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Accelerating relaxation through Liouvillian exceptional point
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We investigate speeding up of relaxation of Markovian open quantum systems with the Liouvillian exceptional
point (LEP), where the slowest decay mode degenerates with a faster decay mode. The degeneracy significantly
increases the gap of the Liouvillian operator, which determines the time scale of such systems in converging
to stationarity and thus accelerates the relaxation process. We explore an experimentally relevant three-level
atomic system whose eigenmatrices and eigenspectra are obtained completely analytically. This allows us to
gain insights into the LEP and examine the respective dynamics with details. We illustrate that the gap can be
further widened by Floquet engineering, which further accelerates the relaxation process. Finally, we extend this
approach to analyze laser cooling of trapped ions, where vibrations (phonons) couple to the electronic states. An
optimal cooling condition is obtained analytically, which agrees with both existing experiments and numerical
simulations. In this paper, we provide analytical insights into understanding LEP as well as controlling and
optimizing the dissipative dynamics of atoms and trapped ions.
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I. INTRODUCTION

Open quantum systems coupled to environments will relax
toward a stationary state. The relaxation processes have rich
properties from both dynamic and thermodynamic perspec-
tives. Often, an important question is to control the relaxation
time [1-4], for instance, on a time scale as short as possible
[see Fig. 1(a)]. This problem is of great relevance to cases
where one is concerned with properties of stationary states,
such as ground state laser cooling [5—10], or aims to generate
quantum states for quantum applications [11-14].

Starting from an arbitrary initial state, the relaxation time
scale is largely characterized by the slowest decay mode of the
Liouvillian operator. The gap is defined as the modulus of the
real part of its eigenvalue A; [15-17], as depicted in Fig. 1(b).
Therefore, relaxation speeding is achieved through increasing
the gap. An alternative approach to speed the relaxation is of-
fered by the so-called Mpemba effect [ 18-23], where a unitary
operation on the initial pure state removes its overlap with the
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slowest decaying mode [1,2]. This transformation can be ex-
actly constructed provided that the initial state is a pure state.

In this paper, we show that, for an arbitrary initial state,
if the slowest decay mode and its corresponding eigenvalue
coalesce with a faster decay mode, one can maximize the
gap and thus accelerate dynamics to reach stationary states.
Here, we exploit the nature of exceptional points (EPs),
where two or more eigenvalues of a non-Hermitian operator
and their corresponding eigenvectors coalesce [24,25]. The
origin of non-Hermiticity is the coupling between the sys-
tem and the environment. A Liouvillian superoperator, which
captures the time evolution of an open quantum system, is
non-Hermitian. Therefore, it can exhibit EPs [referred to as
Liouvillian EPs (LEPs)] [24,26]. Properties of LEPs, with
diverse unusual effects, have attracted considerable current at-
tention [27-29], such as dissipative phase transition [30-32],
the non-Hermitian skin effect [33], signatures of LEPs in
the dynamics [34-36], in a continuous variable system [37],
and in state preparation [38]. The authors of Ref. [35] have
uncovered the existence of LEPs in the dynamics of a quantum
thermal machine in the form of critical decay toward the
steady state, in analogy to critical damping in a harmonic
oscillator. In Ref. [29], the authors have studied the opti-
mization of dynamics in the context of LEPs. For a two-level
quantum system, they have showed the optimum relaxation
rate is linked with LEPs, and a significant speedup can be
achieved with a slight compromise in the target state purity.
These studies show that LEPs play an important role in a
variety of optimization problems [39—41].
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FIG. 1. (a) For an open quantum system with an arbitrary initial state, the time scale of approaching the final stationary state py is
related to the slowest decay mode (with eigenvalue A;) of the Liouvillian superoperator. By tuning the parameter of the system near the
Liouvillian exceptional points (LEPs), where both the slowest decaying mode and the corresponding eigenvalue are merged with a faster
decaying mode and the corresponding eigenvalue (for instance, A,), the system dynamics approaches the stationary state in a much faster way.
(b) This feature is evident from the Liouvillian spectrum. The stationary state p;, is characterized by the largest eigenvalue 1, = 0. The other
eigenvalues, characterizing the decay modes, have a nonpositive real part and always appear as complex conjugates. The Liouvillian spectral
gap (g = —Re[X]) determines the relaxation time scale and could reach its maximum value at the LEP. (c) and (d) The gap at the LEP can be
further increased by the Floquet method (red line). In contrast with the static case (blue line), the gap under time-periodic modulation can be
significantly increased, which means that relaxation process will be accelerated by applying the Floquet method.

