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Deep Dynamic Layout Optimisation of
Photogrammetry Camera Position based on Digital

Twin
Likun Wang, Zi Wang, Peter Kendall, Kevin Gumma, Alison Turner, and Svetan Ratchev

Abstract—The photogrammetry system has been widely used
in industrial manufacturing applications, such as high-precision
assembly, reverse engineering and additive manufacturing. In
order to meet the demand of the product variety and short
product lifecycle, the factory facilities including photogrammetry
devices, should be relocated in response to rapid change in
mechanical structure and hardware integration. Nevertheless,
the camera position of the photogrammetry system is difficult
to select to guarantee an optimal field of view (FoV) coverage
of retro-reflective targets during the whole production horizon.
Especially in a reconfigurable manufacturing work cell, scaling
and calibration of a photogrammetry system requires profes-
sional skills and these would cost tremendous labour for rapid
configuration each time. In this paper, we propose a novel
deep optimisation framework for the photogrammetry camera
position for the dynamic layout design based on digital twin.
The optimisation framework follows an effective coarse-to-fine
procedure to evaluate the FoV visibility over the target frame.
In addition, the deep Q-learning algorithm is utilised to find the
maximum FoV coverage and avoid collision. Three experiments
are implemented to verify the application feasibility of the
proposed deep camera position optimisation framework.

Note to Practitioners—Large-volume in-process metrology is
an essential element in flexible manufacturing systems. Quality
of large-volume measurement relies heavily on target visibility
within its field of view. In a compact industrial robotic cell, this
is extremely challenging as the robot would take the primary
position and causing view blockage throughout its operation.
This makes the simultaneous monitoring of robot head and the
work piece key feature extremely difficult. Manual trial-and-
error positioning approach is lengthy and requires high level of
expertise, due to both safety and spatial concerns. We approached
this problem by simulating the camera’s view in a digital twin en-
vironment and maximising the target visibility throughout the full
operation cycle. The generic framework can provide guidance in
metrology setup within automated manufacturing environment,
accelerate the system commissioning time, remove dependency of
skill level and expand the capability for flexible/reconfigurable
manufacturing systems. Although V-STARS camera are used in
this application, the framework can be applied for other types
of vision systems that requires field of view.

Index Terms—Photogrammetry system, Field of view, Dynamic
layout optimisation, Deep reinforcement learning, Digital twin.

I. INTRODUCTION

Manufacturing industry is facing growing demands for
customised, high-value and low-volume products. Many new
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research themes emerged aiming to improve manufactur-
ing flexibility, such as modular production system, human-
machine collaboration [1] and digital twin. The conception of
reconfigurable manufacturing systems were proposed in [2]
to tackle this challenge with a systematic approach. It relies
on the rapid transformation of factory facilities to adjust its
capacity and functionality and improve production efficiency.
Consequently, the reconfiguration of a manufacturing system
always involves the physical rearrangement and relocation of
autonomous facilities [3], including measurement system, such
as photogrammetry devices [4], [5]. Traditionally, product tol-
erance and key datum can be fixed and maintained with high-
specification machining and fixtures. Nevertheless, in flexible
and reconfigurable manufacturing systems, bespoke jig and
fixed tooling are minimised [6]. Therefore, key characteristics
are achieved with tool calibration and external measurement
[7], [8].

Over the last decade, photogrammetry has been widely used
as a three dimensional measurement tool in developing man-
ufacturing applications, such as additive manufacturing [8],
[9], aerospace jig assembly [7], reverse engineering [10] and
manipulator calibration [11]. As a key component in modern
manufacturing, it allows product key features to be controlled
at its root which leads to reduction in rectification and rework
[12]. Compared with other portable metrology devices such
as laser tracker [13] and laser scanner [14], photogrammetry
cameras can simultaneously monitor a large volume of tar-
gets and are also suitable for unstable applications, such as
measurement on vibrating platform [15], hand-held operation
[16], and real-time 3D measurement [17]. A standard optical
coordinate measurement process consists of firmware setting,
camera position selection, image collection and processing,
3D reconstruction and data analysis [18]. Despite the fact
that optical coordinate measurement has gained large market
share in industrial application, there is no automated or estab-
lished method for measuring and inspection planning. Camera
position selecting is one of the most important issues that
constrain the utilisation of optical coordinate measurement by
experienced operators [19]. As camera positions are related
to not only image acquisition and data post-processing but
also target visibility and measurement accuracy, it makes the
optical camera positioning crucial in industrial manufacturing.

However, the quality of photogrammetry measurements is
directly related to its field of view (FoV). Especially in a
robotic cell, the manipulator motions can cause view ob-
struction, which leads to invisibility of target features and
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3.	 Establish and editing the Camera Network Configuration(a) Graphic explanation of the V-STARS FoV [20]. (b) Virtual V-STARS in digital twin.

Fig. 1: Graphic explanation of the FoV of the V-STARS photogrammetry system and its virtual model in digital twin. The digital
twin is established in Visual Components. The cameras of the V-STARS system could provide three dimensional measurement
as given in Fig. 1a. However, during the assembly processes, the manipulator might blind the FoV of the V-STARS system as
shown in Fig. 1b, which could lead to inaccurate or overfitting measurement results.

inaccurate measurement results. Again, manual configuration
is not desirable and more importantly, it is difficult to consider
all the possible tracking position manually. When integrated
in a reconfigurable manufacturing system, the cameras are
also required to relocate. Not only the external transformation
matrix should be re-characterised but also the target markers
can be relocated. This would cost tremendous unavoidable
labour in finding the best camera position when the facility
layout is changed every time. Consequently, a photogrammetry
system optimisation as a part of facility layout planning is
needed to facilitate the rapid changeover.

