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Abstract: We demonstrate the training of a generative adversarial network (GAN) for the
prediction of optical property maps (scattering and absorption) using spatial frequency domain
imaging (SFDI) image data sets that are generated synthetically with a free open-source 3D
modelling and rendering software, Blender. The flexibility of Blender is exploited to simulate
5 models with real-life relevance to clinical SFDI of diseased tissue: flat samples containing
a single material, flat samples containing 2 materials, flat samples containing 3 materials, flat
samples with spheroidal tumours and cylindrical samples with spheroidal tumours. The last
case is particularly relevant as it represents wide-field imaging inside a tubular organ e.g. the
gastro-intestinal tract. In all 5 scenarios we show the GAN provides an accurate reconstruction
of the optical properties from single SFDI images with a mean normalised error ranging from
1.0-1.2% for absorption and 1.1%-1.2% for scattering, resulting in visually improved contrast
for tumour spheroid structures. This compares favourably with the ∼10% absorption error and
∼10% scattering error achieved using GANs on experimental SFDI data. Next, we perform a
bi-directional cross-validation of our synthetically-trained GAN, retrained with 90% synthetic and
10% experimental data to encourage domain transfer, with a GAN trained fully on experimental
data and observe visually accurate results with an error of 6.3%-10.3% for absorption and
6.6%-11.9% for scattering. Our synthetically trained GAN is therefore highly relevant to real
experimental samples but provides the significant added benefits of large training datasets, perfect
ground-truths and the ability to test realistic imaging geometries, e.g. inside cylinders, for which
no conventional single-shot demodulation algorithms exist. In the future, we expect that the
application of techniques such as domain adaptation or training on hybrid real-synthetic datasets
will create a powerful tool for fast, accurate production of optical property maps for real clinical
imaging systems.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Spatial Frequency Domain Imaging (SFDI), a non-contact, depth-varying and wide-field optical
imaging technique, has proven especially useful in a range of biomedical imaging applications
[1]. SFDI utilises spatially modulated light patterns of visible or near-infrared light to extract
optical properties such as absorption, µa, and reduced scattering, µs’, of biological tissue [2],
making it possible to produce maps of relevant biomedical indicators such as blood oxygenation,
hemodynamics and structural properties of tissue. All that is required to implement this imaging
technique is a consumer-grade camera and a projector. The relative simplicity of this set-up
makes it suitable for low-cost and miniaturised implementations, suitable for future clinical
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deployment, e.g. capsule endoscopes [3]. To date, SFDI has been shown to be a highly effective
method of quantifying burn severity, monitoring vascular occlusions, imaging drug delivery to
the brain and detecting tumour margins in oncology [4–6].

Despite its successes in a variety of clinical applications, SFDI still presents many challenges
that limit the adoption of the technology in clinical practice. One particular challenge of
conventional SFDI is that it requires at least 3 images per wavelength (3 different spatial phases)
to create a single optical property map, which makes real-time display of optical property maps
difficult. However, recent techniques have demonstrated the use of halftone patterns projected
using digital micromirror devices to achieve kilohertz projection rates which can significantly
speed this up and also allow use of multiple wavelengths and spatial frequencies [7,8].

Although single snapshot imaging of optical properties (SSOP) has reduced the number of
images, the method causes image artefacts to arise and requires frequency filtering [9], sacrificing
quality and fine detail of the resulting optical property maps

Recently, several approaches have been proposed that use convolutional neural networks to
improve image reconstruction from single images compared to SSOP. Chen et al. recently re-
casting production of optical property maps as a deep learning problem, a conditional generative
adversarial network (cGAN) was trained to produce physically correct optical property maps
from raw SFDI images of diseased and healthy tissue. Coined GANPOP (Generative Adversarial
Network Prediction of Optical Properties), this cGAN has been proven to estimate the absorption
and reduced scattering coefficients 60% more accurately than SSOP for single structured-light
input images in human gastrointestinal specimens [10]. When trained on structured-illumination
images of human specimens and homogeneous phantoms, then tested on in vivo and ex vivo
swine tissue, the GANPOP performed 46% better than SSOP at predicting the optical properties
[10]. Aguénounon et al. developed a deep convolutional neural network with a U-Net architecture
that can accurately reconstruct AC and DC demodulated components from a single SFDI image.
This produced errors typically <10% and was able to operate in real time (18ms) [11]. The
nonlinear mapping between such demodulated images and absorption and scattering coefficients
has also been approximated using random-forest algorithms [12] and deep learning [13].