Here, we show that, when the stationary state of the system
is unique and independent of system parameters, one can set
the parameters at the LEP to speed up the relaxation process
significantly. The basic mechanism underpinning this paper
is based on the fact that, at LEPs, both the slowest decay
mode and corresponding eigenvalue coalesce with a faster
decay mode and corresponding eigenvalue. In addition, we
find that relaxation processes can be further accelerated by pe-
riodically modulating the dissipation strength, i.e., the Floquet
modulation can overcome the gap limit of the static case and
realize faster relaxation [see Figs. 1(c) and 1(d)]. We apply
our approach to analyze ground-state laser cooling based on
sideband transitions and electromagnetically induced trans-
parency (EIT) and obtain the optimal conditions analytically
in the context of LEPs. Therefore, in this paper, we reveal
the importance of LEPs in practical applications and provide
insights into seeking optimal conditions in quantum control of
open quantum systems.

This paper is organized as follows. In Sec. II, we introduce
the master equation of the Markovian open quantum sys-
tems. A general framework that connects to its dynamics and
eigenmatrices of the Liouvillian superoperator is provided.
This provides an intuitive picture to understand the relaxation
and the gap. In Sec. III, we study the dynamics of dissipa-
tive three-level system. Eigenmatrices and eigenvalues of the
corresponding Liouvillian superoperator are obtained analyt-
ically. Based on the analytical calculation, we reveal that the
relaxation toward to stationary state can be accelerated by ex-
ploiting static and Floquet-modulated LEPs. Next, in Sec. IV,
applications for ground-state laser cooling are demonstrated.
Two experimentally relevant scenarios, i.e., sideband cooling
and EIT cooling, are examined. Optimal cooling conditions
are obtained at corresponding LEPs. We conclude in Sec. V.

II. LIOUVILLIAN GAP, DYNAMICS, AND LEP

We consider an open quantum system evolving under
Markovian dynamics, governed by master equation p(t) =
Lp(t), where the generator £, normally called the Liouvillian

superoperator, has the form [42,43]:
1 .
Lp = —i[H, Jupd! — ={J1 T, p} ). 1
p = —i p]+2a:< Iy = 5Wa p}) (1

Here, p(t) is the state of the system at time ¢, H is the sys-
tem Hamiltonian, and J,, are quantum jump operators which
provide coupling of the system to the environment. Since the
Liouvillian £ acts linearly on p(¢), one can obtain information
about the relaxation in terms of its eigenmatrices R; and the
corresponding complex eigenvalues A; via the relation LR; =
AiR;. Note that, due to the Hermiticity preserving of L, if A;
is complex, A} must also be an eigenvalue of £ [1,26,31,44].
Therefore, the eigenvalues are symmetrically distributed with
respect to the real axis, as shown in Fig. 1(b).

The stationary state of the system under consideration is
then given by the density matrix pg such that Lo, = 0, i.e.,
pss = Ro, which corresponds to the zero eigenvalue Ay =0
and is independent of the initial state. If the eigenvalues
are ordered by decreasing their real parts, it is known that
the negative real parts of the eigenvalues [45], Re[);-0] <
0, determine the relaxation rates of the system toward the
nonequilibrium stationary state, and the corresponding eigen-
matrices R;.o are called decay modes [16,46], while the
imaginary parts describe the oscillatory processes which may
take place. We can then write the time dependence of the
density operator from an initial state pj, as

p(t) = e pin = ps+ ) aid"'R;, )
i>1

where a; = Tr[L;p;,] are coefficients of the initial state de-
composing into the eigenmatrices of £ with £7L; = AfL;.
Here, R; and L; are referred as right and left eigenmatri-
ces (eigenmodes), respectively, and can be normalized by
Tr[L;R;] = §;;. The trace preservation of the dynamics im-
plies that Tr[p(t)] = Tr[ps] = 1 = Tr[LoRo], and thus, Lo
is the identity (Lo =I). It also implies that Tr[R;>] =0,
which means other right eigenmatrices do not correspond
to quantum states. A particularly interesting case is when
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eigenvalue A; is real, where the corresponding eigenmatrix can
be diagonalized [31]. We can rewrite it as the superposition of
eigenstates from the diagonalization [31]:

R; x Ri+ —R;, 3)
with
p'l>0 . . .
RY =Y plwillwil,
Pn<0

; “

Ry =" pl v

where |1ﬂ,‘;) are eigenvectors of R; with eigenvalues pf1. With
this definition, Rii are arranged to proper density matrices. If
A; is complex, one can define a pair of eigenmatrices R; + RIT
and i(R; — Rj); then their corresponding eigenvalues are real
(i.e., the real part of A;). This allows us to diagonalize their
new eigenmatrices.

