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ABSTRACT
Photogrammetry systems are widely used in industrial manufacturing applications as an assistance
measurement tool. Not only does it providehigh-precision feedback for assembly process inspection
and product quality assessment, but also it can improve the flexibility and robustness of manu-
facturing systems and production lines. However, with growing global competition and demands,
companies are forced to enhance production efficiency, shorten production lifecycle and increase
product variety by incorporating reconfigurable factory design that can meet challenging timeline
and requirements. Although dynamic facility layout is widely investigated, the position selection for
the photogrammetry system in dynamic manufacturing environment is usually overlooked. In this
paper, dynamic layout of the V-STARS photogrammetry system is investigated and optimised in a
digital-twin environment using deep reinforcement learning. The learning objectives are derived
from the field of view (FoV) evaluation from point clouds 3D reconstruction, and collision detection
from the digital twin simulated in Visual Components. The application feasibility of the proposed
dynamic layout optimisation of the V-STARS photogrammetry system is verified with a real world
industrial application.
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1. Introduction

Photogrammetry-assisted measurement solutions are
widely used in industrial manufacturing applications
such as civil engineering (Schuch et al. 2019), additive
manufacturing (Bortolini et al. 2020), aerospace (Yelles-
Chaouche et al. 2020), experimental solid mechanics
(Baqersad et al. 2017; Bortolini, Gabriele Galizia, and
Mora 2018) and reverse engineering (Maganha, Silva,
and Ferreira 2019). The advantages of the photogram-
metry optical solution include its non-contact nature,
fast data acquisition rates, large coverage of targets, high
point density and high-precision feedback. Also, the pho-
togrammetry system allows the rectification and rework
demand to be dramatically reduced, as any deviation and
error during production can be instantly detected.

A typical photogrammetry system consists of cameras
and retro-reflective targets, and usually requires sophis-
ticated preparation, such as software configuration, cam-
era positioning, image collection and processing, and 3D
reconstruction (Skřivanová and Melichar 2019). Despite
the fact that photogrammetry systems do share a large
slice of the industrial inspection market, the inspec-
tion scenario is difficult to find in an automated and
established manner. More specifically, the position of
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photogrammetry cameras is one of the key factors that
should be considered during the use of optical coordi-
nate measurement devices (Zhang et al. 2021). Neverthe-
less, photogrammetry systems are sensitive to position
selection in a work cell and quality results are highly
dependent on the coverage of the object surfaces and the
precision of the measurement.

Current studies on layout position optimisation for
photogrammetry decives mainly focus on application-
specific and fixed facility layout design (Ahmadaba-
dian et al. 2014; Barazzetti 2017; Rangel, Costa, and
Loula 2019; Tarabanis, Allen, and Tsai 1995). How-
ever, the problem we are facing in this paper is that
the layout of the work cell is reconfigurable or with
rapid changes (Koren et al. 1999). As mentioned before,
the configuration of photogrammetry systems often
demands complex calibration and testing processes.
Therefore, the tremendous labour for repetitive adjust-
ment of the photogrammetry system such as hard-
ware reintegration and software resetting in the real
world is unavoidable. Hence, some of the approaches
proposed in Zhang et al. (2021),Rangel, Costa, and
Loula (2019),Barazzetti (2017) for position optimisation
are not suitable for a dynamic layout design.
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Figure 1. The graphic explanation of V-STARS camera FoV and its
digital twin model in Visual Components. (a) Graphic explanation
of the camera FoV of the V-STARS system (KINEMATICS 2013). (b)
Virtual V-STARS system in digital twin. The V-STARS photogram-
metry system provides accurate three dimensional measurement
in industrial manufacturing application. The virtual V-STARS sys-
tem in digital twin in Figure 1(a) duplicates the same coverage of
the FoV as given in Figure 1(b).

In addition, the photogrammetry system is required
to assist the manufacturing processes during its entire
production horizon, which means at multiple key times-
tamps, the photogrammetry system should have suffi-
cient FoV for the target object coverage (Mavrinac and
Chen 2013). However, it is not easy to configure a pho-
togrammetry system in a compact work cell as shown
in Figure 1(b). Not only should the target features fall
in the FoV during the whole production horizon, but
also the collision among different facilities should be
avoided.

Moreover, most of the camera position optimisation
approaches are designed using computer aided design
(CAD) product data and models (Bergström, Fergus-
son, and Sjödahl 2018; Sims-Waterhouse et al. 2017).
However, throughout the assembly processes, products
are handled by conveyors and manipulators. Given that
the photogrammetry system is usually fixed during the
production horizon, reduced visibility caused by manip-
ultor blockage is highly possible.. As in Figure 1(b), the
manipulator blinds the visibility towards the target frame.
Hence, CAD data cannot fully represent a real-world
work cell (Nakath et al. 2022).

In this paper, we propose a novel digital-twin
based deep optimisation framework for positioning
the V-STARS photogrammetry system (as shown in
Figure 1(a)) based on point cloud 3D reconstruction.
There are several reasons why deep reinforcement learn-
ing was selected for this application. Firstly, establishing a
dynamic photogrammetry camera position model math-
ematically or based on data sets is difficult in the virtual
world. This is because the target object might be blocked
by manipulators or other devices during the overall
assembly production process. Reinforcement learning is
a good option as there is no established/existing knowl-
edge or data model, which is the building block required
for any supervision-learning type of strategy.

In addition, for a novel reconfigurable manufacturing
system, there is no prior knowledge or data for cam-
era position optimisation. Thus, a feasible solution to
is to learn and interact with an established digital twin
in a trial-and-error way using reinforcement learning.
During optimisation, reinforcement learning can elevate
those that enable a whole sequence of good solutions and
eliminate low-reward solutions.

Finally, PPO (Proximal Policy Optimization), DQN
(Deep Q Learning) and A2C (Advantage Actor Critic)
were ideal because the learning states are chosen as dis-
crete. Note that, the optimisation can also be extended
to other discrete deep reinforcement learning algorithms
such as HER (Hindsight Experience Replay) and QR-
DQN, which is built on DQN and derived from quan-
tile regression explicitly modelling the distribution over
returns.

During the camera position optimisation, the V-
STARS system is considered as an agent which explores
the digital twin environment established in Visual Com-
ponents. Note that, the digital twin is setup with the same
parameters (horizontal 72 deg and vertical 58 deg) of the
V-STARS cameras for their FoVs shown in Figure 1(a).
Following a discrete space deep reinforcement learn-
ing framework, the objectives are derived from collision
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detection and coverage evaluation of the target frame
surface based on 3D reconstruction.

