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ABSTRACT 18 

Construction, by nature of its work, is more accident-prone than other industries despite advancements in 19 

improving safety performance. Proactive mitigation and assessment of safety performance on construction 20 

projects remain challenging due to the difficulty of acquiring, storing, and using data to produce accurate 21 

predictive models. This research is focused on devising methods that allow decision-makers to leverage 22 

existing data in the planning phase to streamline the development of predictive models. A data-driven 23 

approach to predict the probability of a safety incident occurring in a given construction project and within 24 

a novel discipline-level schedule is presented. By implementing the proposed model, decision-makers can 25 

evaluate and mitigate the risk of a given project incident occurring by deploying discipline-level safety 26 

policies in the planning phase and modifying the schedule accordingly. A predictive model is developed 27 

based on selected safety-related metrics extracted from a dataset comprising daily payroll data and incident 28 

reports, which represent 28 million working hours within eight different industrial construction projects in 29 
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Canada. The model was implemented in a case study based on an industrial project to demonstrate the 30 

framework's functionality and practical utility during the project planning phase. The results show that the 31 

revised safe plan can be achieved by incorporating safety considerations in the planning phase. 32 

PRACTICAL APPLICATIONS 33 

This research provides a practical solution for enhancing safety in the planning phase of 34 

construction projects through a data-driven model. By leveraging existing historical data, decision-35 

makers can predict potential safety incidents within specific disciplines without the need for 36 

detailed quantitative planning information. This approach also enables effective adjustments to be 37 

made to the schedule in order to mitigate risks. Furthermore, the discipline-level approach 38 

facilitates proactive safety planning by implementing discipline-specific safety policies that align 39 

with the unique characteristics of each discipline. 40 

Using a case study based on an industrial project, the proposed framework demonstrates its 41 

functionality and practical utility by identifying suitable safety-related metrics that construction 42 

enterprises typically record. These sources can include safety-related data, such as incident reports, 43 

as well as data recorded for other purposes, such as payroll data. The results highlight that 44 

incorporating safety considerations in the planning phase enables the development of a revised 45 

safety plan. In conclusion, the key takeaway is that by considering safety-related metrics and 46 

utilizing HR data available in all companies, organizations can proactively assess and improve 47 

safety performance. 48 

INTRODUCTION 49 

According to the Association of Workers' Compensation Boards of Canada (2019), the number of 50 

accepted lost-time claims per year in the construction industry has increased by 9% from 2016 51 

(25,514) to 2018 (27,952). Additionally, the number of fatalities in the Canadian construction 52 



industry is higher than in any other industry, with 202 deaths recorded in 2016 and 199 in 2018 53 

(AWCBC 2019). According to estimates from the International Labor Organization (ILO), an 54 

average of 4% of annual global Gross Domestic Product (GDP)—adding up to trillions of 55 

dollars—is lost due to direct and indirect costs incurred as a result of occupational accidents and 56 

diseases, which includes lost working time, workers' compensation, interruption of production, 57 

and medical expenses (Takala et al., 2014). Although AFPM (2017) demonstrated that the incident 58 

rates had decreased greatly in the heavy industrial sector when measured over the past 30 years 59 

(Recordable Incident Rate reduced by more than 1000%), there is still great concern about events 60 

with a serious injury or fatal consequences as they have remained consistent. Due to the 61 

construction industry's impact on Canada's economy, the improved safety performance of 62 

construction projects is critically needed. 63 

Based on the literature, there are many causes for accidents at construction sites, and a holistic 64 

approach has to be considered to mitigate hazards (Ahn et al. 2020; Mohammadi et al. 2018; 65 

Pereira et al. 2020). Decision-makers should be aware of how they can impact project safety 66 

performance. For instance, poor project scheduling can impact safety performance by 1) 67 

generating delays and increasing the pressure on workers (Han et al. 2014; Mitropoulos et al. 68 