A fundamental role in the system dynamics is played by
R, which possesses the slowest decay rate —Re[A;] on the
condition a; # 0. Then the Liouvillian gap, defined by g =
—Re[A1], is thus an important quantity determining the time
scale of the final relaxation to the stationary state [15,47].
Consequently, for long times, one has

o) = pssll o e, &)

where ||A|| = /Tr[AA"] is the Hilbert-Schmidt distance.

If the slowest decay mode X1;(R;) coalesces with a faster
decay mode [for instance, A,(R,)] at the LEP, the maximum
gap (i.e., the optimum convergence rate) is achieved naturally.
This means that we can actively engineer the relaxation to
the stationary state with the fastest convergence rate by tuning
the parameters of the system approaching to LEP. Generally,
this steering will also change the stationary state to which
the system relaxes. However, in certain quantum applications,
the dissipation inevitably leads the system into a dark state or
manifold [48], or the target stationary state might be parame-
ter insensitive [11]. In those cases, long relaxation time scales
become impractical or even harmful to the coherence. There-
fore, quickly approaching the steady state becomes necessary
in these applications. In the next section, we demonstrate that
our LEP speed-up approach is viable in those cases.

III. ANALYTICAL LEP THEORY OF DISSIPATIVE
THREE-LEVEL SYSTEM

A. The model

Consider a simple dissipative three-level system of
Fig. 2(a) [48]. The state |b) resonantly couples to state |c) with
Rabi frequency 2; state |c) decays to state |a) by emitting a
photon with decay rate y. For the model under consideration,
we have the Hamiltonian:

Q
H = =(b){c| + Ic} {b]). Q)

and a jump operator J = ,/y|a){c|. This process results in
state |b) decoupled from the coherent collective evolution
and eventually decaying to the stationary state |a), which

1.0

(@)

e _

0.8

|a)

/9

FIG. 2. (a) Schematic of the system; y denotes the emission rate
of the |c) level to |a) level, and 2 denotes the coupling rate from
an resonant drive between transition |b)-|c). (b) Real and imaginary
parts of the Liouvillian spectra of the three-level system shown
in (a). The red solid lines correspond to A;, and the Liouvillian
exceptional point (LEP) is indicated with a vertical dashed line.
(c) The Liouvillian gap as a function of y /2. (d) Relaxation process.
The system decays exponentially to the final stationary state. The
numerical integration is performed in the underdamped (UD) regime
with y = Q (dot-dashed green line), in the overdamped (OD) regime
with y = 72 (dashed blue line), and in the LEP with y = 2/ (solid
red line).

is obviously parameter independent. Qualitatively, there will
be competition between the reversible coherent coupling be-
tween |b) <> |c) at frequency 2 and the population loss of
|c) at a rate y. If there are no thermal photons to drive the
la) — |c) transition, the decay to |a) is unidirectional, and
hence, |a) is a dark state. This simple model has been applied
to engineer quantum states in all the forerunning platforms
for quantum information processing [11,49-55]. Furthermore,
as we show below, phonon ground-state cooling provides a
closely related example of this model [5,56-58].

B. The Liouvillian spectra and LEPs

For this level system, the stationary state of the system is
always |a), no matter how the initial state and parameters of
the system change. If the goal is to prepare or use this state
for related applications, it is unnecessary and even harmful
to wait for long relaxation time scales. In this instance, the
most practical construction is to set the optimal parameters to
ensure approaching the stationary state on a time scale which
is as short as possible. It can be obtained quantitatively by
solving the spectrum of Liouvillian superoperator £, as shown
in Fig. 2(b), and it is {0, —(y £ «)/4, —(y £ «)/2, —y/2},

with k = /y2 — 4Q2. Consequently, the spectrum gap is
1
g§=Re Z(V—K) . )

Equation (7) highlights different trends in the function of
y /K2, as shown in Fig. 2(c). When y < 2Q, the gap (=
y /4) is linearly increased with y until y = 2%, i.e., the
special LEP. If y > 2, on the other hand, the gap will de-
crease with y /2 which provides a tunable dissipation channel
[12,13,36], and recently, it has been widely used to simulate