However, there are very limited studies considering camera
FoV in a production environment. Currently studies [21]–[23]
mainly focuses on calibration when facing limited object visi-
bility with fixed camera FoV under challenging circumstances,
such as monitoring and surveillance. These applications do
not require relocation or rapid decision about camera posi-
tioning. A few publications address the camera positioning
derived from product CAD models [24]. Nevertheless, these
publications only focus on the product and is only applicable in
the final product inspection phase. Theses studies also ignore
the fixtures involved and the overall assembly processes. To
the best of our knowledge, no research has been done for
camera position optimisation of photogrammetry systems in a
reconfigurable manufacturing environment.

In this paper, a novel camera position optimisation frame-
work is proposed in a digital twin environment as presented
in Fig. 1a and Fig. 1b. The framework considers the camera
FoV and collision for the entire assembly process, enabling
in-process metrology simulation, removing high manual effort
and improving system commissioning efficiency. By using
coarse-to-fine registration, the FoV coverage of the target
frame is estimated. Considering a dynamically changing as-
sembly process, a deep reinforcement learning algorithm is
applied, instead of any mode. The photogrammetry system is
considered as an agent, which searches for its optimal position

in the digital twin environment regarding FoV estimation and
collision detection within the facility. In order to improve
readability, the methodology is outlined as follows:

1) The digital twin of the generic assembly work cell
along with the photogrammetry system is established
in a manufacturing simulation software package, Visual
Components (VC) and the camera FoVs throughout the
overall production are simulated and captured;

2) A generic FoV evaluation approach based on target
geometry information and coarse-to-fine point cloud
registration is proposed;

3) Position optimisation algorithm based on deep Q rein-
forcement learning is introduced aiming to maximise
camera FoV and avoid collision with the robot arm;

4) Three experiments are performed to validate the digital
twin environment and camera parameters, and then
demonstrate the feasibility of the proposed optimisation
framework.

The remainder of the paper is organised in four parts. After
the introduction, a literature review is conducted in Section
II. The FoV visibility evaluation approach is given in Section
III. Then, the deep learning framework for layout optimisation
is presented in Section IV. Finally experiments are described
and analysed in Section V, after which conclusions are drawn
in the last section.

II. RELATED WORKS

Given that measurement accuracy is directly related to
object visibility within the camera FoV, the photogrammetry
camera position is crucial. In [24], the optimisation of camera
positions was studied based on a hidden point removal method,
which reconstructs the surface of several products and quan-
titatively estimates the object visibility. Although the camera
position optimisation was derived from CAD models and the
result seems promising, it only considers the measurement of
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Fig. 2: The digital twin of the work cell and V-STARS photogrammetry system. (a) Front view of the assembly work cell. (b)
Front view of the digital win model. (c) Side view of the assembly work cell. (d) Side view of the digital win model. (e) V-
STARS camera FoV representation (72 deg. horizontally and 58 deg. vertically) in the digital twin. (f) V-STARS Photogrammetry
system. (g) V-STARS system located in the work cell. The physical work cell are shown in Fig. 2 (a) and Fig. 2 (b). Their
corresponding side view in VC are presented in Fig. 2 (b) and Fig. 2 (d), separately. The V-STARS system includes two
tripods, two V-STARS cameras and a laptop PC for measurement data analysis as shown in Fig. 2 (f). The parameters of the
FoV are 72 deg. horizontally and 58 deg. vertically as indicated in Fig. 2 (e). The V-STARS system is located in the work
cell as presented in Fig. 2 (g).

the product at a single moment and nothing suggested that
the impact of the camera position was considered for the
production lifecycle.

In [21], a global calibration method of multi-camera was
introduced with assumption of non-overlapping FoV. This
method is based on a dual-camera photogrammetry system
and a reconfigurable target. To enlarge the FoV coverage
of an object, a network of multiple camera viewpoint was
proposed in [22], where one camera with relative movements
and multiple cameras are compared and discussed. However,
these two publications focused on camera extrinsic parameter
calibration to increase the FoV visibility not the optimisation
of camera positions.

In [23], two algorithms, namely, alternate global greedy
algorithm and global greedy algorithm, for optimal camera
configuration and multi-camera locations. As the use case
application is for surveillance networks, it doesn’t need to take
into account the view blockage of other dynamic facilities in
typical industrial manufacturing applications. In [25], multi-
criteria decision analysis was proposed to select the optimal
position and the appropriate FoV for a photosensor. Never-
theless, the factors taken into account were lighting levels,
corresponding to energy saving and lighting adequacy.

Additional applications of photogrammetry technology in
manufacturing layout design mainly focus on the construction
or reconstruction of the existing layout. Regarding inspection

application in industrial production systems, instead of using
a laser scanner, in [26], photogrammetry techniques were
applied to update their digital twin model of the work cell.
Similarly, in [27], the manufacturing layout redesign is studied
with three-dimensional scanning. By using a simplified version
of systematic layout planning, Lowder found that the overall
time of design can be reduced. Although these works applied
digital twin for modelling overall facility layout, digital twin
of the photogrammetry system itself hasn’t been investigated.