2005); 2) developing site congestion — increasing the probability of workers being struck-by 69 

heavy equipment (Ahn et al. 2020; Zhang et al. 2018); 3) increasing the number of inexperienced 70 

people on, and 4) increasing the crew size and consequently reducing the number of inspections 71 

and safety observations (Jiang et al. 2015). 72 

Although there is no doubt about how different aspects of a project can impact the occurrence of 73 

incidents, it is still challenging to integrate decisions from various project factors to mitigate 74 

incidents and assess safety performance proactively. Issues may arise because construction 75 



practitioners have difficulty identifying safety measures, collecting data, and proactively assessing 76 

the impact of factors on safety performance (Pereira et al. 2018a). 77 

From a theoretical perspective, three levels can be considered for safety assessment: the first is 78 

project level, the second is discipline level, and the third is crew level. The project level has the 79 

least details (broadest) to plan for safety, and the crew level has the most details (finest). The most 80 

common approach is assessing safety performance at a project level, which may not be feasible in 81 

practice as there is insufficient detailed information available for safety planning (Goh and Chua 82 

2013; Karakhan et al. 2018; Lingard et al. 2017; Salas and Hallowell 2016; W Guo and Wing Yiu 83 

2016). Therefore, practitioners find making decisions based on project-level models challenging 84 

since their results may neither be economical nor produce the required output. For example, if a 85 

project has a large crew size, reducing the crew size in a specific discipline may not necessarily 86 

improve the project's safety performance as much as another measure (e.g., workers' age). In other 87 

words, evaluating the crew size for each discipline is essential rather than the overall evaluation in 88 

the entire project context. Hence, discipline-based evaluations are preferred rather than project-89 

based evaluations. 90 

Another practical challenge is related to data acquisition and utilization. Small companies have 91 

difficulty collecting safety-related data (e.g., available resources (Bavafa et al. 2018)). Some 92 

companies may not have the knowledge or skills required to produce safety predictive assessment 93 

models (Boon et al. 2019) using techniques like Machine Learning (ML) algorithms. Large 94 

organizations may have issues with data silos — the data repository — as it is not easily accessible 95 

to the entire organization. Although Pereira et al. (2020) demonstrated that integrating different 96 

department databases may lead to the development of better models to predict safety, concerns 97 

about privileges and sensitive information hinder database integration in practice. Moreover, 98 



departments may collect information from different levels (e.g., project, discipline, and task), 99 

which may make it impossible to integrate all into one single model. This study proposes to use 100 

Human Resources (HR) data (e.g., payroll), a common database among all companies, to address 101 

the data acquisition problem. 102 

The HR dataset is one of the most reliable datasets, with considerable attention given to it because 103 

of its monetary aspect. Moreover, it is very informative and is often made available due to 104 

regulations. Several safety-related measures can be identified from this database, such as workers' 105 

age and experience, job type, number of workers, new workers' rate (i.e., the rate at which new 106 

workers are deployed to work on the project), the number of supervisors, etc. This manuscript 107 

presents a case study that uses the payroll database in a data-driven approach for deploying safety 108 

policies for discipline-level schedule planning. The approach described herein was able to identify 109 

several safety-related measures that companies can use to proactively measure safety performance 110 

at the discipline level without relying on subjective decisions. 111 

Based on these measures, a predictive safety (or incident) assessment model is suggested, and a 112 

case study on using the findings in practice is presented. The approach presented in this manuscript 113 

may help organizations use their payroll database to derive safety models to proactively test 114 

scenarios and control the safety performance on construction projects. 115 

The novelty of this paper is to proactively improve safety in a discipline-level schedule (in the 116 

planning phase). This prediction is through the novel data acquisition from a reliable, unbiased, 117 

and objective payroll dataset, which is commonly available in all companies. Moreover, this 118 

research can facilitate the safety forecast by planning based on qualitative data to evaluate the 119 

safety of various possible what-if scenarios. Therefore, the practitioners can consider the safety of 120 

the schedule in the planning phase. 121 



LITERATURE REVIEW 122 

Deficient project scheduling is considered a root cause of construction accidents as it leads to time 123 

pressure on workers, with subsequent problems including trade overlap, crowded workspaces, and 124 