Scattering and absorption coefficients often represent an intermediate quantity, with some other
clinically relevant property, such as tissue oxygenation, being the final goal. To that end, another
cGAN architecture, named OxyGAN, was recently demonstrated to produce maps of tissue
oxygenation over a widefield of view from raw SFDI images. This OxyGAN showed a 96.5%
accuracy when tested on human feet and when applied to samples not seen previously in the
training data such as human hands and pig colons, it achieved an accuracy of 93%. Additionally,
this model is 10 times faster and 24.7% more accurate than a hybrid model that combined the
GANPOP with a physical model, thus enabling real-time, tissue oxygenation mapping at a rate of
25Hz [14]. GANs have also recently been applied to exploit optical properties to create maps
of healthy and malignant tissue in breast cancer [15] and more generally have been applied for
medical image segmentation, registration, reconstruction and disease detection [16].

Provided the training dataset spans the target domain, GANs have the potential to produce
accurate optical property maps in real-time, which may in future be used to diagnose diseases
more accurately or guide surgical procedures. However, there are two key challenges that may
limit application to real-world problems.

The first challenge is that in some instances it is not feasible to produce experimentally-acquired
datasets that are sufficiently large and diverse to span this domain, particularly if it would require
deploying imaging systems in environments where they are not yet approved for use (e.g. inside
the gastrointestinal tract of human subjects).

The second challenge is that conventional methods require a carefully controlled light projection,
necessitating occasional re-calibration which can be difficult to achieve in clinical settings. The
projected patterns used in previous systems use a plane wave basis and assume orthographic
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(or telecentric) projection and imaging onto samples [17,18]. This is suitable for flat structures,
e.g. skin, with minor variations such as small lumps, but is unsuitable for many clinically
relevant geometries, in particular imaging inside lumen such as the gastrointestinal tract or
blood vessels. Such lumen have tubular structures and thus projection and imaging are highly
non-telecentric, containing significant perspective distortion. Given the wide range of lumen
sizes inside the human body, e.g. in the gastrointestinal tract the oesophagus is 2cm in diameter
while the caecum is 9cm, and the significant variation in curvature, it is challenging to develop a
conventional analytical SSOP model that considers non-uniform spatial frequency projection.
Thus, a data-centric approach such as GANs is promising but requires a training dataset covering
many variations in lumen size and bending configuration across different disease states, which
would be infeasible to generate experimentally.

Simulated image data, specifically synthetic image dataset generation from 3D modelling or
rendering software (Blender, Unity and Unreal), have shown promise for successfully training AI
systems for a range of applications [19,20]. This approach is low-cost and easily adaptable to a
range of situations relevant to different applications. GANs on their own can be used to produce
synthetic image data, but they can be difficult to optimise and can suffer from “mode collapse” –
the generator produces a limited variety of samples, ignoring corner cases and reducing diversity
in the dataset [21].

Techniques such as raytracing allow real-life objects to be modelled realistically due to
physically accurate lighting, shading and textures. Ray-tracing rendering engines share some
similarities with Monte-Carlo simulations: individual rays of light are simulated leaving a light
source, traversing through materials, being scattered, reflected or absorbed, and then returning to
the camera. The Cycles raytracing renderer that comes with open-source 3D rendering package
Blender simulates volume scattering inside objects using a Henyey-Greenstein Phase function,
which is commonly also used in Monte-Carlo simulations of tissue [22,23]. Using a ray-tracing
engine it should therefore be possible to produce physically realistic images including scattering
and absorption effects. Recently, a full ray-tracing SFDI simulation model, implemented in
Blender, has been demonstrated exhibiting accurate simulation of optical scattering and absorption
properties [24]. The scattering and absorption properties were plotted as a function of spatial
frequency and found to agree with results simulated using diffusion approximations. This
approach has the advantage of being able to realistically simulate tissue optical properties, a wide
range of sample geometries, and realistic lighting conditions and camera positions. Such an
approach produces highly realistic simulated image data.

Finally, using a synthetic approach it is also possible to generate near-perfect ‘ground truth’
images. When used in a ‘supervised learning’ approach, this can in principle provide superior
performance to using ground truths generated by processing input data through conventional
algorithms which tend to degrade quality and have limited robustness to noise. Synthetic dataset
generation from 3D modelling software is a powerful up-and-coming technique with start-ups
such as Parallel Domain and Zumo Labs generating synthetic image datasets for training AI
systems such as self-driving cars [25,26]. Techniques such as Domain Adaptation can allow
models to be trained on simulated data and then adapted to work on real datasets, an approach
which has been successfully applied to multispectral imaging data [27].