043036-3



ZHOU, YU, WU, LI, ZHANG, LI, AND CHEN

PHYSICAL REVIEW RESEARCH §, 043036 (2023)

parity-time (P7)-symmetric Hamiltonians with postselection
of the jump results [27,36,54,59]. Obviously, the gap reaches
the maximum value gn.x = Y /4 = €2/2 at the LEP. As shown
in Fig. 2(d), the optimum relaxation rate is linked with LEPs,
and a significant speedup of our model can be achieved
by tuning the parameters approaching the LEP. The idea of
EPs being related to the critical decay rate appears in the
non-Hermitian Hamiltonian system [25] and extends to the
non-Hermitian Liouvillian [29,35,37,60]. In Ref. [35], authors
discuss that the optimal relaxation rate linked with LEPs is
rooted in the time-polynomial terms appearing in the dynam-
ics at the LEP, where it behaves as a critical damping making
the boundary between the underdamped (UD) to the over-
damped (OD) dynamics in analogy with a classical damped
harmonic oscillator [11,26]. From a different perspective, we
show this property stems from the slowest decay eigenmode
coalescing with a faster one at the LEP.

As shown in Fig. 2(b), structures {—(y *«)/4} and
{—(y £«)/2, —y/2} of the spectrum reflect the two possible
relaxation times of the system. Both of them get their minima
value when k = 0, )Ll(z) = )L3(4), and )LS = )L6 = )\.7 = )\.8, giV—
ing rise to two second-order and a third-order LEPs, both of
which have a square-root structure [25,35] (see Appendix A
for the exact form of the eigensystem of Liouvillian £). Note
that, when « = 0, R] = R3, Rz = R4, and R5 = R6 = R7 75
Rg, which means that the corresponding eigenmatrix Rg can-
not coalesce with Rs ¢ 7. Therefore, Ag does not play a role in
the x = O LEP.

To investigate the physical connotations of the two types
of LEPs, we reduce the master equation to the nonzero matrix
elements of p:

) Q2

Pob = l?(pbc — Pcb) (8a)
) Y

Pcc = —V Pcc — li(pbc - ,ch), (Sb)
) Y

Poe = =V [20pc + lz(pbb = Pec)s (8c)
lbaa = Y Pcc- (Sd)

The coherent terms couple the populations pp, and p. to the
coherence pp. and p.;, but have no contribution to the dynam-
ics of coherence pp. + pcp because Ppe + Por = —¥ /2(0Ope +
Peb), Which is only exponentially damped dynamics with de-
cay rate y /2. This means that we cannot characterize the
LEP by observing the dynamics of (pp. + pcp). Meanwhile,
as shown in Eq. (8a), the damping term, proportional to y,
does not affect pp,. It contributes to the decay of p. and
to the corresponding increase of p,,. The competition be-
tween the coherent coupling and the dampling term of two
states {|b), |c)} induces the third-order LEP (with the av-
erage decay rate y/2), which is the phase transition point
of the passive P7 Hamiltonian [54]. Their contributions
to |a) give rise to the second-order LEP (with average de-
cay rate y/4 and half-rotating frequency of the third-order
LEP).

There are only three independent variables in Eqgs. (8a)—
8d): x = ppp, ¥ = Pee, and z = —i(ppe — pPeb), Which describe
the dynamics of the subsystem {|b), |c)}. With these new

T 0.0

FIG. 3. The dynamics of x, y, z. Green line: oscillatory regime
for y = 0.2€2. Red line: Liouvillian exceptional point (LEP) for y =
2Q2. Blue line: overdamped regime for y = 1092.

notations, we find the dynamics:

X 0 0 -9\ [«
il=1lo - a2 |[y] 9)
z Q - -yi2)\z

Eigenvalues of the 3 x 3 matrix in Eq. (10) are —(y F
k)/2 (= As6) and —y /2 (= A7). The eigenvalues can be real
or complex, leading to the two different regimes qualitatively
analyzed above and inducing the the third-order LEP at « = 0.
In addition to that, we also derive their dynamical evolution
analytically:
1
x(t) = exp (—571) [(;ﬂ — 2Q%)cosh (%t)

K2

+yk sinh (%t) _ 292}, (10a)
1
) = Mmz sinh? (K—t) (10b)
K 4
_1 2
2(t) = oxp | Z(Z +K)t]Q{V[exp (K_t) - 1]
K 2
+ k[exp(kt) — 1]}. (10c)