reduced attention to detail (Haslam et al. 2005; Neale and Gurmu 2021). It is believed that safety 125 

can be improved by considering activity information regarding the number of workers, including 126 

their occupation types, in the schedule (Choe and Leite 2017), and by minimizing the number of 127 

workers on congested sites (Anvari et al. 2016). However, empirical data — needed to estimate 128 

risks accurately based on these constraints — is usually not captured, leading to a decision-making 129 

process that relies on subjective opinions. In addition, attributes such as the fundamental 130 

characteristics of the work site and environment (e.g.; weather, uneven surfaces, specific tools, 131 

and equipment (Hallowell et al. 2020)), as well as features of the workforce (e.g.; age, experience, 132 

crew size, and specific trade) can also contribute to safety incidents. The combination of these 133 

attributes that define the overall work environment can be used to predict safety outcomes 134 

(Hallowell et al. 2020; Tixier et al. 2016a). 135 

Construction companies typically record some information on several safety indicators at the 136 

project level (e.g., site inspection logs, hazard reports, injury reports, etc.) to meet the regulator's 137 

requirements (Versteeg et al. 2019). Usually, this information is only provided to the safety 138 

department and is not used for predictive purposes (Pereira et al 2020). However, companies still 139 

need to be proactive and incorporate measurements of valid and reliable metrics that may be 140 

causally related to the occurrence of incidents or injuries (Lingard et al. 2017; Versteeg et al. 2019). 141 

New technologies, like wearable devices, automated data collection, bar codes, etc., enable 142 

companies to capture more data related to safety issues (Ahn et al. 2019). Further research in the 143 



area is still needed to access quality data. Nevertheless, there are still practical challenges on how 144 

to use the data to improve safety management in practice. 145 

To analyze the collected data stored in different data sources, statistical and ML models have been 146 

applied widely to predict safety outcomes in construction projects at the early design stages. As 147 

stated above, one practical challenge is the lack of consistency regarding the safety outcomes and 148 

predictors measured across projects and organizations. This lack of consistency may result in the 149 

need for different prediction approaches on a case-by-case basis. For example, Esmaeli et al. 150 

(2015) tested the validity of generalized linear models to predict safety outcomes based on a large 151 

volume of data on attributes that cause "struck-by" accidents. Poh et al. (2018) used an ML 152 

approach to develop a model that forecasts accident occurrence and severity of construction 153 

worksites based on project-related and safety-related input features. Kang and Ryu (2019) 154 

proposed a Random Forest model that can predict occupational accidents based on accident and 155 

weather data and suggest which management features significantly contribute to the forecast. 156 

Sarkar et al. (2019) developed optimized ML-based models to predict incident outcomes at the 157 

workplace using Support Vector Machine (SVM) and Artificial Neural Network (ANN) 158 

algorithms on incident reports data. Baker et al. (2020) used a large dataset of over 90,000 incident 159 

reports and various ML algorithms to develop a model that predicts injuries and their severity and 160 

shows which attributes have high predictive power when the safety outcomes are external and 161 

independent.  162 

Although several ML algorithms have been proposed, their use in proactively assessing safety 163 

performance in companies is not common. Several challenges exist since it is expected that a single 164 

set of metrics may not be suitable for all construction industry sectors (Nasir et al. 2012). These 165 

issues present a challenge regarding the selection of data that should be collected to predict safety 166 



performance. Therefore, we propose a data-driven method that leverages HR data, commonly 167 

recorded for reasons beyond performance metrics, and allows for an adequate model selection 168 

based on the available data. This approach should be flexible enough to incorporate new variables 169 

as their impact on safety is better understood. 170 

METHODOLOGY 171 

This paper reports on the experience obtained in a case study that implemented a data-driven 172 

approach to predict the probability of a safety incident occurring within a month based on 173 

preliminary schedule planning information. The predictive model used in this approach was 174 

developed based on daily payroll information from previous projects and dated safety incident 175 

reports. The model was implemented in a hypothetical case based on an industrial project to 176 

demonstrate the framework's functionality during the project planning phase. Figure 1 depicts an 177 

