equations for smart laminated plates can be described by a complex matrix

with five rows and columns, and one loading vector. Therefore, a reduced equation of the smart

plate driven by a unit point force can be obtained for the transverse displacement spectra ũ3,

ũ3 = e−i(kx x0+kyy0)/Dw (k) , k =
(
k2

x + k2
y

)1/2
, (81)

where Dw (k) is the spectral stiffness with respect to the transverse displacement and extracted

from the governing equations for the smart laminated plate. The factor e−i(kx x0+kyy0) in Eq. (81)

can be expressed by

e−i(kx x0+kyy0) = e−ikᾱ3 cos(ᾱ2−ψ) =

+∞∑
m1=−∞

Jm1 (kᾱ3) e−im1ᾱ2eim1ψe−im1π/2,

ᾱ3 =
(
x2

0 + y2
0

)1/2
, ᾱ2 = atan (y0/x0) or atan (y0/x0) + π, (82)

where m1 is an integer. Substituting Eqs. (81) and (82) into Eq. (74) in the case of ᾱ3 = 0, one
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(a) (b)

(c) (d)

Figure 6: (a) PPSD of transverse displacement for the constrained composite damping plate
with double piezoelectric layers at 1kHz,

(
Gp = 0,Gd = 0

)
; (b) PPSD of transverse displace-

ment for the constrained composite damping plate with double piezoelectric layers at 1kHz,(
Gp = 200,Gd = 0

)
; (c) PPSD of transverse displacement for the constrained composite damp-

ing plate with double piezoelectric layers at 1kHz,
(
Gp = 0,Gd = 0.2

)
; (d) PPSD of transverse

displacement for the constrained composite damping plate with double piezoelectric layers at
1kHz,

(
Gp = 200,Gd = 0.2

)
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obtains

CSD =


∣∣∣∣ J0(kᾱ3)k1/2

(2π)3/2Dw(k)

∣∣∣∣ , (ᾱ3 = 0,m = 0) ,

0, (ᾱ3 = 0,m , 0).
(83)

When the point force is not at the origin, one obtains

CSD =

∣∣∣∣∣∣ Jm (kᾱ3) k1/2

(2π)3/2Dw (k)

∣∣∣∣∣∣ . (84)

A great many cylindrical waves of the transverse displacement with different circumferential

wavenumber propagate in the composite plate.

The first lamina of the host face plate shown in Fig. 1 is replaced with an orthotropic boron-

epoxy material in order to study vibrations of the composite plates with nonuniform in-plane

stiffnesses in the following discussion. The material parameters of the orthotropic lamina are

listed in Table 1. The other layers of the composite plates with double piezoelectric laminas

are kept unchanged. The constrained composite damping plate with two piezoelectric layers is

then not transversely isotropic any more. CSD of the far-field transverse displacement for the

constrained composite damping plate with two piezoelectric layers under
(
Gp = 200,Gd = 0.2

)
is shown in Fig. 7 at 1kHz and 1.5kHz. Some elastic waves with special circumferential

wavenumbers propagate in the composite plate due to the orthotropic layer of the host plate.

The spectral stiffness Dw of the sandwich plate is associated with k and ψ, and the influence

of the orthotropic layer on the far-field transverse displacement is important in Fig. 7. Only the

waves with even circumferential wavenumber exist in the composite plate when the transverse

point force drives it at the origin. The patterns of far-field CSD slowly change with circumfer-

ential wavenumber as a result of large active constrained damping when the circular frequency

increases. However, the main radial wavenumber has a moderate shift in Fig. 7(b). The reduced

equation of the transverse displacement spectra for the smart sandwich plate is described as

ũ3 = e−i(kx x0+kyy0)/Dw (k, ψ) . (85)

Substituting Eqs. (85) and (82) into Eq. (74), one obtains

CSD =

∣∣∣∣∣∣∣ 1
(2π)5/2

∫ 2π

0

+∞∑
m1=−∞

(
Jm1 (kᾱ3) e−im1ᾱ2eim1ψe−im1π/2/Dw (k, ψ)

)
e−imψk1/2dψ

∣∣∣∣∣∣∣ . (86)
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With a point force located at (0, 0), Eq. (86) can be further simplified to obtain

CSD =

∣∣∣∣∣∣ 1
(2π)5/2

(∫ π

0

e−imψ

Dw (k, ψ)
k1/2dψ +

∫ π

0

(−1)me−imψ

Dw (k, ψ + π)
k1/2dψ

)∣∣∣∣∣∣ . (87)