The contributions are highlighted as follow:

(1) The digital twin of a dual-camera V-STARS pho-
togrammetry system along with the reconfigurable
manufacturing cell is created with camera FoV cap-
tured in amanufacturing simulation software,Visual
Components;

(2) The coverage evaluation method of a given target
object based on 3D reconstruction with a dual-
camera V-STARS photogrammetry system is pro-
posed, considering both FoV coverage and overlap-
ping;

(3) The deep dynamic layout optimisation in the digital
twin environment is addressed with deep reinforce-
ment learning algorithms, such as PPO, DQN and
A2C;

(4) Experiments are carried out to demonstrate the
application feasibility of the proposed deep dynamic
layout optimisation for the V-STARS system.

The remainder of the paper is organised as follow:
the related research work is summarised in Section 2;
the coverage evaluation for the V-STARS system FoV is
presented in Section 3; furthermore, the deep learning
framework for layout optimisation is given in Section 4;
finally the evaluation is conducted in Section 5 and the
conclusion are drawn in the last section.

2. Related work

In this section, the camera position optimisation is inves-
tigated in Section 2.1. In addition, the effect of camera
position in reconfigurable manufacturing systems is dis-
cussed in Section 2.2. Finally, the research status of pho-
togrammetry systems in dynamic layout optimisation
and reconfigurable manufacturing systems is analysed in
Section 2.3.

2.1. Camera position optimisation

In modern advanced manufacturing, photogrammetry
systems are extensively used as measurement-assisted
tools to improve efficiency and reduce manufacturing
costs (Wang et al. 2020). Using a single camera or a pair of
cameras is limited to specificmachine vision applications
and is usually insufficient for process inspection due to
self-occlusion and constraint FoV (Liu et al. 2019). As one
of the key factors in photogrammetry applications, the
FoV coverage is often considered as an optimising objec-
tive. Multiple camera viewpoints can also maximise the

FoV coverage, and it can be realised with relative move-
ment of a network photogrammetry system (Gai, Da,
and Tang 2019). However, thesemethods are application-
specific and once the layout is configured, it does not
support further modification, which is inapplicable for
reconfigurable manufacturing system use cases.

Position selection is not only required for large-scale
metrology, but also crucial in microscopic scale man-
ufacturing (Ren et al. 2019). To improve measurement
accuracy, the characterisation of intrinsic and extrinsic
camera parameters are discussed in the following works
(Liu et al. 2019; Sun, He, and Zeng 2016; Xing, Yu, and
Ma 2017). As pointed out in Barazzetti (2017), users par-
ticularly who have access to photogrammetry systems,
often do not have much measurement experience and
usually produce crude results at the cost of accuracy.
Hence, finding an efficient solution to automatically opti-
mise the position of the photogrammetry system is highly
required.

The work done in Mason and Grün (1995),Nakath
et al. (2022) addresses the configuration of a sensing
system derived from a knowledge-based expert system
for view planning based on CAD models. In Carriv-
ick, Smith, and Quincey (2016), the evolving position
of camera systems is proposed to find the optimal posi-
tion for imaging networks for unmanned aerial vehi-
cles. Instead of using a knowledge-based expert system,
the evolving system applies genetic algorithm to learn
the best positions of the imaging network. In addition,
the imaging network system proposed in Ahmadaba-
dian et al. (2014), investigated the optimisation problems
following four steps, datum definition, optimal distance
derivation, viewpoint generation, and finally clustering
and selection. The designed system depends on the ini-
tial target geometry obtained from the structure light
projection technique.

Other approaches address the photogrammetry cam-
era positions using evolutionary algorithms with com-
bined objectives of FoV coverage and viewpoint redun-
dancy (Rangel, Costa, and Loula 2019). Furthermore,
in Erat et al. (2019), a real-time online view plan-
ning method is discussed based on an incoming view
coverage evaluation with a predefined coverage metric.
This approach seeks to iteratively optimise a sparse net-
work by importing additional camera views. Any iter-
ative approach as such usually requires a rational ini-
tial setting and the computational expense would sig-
nificantly impact the real-time measurement speed. In
Zhang et al. (2021), the position of the photogramme-
try system is optimised based on visible point analysis
derived from the hidden point removal approach using
a genetic algorithm.
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In summary, current photogrammetry position opti-
misation frameworks were proposed for fixed layout
designs and specific applications but not for the recon-
figurable facility layout. Although computer aided tech-
niques were studied in several publications, they were
used for a single product without considering the other
involved facilities during the production horizon.

2.2. Effect of camera position in reconfigurable
manufacturing systems

As pointed out in Telgen (2017), since reconfigurable
manufacturing systems can be configured in many ways
in response to different product families, crucial factors
including camera position should be taken into con-
sideration. Regarding different production manufactur-
ing schemes, working area usually varies and the target
objects are commonly three-dimensional, this makes it
more complex to analyse camera visibility to the targets,
which could be rotated, upside down or completely out
of the camera FoV after reconfiguration.

In Urgo et al. (2016), a zero-point fixture system was
designed as a reconfiguration enabler for flexible manu-
facturing. For measurement and verification of different
pallet products, the camera visibility of the products was
ensured by positioning the product within the viewing
volume defined by the camera FoV and laser fan angle.
Although the importance of camera positioning was
pointed out, it mainly focused on single trail measure-
ment with no further investigation into camera position-
ing. In the recent work of Wang et al. ‘Adaptive, Repeat-
able and Rapid’ (2022),Wang et al. ‘Development of An
Affordable’ (2022), an adaptive and highly repeatable
reconfigurable assembly system and process for small-
box product family were proposed and tested. In this
process, a reconfigurable tooling system is designed to
support the assembly of winglets, rudders and eleva-
tors. Using a photogrammetry system, the repeatability
of reconfigurable fixture assembly was realised within
+/-0.04mm. However, they pointed out that ‘although
the photogrammetry system is time-efficient in mea-
surement of large-volume point cloud, the measurement
accuracy relies heavily on its field of view’ (Wang et al.
‘Adaptive, Repeatable and Rapid’ 2022).