overview of the methodology followed in this study. 178 

Project Background 179 

The functionality of the proposed framework is illustrated through a hypothetical case study 180 

inspired by a previous study (Taghaddos et al. 2021). This case study demonstrates that an 181 

industrial construction enterprise can use the data available from various departments within the 182 

enterprise to devise methods for predicting safety incidents based on discipline-specific 183 

information. The case study also exemplifies the framework's functionality during the project 184 

planning phase. The case study focuses on the planning phase of a small (6-month) in-situ drainage 185 

oil sands project in Alberta, Canada, and mainly involves five disciplines: civil, operators, 186 

pipefitters, electrical workers, and ironworkers.  187 



The case study analyzes the risk of accident occurrence over the 6 months of the project at the 188 

planning phase based on qualitative data. Data categorization was implemented based on 28 189 

million working hours of historical data. Utilizing the discipline-based incident predictions 190 

generated by the proposed model, the project plan was adjusted accordingly to mitigate safety 191 

risks. This case study provides a concrete example of how a construction enterprise can put to use 192 

existing data within the proposed framework and apply it to a real-world scenario. Moreover, it 193 

demonstrates the manner in which the framework can be tailored to meet the unique needs of 194 

various disciplines within the construction industry. 195 

Data Collection 196 

A large dataset of approximately 28 million working hours was collected across eight industrial 197 

construction projects in Canada. The dataset reports different features obtained from daily payroll 198 

information: working hours, age, work experience, time working on the project of workers and 199 

foremen, crew sizes, number of operators, changes in the number of workers in the project, and 200 

project progress. The data were categorized into five trade disciplines (electrical, ironworkers, 201 

pipefitters, civil, and operators). 202 

Safety reports were collected to determine the monthly occurrences of incidents related to each 203 

discipline in each project throughout the data collection period. Incident reports, lost-time injuries, 204 

medical aid injuries, and modified work injuries were considered safety incidents. The payroll 205 

information dataset and the monthly safety incident occurrence information were collated and 206 

integrated into a single dataset. Table 1 shows the features contained in the final dataset. A monthly 207 

data record was collected for each discipline in each project. 208 



The data is split into four qualitative categories: very high, high, moderate, and low. The value 209 

categories range from 4 (very high) to 1(low). This qualitative categorization can ease the use of 210 

the model in the planning phase. For example, the practitioners have some ideas about time-211 

dependent crew size during the project (i.e., how it varies during construction) but do not yet have 212 

the exact numbers. For example, let's assume July is the peak month for the structural-steel 213 

discipline's work in a particular project; hence, one can predict a large crew size will be required 214 

in this case. Such high-level prediction can easily be combined with planning to improve safety 215 

measurements. 216 

Table 2 shows the number of data points collected for each discipline in this study. Each data point 217 

represents information (reported monthly) on the features listed in Table 1, including the 218 

occurrence of each reported safety incident (i.e., the target variable). The incident rates per 219 

discipline were found to be as follows: ironworkers (34.93%), pipefitters (52.72%), civil (47.45%), 220 

operators (3.78%), and electrical workers (20.74%). 221 

Model Development 222 

The final dataset was retrieved from eight industrial construction projects. Ten input features were 223 

selected by applying the Boruta feature selection algorithm, which iteratively removes features 224 

that prove to be less relevant than random probes (Kursa and Rudnicki 2010). These ten features 225 

are categorized into five different trade disciplines. Five different ML models (Taghaddos and 226 

Mohamed 2021): SVM, Decision Tree, Naïve Bayes, Naïve Bayes (Kernel), and Fast Large-227 