Furthermore, photogrammetry system was applied in recon-
struction applications such as UAV (Unmanned Aerial Vehicle)
structure [28], railway [29], and dam inspection [30]. Besides,
photogrammetry was used to monitor production processes in
manufacturing processes. Given that geometrically complex
components are required to be modelled in additive man-
ufacturing, photogrammetry was deployed in [8] to reverse
engineer and redesign components. Even though digital infor-
mation is established via means of a photogrammetry system
in these publications, the camera positioning is not optimised.

According to the literature review, no research has been
found for position optimisation of photogrammetry systems in
reconfigurable manufacturing systems based on their digital
twin and hence, this paper is novel in the following aspects.
Firstly, it is the first systematic analysis in camera positioning
in a production environment, quantifying the target visibility
through a FoV evaluation, which would help to remove manual
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skill requirement, and reduces safety risks. Secondly, it is
the first holistic optimisation approach including all possible
movement and interaction in the entire production time span
within a digital twin, enabling in-process metrology simulation
early in system design, as well as in parallel with physical
installation.

III. FOV VISIBILITY EVALUATION

This section addresses the FoV visibility evaluation using
point cloud registration techniques. The digital twin of the
assembly cell and V-STARS system are established in Visual
Components and described in Section III-A, followed by the
point cloud identification based on Gaussian mixture models
outlined in Section III-B. Finally, point cloud alignment is
implemented in a coarse-to-fine manner as detailed in Section
III-C.

A. Digital Twin Modelling and Reconfigurable Manufacturing
Work Cell

A digital twin presents all the digital information of a
physical factory and accompanies the factory through its
whole production lifecycle, and the digital modelling can be
realised in commercial simulation packages, such as Process
Simulate [31], Gazebo [32] and Visual Components [33] etc.
In this paper, the digital twin platform is built in the Visual
Components environment.

The example taken here is a generic assembly work cell,
as shown in Fig. 2, in a reconfigurable manufacturing system
which supports multiple products within a product family. The
rectangular frame can be configured with different tooling to
suit the assembly of different products. As long as the product
family shares commonalities in size and build philosophy, a
reconfigurable assembly system can be used. A similar tooling
system was presented in [34], [35]. As presented in Fig. 2, the
digital twin built in Visual Components replicates the physical
layout of the assembly work cell. There are two Kuka KR270
ultra robots located in the cell as shown in the physical layout
in Fig. 2 (a) and Fig. 2 (c), and the virtual environment in
Fig. 2 (b) and Fig. 2 (d). The task for the manipulator is to
configure a jig frame, with an attachable board to support the
product’s profile, through a pick-and-place process.

The digital twin first starts as loosely aligned simulation that
validate the system design. Through positional data input, it
is then aligned with the physical counterpart more accurately.
The loosely defined digital twin would already have mean-
ingful reference coordinate systems, whether that is the datum
system of the frame, or the base frame/world frame of a robot.
The digital twin is used for two purposes, one is to simulate
the camera FoV, and the other is to put the captured data into
a meaningful reference system. In the experiment validation
in Section V-A, the layout positional data are acquired via the
robot programs, hence maintaining a good level of alignment
between the physical and digital systems.

During assembly, the position of the frame, the profile
board and the manipulator are monitored by a photogrammetry
system, which consists of two V-STARS cameras as displayed
in Fig. 2 (e), Fig. 2 (f) and Fig. 2 (g). The camera is simulated

as 3D scanners in the digital twin model as given in Fig. 2 (e)
to represent the physical cell setup as illustrated in Fig. 2 (g).
In the digital twin, cameras output the ASCII-data including
point cloud positions and their corresponding colours.

Regarding reconfiguration, the components with a common
interface are able to be loaded and unloaded robotically. The
V-STARS photogrammetry system is utilised to accurately
position the profile boards to the target frame. Nevertheless,
it is necessary to investigate the FoV coverage over the target
frame to guarantee the assembly quality. In this paper, we
focus on the pick-and-place of profile boards in a single work
cell and demonstrate optimisation framework for the FoV
visibility during the dynamic configuration process.

B. Point Cloud Identification

Through the production lifecycle, the visual servo control is
usually considered as a key measurement assistance to guar-
antee the assembly quality. However, the region of interest can
be blocked by other autonomous devices, such as manipulators
and AGVs. Based on the digital twin, production processes can
be replicated and simulated in a virtual environment, including
the V-STARS photogrammetry camera.

Given the digital twin established in Visual Components,
the nominal frame point cloud (based on its CAD model) can
be retrieved by cropping the overall work cell mesh model as
illustrated in Fig. 3 (C) and Fig. 3 (D). In addition to this,
the reference position of the frame can also be obtained. With
a defined camera position vector ξc = [ξcx, ξ

c
y], where ξcx and

ξcy are the x coordinate and y coordinate, respectively, point
cloud is scanned as shown in Fig. 3 (a).

In order to extract the frame from the overall point cloud,
DBSCAN (Density-based spatial clustering of applications
with noise) [36] is employed to cluster the overall point cloud.
As shown in Fig. 3 (b), it groups and categorises four clusters,
which are part of robot (dark blue), frame (red), end-effector
stand (pink) and power cabinet (light blue).