We show the dynamics of x(¢), y(¢), z(¢) in Fig. 3. When
the decay rate is weak (y < 2%2), the evolution is described
by damped oscillation with decay rates y /2 (subsystem) and
y /4 (full system), respectively. Obviously, increasing y, the
evolution approaching to the stationary state will become
faster, which corresponds to the quantum anti-Zeno effect
[61]. When the decay rate y > 2£2, all the eigenvalues are
real, and the dynamics exhibits an irreversible damping. In
the limit of strong decay, y >> 2%, the relaxation time scale is
determined by

2
LLN <Lv, an

2 Y
so that the system will experience the metastable process for
a long time scale when the system appears stationary, before
eventually relaxing to pg; = |a)(a|. This means that the larger
y is, the slower the system relaxes, which is a manifestation
of the quantum Zeno [59,62—-65]. Our results show that, for
a dissipative system, quantum Zeno and anti-Zeno effects
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correspond to the dynamical phenomena with strong and weak
dissipation strengths, respectively. The LEP is thus the bound-
ary between the quantum Zeno and anti-Zeno regimes and
bridges the two previously independent effects [60,66].

The dynamics in the OD regime also leads to an effective
decay from state |b) to state |a), with the effective decay rate:

Vooa = Q2 /y. (12)

The same result can be found in Refs. [36,67] by employing
perturbation theory and adiabatic elimination of states |c)
for a weakly driven transition between |b) <> |c). The above
analysis shows that our dissipative three-level model can be
used to engineer decay processes between states |b) and |a),
like the Purcell effect in the spin-spring system with relaxation
processes [68], just by tuning the Rabi frequency 2.

C. Engineering the relaxation dynamics
1. Control Liouvillian dynamics through the initial state

As we discussed in last subsection, there exist two time
scales of the relaxation process depending on the space
spanned by the initial state. If the initial state is an arbi-
trary state in space {|a), {|b), |c)}, the relaxation time scale
approaching to the stationary state |a) is determined by | =
—(y —«k)/4, and the fastest dynamical relaxation happens
at the LEP (y = 2Q) [see Fig. 4(a)]. On the other hand, if
the initial state pi,  {|b), |c)}, as shown in Fig. 4(b), the
relaxation time scale is determined by As = —(y — «)/2. This
means that we can speed up relaxation in the convergence
to stationarity by engineering the initial state, which is the
so-called quantum Mpemba effect [1,2,22,69]. We can un-
derstand this by looking at the coefficients a; of the initial
state decomposing into the left eigenmatrices L;. It can be
shown that the coefficients of subspace {|b), |c)} decomposing
into Li_4 are all vanished, i.e., aj4 = Tr[Li~4pin] = 0 (see
Appendix A for further details). In this case,

8
p(t) = pos + ) aiexp(i)R;. (13)
i=5

Therefore, the asymptotic decay rate is —Re[As] = (y —
k)/2, which can get grgp = ¥ /2. In Fig. 4(b), we compare
the time scales for different initial states. It presents that, if the
initial state is in the full space, the approach to the stationary
state is governed by the eigenvalue A; (red dashed line), while
the initial state in the subspace leads to an exponentially
faster relaxation to the stationary state with the rate given by
As = —(y — «)/2 (green dashed line).

In addition to the dependence of the relaxation rate on
the initial state, we also find that the observable values have
significant effects on the relaxation rate [see Figs. 4(c) and
4(d)]. For instance, because Tr[|i) {(i|R;4] = 0(i = a, b, ¢), the
dynamics of the state populations approaching stationarity
is governed by the eigenvalue As [Fig. 4(c)]. Moreover, the
eigenmatrices Rs¢ describe the decay of o, in the sub-
space {|b), |c)} withrates Re[As 6] = (y F x)/2, while Rg()\s)
is associated with o, (see Appendix A for further details).
Whereas there occurs only damped dynamics in the subspace

B o1
S < 4073
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2 10"
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2 £
DO_ 10721
0 10 20 30 40 0 10 20 30 40
Ot Qt