Margin, were developed from the resulting dataset containing the ten selected predictor features 228 

and the target variable (whether or not a safety incident occurred). A cross-validation method was 229 

implemented to select the model that worked best for the collected data by comparing the 230 

prediction performance of the five developed models (Zhang and Yang 2015) using two measures: 231 



accuracy and incident recall. Accuracy measures the percentage of correctly predicted records, 232 

whereas incident recall measures the true positives recognition rate (Al-Turaiki et al. 2016). In the 233 

context of construction safety, a false negative (i.e., predicting an incident as a "No incident") is 234 

more expensive than a false positive (i.e., predicting a safe situation as an "incident") because false 235 

positives only impose precautions to the system. For this study, an incident recall with a 75% 236 

threshold was considered an important criterion for model selection. The framework was 237 

developed using the educational version of the well-known data-mining tool, RapidMiner Studio 238 

(Mierswa and Klinkenberg 2018). A screenshot of the developed model, as it appears in the data-239 

mining software, is provided in Figure 2. 240 

Model Implementation 241 

The proposed model was implemented in the hypothetical case study described above to 242 

demonstrate its successful utilization in adjusting the project plan based on discipline-based 243 

incident predictions. The model was applied to predict monthly occurrences of incidents on the 244 

original program with planned information. A sensitivity analysis was performed on different 245 

planning strategies considering modifications to the predictor features to reduce the number of 246 

predicted incidents. 247 

RESULTS 248 

Table 3 shows the ten selected predictor features. These features are selected by applying the 249 

Boruta feature selection algorithm to the dataset and using experts’ opinions. 250 

Five ML models were then developed and applied to the dataset to predict the target variable (i.e., 251 

whether or not an incident occurred) based on the selected predictor features. This process is 252 

illustrated in Figure 2. In this figure, “CV” represents the cross-validation techniques in each 253 



model. The accuracy and incident recall of the prediction performance of the models were 254 

measured and compared after applying a cross-validation method. Table 4 shows the prediction 255 

performance measures of the five models. Based on the results in Table 4, the Naïve Bayes 256 

(Kernel) model was selected to demonstrate the framework's functionality in a hypothetical case 257 

study. 258 

Similar to the eight-project data stored in a database of industrial projects, the case study project 259 

involves discipline-specific information. As such, the safety prediction incident results are also 260 

discipline based. Moreover, the predictions are time-dependent since the prediction depends on 261 

the features for the selected time period. Table 5 presents the original project schedule (Scenario 262 

1). As demonstrated in the framework description section, each discipline is considered an 263 

individual data point. The framework analyzed 28 entries for 6 months (civil, pipefitters, and 264 

ironworkers) or 4 months (electrical/operators).  265 

In Scenario 1 (Table 5), the framework assessed the entries based on the trained model and with 266 

the original planning strategy, it predicted ten incidents (which is equivalent to 35% of the entries) 267 

within the 6 months — Pipefitters (4), Civil (2), Ironworkers (3), and Electrical (1). In Scenario 2 268 

(Table 6), a tentative planning strategy is used to reduce the number of accidents. Due to the 269 

framework's ability to consider a variety of strategies capable of reducing the likelihood of an 270 

accident, the following discipline-based mitigation strategies were adopted (individually or 271 

grouped): decreasing the percentage of foremen older than 50 years, decreasing the rate at which 272 

new workers are deployed to work on the project, reducing the crew size, increasing workers with 273 

more than 3 years of experience, and reducing discipline working hours. The output results shown 274 

are accident-free, reinforcing the framework's ability to test different planning strategies to 275 

improve the project safety performance. 276 



It is important to mention that just one discipline (Pipefitter – month 3) is required to reduce the 277 

working hours. This strategy should be considered carefully since reducing working hours may 278 

lead to further project completion delays and/or increase production pressure on workers in the 279 

months ahead. The case study demonstrated that discipline-level data can produce better-tailored 280 

strategies than those developed for the project level. As Pereira et al. (2020) suggested, crew size 281 

is a factor that may impact project safety performance, and increasing the number of foremen may 282 

reduce the likelihood of accidents. The framework presented in this research demonstrated that 283 

reducing the crew size, not considering the discipline, may lead to increased project cost and would 284 

not improve safety performance. Moreover, the framework also demonstrated that schedule 285 

planning strategies such as new workers rate (i.e., the rate at which new workers are deployed to 286 

work on the project), discipline working hours, discipline-based progress, and accumulative 287 