After clustering, the overall point cloud is divided into
several clusters with no identification. Therefore, it is impor-
tant to distinguish each part and find the target frame point
cloud. Using EM-GMM algorithm (Expectation Maximisation
of Gaussian Mixture Models) [37], the frame point cloud can
be automatically recognised. Once the training is finished, it
does not need to be trained again. For establishing the GMM
models, 500 point cloud datasets were used, which consist of
geometry cluster centres and manually marked corresponding
labels. Note that each cluster centre is calculated relative to
the V-STARS camera position. After training, given input point
cloud clusters, the frame can be chosen based on the largest
probability output from the trained GMM models.

C. Coarse-to-fine Registration

After identifying, the frame is extracted from the scanned
point cloud as indicated in Fig. 3 (c). The next step is to
register two point clouds, namely the identified point cloud
(blue) and the nominal frame point cloud (yellow). The
nominal frame point cloud is obtained by extracting the STL
model from the digital twin environment as shown in Fig. 3
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(C). STL model

(D). Frame (A). Physical side

(B). Digital twin(a). Scanning

(b). Clustering

(c). Identifying (d). Target importing (e). Downsampling (f). Normal & FPFH

(i). Feature matching

(g). ICP registration

Fig. 3: The whole procedure of the Fov evaluation. The target frame (as given in Fig. 3(D)) is obtained from the stl model
as shown in Fig. 3(C). Note that the stl model is derived from the digital twin of the physical layout as represented in Fig.
3(B) and Fig. 3(A), respectively. In addition, the evaluation procedure consists of scanning (Fig. 3(a)), clustering (Fig. 3(b)),
identifying (Fig. 3(c)), target importing (Fig. 3(d)), downsampling (Fig. 3(e)), feature extraction (Fig. 3(f)), feature matching
(Fig. 3(i)) and iterative closet point registration (Fig. 3(g)).

(d). Next, a fast global registration algorithm is used to roughly
align the two point clouds and the error objective function is
defined as

ε(T , L) =
∑

(p,q)∈S

l(p,q)||p− T q||+
∑

(p,q)∈S

ψ(l(p,q)), (1)

where S = {S|(p, q) ∈ S, p ∈ P, q ∈ Q} is the collection of
correspondences. p and q are matching points in point clouds
P and Q, respectively. Moreover, in order to minimise the error
objective function, ψ(l(p,q)) is denoted as a prior and defined
as

ψ(l(p,q)) = µ(
√
l(p,q) − 1)2. (2)

where µ is chosen as the diameter of the largest surface. The
term l(p,q) can be calculated from the partial derivative of
the error function with respect to each l(p,q). Hence, the term
ψ(l(p,q)) can be obtained.

The optimisation is performed iteratively between the coef-
ficients l(p,q) and the transformation matrix T

T =


1 −γ β a
γ 1 −α b
−β α 1 c
0 0 0 1

 T k (3)

with T k being the last estimated transformation and the
vector ξ = [a, b, c, α, β, γ] consisting of rotation [α, β, γ] and
translation [a, b, c]. The error objective function in Eq. 1 is a

least-square objective on ξ and it can be solved by Gaussian-
Newton method as detailed in [38]. Then, the transformation
T can be updated according to Equ. 3.

Nevertheless, before registration, the initial correspondence
set S is generated by the Fast Point Feature Histogram (FPFH)
[39]. The FPFH is derived from the PFH, which depends on
the presence of 3D coordinates and their surface normals.
Consequently, for a point p, its neighbours in the sphere with
radius r are chosen. For each point pair (pi, pj) with i, j the
index label, the Darboux frame is given as

u = ni

v = (pi − pj)× u

w = u× v,

where ni is the normal from point pi, which will be used in
the following expressions. Additionally, the angular variations
of the normals ni and nj are

β = v · n
ϕ = (u · (pi − pj))/||pipj ||
ϑ = arctan(w · ni, w · nj).

(4)

where nj is the normal from point pj .
Therefore, the FPFH of the point p can be defined as

FPFH(p) = SPF (p) +
1

M

M∑
m=1

1

dm
SPF (pm), (5)
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Fig. 4: FoV evaluation of the frame. (a) FoV evaluation of
the frame without registration. (b) FoV evaluation of the
frame with registration. Fig. 4 presents the bounding volume
information of the extracted frame point cloud. As shown
in Fig. 4 (a), without registration, the point cloud cannot be
properly aligned along coordinate axes. Hence, it is difficult
to evaluate the visibility. In contrast, after registration as
given in Fig. 4 (b), the visibility of the extracted frame point
cloud can be quantitatively estimated using bounding volume
information.

where SPF (Simplified Point Feature) is derived from the an-
gular variations in Eq. 4. In the above equation, M neighbours
of point p are taken into consideration. The distance between
a neighbour point pm and the query point p is defined as dm
in a given metric space.

In summary, for coarse alignment, two point clouds are
downsampled as indicated in Fig. 3 (e). Then, the normals
at each point are extracted and these features are described
as FPFH using KD-tree search [40] as shown in Fig. 3 (f).
Thirdly, as given in Fig. 3 (i), the registration of two points
are implemented with RANSAC (Random Sample Consensus)
algorithm [41], which is typically used for iteratively fitting
two point clouds.