FIG. 4. (a) Distance between the time-evolved state p(7) and the
stationary state p,; = |a)(a| for an initial random state in the full
space with y = Q (dashed green line), y = 22 (solid red line), and
y = 3Q (dot-dashed blue line). In this original case, the approach
to stationary is governed by the eigenvalue A, and the Liouvillian
exceptional point (LEP) leads to an exponentially faster convergence
to the steady state with the rate g gp = y/4 = Q/2. (b) Distance
between the time-evolved state p(f) and the stationary state p.
We compare the case of an initial random state in the full space
(red line) with the time evolution ensuing the initial state in the
subspace of {|b), |c)} (green line). While in the original case the
approach to stationary is governed by the eigenvalue X;(dashed red
line), the special set of the initial state leads to an exponentially faster
convergence to the steady state with the rate given by As (dashed
green line). (c) Population dynamics vs evolution time for an initial
random state in the full space (green line: Tr[p(¢)|b)(b|], red line:
Tr[p(t)|c){(c|]), and the time scale is governed by the eigenvalue
As (dashed line). (d) Observable dynamics vs evolution time for an
initial random state in the full space (green line: (o,) = Tr[p(t)o,],
red line: {oy) = Tr[p(t)oy], dashed blue line: {(0,) = Tr[p(t)o.], and
the time scales are different: for o,, it is governed by the eigenvalue
A7 (dashed green line), and for o, ., they are governed by the eigen-
value A5 (dashed red line). All the y axes are in logarithmic scale,
and the parameters for [(b)—(d)] are y /2 = 3. We have to mention
here that the real dynamics and exponential decay function do not
coincide at short times. This is because, at short times, the decay rate
is determined by all decay modes, while at long times, it decays with
time exponentially.

spanned by operators o, the oscillatory evolution at frequency
[Im[As]| in the subspace spanned by vectors oy, allows us to
identify the third-order LEP [28,31,70]. Considering that the
final state py; = |a)(a| is independent of the parameters of the
system, we can speed up the relaxation process by combining
the acceleration effect of the LEP and the quantum Mpemba
effect. Although the connection between these speedup effects
will not be discussed in this paper, we note that they are not
completely independent of each other, see the related studies
in Ref. [23].
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gap
1.2

dynamics

FIG. 5. (a) Phase diagram in the w-y plane. Color contour shows
the dimensionless parameter . Here, we set Q = 1,7 =T/2.5.
Regions with ;© = 0 (the blue region) correspond to the underdamped
(UD) regime, while p # 0 (the colored regions) correspond to the
overdamped (OD) regime. These two regimes are bounded by the
Liouvillian exceptional point (LEP). (b) Liouvillian spectral gap as
function of w and y. (c) Liouvillian spectral gap as a function of y
with w = 0 (black dashed line), and w = 1 (red solid line), respec-
tively. The dynamics of the population of |b) with @ = 0 (dashed
lines) and w = 2 (solid lines) for (c) w = 2 and (d) 6.5.

2. Tuning the Liouvillian gap through Floquet modulation

We find that the Liouvillian gap can be further increased
under time-periodic (Floquet) dissipation with dissipation rate
y given by

0 nT <t<nT +r,

yi) = {y nT+t<t<m+DT. (14)
Here, n € Z, T = 27 /w is the period of the Liouvillian, i.e.,
L(t+T)= L(t), with » the modulation frequency, and t
is the off-duty time interval with no decay in each cycle.
The density matrix at any time ¢ is determined by the time-
evolution operator P(t) = T exp( fot )L(t")dt’, where T is the
time-ordering operator.

In analogy to the case of a non-Hermitian Hamiltonian sys-
tem [64,71], we can now formally define a Floquet generator
for our case, an effective time-independent generator L such
that P(T) = exp(LpT) [72-75]. Since the UD-OD transitions
of the dynamics are determined by the degeneracies of the
eigenvalues A" of the time-evolution operator P, we adopt a
dimensionless parameter i = (|A%| — [AZ /(1A% |+ [A5)]) to
characterize the transition. Here, )J; denote two eigenvalues
with bifurcation structure, and u = 0 marks the two eigenval-
ues are complex conjugate and the system is in the UD regime,
while ;& > 0 are in the OD regime [see Fig. 5(a)]. We can see
the Floquet method enriches the phase diagram. In contrast
with the static dissipation (w = 0), where the phase transi-
tion and LEPs appear at 2/y = 2, phase transitions under

lg,m)

FIG. 6. Schematic of the sideband cooling process. The cooling
laser with frequency w,; drives the transition |e) <> |g) with Rabi
frequency €2, and detuning A = w,, — w;, which leads to the ac Stark
shift 8. €2 is the effective coupling strength between the red sideband
transition |g)|n) <> |e)|n — 1), with n the phonon number and 7 the
Lamb-Dicke parameter.

time-periodic dissipation depend on the modulation frequency
 and can occur at vanishing small dissipation strength.