In Martin (2018), a reconfigurable test execution sys-
tem based on image processing was developed for a
series of infrared ceramic heating elements. Although
it achieved an accuracy within 500 microns, the mea-
surement repeatability and precision were significantly
influenced by camera placement and ambient lighting
conditions. Considering the number of singulation units
and pallet exchange time, the objective investigated in
Steed (2016) was to develop a simulation-based method

for evaluating two control configurations, namely fixed
camera and eye-in-hand, in a robotic assembly cell. How-
ever, the evaluation was application-specific and cam-
era position optimisation was not addressed. In order
to effectively capture human motions within a worksta-
tion environment, camera disposition for different views
(top, bottom, left and right side) was discussed in Fac-
cio et al. (2019) considering camera field of view. How-
ever, no optimisation was carried out with regard to the
camera position in the workstation environment. Simi-
lar work was done in Bortolini et al. (2018) for capturing
operator movement and gesture in manufacturing activ-
ities by using optical motion capture technology. Despite
the fact that this work suggested that the camera position
of themotion analysis system should be carefully selected
to maximise coverage and acquisition precision, only
the ideal configuration of motion analysis system was
introduced with no optimisation approach discussed.

In Drouot et al. (2018), a Nikon K-CMM camera was
used in a reconfigurable wing assembly cell to control
robotic handling and correct robot kinematic inaccu-
racy. This K-CMM photogrammetry system embedded
achieved an absolute positioning accuracy better than
+/-0.1mm Sanderson et al. (2019). In Xia et al. (2018),
a global calibration for multi-cameras based on non-
overlapping fields of view and reconfigurable targets was
proposed for various vehicle outline detection. The cal-
ibration method aims to achieve large-scale vision and
improve high-precision measurement (RMS 0.04mm).
However, the joint benefit of flexibility and accuracy
would be impossible without a proper camera setup. Yet
neither of the works mentioned any camera positioning
approach.

In summary, metrology-assisted approaches are com-
monly applied for various purposes in flexible/reconfigu
rable manufacturing systems. Despite the fact that most
literature only focused on one configuration/application,
the importance of camera position and the correspond-
ing challenge with calibration effort is being widely
recognised. Yet there is no systematic approach for
the disposition of camera-based metrology systems and
effort in optimising camera position is very limited.

2.3. Research status of photogrammetry systems in
dynamic layout optimisation and reconfigurable
manufacturing systems

According to the survey of dynamic facility layout in
reconfigurable manufacturing systems (Benitez, Da Sil-
veira, and Fogliatto 2019; Hosseini-Nasab et al. 2018;
Pérez-Gosende, Mula, and Díaz-Madroñero 2021), the
addressing issues generally include materials handling
cost, rearrangement cost, construction cost, flowdistance,
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Figure 2. Digital twin modelling of V-STARS photogrammetry system. The V-STARS photogrammetry system consists of a laptop, two
cameras, two tripods, and power supply as shown in Figure 2 (b). The parameters of V-STARS camera FoV are 72 deg. horizontal and 58
deg. vertical. The digital twin of the assembly manufacturing work cell is given in Figure 2 (a) and its physical layout is shown in Figure 2
(c).

flow path length, transport time, workflow etc. However,
camera position has not been investigated as a dynamic
facility layout problemnor in reconfigurablemanufactur-
ing systems.

Although camera position optimisation is investigated
for surveillance applications in Piciarelli et al. (2015),
Piciarelli and Luca Foresti (2020), they mainly focused
on FoV coverage maximisation (Asaamoning et al. 2021;
Suresh, Narayanan, and Menon 2020) without con-
sidering measurement accuracy. For object identifica-
tion, Nuger and Benhabib (2018) proposed a camera
reconfiguration method to detect unknown objects and
paid special attention to system latency and recogni-
tion approaches. However, these applications do not
need to be rapidly configured. In the case of a reconfig-
urable manufacturing system, not only good measure-
ment accuracy is required, but cameras are required to
rapidly adjust between configurations of different prod-
ucts or product families. Between configurations, robot
arm movements, target objects and their location vary,
which makes the optimisation of photogrammetry cam-
eras a dynamic layout problem. Therefore, an automated
optimisation framework for camera positions in recon-
figurable manufacturing systems is desired.

In summary, in dynamic layout optimisation and facil-
ity design of reconfigurable manufacturing systems, the
impact of photogrammetry devices is usually neglected.
Although the importance of the camera position is high-
lighted (Płowucha, Jakubiec, and Wojtyła 2016), there is
no general or established approach for the issue, which is
also one of themajor barriers in photogrammetry system
implementation and integration in the industry (Zhang
et al. 2021).

3. Target-object coverage evaluation based on
3D reconstruction

This section aims to evaluate the target-object cover-
age based on 3D reconstruction. The digital twin of the

V-STARS photogrammetry system as well as the whole
work cell are presented in Section 3.1. Furthermore, the
coverage evaluation procedure including coarse-to-fine
registration and 3D reconstruction are given in Sec-
tions 3.2 and 3.3, respectively.

3.1. Digital twinmodelling and reconfigurable
manufacturing work cell

The digital twin of a work cell is the virtual representa-
tion of the physical facility layout. Throughout the whole
production lifecycle, the digital twin provides exact digi-
tal information as the physical factory. Moreover, digital
twin models can be established with software packages
such as Process Simulate, Gazebo and Visual Compo-
nents. In this paper, the digital twin of the overall work
cell is created in Visual Components as given in Figure 2.
As given in Figure 2, the digital twin is built in Visual
Components which duplicates the real-world facilities in
the profile board assembly work cell. As presented in
Figure 2 (c), there are several key resources in work cell,
such as tool stand, two Kuka robots, target frame and
profile boards storage rack (profile boards highlighted in
yellow and rack in cyan respectively. The aims of this
assembly cell is to pick and place three profile boards to
the target frame from the storage rack.

TheV-STARS photogrammetry system consists of two
3D cameras as given in Figure 2(a,c). Correspondingly,
their virtual digital twins are modelled in Figure 2(c)
with the same FoV parameters (72 deg horizontally,
58 deg vertically). According to the FoV illustration in
Figure 1(a), it inspects the whole assembly processes dur-
ing the production horizon as presented in Figure 2 (a).
In return, the virtual FoV simulation captures 3D data as
point clouds and outputs them as ASCII data consisting
of point cloud positions and their corresponding colours.

The assembly processes are performed within a
multi-product reconfigurable work cell with a support-
ing reconfigurable tooling system similar to the one
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Figure 3. The conception of the reconfigurable assembly products and the mobile transport platform. The two products are given in
Figure 3 (a) (Wanget al. ‘Development of AnAffordable’ 2022) and their assembly couldbe achieved in througha common reconfigurable
systemwith adaptive and rapid auto-reconfiguration processes. The target framewill be finally located on an AGV as indicated in Figure 3
(b) to improve the reconfiguration capability of the work cell. Therefore, it is necessary to have an auto photogrammetry camera position
optimisation framework due to changes of the physical facility layout.

presented in Wang et al. ‘Development of An Affordable’
(2022)’s paper as given in Figure 3 (a). With the recon-
figurable fixture and tooling system, products of similar
size and build philosophy, such as winglets, rudders and
elevators, can be assembled through similar processes.
Even within a product type, for example winglets of Air-
bus A330 and Boeing 777, the different specifications
(dimension, spars/ribs locations, skin thickness, aero-
foil profile etc.) are also accounted for via the tooling
system.