Although the fast global registration could provide a rapid
alignment and significantly reduce the computational time, the
alignment still needs to be further refined. Thus, the alignment
obtained from the fast global registration are optimised using
point-to-plane iterative closest point (ICP) registration algo-
rithm. The error objective function is defined as

ε(T ) =
∑

(p,q)∈S

((p− T q)np)
2, (6)

with np being the normal from point p, obtained from the nor-
mal estimation. The point cloud alignment are further refined
as illustrated Fig. 3 (g) with point-to-plane ICP registration
algorithm.

Generally, the ICP algorithm recursively implemented over
two steps. Firstly, it locates the corresponding set S generated
from FPFH features in both source point cloud P and target
point cloud Q based on current transformation T . Secondly,
the transformation T is updated by minimising the objective
functions as given in Equ. 1 or Equ. 6 defined over the
corresponding set S.

Furthermore, after ICP registration as presented in Fig.
3, FoV visibility evaluation pFoV for the photogrammetry
system can be calculated via the bounding volume information
derived from the registration result in Section III. Based on the
geometry information as given in Fig. 4 the FoV evaluation is
defined as

pFoV = (du+dl)(xmax−xmin−ds)+(zmax−zmin)ds (7)

where du and dl are the width of the upper beam and lower
beam, respectively. In addition, ds is the width of the side
beam. xmin, xmax, zmin, and zmax are the coordinates de-
rived from the bounding volume information. Most assembly
processes consist of fixtures with simple geometry due to the
ease of fabrication, therefore the proposed bounding volume
calculation can be easily modified, and still be effective in
evaluating FoV based on different geometry information.

In fact, without registration, the retrieved point cloud model
cannot be aligned to a meaningful coordinate system as
indicated in Fig. 4a. Therefore, after the registration, the initial
point cloud with transformation can be successfully aligned to
a defined coordinate system as given in Fig.4b.

Fig. 5: Collision detection among photogrammetry system and
other components.

IV. DEEP CAMERA POSITION OPTIMISATION

The deep camera position optimisation of the V-STARS
photogrammetry system is detailed in this section. Firstly,
the learning objectives of the photogrammetry system are
presented in Section IV-A, followed by the deep Q-learning
framework for the photogrammetry camera position optimisa-
tion in Section IV-B.
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A. Learning Objectives

The learning objectives are closely related to the reward
in reinforcement learning. One basic learning objective is
that during the whole production process, the V-STARS pho-
togrammetry system will not clash with other components
in the work cell. Given that the functionality of the pho-
togrammetry system in this application is to monitor, guide
and assist assembly, its FoV should see all the retro-reflective
targets with minimal object overlapping and blindness, in order
to accurately identify and track movement. FoV evaluation
follows the workflow presented in Section III, and in this
subsection the objective regarding collision detection in VC
is given.

Collision should be monitored for the whole production
horizon. When a collision happens, the layout design should be
considered unacceptable. Collision can be detected in Visual
Components as given in Fig. 5, where the parts in clash are
highlighted in yellow.

 
 

 

 

Fig. 6: Example code of collision detection in Visual Compo-
nents.

Collision detection is implemented in a separate thread
which can be seen as a background program. As given in Fig.
6, the collision is checked for the interaction of two organised
groups. The first group is only defined for the scanner (V-
STARS) component. The second group consists of two robots,
tool stand, fence and end-effector. Once a collision is detected,
a confirmed signal will be sent to the main thread and then
the corresponding penalty will be generated.

Thus, the penalty function is defined as

pcol(ξn) =

{
0 if Vd = ∅
v0 otherwise,

(8)

where ξn is the position of the photogrammetry system, v0 is
the positive constant penalty, and Vd is the detected collection
of collision. If the Vd collision detection set is empty, there
will be no penalty, otherwise the penalty must be considered
in the camera position optimisation.

B. Deep Reinforcement Learning Optimisation

The location of the photogrammetry system is optimised
by using deep Q-learning [42]. In the learning network, the
V-STARS system is considered as an agent which observes
the current position state st = [xt, yt], chooses an action
atx, a

t
y ∈ A derived from a potential stochastic policy π,

and then transit to a novel position state st+1 with a re-
ward R(st, at), with at = [atx, a

t
y]. The actions are defined

as discrete incremental movement, such as A = {atx ∈
[−∆x, 0,∆x], aty ∈ [−∆y, 0,∆y]}, where ∆x and ∆y are
positive constants. The reward consists of two parts

R(st, at) = ωFoV pFoV − ωcolpcol, short (9)

where pFoV is obtained from the FoV evaluation at different
positions and pcol is the reward based on collision detection.
Two weighted parameters ωFoV , ωcol are added to the above
reward equation in order to flexibly adjust the learning objec-
tives, as well as to distinguish reward/penalty contributed by
each term.

These sequential decision problems are commonly inves-
tigated as a finite Markov decision process governed by a
tuple of parameters ⟨S,A, R, T, γ⟩. Thus, the Q value function
regarding a policy π is given as Qπ(s, a) = E [Rt|st =
s, at = a]. The optimal action-value function Q∗(s, a) =
maxQπ(s, a) should follow the Bellman optimality equation
[43]

Q∗(s, a) = Es′ [R(s, a) + γmaxa′Q∗(s′, a′)|s, a]. (10)

In deep Q-learning, a neural network is used to learn
the policy instead of a Q-value table [42]. The following
objective function defined by reinforcement learning should
be minimised

Li(θi) = Es,a,r,s′ [ϱi −Q(s, a; θi)
2], (11)

with θi defining the neural network consisted of two hid-
den layers. Since the point cloud data only consists of two
dimensions, two hidden layer is sufficient in capturing data
information. Compared with classic Q-learning, the parameter
θ−i in the target ϱi = r + γmaxa′Q(s′, a′; θ−i ) is maintained
constant for several iteration while learning the online network
Q(s, a; θi) by gradient descent optimisation.