Here, we demonstrate that a deep-learning model can be trained on simulated image datasets
created using our Blender model to reconstruct maps of reduced scattering and absorption for
a range of realistic sample geometries and imaging set-ups. Specifically, we use a modified
version of the GANPOP model (concept shown in Fig. 1) because the direct production of optical
property maps avoids the needs for calibration images at intermediate stages: calibrations are
implicitly learned by the GAN by comparison with ground truths. We show that the model can
be trained to work when imaging inside cylindrical structures, representing lumen, providing
contrast for tumour-like structures. The ability of our system to generate ideal ‘ground truth’
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images, makes it possible in principle to obtain superior performance to conventional SFDI
reconstruction algorithms. The flexibility of our model also allows training a model to deal with
‘edge cases,’ such as high values of absorption or scattering or highly reflective materials. Finally,
we show that our trained model has inherent domain adaptation ability by cross-validating on
experimentally acquired SFDI data.

Fig. 1. Proof of concept diagram for training a GANPOP with synthetic data. Blender
automation generates training data which is then fed into a GAN and processed to get optical
property maps.

2. Method

2.1. Blender model

Our simulation model is created by applying custom material properties to 3D objects in Blender.
Specifically, scattering is simulated by mixing two of Blender’s prebuilt shaders: the transparent
bi-directional scattering distribution function (BSDF) which adds transparency to the material
without adding refraction; and the subsurface scattering which simulates light rays penetrating
the surface of the material and bouncing around inside until they either escape or are absorbed.
A weight factor we term the ‘scattering factor’ is varied between 0 and 1 to control how much of
the composite materials’ properties arise from the subsurface scattering component vs the BSDF
component. A scattering factor of 0 results in a fully transparent material whilst a scattering
factor of 1 results in fully subsurface scattering material. Absorption is implemented by creating a
custom material to simulate the transmissivity of light. This was implemented with a transparent
BSDF shader equally mixed with a refraction BSDF shader with a refractive index of 1.43. This
weighted ‘absorption factor’ varies the observed colour of the refraction BSDF block from 0
(black, fully absorbing) to 1 (fully transparent). The ‘final factor’ was a weighted mix of the
absorbing and scattering components, where a factor of 0 simulates a material only dependent on
the absorbing component and a factor of 1 simulates a material only dependent on the scattering
component. Blender’s ray-tracing engine Cycles was then used to render realistic images of the
desired scene as described previously [24], with the power of the light being set to 3.5W.

Five separate Blender models were designed to create a variety of synthetic data, with each
of the datasets used to test how the GANPOP model responded to different sample types and
geometries. The first model was used to generate SFDI images with flat sample geometries
containing only one material, which we term the ‘rectangular’ model. The second model
generates images of flat samples containing 2 materials with different optical properties meeting
along a curved boundary, which we term the ‘rectangular+ curved’ model. The third model
generates images of flat samples containing 3 materials with different optical properties that meet
along a ragged boundary, which we term the ‘rectangular+ ragged’ model. The fourth model is
based on the ‘rectangular+ curved’ model but with the addition of simulated tumours, modelled
as spheroids, which we term the ‘rectangular+ tumour’ model. The fifth model produces image
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of the projection of an SFDI pattern into a simulated lumen (modelled as a hollowed-out cylinder)
with polyp structures (modelled as spheroids), which we term the ‘cylinder+ tumour’ model.
This last model is designed to be typical of images that would be seen through an endoscopic
SFDI system deployed in a tubular organ. For convenience, we group data generated from Blender
models 1-4 into a single dataset termed the ‘complex rectangular’ dataset, which is intended to
emulate the typically more complex sample shapes encountered in experimental systems.

2.2. Dataset generation

To produce a dataset for the GANPOP we must pair two sets of images of equal dimensions.
The first image is the SFDI projected input image with a spatial frequency of 0.2mm−1 and the
second is the co-registered ground truth optical property map for that image. To examine model
generalisation across spatial frequencies, we produce validation datasets at 2 additional spatial
frequencies 10% above and below this (0.18mm−1 and 0.22mm−1). Ground truth optical property
maps were generated by replacing the scattering and absorption material inputs with pure colours,
unaffected by lighting and shading. Specifically, the red (R) channel represents absorption and
the green (G) channel represents scattering, whilst the blue channel is held constant at zero. This
approach matches that used for the original GANPOP, where a highly absorptive material appears
red, and a highly scattering material appears green. R and G channels were each varied between
0.05 and 0.95 which are scaled to 8-bit integers ranging from 13-242. The display device was set
to ‘None’ to allow for linear control of the RGB content of the image.