working hours should be considered concomitantly with their impact on the project safety 288 

performance. 289 

While some features can be considered in the planning phase, others may assist the organization 290 

in identifying flaws in the Safety Management System. Workers' and foremen's age features show 291 

that a reinforcement of the organization's policies should account for this specific group to ensure 292 

they are better prepared to identify hazards or follow safety procedures. The impact of workers' 293 

experiences also demonstrated that safety induction and safety training should assess the workers' 294 

abilities to retain the course knowledge and apply it in practice. 295 

DISCUSSION 296 

This case study validates the premise that the proposed predictor features in Table 3 can predict 297 

the occurrence of safety incidents, enabling an informed decision-making process regarding 298 

discipline-level schedule planning. The approach can simulate risks for any context, including new 299 



work if the fundamental attributes remain stable (Hallowell et al. 2020). The proposed framework 300 

predicts the likelihood of a safety incident occurring, overcoming a common limitation of 301 

traditional attribute-based safety risk assessment, which predicts the outcome of an incident should 302 

one occur (Choi et al. 2020; Esmaeili et al. 2015; Hallowell et al. 2020; Koc et al. 2021; Tixier et 303 

al. 2016a; b). 304 

The proposed framework uses historical data, both at the business and project management levels, 305 

to discover data-driven knowledge and use it to support project management decisions, as 306 

advocated by You and Wu (2019). The study emphasizes the importance of effective data 307 

management in the context of construction safety. The method incorporates metrics extracted from 308 

daily payroll data, which are typically not used in traditional safety planning. By leveraging 309 

existing data, the method streamlines the development of predictive models for safety incidents, 310 

equipping decision-makers with a useful tool for the proactive assessment and mitigation of risk. 311 

Another novel feature of the developed framework is its ability to adjust the construction plan 312 

based on safety incident predictions in order to mitigate risk. These adjustments could include 313 

changing the crew composition, crew size, or time-dependent discipline working hours, all of 314 

which can affect the project duration. 315 

The case study presented in this paper demonstrates how a data-driven model can be incorporated 316 

into the scheduling process contributing to safety planning. This finding agrees with Yi and 317 

Langford (2006), who advocate for scheduling construction to reduce accident risks. The 318 

suggested discipline-based scheduling is aligned with Hallowell and Gambatese (2009), who 319 

recommend considering risks based on activities to target high-risk activities in safety programs. 320 

The feature selection process results align with other studies predicting safety outcomes. For 321 

example, Rivas et al. (2011) identified "task duration in hours", "length of time doing the job", 322 



"job type" and "worker age" within the five most relevant features predicting accidents. Poh et al. 323 

(2018) used the Boruta algorithm, and the features "percentage of project completion" and 324 

"average monthly project manpower" were within the selected features to predict accident 325 

occurrence and severity. Choi et al. (2020) also found that "age" and "service length" were among 326 

the most important factors in predicting the likelihood of fatal accidents. These factors are 327 

commonly associated with accident precursors (Pereira et al. 2018b). While the proposed model 328 

does not attempt to uncover underlying causality, these alignments with knowledge of the 329 

construction safety domain were essential during the development of the model and the subsequent 330 

interpretation of its predictions (Mannering et al. 2020). 331 

CONCLUSION 332 

This manuscript proposes a novel data-driven approach for deploying safety policies for discipline-333 

level schedule planning. This novel approach enables practitioners to account for safety 334 

considerations in the planning phase and proactively make appropriate decisions without needing 335 

detailed quantitative information. Five ML models were developed from payroll data collected in 336 

eight large industrial construction projects. The accuracy and incident recall of the prediction 337 

performance of the models were measured and compared to select the model that worked best on 338 

the collected data. Subsequently, the practical utility of the model was demonstrated through a 339 

case study. 340 

The findings reveal that the predicted occurrence of safety incidents can be reduced by modifying 341 

the predictor features during the project's planning phase, achieving a safer planning strategy. In 342 

the case study project, the original plan and schedule were revised based on discipline-specific 343 

tentative planning strategies—e.g., decreasing the rate of new workers and crew sizes (to varying 344 