For the present composite plate

Dw (k, ψ) = Dw (k, ψ + π) (88)

holds. This equation can be verified by a numerical test. Substituting Eq. (88) into Eq. (87),

one obtains

CSD =


∣∣∣∣ 2
(2π)5/2

∫ π

0
e−imψ

Dw(k,ψ) k
1/2dψ

∣∣∣∣ ,m = 2m1,

0,m = 2m1 + 1.
(89)

This is the reason why the alternating stripe pattern appears in Fig. 7. CSD of the far-field

transverse displacement has a complicated patterns when the driving force is not located at the

origin. Magliula et al. [76] analytically presented a formula for the far-field transverse displace-

ment of an anisotropic plate in the wavenumber domain using the stationary phase method. It

is easy to prove that the far-field CSD of the anisotropic plate is zero for odd circumferential

wavenumbers with a point force located at the origin.

RPSD of the transverse displacement for the constrained composite damping plate with dou-

ble piezoelectric layers under
(
Gp = 200,Gd = 0.2

)
is shown in Fig. 8 at 1kHz and 1.5kHz.

The vertical coordinate in Fig. 8 denotes the propagation directivity angle (circumferential an-

gle) of the elastic wave. The orthotropic layer of the host plate has a significant effect on RPSD

and predominant elastic waves propagate in the directions approaching 0 and π. The spectral

patterns in Fig. 8(b) are similar to those in Fig. 8(a). The phase angles of the transverse dis-

placement spectra ũ3 for the constrained composite damping plate with two piezoelectric layers

driven by a point force are shown in Fig. 9 at 1kHz and 1.5kHz under
(
Gp = 200,Gd = 0.2

)
.

In Fig. 9, the phase angles belong to [−π/2, 3π/2]. Some phase angles approaching 2 do not

exist. Phase angles of the elastic waves with the same propagation directivity angle smoothly

vary due to the large damping. The phase angles of the elastic waves can be influenced by the

location of the force. Eq. (77) can be used to show that RPSD is independent of the point force

location.
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(a) (b)

Figure 7: (a) CSD of the far-field transverse displacement for the constrained composite damp-
ing plate with double piezoelectric layers at 1kHz,

(
Gp = 200,Gd = 0.2

)
, (x0 = 0, y0 = 0); (b)

CSD of the far-field transverse displacement for the constrained composite damping plate with
double piezoelectric layers at 1.5kHz,

(
Gp = 200,Gd = 0.2

)
, (x0 = 0, y0 = 0)

(a) (b)

Figure 8: (a) RPSD of the constrained composite damping plate with double piezoelectric layers
at 1kHz,

(
Gp = 200,Gd = 0.2

)
, (x0 = 0, y0 = 0); (b) RPSD of the constrained composite damp-

ing plate with double piezoelectric layers at 1.5kHz,
(
Gp = 200,Gd = 0.2

)
, (x0 = 0, y0 = 0)

33



(a) (b)

Figure 9: (a) Phase angles of the transverse displacement spectra for the constrained com-
posite damping plate with two piezoelectric layers driven by a point force at 1kHz,(
Gp = 200,Gd = 0.2

)
, (x0 = 0, y0 = 0); (b) Phase angles of the transverse displacement spec-

tra for the constrained composite damping plate with two piezoelectric layers driven by a point
force at 1.5kHz,

(
Gp = 200,Gd = 0.2

)
, (x0 = 0, y0 = 0)

4 Conclusions

The governing equations of the constrained composite damping plates with double piezo-

electric layers are derived in the wavenumber domain by using classical laminated plate theory.

The solutions of the three-dimensional electric potential equations for smart layers with open

circuit, closed circuit, external dielectric slab and active control are developed. Five governing

equations for thin smart composite plates are obtained. The natural frequencies and loss factors

of the constrained composite damping plate with two piezoelectric layers are analyzed. The

vibrational features of smart composite plate using three different passive control methods are

all very similar to free vibrations of the constrained composite damping plate without piezo-

electric effects. Piezoelectric layers with passive control are not suitable to suppress vibrations

of composite plate and to absorb mechanical energy. The natural frequencies and loss factors of

the composite plates with active control behave markedly differently. The energy of the trans-

verse displacement PPSD for the smart composite plates with active control is reduced. The

CSD of the transverse displacement for the constrained composite damping plate with uniform

layers is composed of cylindrical waves with circumferential wavenumber 0 and only the flex-

ural waves with even circumferential wavenumber contribute to the CSD of the composite plate

with orthotropic layer driven by the force located at the origin. The patterns of the CSD for the

constrained composite damping plates are changed by the force location but those of RPSD for
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the composite plates are independent of the force location. The phase angles of the transverse

displacement spectra are greatly affected by the force position and damping.
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