The ‘keyframe’ approach to animation supported by Blender was used to automatically vary
optical and geometrical properties of samples and output large numbers of rendered images to
create the dataset. For the tumour spheroid dataset, the XYZ parameter was used to control
side-to-side (X), front-to-back (Y) and top to bottom (Z) translation of the spheroids whilst
the scale parameter was used to change the proportions of spheroids on the sample. A value
parameter block was used to set the final, absorption and scattering factors of the material as
well as the colours in the ground truth optical property maps. Using the keyframe approach
resulted in a smooth animation as Blender can be configured to linearly interpolate between set
values. Final factor was varied between 0.05 and 0.95 resulting in the proportion of absorption to
scattering to change from 0.95:0.05 to 0.05:0.95: that is, the material would change from a more
absorbing material to a more scattering material. Varying a single parameter in this way maps
out a 1-D path within the 2-D optical property space. To validate performance in a larger range
of this space, the absorption and scattering factors are also varied.

The start and end frames are used to control the overall size of the dataset e.g. for an animation
containing 100 frames, the start frame is set to 1 and the end frame to 100. When rendered
with Cycles, each frame gives an accurate, spatially modulated image and at the end of the
animation, Blender produces a synthetic dataset of 100 images for the above example. For speed
optimisation, the spatial resolution of the RGB images is set to 256× 256 for both the input and
ground truth images. Both image datasets were simulated separately, paired in a pre-processing
step and then fed to the GAN. Combined, the synthetic dataset comprises of RGB images of size
512× 256, which could then be used for training and testing.

2.3. GANPOP architecture

The GANPOP model was based on an adversarial training framework as this framework has
the ability to learn a loss function during training, avoiding uncertainties commonly seen with
handcrafted loss functions [28,29]. The generator was designed as a modified U-Net consisting
of an encoder and a decoder with skip connections [30], and contained properties of a ResNet,
such as having short skip connections within each level [31]. U-Net architectures have also been
successfully applied to produce demodulated AC and DC images from SSOP inputs [11].
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The discriminator was created with a three-layer classifier with leaky ReLUs and makes
classification decisions depending on the current batch as well as a randomly sampled batch of 64
previously generated image pairs. Full details of the GANPOP architecture can be found in [14].

In essence, the generator predicts pixel-wise optical properties from SFDI images while the
discriminator classifies whether pairs of SFDI images and optical property maps were real or
fake. Both neural networks are trained together in a game-like fashion. The generator tries to
fool the discriminator by producing hyper-realistic images that match the training dataset. On the
other hand, the discriminator tries not to be fooled by trying to correctly distinguish between
fake and real data. The discriminator also provides feedback to the generator to help increase the
accuracy of overall GAN.

2.4. Training

The generator and discriminator are trained iteratively, with spectral normalization used to
stabilise training [32]. The objective (loss) of the GAN can be summarised as follows:

LGANPOP(G, D) = Ex,ypdata(x,y) + Expdata(x)[D(x, G(x))2], (1)

where G is the generator, D the discriminator, and pdata is the optimal distribution of the data. To
further stabilise the GAN as well as minimise the distance from the ground truth distribution a
loss term, L1 was added to the GAN loss:

L1(S) = Ex,ypdata(x,y)[| |y − G(x)| |1]. (2)

Hence the total loss of the GANPOP can be expressed as:

L(G, D) = LGANPOP(G, D) + λL1(G), (3)

where λ is the regularisation parameter, which was set to 60 for all experiments. For training,
200 epochs were used and the Adam optimiser was used with a learning rate of 0.0001 for half of
the epochs then linearly decayed for the remaining half. Further explanations of (1), (2) and (3)
can be found in [14].

The training code was implemented using Pytorch 1.9.0 on Windows 10 and a NVIDIA
GeForce GTX 980 was used for training, testing, pre-processing and post-processing. Both the
discriminator and generator were initialised with a Gaussian distribution with a mean of 0 and
standard deviation of 0.02.

Optical property maps were found by isolating the red and green channels of the generated
output image and then applying an appropriate scaling. All output images were normalised
to have a consistent representation in the 8-bit colour scale, a technique commonly used in
convolutional neural networks. In previous work [14], the maximum value of 255 was defined to
be 0.25 mm−1 for µa and 2.5 mm−1 for µs’. However, here we are mapping between parameters
in Blender (the various factors), which can be considered as proxy values for µa and µs’ that can
be mapped back to these parameters via a calibration process such as that presented in [24].