degrees depending on the discipline). Accordingly, the incident rate was reduced from 35% to 0%, 345 



resulting in an incident-free plan. The discipline-based safety plan for the early planning stage as 346 

proposed herein is beneficial to practitioners in that it provides the basis for expanding the plan to 347 

the work-package level later in the project. 348 

This study makes three important contributions to knowledge and practice in this domain. First, it 349 

provides a framework for proactive safety improvement in the planning phase and for deploying 350 

discipline-level safety policies by identifying suitable safety-related metrics that construction 351 

enterprises typically record for other purposes. In this manner, it helps with tackling the large 352 

volumes of project-level data to identify, capture, and analyze the features that affect safety 353 

performance by leveraging existing data for model development. Moreover, the discipline-based 354 

approach used in the case study demonstrates the adaptability of the proposed framework to meet 355 

the discipline-specific needs, and align with the unique features, of the construction industry. 356 

Second, it provides a novel data acquisition method. Specifically, this study demonstrates that 357 

payroll data and incident reports, which tend to be more reliable and unbiased than other data 358 

sources due to their monetary/regulatory nature, can be used to develop a model for safety-related 359 

decision support. 360 

Third, this study integrates discipline-level scheduling with safety prediction. A key consideration 361 

in this regard is that the discipline-specific level of scheduling is not so high-level as to miss the 362 

vital discipline-specific features that are important in decision-making (such as in the case of 363 

project-level scheduling), and not so detailed as to make planning and decision-making 364 

cumbersome (such as in the case of crew-level scheduling). 365 

The authors believe that this research can help project practitioners identify which data should be 366 

collected in their projects and define strategies to improve their construction plans in terms of 367 



safety based on insights emerging from the data. By leveraging the data-driven discipline-level 368 

safety prediction model, project teams can make informed decisions and implement proactive 369 

measures to enhance safety performance. Furthermore, the model's flexibility allows for the 370 

inclusion of additional factors specific to each project, ensuring a comprehensive and tailored 371 

approach to safety management. For example, in a heavy construction project involving excavation 372 

work, factors such as the type of equipment used (e.g., excavators, bulldozers, etc.), as well as the 373 

competency of equipment operators, can significantly influence safety outcomes. Ultimately, this 374 

research aims to contribute to the advancement of construction safety practices by promoting 375 

evidence-based decision-making and proactive risk mitigation strategies. 376 

LIMITATIONS and FUTURE WORK 377 

While the developed framework has been found to be capable of predicting the probability of a 378 

safety incident occurring in a construction project and within a novel discipline-level schedule, 379 

this study is subject to certain limitations. 380 

One notable limitation is the lack of worker-level data that could lead to more accurate predictor 381 

features. For example, research has shown that the psychological status of workers on the site 382 

directly influences unsafe behaviors (Guo et al. 2017); however, this feature is difficult to measure 383 

or predict. Particularly as some types of worker-level data are typically subject to data protection 384 

laws. In future work, site-related data at the project level should be collected (in the form of 385 

incident days and incident-free days) in order to develop a more comprehensive model (Choi et al. 386 

2020). 387 

The example presented in this paper can be developed further by enhancing the dataset. The dataset 388 

could be expanded to include near-miss incidents, which would add an additional metric on safety 389 

performance (Shen and Marks 2015), provided that the incident reports specify the trade(s) 390 



involved in the incident and therefore are aligned with the data structure followed in the present 391 

study. In this manner, the prediction of near-miss incidents could be incorporated to build upon 392 

the present work. 393 
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Figure 1: Method Overview 543 
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TABLE 1. Features collected from daily payroll information 546 