Beyond that, we are more interested in the effect of mod-
ulation on the energy gap. As shown in Figs. 5(b) and 5(c),
the Floquet method increases the gap, and the maximal gap
appears at the LEP, which is a different point with the static
case. In the case of static dissipation (w = 0), gmax = gLEP =
2/2 when y /2 = 2. The gap under time-periodic dissipa-
tion depends on the modulation frequency w and can even
be significantly increased to bigger than Q2 [see Fig. 5(c)].
Figure 5(d) plots the dynamics of the population of state |b).
We compare the two different cases, w = 0 (dashed lines) and
w = Q (the solid lines). These results illustrate that the LEP
gap can surpass its static limit through Floquet engineering
and thus further accelerate the relaxation.

IV. APPLICATIONS IN GROUND-STATE COOLING
OF TRAPPED IONS

In the following, we demonstrate the power of this ap-
proach with a practical application, i.e., the ground-state
cooling of trapped ions. Through analytical and numerical
analysis, we illustrate that optimal cooling conditions in the
sideband and EIT approaches can be obtained, which agree
with existing experiments. Our LEP gap condition provides
a perspective on optimal cooling conditions and may simu-
late more studies for a wide range of quantum engineering
applications.

A. Sideband cooling

As shown in Fig. 6, we consider laser-ion interactions
in the Lamb-Dicke limit. Dynamics is governed by the
Hamiltonian:

H =va'a+ Ale)(e] — 1Q,0" + 1Q(@a" + a)o?, (15)

and jump operator J = ,/y|g){e|. Here, y is the linewidth
of the state |e), which is coupled to state |g) by a cooling
laser field of frequency w;, Rabi frequency €2,, and detuning
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A = wg, — wy, Where w,, is the frequency of the bare atomic
transition |e) <> |g). Also, v is the trap frequency, and a(a’)
is the annihilation (creation) operator of phonons. Further,
Q = 12, describes the effective coupling between the phonon
and internal state, and 7 is the Lamb-Dicke parameter. When
A =~ v, the red sideband transition is nearly resonant, and the
nonresonant transitions, i.e., the carrier transition and blue
sideband transition, will induce the ac Stark shift to |e)(|g))
by 8(—4§), respectively. This is a good approximation that just
considers the shift caused by the carrier transition, and under
this approximation, we get § = (,/Q2 + A2 — A)/2.

To obtain the optimal cooling condition, we reduce
the overall dynamics to a low-dimensional subsystem
{lg)I1), 1210}, le)|1), |e)|0)} to obtain analytical results (see
Appendix B for details). It is very helpful for us to understand
the whole cooling process. Based on the perturbative calcula-
tions for this finite system, we get that A;3) = —(y F«')/4 +
i(A 428 + v)/2, and the gap:

1
g= Re[z(y - K/)}, (16)

with k" = /[y — 2i(A +28 —v)]> —4Q2. In Figs. 7(a)-
7(d), we plot the analytical results of the spectra. It is obvious
that the LEPs can only occur under the condition A + 2§ —
v =0. With § = (v Qé + A% — A)/2, we obtain the condi-
tion to generate LEP:

Q*+ A% =2 (17)

Under this condition, the eigenvalues A3y become A3y =
—(y F k)/4 + iv, whose real parts are the same as the three-
level dissipative system shown in Fig. 2(b), and the imaginary
parts connote rotating. In Ref. [10], authors use a pure
numerical method of quantum control technique powered
with automatic differentiation and obtain the same optimal
cooling conditions. Here, we obtain the optimal conditions
analytically in the context of LEPs. The physical mechanism
underlying the condition in Eq. (17) is that the detuning A
needs to be adjusted according to the ac Stark shift of the
atomic levels to ensure that the red sideband transition is
exactly on resonance. Under this premise, the level struc-
ture shown in Fig. 6 can be considered a simple three-level
dissipative system, as discussed in Sec. III. When 2 > y /2,
Re[A;] = Re[A3] = —y /4, and we get the maximum value
gmax = /4. Particularly, when Q = y/2,k = Vy? —4Q? =
0, A; = A3, and R = R3 (see Appendix B), the LEP occurs.
In Figs. 7(e) and 7(f), we compare the gap given by Eq. (16)
(the solid lines) with the numerical results calculated from
the full master equation (the dashed lines). Although our
analytical results about spectrum and gap are obtained from
the subsystem of the sideband cooling, they match very well
with the numerical results calculated from the full system. As
shown in Fig. 8, the real parts of the eigenvalues A;>, which
give the relaxation rates of all the decay modes of the system,
can mainly be divided into several characteristic intervals.
It could be approximately {—y /4, —y /2, =3y /4, —y} under
the condition in Eq. (17) [see Figs. 8(a) and 8(b)]; otherwise,
it becomes {0, —y /2, —y} when Q/y > % [see Fig. 8(c)]. As
shown in Figs. 8(c) and 8(d), different from the three-level