2.5. Error metric

Normalized Mean Absolute Error (NMAE) is used to evaluate the performance of the 3 GAN
models trained on synthetic data and the GANPOP pretrained on experimental data. NMAE is
defined as:

NMAE =
∑︁T

i=1 |pi − piref |∑︁T
i=1 piref

. (4)

where pi is the predicted pixel data, piref is the actual ground truth pixel data and T is the total
number of pixels. A smaller NMAE indicates a better prediction by the GAN. Note that piref was
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calculated from the simulated ground truth Blender output data for the 3 synthetic models but for
the experimental model was calculated by applying standard SFDI processing algorithms to input
data. To see pixel-per-pixel differences, normalized error was calculated for both the absorption
and reduced scattering, then displayed as a percentage on a matplotlib GUI. This allowed for fair
visual comparisons and allowed us to see spatially where the model failed and which images it
failed on:

pi
diff =

|pi − piref |

piref

(5)

2.6. Validation

Each model was validated using a subset of the generated images that were not used in training.
Further, to investigate the applicability of our synthetic-data-trained model on real experimental
data, a cross-validation was performed with the GANPOP model pre-trained on an experimental
dataset. Validation data from the synthetic dataset was input into the model trained on experimental
data and vice-versa. In each case the NMAE relative to the appropriate ground truth was computed.
In the synthetic model the red and green channels of the ground truth, which can only vary from 0
to 255, are scaled relative to the absorption and final factors, whereas in the experimental model
they are scaled relative to real scattering and absorption coefficients. We thus expect to observe
an arbitrary scale factor between the models.

3. Results

3.1. Rectangular GANPOP

We first trained the GANPOP on the complex rectangular dataset, which comprised 50 images each
from the ‘rectangular’, ‘rectangular+ curved’, ‘rectangular+ ragged’ and ‘rectangular+ tumour’
i.e. 200 images in total. The dataset was split randomly into 140 training images and 60 validation
images. The NMAE of scattering and absorption for the rectangular GANPOP are plotted in
Fig. 2. All validation images were encapsulated within a 2.5% absorption and reduced scattering
NMAE envelope. Including anomalies, the average NMAE was calculated to be 1.2% for µa
and 1.1% for µs’, which compares very favourably to values of 7-12% typically found in GANs
trained on experimental data [10,11].

3.2. Cylindrical GANPOP

Next, a GAN was trained with images created from the ‘cylinder+ tumour’ Blender model. The
320-image dataset comprised of 200 images where a SFDI pattern was projected into a simulated
lumen and 120 images where polyp structures were scattered around another lumen with varying
sizes, positions and optical properties. These split randomly into 256 training and 64 validation
images. The projection onto a cylindrical surface created substantial fringe distortion and thus
varying spatial frequencies. However, the GAN model was still effective in recovering optical
properties, with Fig. 3 showing the result of testing the GAN. A notable increase in error can be
seen in the NMAE envelope when compared to the previous model, with the NMAE increasing
to 5.5% for absorption and 6.4% for reduced scattering. This increased envelope error may be
due to the aforementioned variation in spatial frequency in addition to the reduced optical power
at increasing distances further down the lumen. Nevertheless, the average NMAE was still found
to be low, at around 1.0% for µa and 1.2% for µs’, confirming the adaptability of the GANPOP
architecture.

3.3. Training performance

Across the four Blender models in the rectangular dataset, the average time taken to generate a
SFDI image was 3.7 seconds and 1.1 seconds to generate a ground truth image. In contrast, the
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Fig. 2. A scatter plot of the NMAE of scattering and absorption coefficients for the
rectangular GANPOP, tested on the validation samples. Examples of a low (green) and high
error result (red) are shown inset. Each result comprises a SFDI input image, a ground truth
and GANPOP output.

Fig. 3. A scatter plot of the NMAE of reduced scattering and absorption coefficients for the
cylindrical GANPOP, tested on the ‘cylinder+ tumour’ validation dataset. Examples of low
(green) and high error (red) images are shown inset.
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cylindrical dataset took, on average, 4.6 seconds to generate an SFDI image and 0.7 seconds
to generate a ground truth image. For a 200-image dataset, it took 15 minutes to generate the
rectangular dataset and 18 minutes to generate the cylindrical dataset.

For the rectangular GANPOP, where a training dataset of 140 images was used and the number
of epochs was set to 200, the time taken to train the model was 2 hours and 30 mins. The
cylindrical GANPOP with a training dataset of 256 images and 200 epochs, took approximately 4
hours to train. Testing both GANPOP models on their respective testing datasets was very quick,
with the rectangular model taking 11 seconds to process 60 images and the cylindrical model
taking 12 seconds to process 64 images showing the potential of using a GANPOP in clinical
settings. Repeating the training process 5 times using randomized training-validation splits and
starting weights shows robust convergence to acceptably low MSE values, as shown in Fig. 4.