The fixture frame and the cell can be reconfigured
regarding different product requirements. The V-STARS
photogrammetry system is used for accurately posi-
tioning the reconfigurable components to the target
frame. The frame will be located on an AGV to pro-
vide jig mobility and increase reconfigurable capabil-
ity. The robot can be positioned anywhere on its grid
base plate. The frame orientation (front/back side) can
change between products. Different tooling storage to
facilitate robot pick and place can also be included or
removed from the cell. All reconfiguration and assem-
bly processes would require good camera visibility of
the frame. However, given different product assembly
schemes, the FoV of the V-STARS system must be opti-
mised and covers the target frame during the produc-
tion horizon to meet accuracy demand. This paper aims
to obtain an optimal camera position using the pro-
posed digital-twin-based deep optimisation framework,
and validate it in physical experiments as shown in
Figure 2.

3.2. Coarse-to-fine registration

In this paper, two camera positionswere investigated, and
the two respective view (in the format of point clouds) are
combined into a global consistent model by point cloud
registration. Before registration, two respective standard
templates were obtained from the STLmodel via the digi-
tal twinmodel as given in Figure 4(a). Then, the obtained
point cloud from one camera is registered with its cor-
responding standard template. For example, the point
clouds as shown in Figure 4(c) is the collection of the
standard template in Figure 4(a) and the novel camera
input in Figure 4(b). Given that the global position of
the standard template is known, if novel camera input is
aligned, the relative transformation can be solved.

The registration process designed in this paper is
divided into two steps. Firstly, the coarse registration
of two point clouds is conducted with fast global reg-
istration, which the error objective function is defined
as

ε(T , L) =
∑

(p,q)∈S
l(p,q)‖p − T q‖ +

∑
(p,q)∈S

ψ(l(p,q)),

(1)
where p and q are the matching points satisfying p ∈ P
and q ∈ Q, respectively. The collection of the correspon-
dences is defined as S = {S|(p, q) ∈ S ,p ∈ P,q ∈ Q}.
In addition, the prior ψ(l(p,q)) is denoted as

ψ(l(p,q)) = μ(

√
l(p,q) − 1)2, (2)



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 7

Figure 4. Flow chart of the V-STARS FoV coverage evaluation
(part one). The first part of the V-STARS FoV coverage consists of
point cloud collection, feature extraction, and coarse point cloud
registration.

regarding the minimisation of partial derivatives with
respect to l(p,q) of Equation (1).

The optimisation is implemented by alternately opti-
mising the coefficients l(p,q) and the transformation
matrix T . While optimising the coefficients, the trans-
formation matrix is locked and the solution to coeffi-
cients is analytical and Equation (2) must be satisfied
(Zhou, Park, and Koltun 2016). Similarly, for the opti-
misation of the transformation matrix, the prior term is
fixed and the error function in Equation (1) is defined
as a least-square objective, which can be calculated with
Gaussian-Newton method.

The initial correspondence set S is generated with
the fast point feature histogram (FPFH). This method
is based on the point feature histogram (PFH) and
relies on the presence of 3D points and their sur-
face normals. Therefore, given a point p, its neigh-
bours within the sphere of radius r are selected
to generate point pairs. Regarding each point pair
(pi,pj) with index i, j, the Darboux frame is denoted

as

u = ni
v = (pi − pj)× u

w = u × v,

where ni and nj are corresponding normals of point pi
and point pj. The angular variations of normals ni and nj
are

β = v · n
φ = (u · (pi − pj))/‖pipj‖
ϑ = arctan(w · nj,w · nj) (3)

Hence, the FPFH for point p can be given as

FPFH(p) = SPF(p)+ 1
M

M∑
m=1

1
dm

SPF(pm) (4)

The term SPF represents simplified point feature,
which can be obtained from the angular variations in
Equation (3). M is the number of neighbours consid-
ered for point p and dm is the distance between them-th
neighbour pm and the query point p.

In order to implement coarse registration, the point
clouds are down-sampled as shown in Figure 4(c). In
the feature extraction stage, the normals presented in
Figure 4(d) are estimated using FPFH and applying KD-
tree search (Greenspan and Yurick 2003). Hence the
two point clouds (standard template and camera input)
can be aligned with RANSAC algorithm as indicated in
Figure 4(e).

3.3. 3D reconstruction and coverage evaluation

After the coarse alignment using fast global registration,
point clouds still need to be further refined based on
the initial condition obtained previously. As indicated
in Figure 5(a), they are further optimised with point-
to-plane iterative closest point registration and the error
objective function is given as

ε(T ) =
∑

(p,q)∈S
((p − T q)np)

2, (5)

withnp being the normal of pointp derived from the nor-
mal estimation from the feature extraction step. Given
that the global information of the standard templates is
known, the aligned two input point clouds can be used to
reconstruct the overall work cell as given in Figure 5(b).
Note that, during 3D reconstruction, the combined point
clouds need to be re-sampled for frame point cloud
extraction.
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Figure 5. Flow chart of the V-STARS FoV coverage evaluation (part two). The second part of the V-STARS FoV coverage consists of fine
point cloud registration, 3D reconstruction and hidden point removal.

After that, DB-SCAN (density-based spatial cluster-
ing of applications with noise) (Khan et al. 2014) is used
to divide the collected point cloud of the whole work
cell into several clusters as given in Figure 5(c), given
the geometry information from the STL file. As shown
in Figure 5(d), the target frame can be identified from
the clusters according to geometry information, such as
maximal and minimal boundaries.

Nevertheless, it is still difficult to evaluate the cover-
age of FoV over the target frame, as the point could is
not directly related to FoV coverage. In this paper, hidden
point removal technique is applied to remove the overlap-
ping points behind the front surface. The hidden point
removal algorithm consists of two steps: point inversion
and convex hull computation. Point inversion maps all
points pi ∈ P internal to a bounding sphere to the outside
of that sphere and is mathematically defined as

F(pi) = pi + 2(Rs + ‖pi‖) pi
‖pi‖ (6)

with F(pi) being the inverted coordinates of pi and Rs
being the bounding sphere radius. Then, the convex
hull computation distinguishes the visible points from
the hidden points. The coverage of FoV over the target
frame is evaluated according to the number of visible
points from the frame point cloud cluster as indicated in
Figure 5(e).