V. EVALUATION

Evaluation is divided into three parts. The first experiment
given in Section V-A is to validate FoV capture between digital
twin model and physical environment. In Section V-B, the sec-
ond experiment is to test the proposed V-STARS FoV visibility
evaluation during the overall assembly implementation. Based
on the second experiment, in Section V-C, the third experiment
aims to find optimal position for photogrammetry camera in
the robotic assembly cell.

A. FoV Comparison

The FoV of the V-STARS DynaMo D12 camera is 72deg.×
58deg. by default and can provide highly accurate 3D mea-
surements (10 µm/m within 30 m). To obtain the spatial



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Fig. 7: Scaling of the V-STARS photogrammetry system. The
V-STARS must be calibrated before measuring. Hence, the
scale bar is used for calibration as indicated in red dashed
block.

information during assembly, two D12 cameras are employed
in the photogrammetry system, where two-dimensional images
are transformed into 3D measurement using re-section and
triangulation.

(a)

(b)

Fig. 8: FoV comparison between physical side and its digital
twin. (a) FoV obtained from the V-STARS system located in th
work cell. (b) FoV derived from the virtual V-STARS system
in digital twin.

In Fig. 7, the identified retro-reflective targets on the frame
are indicated in green. A scale bar is also presented as a scaling

reference as shown in Fig. 7 in the red rectangle. In addition,
the frame is captured by the D12 camera in real world as
shown in Fig. 8 (a). Meanwhile, at the same position in the
digital twin, the frame point cloud is scanned as presented
in Fig. 8 (b). Both are obtained with identical configuration,
where the FoV parameters and the tilt angle are the same.

As given in Fig. 8, the point cloud in Fig. 8 (b) directly
indicates the blinded areas of the frame as shown in brown
and blue dashed circle, compared with the image captured
in Fig. 8 (a). The V-STARS photogrammetry system aims to
create a stereoscopic vision of the target frame in a three-
dimensional space, while in our work, the point cloud obtained
from the virtual V-STARS model with the same FoV is used
for evaluating the target visibility. Hence, by comparing FoV
visibility between the virtual environment and the physical
side, the digital twin model of the V-STARS system can
effectively represent its functionalities in the real world.

B. Lifecycle Single Episode Learning
Given that the digital twin accompanies the physical facili-

ties during the entire production horizon, the camera position
of the photogrammetry system layout should be considered for
a lifecycle optimisation. Hence, the single episode lifecycle
learning is detailed in this subsection.

The task of this work cell is to pick up three profile boards
and assemble them to the frame. The measuring algorithm
for V-STARS photogrammetry system is based on bundle
adjustment, which is refining 3D geometry coordinates, rel-
ative motion parameters, and camera optical characteristics
simultaneously given a set of images containing co-visible
features. More specifically, bundle adjustment aims to min-
imise the reprojection errors between the observed image
location and predicted image point using nonlinear least-
square algorithm. Nevertheless, since minimising reprojection
error is a maximum likelihood estimation, the nonlinear least-
square algorithm could be overfitting, if the FoV coverage is
too small. Therefore, as presented in Fig. 7, the larger the
FoV covers the frame, the more retro-reflective markers are
captured by the V-STARS system, which would lead to more
robust and accurate measurements.

Real-time data can be captured by VSTARS M-Mode mea-
surement. However, within the assembly processes, and in
the layout planning phase, real-time measurement is often not
required. Instead, six key measurement steps within the robotic
operation is considered as shown in Fig. 10. In addition, exact
robot path can be replicated and predicted in the digital twin
with VRC (Virtual Robot Controller) or add-on RCS (Robot
Controller Simulation) module. So that all possible robot
poses within the production cycle are simulated. Evidently, the
manipulator blocks frame visibility while assembling profile
boards. In each row of Fig. 10, the learning procedure includes
V-STARS relocation, point cloud collection, frame identifica-
tion and coarse-to-fine registration as detailed in Section IV. If
one wishes to facilitate a near real-time application, multiple
snapshots at the rate of controller or camera cycle-time can be
considered within the proposed FoV evaluation method with
computational power balancing between downsampling and
optimisation exploration steps.
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a)

b)

c)

d)

e)

f )

Fig. 9: Operation cycle experiment of a single episode learning. One operation cycle consists of six FoV evaluations regarding
different robot poses in a single episode learning.

As shown in Fig. 9, due to the profile board pick-and-place
operation, the robot poses lead to various FoV coverages of
the photogrammetry system as given in the second column in
Fig. 9. Correspondingly, the clusters are identified in the third
column. The evaluation result of each target frame is given in

the forth column. For example, while picking the third profile
board from the stand as given in Fig. 9 (e), the target frame
visibility is much larger than the one in Fig. 9 (b), where the
manipulator assembles the first profile board to the frame.