Fig. 4. Plots of the MSE loss function used to train the network as a function of epochs.
Shaded error bar indicates standard deviation over 5 runs using randomised starting weights
and training-validation splits: Left: linear scale, right: log scale

3.4. Spatial characteristics of error

Although both GANPOP models detected the simulated polyps correctly with high visual
accuracy, it is insightful to analyse the main spatial sources of error. Figures 5 and 6 show
optical property maps of low NMAE and high NMAE examples respectively for the cylindrical
model as well as the individual R (µa) and G (µs’) channels. Looking at the difference maps,
we can see that for the low-error result the error arises at the edges of the tumour, with some
parts of the edge displaying percentage errors up to 20%. This may simply be an edge effect
– light in this region can pass through multiple different material types before returning to the
camera, causing increased ambiguity in recovering absorption and scattering. Despite this, for
the areas surrounding the tumour the error can be seen to be near 0%. Looking more closely at
the high-error result in Fig. 6, much of the error comes from the area surrounding the tumour for
the reduced scattering difference and the tumour itself for the absorption difference. Moreover,
the error can be seen to reach 25% just below the tumour for scattering and 15% at the tumour
for absorption. However, we note that many of the ‘bad’ examples are not representative of
biologically relevant scenarios: the bulk of material in such examples is so highly absorbing as
to appear black, which is not typically observed in live tissue.

We next validated the performance of the rectangular and cylindrical models using spatial
frequencies 10% above and 10% below the base 0.2mm−1 spatial frequency. A 150-image test
dataset was generated using the ‘rectangular+ tumour’ and ‘cylindrical+ tumour’ models. For
both GANPOPs, one new validation set of 50 images was created for each of the 2 additional
spatial frequencies. The validation NMAE increased for absorption coefficient (to 3.3% for
+10% SF and to 3.6% for -10% SF) and for scattering (to 5.9% for +10% SF and 5.5% for -10%
SF). This represents a slight increase in error compared to typical NMAE values for experimental
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3.5. Expanding optical property parameter space

In order to explore a larger part of the space of possible optical properties, different 
combinations and ranges of absorption, scattering and final factors are tested. This was to 
ensure that optical property space was adequately covered in the training data to avoid 
overfitting. From Table 1, it can be seen that the mean of the average absorption NMAE for the 

Figure 5. The Optical Property and Difference Maps of a typical low NMAE result. The 
SFDI input image, GANPOP Output and Ground Truth can be seen on the left. The 

reduced scattering, absorption and the respective difference maps can be seen on the right.

Figure 6. The Optical Property and Difference Maps of a typical high NMAE result. The SFDI 
input image, GANPOP Output and Ground Truth can be seen on the left. The reduced scattering, 

absorption and the respective difference maps can be seen on the right. For this image specifically, 
the absorption and scattering values were designed to be at extreme ends of the possible range. 

Fig. 5. The Optical Property and Difference Maps of a typical low NMAE result. The
SFDI input image, GANPOP Output and Ground Truth can be seen on the left. The reduced
scattering, absorption and the respective difference maps can be seen on the right.

Fig. 6. The Optical Property and Difference Maps of a typical high NMAE result. The
SFDI input image, GANPOP Output and Ground Truth can be seen on the left. The reduced
scattering, absorption and the respective difference maps can be seen on the right. For this
image specifically, the absorption and scattering values were designed to be at extreme ends
of the possible range.
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datasets, indicating that our trained GAN is relatively robust to variation in spatial frequency and
is not significantly overfitting.

3.5. Expanding optical property parameter space

In order to explore a larger part of the space of possible optical properties, different combinations
and ranges of absorption, scattering and final factors are tested. This was to ensure that optical
property space was adequately covered in the training data to avoid overfitting. From Table 1, it
can be seen that the mean of the average absorption NMAE for the rectangular model was 1.29%,
whilst the mean of the average scattering NMAE was 1.18%. On the other hand, the mean of the
average of absorption and scattering NMAE for the cylindrical model was found to be 1.36% and
1.62% respectively. For both models, the larger the variation in the Blender factors the larger the
NMAE was. Nevertheless, this deviation from the mean was small, demonstrating our model
robustness across the wider optical property space.