4. Deep dynamic camera position optimisation
of V-STARS system

Camera position optimisation approach for photogram-
metry system is introduced in this section. Firstly, the
learning objectives are described in Section 4.1. Then, the
proximal policy optimization framework in presented in
Section 4.2 for optimal position selection.

4.1. Learning objectives

Two key considerations were included in the optimisa-
tion process, namely collision and FoV coverage. There-
fore, the learning objectives are formulated to detect col-
lision and evaluate FoV coverage. Since a dual-camera
system is used, FoV overlap between the two respective
views is another learning objective. Hence, in this sub-
section, three indicators are deployed to optimise camera
positions.

Collision-free indicator pcd(ξn): firstly, the facili-
ties located in the work cell and their working tra-
jectories should be free from collision. Tradition-
ally, collision is investigated as a 2D layout prob-
lem (Bortolini, Gabriele Galizia, and Mora 2018; Guo,
Jiang, and Yang 2022; Pérez-Gosende, Mula, and Díaz-
Madroñero 2021), examining footprints of each resource.
Other publications approximate resources as rectangles
or irregular shapes. In the proposed approach, collision
is detected by using digital-twin simulation.
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Figure 6. Collision detection among photogrammetry system
and the other components.

Given that collision can occur anytime during robot
movement, it should be monitored for the entire assem-
bly process. This is achieved by the collision detec-
tion functionality in Visual Components as indicated in
Figure 6. When collision occurs, the clashing parts are
highlighted in yellow and a true boolean signal returns
to the detection monitor, which is used reversely as
the collision-free indicator in this paper. Its penalty is
denoted as

pcd(ξn) =
{
0 if Vd = ∅∑

v v0 otherwise.
(7)

with ξn being the position of the photogrammetry cam-
era and v0 being the penalty value defined by experi-
ments. Vd is the collection of collision detection. As long
as Vd is not empty, a penalty is triggered.

FoV coverage indicator pFoV(ξn): in addition, the
camera position is evaluated for target coverage as
detailed in Section 3. After removing hidden points, the
FoV coverage is obtained by calculating the quantity of
the point cloud of the 3D reconstructed target frame. Its
reward can be defined as

pFoV(ξn) = rFoV (8)

where rFoV is the number of the visible points in the target
frame point cloud.

FoV Overlapping indicator povl(ξn): finally, due to
the space limitations of the work cell, the two respec-
tive FoV on the target object cannot be fully overlapped,
which is usually the case for photogrammetry appli-
cations in manufacturing. However, in order to obtain
high-quality measurements, two respective FoVs must
have enough overlapping coverage of the object. In this
paper, the third learning objective is the overlapping
indicator povl(ξn), which is defined as

povl(ξn) = Ml + Mr − MR (9)

where Ml, Mr, and MR are the number of the points
derived from left camera, right camera and 3D recon-
struction, respectively. Note that, these three point clouds
are down-sampled using the same density parameters.

4.2. Deep reinforcement learning

The camera positions for the V-STARS photogrammetry
system are optimised using proximal policy optimization
(PPO) (Schulman et al. 2017). The two camera positions
are embedded into a state vector st = [xlt , y

l
t , x

r
t , y

r
t ], in

which t is the time step, x and y are the exploration coor-
dinates, and l and r are the left and right camera notation.
The exploration action at = [alxt , a

l
yt , a

r
xt , a

r
yt] is chosen

from a discrete incremental action set defined as,

at ∈ S = [alxt ∈ {−�alx, 0,�alx}, alyt ∈ {−�aly, 0,�aly},
arxt ∈ {−�arx, 0,�arx}, aryt ∈ {−�ary, 0,�ary}]

(10)

Thus, the reward of a step exploration is calculated as

R(st , at) = wFoVpFoV(ξn)+ wovlpovl(ξn)− wcdpcd(ξn)
(11)

where wcd, wFoV , wovl are the weight parameters of colli-
sion detection, FoV evaluation, and overlapping, respec-
tively. Therefore, the overall reward depends on the two
camera positions and the weight parameters are defined
before optimisation.

Besides the three indicators, the learning objective
should also include the penalty if the camera position
is out of the constrained area. Therefore, we rewrite the
reward of Equation (11) as

R(st , at) = wcdpcd(ξn)+ wFoVpFoV(ξn)

+ wovlpovl(ξn)+ wapa(ξn) (12)

where pa(ξn) is the additional penalty for position con-
straints and wa is the corresponding weight.

PPO is a policy gradient method based on the actor-
critic manner. Moreover, the actor maps the observation
to an action by collecting a bunch of trajectoriesTk = {τi}
from the latest version of the stochastic policy π(θk). In
addition, the reward-to-go R(st , at) as well as the advan-
tage estimation are calculated for updating the policy
according to the objective function

θk+1 = argmax
1

|Tk|T
∑
τ∈Tk

T∑
t=0

min
(
π(θ)

θ(θk)
A(st , at),

g(ε,A(st , at))
)
, (13)

which is optimised via stochastic gradient ascent with
Adam (Adaptive moment estimation). The advantage



10 L. WANG ET AL.

Figure 7. The design of the virtual learning environment. The virtual learning environment uses socket communication to exchange
data. The virtual environment responds to the action sent from the optimisation level to update the new layout setting. In addition, given
the learning objectives, the virtual learning environment provides a point cloud and reward of collision detection for three indicators.

function can be estimated by using generalized advantage
estimation written as

A(st , at) =
N∑
l=0

(γ λ)l[rt+l + γV(st+l+1 − V(st+l))].

(14)
Regarding the value function, it is solved by minimising
the mean-square error defined as

φk+1 = argmin
1

|Tk|T
∑
τ∈Tk

T∑
t=0
(Vφ(st)− Rt)2 (15)

Like all reinforcement learning applications, the pro-
posed camera position optimisation framework requires
a learning environment. As detailed in the Section 3.1,
the digital twin is established in Visual Components.
However, regarding the reinforcement learning, several
settings need to be explained in this section.

Firstly, according to reinforcement learning theory,
the learning environment consists of a digital-twin level
and an optimisation level as given in Figure 7. During
each learning step, an action is generated from the opti-
misation level and then, sent to the digital-twin level.
Consequently, the learning environment implements the
virtual assembly processes and feeds the reward back to
the optimisation-level algorithm.

Secondly, the optimisation framework is designed
based on the Gym Env class (Brockman et al. 2016). Fol-
lowing the template of Gym Env, the step function is
used to trigger an implementation in the learning envi-
ronment; the reset function is applied to reset the initial
setting. Correspondingly, the digital-twin level responds

to the commands (reset and step) sent from the optimisa-
tion level. Given the learning objectives, three penalties,
i.e. collision detection, FoV overlapping and FoV cover-
age evaluation are combined as the reward for each step
learning.