The single episode learning result is presented in Table
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TABLE I: FoV evaluation result corresponding to Fig. 9

Num. min x min y min z max x max y max z FoV Eval.
a 3.00088 -0.408994 0.088762 3.73141 2.41133 2.36868 792.0559
b 2.99278 -0.408994 0.088762 3.73141 1.98764 2.36868 707.3186
c 3.00346 -0.408994 0.088762 3.73141 2.70085 2.36868 849.9605
d 2.41384 -0.408994 0.088762 3.73141 1.73632 2.36868 656.7157
e 2.99278 -0.408994 0.088762 3.73141 2.65957 2.36868 841.7047
f 2.99278 -0.408994 0.088762 3.73141 2.00658 2.36868 710.7683

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 10: Real-world experiment with optimised V-STARS photogrammetry system. The picking and placing profile board is
implemented as shown in Fig. 10. (a) Targets captured (in green) while profile board picking. (b) (c) Targets captured (in
green) while profile board placing. (d) Profile board picking regard Fig. 10 (a). (e) (f) Profile board placing corresponding to
Fig. 10 (b) and Fig. 10 (c), respectively.

TABLE II: FoV evaluation comparison between the optimal position and the other positions corresponding to Fig. 13.

Num. a b c d e f Optimal
x 7170.875 7770.875 8370.875 7170.875 7770.875 8370.875 7951.232
y 1903.185 1903.185 1903.185 1503.185 1503.185 1503.185 1619.778

FoV Eval 467.14 1265.26 998.20 635.74 1260.87 1173.20 1308.22

I as indicated by the number in the first column. During
the production cycle, different robot assembly positions result
in different FoV coverages of the V-STARS system. The
largest target frame visibility is shown in row (c) while the
manipulator is picking up the second profile board. In contrast,
the minimum is indicated in the row (d) when the robot
is assembling the second profile board. Therefore, in order
to find an optimal position of the V-STARS system in the
whole production horizon, the entire process and possible
manipulator poses are required to be investigated.

C. Deep Camera Position Optimisation of the V-STARS Pho-
togrammetry System

In this subsection, the position of the V-STARS system is
optimised using deep Q-learning. The camera tripod is con-
strained in an area as shown in the two-dimensional projection

of the whole assembly work cell, given in Fig. 13. Besides the
reward scheme presented in Section IV, the V-STARS cameras
in the digital twin are given additional punishment, if their
locations are out of the predefined area.

Regarding the technique aspect, the Visual Components
environment class for V-STARS system layout optimisation
created in this work is inherited from the environment class in
the Python package Stable-Baselines3 [44], which contains a
number of highly integrated implementations of reinforcement
learning algorithms in PyTorch. Moreover, the reward of each
episode is calculated from the point cloud collection after
carrying out the step function [44] with an action (V-STARS
relocation) as shown in Section V-B. Finally, to accelerate the
computational process, NVIDIA GeForce GPU (GTX 1080) is
used to accelerate the deep Q-learning optimisation. In terms
of the hyperparameters, there are factors such as, learning
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(a) Final value, 0.5.
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(b) Final value, 0.05.
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(c) Final value, 0.01.

Fig. 11: Optimising performance comparison regarding the different final values of random action probability.
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(a) Initial state P1 (6669.232,
2070.778)
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(b) Initial state P2 (8672.273,
1364.518)
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(c) Initial state P3 (8672.443,
2070.860)

Fig. 12: Camera position optimisation for V-STARS photogrammetry system regarding the different initial states.

rate (0.0001), discount factor(0.99), and final value of random
action probability (0.01). The learning rate determines how
much the neural network learns in each iteration. The discount
factor calculates the future discounted reward. These two
parameters define the camera position optimisation model. The
parameter selection is derived from the original DQN code in
[45]. However, the final value (epsilon) will be discussed and
balanced for efficiency and implementation practicality in the
following experiment.

cba

d e f

P1

P2

P3

Fig. 13: Comparison between the optimal position and the
other positions. The optimal position learned from the deep
Q-learning is shown in green. In contrast, six more positions
are presented in red dots.

As the epsilon-greedy strategy is used in deep Q-learning,
choosing a proper final value of random action probability
is crucial in deep Q-learning. In Fig. 11, the whole learning
episode is set to 10 × 105 and three different final values
(epsilon) for the camera position optimisation are verified. For
each final value, we test five times and presented their means
and standard deviations in Fig. 11a, Fig. 11b, and Fig. 11c,
respectively.

In Fig. 11a, although the learning process converges at
around 4.5 × 105, the maximised reward is about 1000, which
is much lower compared with the other two final values. In
Fig. 11b, we choose a smaller final value (0.05) of random
action probability. Despite the fact that the maximised reward
is increased, it starts to decay again after convergence. As
given in Fig. 11c, the learning process converges at about
6 × 105-th episode, which is slower than the convergence
given in Fig. 11a. However, the best reward is much larger
and it doesn’t decay after convergence. Therefore, by using
the trained deep Q network model in Fig. 11c, the optimal
position is obtained from the learning history and it is pre-
sented in Fig. 13 as shown in green dot, at the position
of (7951.232mm, 1619.778mm). Compared to the other V-
STARS positions in red dots as shown in Table II, the green
dot position has the most FoV evaluation rewards.