Table 1. A table showing the average absorption NMAE (%) and average scattering NMAE (%)
for a range of different combinations of absorption, scattering and final factor Blender values for

the rectangular and cylindrical GANPOPs

Blender Factors Average absorption NMAE (%) Average scattering NMAE (%)

Final Factor Abs Factor Sct Factor Rectangular Cylindrical Rectangular Cylindrical

0.05-0.95 1.00 1.00 1.19 1.01 1.11 1.20

0.05-0.95 0.05-0.95 1.00 1.12 1.30 1.12 1.51

0.05-0.95 1.00 0.05-0.95 1.31 1.44 1.18 1.78

0.05-0.95 0.05-0.95 0.05-0.95 1.53 1.67 1.30 2.00

3.6. Cross-validation with experimental data

To cross-validate our GAN with the experimentally trained GAN, we first corrected for the scale
factor introduced by the different mappings between absorption and scattering coefficients and
8-bit image pixel values (0 to 255). We then tested our model trained on synthetic data on the
experimental SFDI dataset. To encourage proper domain-transfer, we retrained our model with
our original synthetic dataset plus a small sample (10%) of experimental images leading to a
new GAN that can evaluate the optical properties of both real and synthetic data, which we term
GANPOP-SR (GANPOP with synthetic and real data).

The experimental image dataset used came from the original GANPOP system (denoted
‘Chen’s GANPOP’ here for clarity) [10] comprising of 78 in-vivo and ex-vivo SFDI images of
human oesophagi, feet and fingers, pig tissue and phantoms. Note that we removed the blue
channel of the synthetic dataset to match the way the test dataset was presented in [10]. Across
the entire dataset, the NMAE was found to be low, with an average value of 10.3% for absorption
and 6.6% for scattering. Figure 7 shows the results of the cross validation, with Fig. 7(a) and 7(b)
showing examples of images where the GANPOP-SR model accurately constructed the optical
property maps. For comparison, the mean SSOP NMAE of this dataset was previously computed
as 23.1% for absorption and 18.7% for scattering [10].

Next, we input synthetically generated data into the model trained on experimental data.
Specifically, we tested using the complex rectangular dataset which was generated from models
1-4. Across the entire dataset, the NMAE was also found to be low, with an average of 6.3% and
11.9% for absorption and reduced scattering, respectively. Figures 8(a) and 8(b) show where
Chen’s GANPOP accurately constructed the optical property maps. We computed the mean
SSOP NMAE of this simulated dataset to be 6.6% for absorption and 22.0% for scattering,
demonstrating the significant improvement offered by GANPOP.
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Fig. 7. The optical property and difference maps of experimental sample images input into
conventional SSOP and Chen’s GANPOP: A) human hand, B) pig tissue.

Fig. 8. The optical property and difference maps of synthetic sample images input into
conventional SSOP and Chen’s GANPOP: A) ‘rectangular+ ragged’ dataset sample B)
‘rectangular+ ragged+ tumour’ dataset sample.
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4. Discussion

We demonstrate training of the Generative Adversarial Network for Prediction of Optical
Properties (GANPOP) model using synthetic data from an SFDI simulation model built in
open-source 3D rendering software Blender. We show that absorption and scattering can be
recovered in flat and cylindrical geometries with spheroid tumours with a typical accuracy
(NMAE) <1.2% and visually accurate property maps, which compares favourably to the ∼10%
NMAE achieved by GANPOP trained on experimental images. The high accuracy is due in part
to the use of ‘perfect’ ground truths for supervised learning, use of larger training sets enabled by
automated simulation and reduced noise compared to experimental images. However, we also
show that our simulation model and simulation trained GANPOP is compatible with real-world
experimental data via cross-validation. We find that when running the experimentally-trained
GANPOP on our synthetic data we achieve NMAE of 6.3% in absorption and 11.9% in reduced
scattering, which is comparable to the ∼10% in deep-learning based models trained purely
on experimental data. This also indicates the physical validity of our Blender-based synthetic
generation model. For cross-validating our synthetically trained model on experimental data, we
find that best performance is achieved when a small proportion of experimental data (<10%)
is added to the synthetic data, which produces NMAE of 10.3% for absorption and 6.6% for
reduced scattering.

The use of simulated training data for GANPOP sets confers a number of key advantages.
First, it makes it easy to generate large training datasets. Using Blender’s animation features it is
straightforward to automatically vary many material and spatial properties of the sample and create
large training datasets. Here we exploit this to generate boundaries between up to 3 materials
and tumour spheroids of different size, position and optical properties in both rectangular and
cylindrical geometries. This wide variety of images would be very time-consuming to achieve
experimentally. This flexibility allows us to establish that optical properties can be recovered
from lumen using standard SFDI illumination despite being distorted. It would be challenging
to adapt conventional SSOP algorithms to work in this case of non-uniform spatial frequency
and so this represents an important result. In future our system could be extended to a wider
range of geometrical variation, for example by considering lumen with different longitudinal
curvatures and sizes, uneven sample surfaces and different shaped tumours or polyps e.g. flat
polyps [33]. Moreover, the highly realistic Cycles renderer could be exploited to create more
realistic scenarios such as samples with smoothly varying optical properties, specular reflections,
presence of water on surfaces, different coloured materials and different camera parameters
(zoom, angle, position). Compensating for these parameters with a GAN would require a very
large training dataset that could not feasibly be generated experimentally.