feature name Description 

Proj_id* Project identifier 

WH_month Monthly working hours  

WH_cml Monthly cumulative working hours  

WH_cml-pct Percentage of cumulative working hours  

WH_diff Increase/decrease in working hours compared to the previous month 

Age_wrks-30-less Percentage of workers aged 30 or less  

Age_frmn-30-less Percentage of foremen aged 30 or less  

Age_wrks-50-more Percentage of workers aged 50 or more 

Age_frmn-50-more Percentage of foremen aged 50 or more 

WEx_wrks-new Percentage of new workers compared to the previous month 

WEx_wrks-3-less Percentage of workers with up to 3 years of experience 

DS_wrks Workers' average number of days on the site 

DS_frmn Foremen's average number of days on the site 

Crew-size Crew size 

Proj_s-curve-inc Monthly S-Curve increase 

Proj_pct-cplt Percentage of project completion 

Proj_ramp Increase/decrease of workers on the project 

S_incident Monthly safety incidents occurring 

*All features, except Proj_id, were collected by discipline 

 547 

TABLE 2. Number of collected data points by discipline 548 

Trade discipline Total data points Incident data points 

Ironworkers 146 51 

Pipefitters 165 87 

Civil 177 84 

Operators 132 5 

Electrical 135 28 

 549 
TABLE 3. Selected predictor features 550 

feature name Description 

WH_month Monthly working hours  

WEx_wrks-3-less Percentage of workers with up to 3 years of experience 

Age_frmn-30-less Percentage of foremen aged 30 or less  

Age_wrks-30-less Percentage of workers aged 30 or less  

WEx_wrks-new Percentage of new workers compared to the previous month 

Proj_s-curve-inc Monthly S-Curve increase 



Crew-size Crew size 

DS_frmn Foremen average number of days on the site 

Age_frmn-50-more Percentage of foremen aged 50 or more 

WH_cml-pct Percentage of cumulative working hours  

 551 
TABLE 4. Prediction performance measures 552 

Model Accuracy Standard deviation Incident recall 

SVM 72.2 3.83 61.39 

Naïve Bayes (Kernel) 70.47 3.65 75.25 

Decision Tree 67.97 3.31 57.43 

Naïve Bayes 62.90 3.89 74.26 

Fast Large-Margin 62.90 3.89 74.26 

 553 



Table 5. Original project planning - Scenario 1  

Month # 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 

Discipline-Civil  

(Yes-1/No-0) 
1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 

Discipline-Ironworkers  

(Yes-1/No-0) 
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 

Discipline-Pipefitters 

(Yes-1/No-0) 
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 

Discipline-Electrical 

(Yes-1/No-0) 
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 

Discipline-Operators 

(Yes-1/No-0) 
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

Age_frmn-30-less 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

DS_frmn 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Age_wrks-50-more 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Age_wrks-30-less 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 

NewWorkersRate 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 

Crew_Size 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 

WEx_wrks-3-less 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 2 1 2 2 1 

WH_month 2 1 1 2 3 1 1 1 3 3 2 3 3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 3 

Proj_s-curve_inc 1 1 1 1 2 1 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

WH_cml-pct 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 

Incident (Yes/No) 
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Table 6. An adjusted project planning to reduce incidents - Scenario 2 (the colored cells are changed between scenarios) 
 

Month # 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 

Discipline-Civil  

(Yes-1/No-0) 
1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 

Discipline-Ironworkers 

(Yes-1/No-0) 
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 

Discipline-Pipefitters 

(Yes-1/No-0) 
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 

Discipline-Electrical 

(Yes-1/No-0) 
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 

Discipline-Operators 

(Yes-1/No-0) 
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

Age_frmn-30-less 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

DS_frmn 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Age_wrks-50-more 1 1 1 1 1 1 1 1 2 2 2 2 1 3 1 3 1 3 3 3 1 1 3 3 3 1 1 3 

Age_wrks-30-less 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 

NewWorkersRate 4 4 4 4 4 4 4 4 3 1 3 2 1 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 

Crew_Size 4 4 4 4 4 4 4 4 4 4 4 1 3 4 4 1 1 4 3 3 1 1 3 3 3 1 1 3 

WEx_wrks-3-less 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 

WH_month 2 1 1 2 3 1 1 1 3 3 2 2 3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 3 

Proj_s-curve_inc 1 1 1 1 2 1 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

WH_cml-pct 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 

Incident (Yes/No) 
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