Finally, the connection between the optimisation
framework and the digital-twin environment is realised
by socket communication. Two ports, namely the action-
sending port and the reward-receiving port, are designed
in the overall framework. The action-sending port uses
non-blockingmode in a try-exceptmethod, which allows
the digital-twin environment to respond to the optimisa-
tion command. In contrast, as the optimisation algorithm
waits for the reward feedback from the digital-twin envi-
ronment, the socket is configured in the blocking mode
as indicated in Figure 7.

5. Evaluation

The verification and experiments of our proposed
dynamic camera position optimisation framework con-
sist of three steps. Firstly, the V-STARS camera FoV
comparison is detailed in Section 5.1. The lifecycle
FoV coverage evaluation based on 3D reconstruction is
given in Section 5.2. The overall digital-twin-based deep
dynamic camera position optimisation is implemented in
Section 5.3, along with a real-world demonstration.

5.1. FoV comparison

There are two key camera parameters, namely the hor-
izontal and vertial angles (H 72 deg., V 58 deg.),
characterising the FoV. As the V-STARS system is set to



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 11

Figure 8. FoV comparison of the virtual cameras and their physical sides. Figure 8 (a) shows the image captured in real world. In contrast,
the image captured by virtual V-STARS camera is given in Figure 8(c). Similarly, the images obtained from left camera of the physical side
and the virtual environment are given in Figure 8(b,d), respectively.

multiple-camera model, two D12 cameras are employed
together to provide spatial information using vision tri-
angulation. Therefore, although the two D12 cameras
capture two dimensional pictures, they can be trans-
formed into three dimensional measurements.

In order to verify the application of the virtual cam-
eras, initial comparison between the pictures obtained
from the V-STARS devices and the scanned point clouds
from the virtual cameras is performed as indicated in
Figure 8. Note that, both environments used identical
setting configurations.

The picture captured by the right-hand side camera
in the real world is given in Figure 8(a), whereas the
point cloud scanned by the virtual camera is shown in
Figure 8(c). As the manipulator occludes the frame as
highlighted with a green circle, the FoV coverage for the
target frame in the virtual environment is also blocked
by the robot. Similarly, visibility for the lower part of the
frame is hindered by the second link of the manipulator
in Figure 8(a) which is also indicated in Figure 8(c) as
shown in the pink circle.

For the left-hand side camera, the less visible parts of
the frame and the storage rack are marked with a brown
circle (upper left corner), a red circle (upper right corner)

and a blue circle (lower middle) in Figure 8(b,d). Given
the FoV comparison in Figure 8, the V-STARS camera
FoV can be effectively simulated by the virtual cameras
configured.

5.2. Single lifecycle episode learning

After introducing the virtual learning environment, the
single lifecycle episode learning is detailed in this subsec-
tion. Given that the digital twin accompanies and evolves
with the physical work cell during its lifecycle, the camera
position optimisation should consider the key sequential
poses of the robot during the overall lifecycle.

The assigned process for this work cell is to repetitively
pick and place the profile boards to the target frame. Dur-
ing the assembly process, the V-STARS photogrammetry
system spatially locates the frame and profile board posi-
tions by monitoring retro-reflective markers on the sur-
face of the frame and profile boards as given in Figure 2.
Like all photogrammetry systems, the visible area or the
FoV coverage is crucial to the measurement accuracy.
However, during the assembly processes, the target vis-
ibility might be obstructed by the motion of the manip-
ulator. Therefore, it is crucial to have full consideration
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Figure 9. Lifecycle FoV coverage evaluation of a single episode learning. The lifecycle experiment consists of six FoV evaluations
regarding different robot poses in a single episode learning.

of the key sequential robot poses in the camera position
optimisation.

Therefore, a single lifecycle episode learning is con-
ducted as given in Figure 9, in which the learning pro-
cesses are presented in four stages, i.e. point cloud obtain-
ing, registration, reconstruction and frame extraction.
As shown in the first column of Figure 9, the FoV cov-
erage under five different robot poses are discussed.
The point clouds, captured from two virtual cameras
in Visual Components, are registered with the stan-
dard templates at first according to the FoV evaluation
detailed in Section 3.2 and then the registration results
are reconstructed to a new combined point cloud as
detailed in Section 3.3. Subsequently, as presented in the
second column of Figure 9, the point cloud captured
by left V-STARS camera is given in red, and the point
cloud captured by right V-STARS camera is shown in
blue.

Moreover the clustering results are given in the third
column of Figure 9 and the identified frame point clouds
are shown in the forth column of Figure 9. As shown in
the forth column of Figure 9, only part of the frame is
captured by the two V-STARS cameras. V-STARS pho-
togrammetry system optimises the measurement based
on the bundle adjustment. Although theminimum num-
ber of points for the bundle adjustment is three, a higher
number is recommended for an accurate measurement.
This is why the FoV coverage needs to be maximised in
the photogrammetry applications.

In order to have a thorough understanding of the
single episode learning, point cloud informations is pre-
sented inTable 1 derived from the result given in Figure 9.
Note that, as all points are resampled from the recon-
structed point cloud which is captured from the frame
surface, number of points contained, or size of the point
cloud, can be used as an indication for FoV coverage
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Table 1. Lifecycle FoV coverage evaluation corresponding to Figure 9.

Num. (a) (b) (c) (d) (e) Sum

Left point cloud 967 972 823 880 752 –
Right point cloud 566 386 836 1043 1268 –
3D reconstruction 1250 1197 1254 1518 1791 7010
Overlapping 283 161 380 405 229 1458

completeness. Hence, it is used for FoV coverage evalua-
tion as given in Table 1.

Additionally, sum of the five 3D reconstruction point
cloud capacities is considered as the FoV coverage indi-
cator pFoV(ξn) according to Section 4.1. Meanwhile, sum
of the five overlapping point cloud is defined as the over-
lapping indicator pocl(ξn). It is important to note that
the overlapping point cloud size is not proportional to
the size of its corresponding 3D reconstruction, espe-
cially at robot pose (d) and robot pose (e). Hence, the
overlapping information cannot be replaced by the 3D
reconstruction. The overlapping parameter is extremely
useful when the objectmeasurement surface is flat, which
will be further detailed in the following subsection. With
the complete single episode learning, the overall deep
camera position optimisation framework is presented in
the next section.