The second advantage is the availability of perfect ground truths. In experimental datasets,
optical property maps used as ground truths for supervised learning are typically constructed
from raw data using conventional SFDI approaches, such as SSOP. These approaches can produce
significant reconstruction error which will in turn limit the accuracy of the GAN. With a simulation
model the ground truths are perfect with accuracy determined by parameters and training efficiency
of the GAN. The use of perfect ground truths also enables the GAN to implicitly learn the
calibration functions that are explicitly required in standard SFDI reconstruction algorithms.
Furthermore, synthetic ground truths can be created for cases where conventional SFDI algorithms
would not work, e.g. highly distorted linear fringes projected down a lumen. Using a GAN trained
on simulated data therefore greatly simplifies application of SFDI to non-planar geometries.

There are also limitations to this approach. Notably, there is very little noise in the training
datasets. Some noise is inherently introduced by the finite number of rays and reflections
and by the quantisation of light levels during rendering. Effects that would be unavoidable
in experimental systems such as movement artefacts, presence of other substances and sensor
noise, are not included in our simulation. However, by using either the Blender compositor or
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post-processing in other software, it should be possible to introduce noise and motion artefacts.
By adding in such functionality, our simulation could create very large datasets of highly realistic
scenarios suitable for training a high-performance GAN. Another limitation is that the Cycles
renderer is a tristimulus model and so only considers optical behaviour in broadband red, green
and blue colour channels. Multispectral SFDI, in which optical property maps are recovered
at multiple distinct wavelengths from UV to infrared, is an increasingly important technique
[3]. In future, a more advanced rendering engine may be required to simulate this, although a
Blender add-on that performs full Monte-Carlo simulations has recently been demonstrated [34].
Finally, our current GAN model requires a small proportion of experimental training data to
enable an acceptable degree of generalisation. In future, this proportion could be reduced further
by increasing the variation within the dataset to encourage generalisation. For example, we could
use a parameter randomisation approach instead of a linear parameter sweep. A greater number
spatial frequencies could be used for training data although we found that our current model
maintained high accuracy when validated with different spatial frequencies (+10% and -10%)
suggesting a degree of inherent generalisation to spatial frequency. Other parameters such as
sample to camera distance or angles may also be varied to improve generalisation.

We envisage that our tool will play a key role in designing future SFDI systems for use
inside tubular lumen. For example, it could be used to design suitable illumination patterns
that suffer less fringe distortion and deliver uniform spatial frequencies and illumination power
in tubular organs. Additionally, domain-transfer techniques could be used to refine the trained
model using experimental data but still achieve higher accuracy because of perfect ground truths.
Such a model could identify subtle changes in optical properties that may not be visible using
conventional SFDI reconstruction techniques but are important indicators of early disease e.g.
flat lesions in the oesophagus [35]. More generally, our simulation-to-reconstruction system
represents an example of ‘inverse graphics’ in which parameters of the generative model are
inferred from a rendered image [36]. By using more data points, e.g. multiple camera views
or illuminations, it may be possible to infer more information about the model including 3D
shape, scattering anisotropy and surface roughness, which would be highly valuable for detecting
features relevant to a wider range of diseases.

5. Conclusion

We demonstrate the training of a generative adversarial network using synthetic data for recovery
of optical property maps in a rectangular and cylindrical image dataset with simulated spheroidal
tumours. We show that the model works inside lumen like cylindrical structures and rectangular
planes and can recover contrast for tumour-like structures in a variety of positions, sizes and
geometries with a normalised error <1.2% for scattering and absorption recovery. Ideal ‘ground
truth’ property maps enable superior performance to conventional SFDI reconstruction algorithms
(error ∼30%) and GANs trained on experimental data (error 10-15%). Moreover, we demonstrate
that our model has some inherent domain adaptation ability by validating it on experimentally
acquired SFDI data with error < 12%. In future, this GAN could be trained on a combination
of real and synthetic data, leading to a system that will better generalise to the wide range of
irregular geometries encountered in real tubular organs. Resulting optical property maps could
aid radiologists to detect diseases such as cancer at an early stage, e.g. during routine screening.
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