In addition, the optimal solution in the physical layout is
tested. Before the implementation, the target environment (also
known as the driver file) is already established, where several
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images from different locations and camera orientations were
used. The V-STARS system is set to the single camera mode
(S-Mode), which allows a single camera to be triggered at dis-
crete events to obtain target information. During the assembly
processes, the V-STARS system can operate in S-mode, as well
as the multi-camera mode (M-mode), which allows cameras to
take pictures continuously and monitor featured objects in real-
time. Each camera in M-mode requires maximum target frame
visibility within its FoV, and the proposed camera positioning
optimization framework is still applicable. In Fig. 10, the
overall assembly process of a profile board is presented. The
images captured for picking and placing are given in Fig.
10(a)-(c). Correspondingly, the side view of the assembly
process is shown in Fig. 10 (d)-(f). Note that, in Fig. 10 (b)
and Fig. 10 (e), the manipulator holding the profile board is
approaching the assembly position.

TABLE III: Optimised camera positions corresponding to the
different initial states

Initial state P1 P2 P3

Opt. Position x 7951.232 7996.443 7987.273
Opt. Position y 1620.778 1627.860 1641.518

FoV Eval. 1308.22 1310.77 1297.63

In order to test the impact of initial states on the perfor-
mance of the proposed camera position optimisation frame-
work, an additional experiment is implemented as shown in
Fig. 12. Three initial states are chosen from the box area
as shown in Fig. 13 (blue dots). The final value of random
action probability is defined as 0.01 according to the previous
experimental result. As presented in Fig. 12b, it shows that the
camera position learning process converged faster compared
with the convergence performance in Fig. 12a and Fig. 12b.
However, in Fig. 12c, the optimal solution appears earlier
than the others. Another observation is that three camera
optimisation processes do not converge to the exact same
location, and the maximum deviation between solutions is
45.928mm according to Table III. The deviation is within the
exploration step set for the optimisation process, which is at
50mm per step. While reducing the exploration step can bring
a smaller solution deviation, it can cause the exploration to be
stuck in the collision zone, and fail to reach to a solution. More
importantly, it becomes less practical to implement manually.
From a practical point of view, the camera placement would
be not tracked and monitored. Therefore a larger placement
tolerance should be allowed. The maximum solution deviation
is close to the actual implementation tolerance one would
expect with manual camera placement. If comparing the FoV
evaluations of three learning processes in Table III (third row),
there is less than 1% difference observed. Hence, one can
conclude that the initial states have a neglectable impact on
the optimisation process.

VI. CONCLUSION

In this paper we propose a novel deep dynamic camera
position optimisation framework for photogrammetry system
of a reconfigurable manufacturing assembly cell. The optimi-
sation framework is based on the digital twin of a robotic

assembly work cell. In addition, the camera FoV for the
frame visibility as well as collision detection are taken into
consideration for the camera position optimisation during the
dynamic configuration process. The deep Q-learning algorithm
is used to automatically optimise the camera position given
the penalties of FoV visibility evaluation and collision de-
tection. In the experiment, feasibility of the virtual camera
model in stead of its physical side for FoV evaluation is
verified, following by the lifecycle single episode learning. The
camera position is optimised and demonstrated in real-world
implementation, in which the maximum assembly deviation
magnitude of 0.073mm can be achieved.

Without the digital model, for V-STARS photogrammetry
system configuration, at least twelve images should be manu-
ally taken and chosen for establishing the measuring environ-
ment. In addition, during the implementation, operators should
guarantee that the FoV is not blocked throughout the entire
manufacturing process. For safety, operators should also make
sure that there is no collision between photogrammetry devices
and other components in the cells. To provide decent FoV
coverage, the above-mentioned configuration procedure should
be repeated several times. By taking advantages of digital twin
techniques, the photogrammetry camera position optimisation
can be implemented in a virtual environment which replicates
the physical facilities during the whole product lifecycle.
This could significantly simplify the configuration processes
and avoid manual work for scaling, recalibration and camera
position allocation.

The approach is generic and suitable for a range of applica-
tions. Firstly, it can be extended to other vision system appli-
cations that requires quality FoVs. Secondly, most assembly
processes consist of fixtures with simple geometry due to the
ease of fabrication, therefore the proposed bounding volume
calculation can be easily modified, and still be effective.
Thirdly, uncoupled position optimisation ensuring maximum
visibility of each camera would be applicable if using more
than one camera. In addition, near-real-time application is
possible with appropriate downsampling and iterative steps.
Lastly, upon changes within a reconfigurable manufacturing
environment, the existing assets rearrange and relocate instead
of a complete rebuild, therefore, the only update required
is the positional layout, which includes the camera position
optimisation process.

Fig. 14: The digital twin modelling of the Leica laser tracker
in VC. If the laser is blocked, the line will be shown in red,
otherwise it will be in green.
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Evaluating actual camera visibility in the physical world is
another challenge, since the camera recognise retro-reflective
markers, the marker arrangement on the target object would
become the main uncertainty in FoV evaluation. The proposed
framework aims to maximise the object visibility as a whole in
its FoV. However, to make the algorithm more lean, research in
mapping of good/bad area for marker allocation on the target
object, and how that would tie into the proposed optimisa-
tion framework are being recognised and under development.
Besides photogrammetry systems, there are other metrology
devices such as laser radars (point cloud, similar to this
work) and laser trackers (as presented in Fig. 14). Currently,
we are focusing on addressing the position optimisation of
all three typical metrology devices together based on our
novel designed Omnifactory (please see our official website
https://www.omnifactory.com/)
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