5.3. Deep camera position optimisation of the
V-STARS photogrammetry system

Given the virtual learning environment in Section 4.2 and
single episode learning in Section 5.2, the camera posi-
tion optimisation is implemented for a constrained area
as shown in Figure 10. Since there are two cameras in the
V-STARS photogrammetry system, instead of optimising
the camera positions as two separate agents, we embed
two camera positions into a four-element vector. Hence,
the observations and the actions are also four-element
vector.

Besides the software details given in Section 4.2, the
optimisation is accelerated using a NVIDIA GeForce
GTX 1080 GPU. Hence, according the experimental set-
ting introduced above, the V-STARS camera position
optimisation is performed with three deep reinforce-
ment algorithms, namely PPO, DQN (deep Q-network)
algorithm (Mnih et al. 2015) and A2C algorithm (a
synchronous variant of Asynchronous Advantage Actor
Critic) (Haarnoja et al. 2018). The aim of comparing PPO
against DQN and A2C is to identify the convergence
from any local optimal. All three algorithms have been
used in industrial applications (Panzer and Bender 2022),
such as process control (Guo et al. 2019; Szarski and
Chauhan 2021; Yoo et al. 2021), scheduling (Dong
et al. 2020; Park et al. 2021, 2019; Rummukainen and
Nurminen 2019), dispatching (Cui et al. 2021; Dittrich

Figure 10. Two-dimentional projection of the work cell and con-
strained area for camera position. In order the provide a clear view
of the work cell and the camera position optimisation area, the
top view of thework cell is given in the above figure. Also, the two
cameras are located in the two grey regions are indicated in the
above projection.

and Fohlmeister 2020; Kuhnle et al. 2021), logistics (Feld-
kamp, Bergmann, and Strassburger 2020; Hildebrand,
Andersen, and Bøgh 2020), and assembly (Li et al. 2019;
Watanabe and Inada 2020). Both PPOandA2C are policy
gradient deep reinforcement learning algorithms, which
means they update the policy derived from the gradi-
ent of the objective functions. A2C only learns by its
current policy, hence being more stable, but requiring
more computational power to converge than PPO, while
PPO is sample-based and introduces more hyperparam-
eters and complexity during optimisation. Therefore, it is
necessary to compare both algorithms in this instance.

As shown in Figure 11, the exploration of DQN, A2C,
and PPO are given. Each algorithm is tested five times,
and the optimised positions and their error bars are
presented together in Figure 11. Both PPO and DQN
algorithms start from a negative search at the begin-
ning, while A2C algorithm starts with a positive value.
This indicates that a collision was detected in the ini-
tial state of exploration. In addition, it shows that PPO
converged faster than DQN and A2C, as the reward
quickly settled after 100,000 episodes. Given that PPO
is a policy-based deep reinforcement learning algorithm,
it is sample-efficient and generally converges faster than
DQN and A2C.
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Figure 11. The learning process of the V-STARS camera position optimisation. The camera position optimisation is implemented using
DQN, A2C and PPO algorithms respectively. (a) DQN. (b) A2C. (c) PPO.

Figure 12. The V-STARS camera snapshots of the frame inspection experiment. The above figures contain three snapshots from the left
camera (Figure 12(a–c)), and three snapshots from the right camera (Figure 12(d–f)), monitoring the profile board assembly process.

In contrast, the DQN and A2C optimisations keep
exploring after the emergence of the maximum reward
(after 200,000 episodes in Figure 11(a) and 170,000
episodes in Figure 11(b)). These explorations do not
make the convergence performance better. The PPO
learning only performs small-scale exploration after con-
vergence. Also, the maximum reward in Figure 11(a) is
smaller than the maximum value in Figure 11(b) and
Figure 11(c), which indicates that camera positions are
not fully explored with the DQN algorithm. However, as
shown in Figure 11, the converged value learned by PPO
is consistent with the maximum reward obtained by A2C
(a small deviation within measurement noise), which
proves that the optimal camera position is the global opti-
mal. Regarding optimisation speed, PPO is much faster
than A2C.

Using the PPO algorithm, the optimal camera posi-
tion for two V-STARS cameras are presented in Figure 10
as shown in red star. In order to verify the optimised

position. We further implement a real world frame
inspection as given in Figure 12. The snapshots from the
left camera are presented in Figure 12. More specifically,
during the assembly process, the snapshots from the left
camera are given in Figure 12( a–c). The snapshots of the
assembly work cell are presented in Figure 12( d–f). Fur-
thermore, according the V-STARS system, the identified
retro-reflective markers are indicated in green, while the
unidentified markers (high reflective objects) are shown
in red. During the overall inspection, the green mark-
ers are used for high-accuracy measurement. Therefore,
further investigation is conducted based on the learned
optimal camera position as shown in Figure 12.

Furthermore, the measurement report of the frame
inspection experiment is summarised in Table 2. Given
the optimal camera position, there are 14 markers (code
label) identified by the V-STARS bundle algorithm. Not
only the 3D coordinates are presented in the summary
but also their uncertainties (sigma value) are shown in the
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Table 2. The measurement report of the V-STARS photogrammetry system based on the optimal camera position.

Point Point coordinate Sigma #

Label X Y Z X Y Z RSS RMS Rays

CODE1 527.1491 −80.9859 4.5831 0.0028 0.0029 0.0057 0.0070 0.07 38
CODE2 1229.7219 −83.9713 6.0136 0.0043 0.0037 0.0068 0.0088 0.07 22
CODE3 2437.0373 −79.7298 8.3568 0.0032 0.0031 0.0056 0.0072 0.08 32
CODE4 3021.8752 174.8468 8.7338 0.0029 0.0029 0.0062 0.0074 0.11 32
CODE5 3100.6506 563.8184 7.8744 0.0030 0.0027 0.0069 0.0080 0.08 31
CODE6 3021.0421 1122.2106 6.0910 0.0030 0.0032 0.0102 0.0111 0.07 25
CODE7 2451.4576 1933.9551 2.9673 0.0033 0.0039 0.0066 0.0083 0.10 29
CODE8 1275.1118 2003.3488 1.1220 0.0041 0.0046 0.0070 0.0093 0.08 26
CODE9 517.2086 1931.3605 0.1144 0.0033 0.0046 0.0078 0.0096 0.07 26
CODE10 −130.2678 1108.8335 0.9836 0.0035 0.0086 0.0419 0.0430 0.07 11
CODE11 −57.4556 575.8224 2.1654 0.0029 0.0028 0.0108 0.0115 0.08 23
CODE12 −128.4295 169.2492 2.7458 0.0030 0.0032 0.0099 0.0109 0.06 23
CODE13 625.8137 −0.5884 63.2082 0.0231 0.0245 0.0455 0.0566 0.12 2
CODE14 1356.5732 −0.5773 132.2316 0.0458 0.0286 0.0557 0.0776 0.11 2

Figure 13. FoV visibility data analysis. The sigma value of X axis, Y axis and Z axis of fourteen labels are presented above, alongwith RSS,
RMS and Rays, which indicates the visibility of the V-stars photogrammetry system.

table. Additionally, the measurements are evaluated with
root mean square (RMS) and root sum of squares (RSS).
The FoV visibility over the frame is indirectly assessed
with the ray numbers as given in Table 2.

For a clear explanation, the relationship between the
measurement uncertainties and the ray numbers are
investigated in Figure 13. Generally, the sigma value of
Z coordinates is the depth information calculated with
multiple view geometry (Hartley and Zisserman 2003),
which is larger than the uncertainties of X coordinates

and Y coordinates as shown in Figure 13(a–c), especially
at the code label with less visibilities (Code 13 and Code
14). In addition, as shown in Figure 13(a), the sigma X of
code label 1 is 0.0028, which is co-visible among 38 rays.
In contrast, the sigma X of code label 14 is 0.0231 with
co-visible among 2 rays. Similar situations can be found
in the rest four subfigures of sigma Y, sigma Z, RSS and
RMS in Figure 13. Since the ray numbers directly indi-
cate the quantity evaluation of the object visibility, which
fewer rays lead to less coverage of the inspection target.
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In theory, the V-STARS photogrammetry system
uses bundle adjustment to refine 3D geometry coordi-
nates, camera optical characteristics and relative motion
parameters simultaneously according to a bunch of co-
visible images. More specifically, the reprojection errors
between predicted image points and observed image
locations are minimised with nonlinear least-square
algorithm in bundle adjustment. However, given that
minimising reprojection error is a typical maximum like-
lihood estimation, which might be easily overfitting,
if the cameras have a small coverage over the object
and could lead to inaccurate measurements. This is
why the FoV coverage indicator is crucial in the cam-
era position optimisation for V-STARS photogrammetry
system.

6. Conclusion, discussion and future work

In this paper a novel deep dynamic camera position
optimisation framework is proposed for V-STARS pho-
togrammetry system for a reconfigurable manufactur-
ing work cell. Instead of manual configuration, this
framework could provide an automatic camera posi-
tion optimisation solution for photogrammetry system
in a virtual digital twin environment. Moreover, derived
from 3D reconstruction of the camera, FoV coverage
for the target object and collision detection are taken
into consideration throughout the overall product life-
cycle. The PPO reinforcement learning framework is
utilised to optimise the camera positions given the penal-
ties of collision and FoV coverage evaluation. Finally,
the feasibility of the virtual V-STARS scan is investi-
gated in the experiment, followed by a single episode
lifecycle learning. The deep optimisation of the V-
STARS camera position is verified with a real-world
demonstration.

This paper proposes a generic camera position opti-
misation framework for rapid change of photogram-
metry devices in reconfigurable manufacturing systems.
Despite that this work is demonstrated with a two-
camera photogrammetry system, it can be extended to
other metrology devices by customising different learn-
ing objectives. Although Benefiting from the digital twin
techniques, the camera position optimisation framework
can be implemented in a virtual manufacturing envi-
ronment, which could significantly enhance the config-
uration efficiency of the photogrammetry system and
avoid repetitive manual work for scaling, calibration and
camera position relocation.

DQN is a value-based approximation reinforcement
learning, which applies stored offline data (replay buffer)
to logically separate the experience buffer from the

exploration. In order to improve the convergence per-
formance of DQN, the epsilon-greedy approach is used.
The epsilon parameter is designed to be linearly decreas-
ing, which means initially the deep Q learning explores
aggressively and it gradually reduces the exploration
probability towards convergence. Not akin to DQN, PPO
is a policy-based reinforcement learning method. PPO
directly learns from the established digital-twin environ-
ment. After obtaining a batch of experiences, it does a
gradient update and clears the batch memory, which is
easier to tune, and it is sample-efficient. As PPO uses
surrogate clipping objective function to prevent large
gradient updates, it generally outperforms A2C in our
use case of camera position optimisation. However, for
parallel computing like A2C, distributed computing pro-
cess can be used for PPO to further access the learning
procedure.

In this paper, the discrete states are used for camera
position in dynamic layout optimisation. Based on the
incremental exploration, step size can be chosen to avoid

Figure 14. The digital twin modelling of the Leica laser tracker
in Visual Components. (a) High-precision measurement by using
Leica tracker. (b) Metrology view blocked by the ABB robot. If the
target can be tracked, the ray will be in green. Otherwise it will be
red and return a boolean signal. As the position varies in a recon-
figurable system, it is crucial to make sure that during production
process, the target must not be blocked.
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converging to a local optimal solution. Also, using dis-
crete state scheme can ensure that the final sequential
search arrives at a location surrounded by a group of
relatively ideal locations. From a practical point of view,
the designed location and the actual location will dif-
fer by a small deviation as the cameras are setup and
located manually. Therefore the optimal position should
be insensitive to this small deviation. The optimal posi-
tion obtained from the accumulated reward scheme can
guarantee that the actual camera position is still within
the optimal range.

In terms of optimising multiple objectives simulta-
neously, they are three objectives considered in this
work, including collision detection, FoV coverage and
FoV overlapping. Since the collision is a negative phe-
nomenon, therefore it is penalised with a large weighted
parameter. The other two objectives, FoV coverage and
overlapping, might cause competing issues in the cam-
era position optimisation. Nevertheless, manual tuning
weighted parameters for these two objectives is not dif-
ficult. However, if there are multiple photogrammetry
devices, the optimisation would require a multi-agent
system strategy and the balancing ofweighted parameters
can be challenging.

Since photogrammetry system relies heavily on target
visibility and the number of good measurement points
to construct a highly accurate coordinate system, the
realisation of its large-measurement-volume and highly-
portable benefits is also dependent on those prerequi-
sites. On the other hand, metrology technologies, such as
laser trackers, can achieve highly-accurate measurement,
however at a lower volume with very limited portabil-
ity. One could combine the benefit of two systems by
constructing a common measurement coordinate. Cur-
rently, as shown in Figure 14, apart from the digital twin
of the V-STARS photogrammetry systems established in
this paper, the digital twin of a laser tracker is under
investigation.

Therefore, our next step is to perform dynamic layout
optimisation with multiple metrology devices for sensor
fusion and 3D reconstruction. For example, by using both
the V-STARS photogrammetry system and a Leica laser
tracker, feasibility and comparative studies for large-scale
measurement can be carried out.
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