1/4

gap/vy

0 05 1
Q/y

FIG. 7. Real parts of the Liouvillian spectra of the analytical
results. The black dashed lines are Ay, the red lines are Re[);],
and the green dotted lines are Re[A;.;]. The parameters are (a)
A =0.987v, (b) 2 =0.5y, (c) A =0.945v, and (d) Q2 = y. Gap
as functions of (e) 2/y and (f) A/v. (e) A = 0.987v (red solid line)
and = 0.945v (green solid line), (f) Q& = Q,n7 = 0.5y (red solid line)
and = y (blue solid line), respectively. The solid lines correspond
to the analytical results from Eq. (16), and the black dashed lines
are the results from the full Liouvillian. The other parameters are
n=0.1,v=1,and y = 0.032.

1.50.9 0.95 1.0

AJv

dissipation system, it features a so-called metastable regime,
either Q/y > % or Q/y < %, which occurs when low-lying
eigenvalues become separated from the rest of the spectrum
[15]. The imaginary parts of the eigenvalues, which give
the rotating rates of the decay modes approximately equal
to Im[A;>(] ~ (A + 28 + nv)/2 are mainly determined by
phonon energy.

In Fig. 9(a), we plot the gap g as functions of 2/y and A /v
by using the full master equation. Point A corresponds to the
LEP, and the dashed white line is the condition of g = gmax
that combines the red sideband transition resonant condition
in Eq. (17), as we discussed before. The numerical results and
the analytical results are matched very well. Figure 9(b) shows
the dynamics of the full system for some set of parameters
[points A-D in Fig. 9(a)]. It indicates that the gap g provides
a good description of the cooling time. At the LEP, the system
not only reaches stationary state at a significantly faster pace
but also obtains a lower phonon number [see Figs. 9(c) and
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FIG. 8. Spectral properties of the Liouvillian. In the Liouvillian
exceptional point (LEP) condition (2 + A = v?), the parameters
of (Q/y, A/v) are (a) (0.5,0.987), (b) (1, 0.945). Not in the LEP
condition (2% + A # v?), the parameters of (Q/y, A/v) are (c) (1,
0.987), and (d) (0.2, 1). The green dots are the results from the full
Liouvillian, and the red squares are the eigenvalues of the analytical
results. The other parameters are the same as in Fig. 7.

9(d)]. Therefore, we believe that the best cooling effect can be
obtained by the system parameters at the LEP.

B. EIT cooling

For the EIT cooling method discussed in Refs. [5,7,9], we
find that the optimal parameter selection could be explained
by the gap at the LEP. As shown in Fig. 10(a), the detuned
laser of frequency w, and Rabi frequency €2, couples the
transition |r) <> |e) with detuning A, = w, — w,,. It leads
to two dressed states |+) and |—) shown in Fig. 10(b) with
energy wy = A, 4+ 8,, w_ = —§, [5,76], respectively. Here,
8, = (/QZ+ A% —|A,])/2 is the ac Stark shift induced by
the coupling laser €2,.

If we turn to the detuning frequency A, of 2, close to A,,
then |+) =single) +cosp|r) (tang = Q,/[\/Q2 + A2 +
A,)] is chosen to replace |e) in the sideband cooling model
[see Fig. 10(c)]. Here, we just replace

.2 Ve Ar
— =9,8in“¢p = —|1 — —— |, 18
Y = Vi = VSN 2( FHA%) (18)
Q — nsin ¢, (19)
A= o, — A, (20)

FIG.9. (a) Gap properties of the full Liouvillian. The
white dashed line corresponds to Q> + A% = v2. The parameters
(R/y,A/v) are (A) (0.5, 0.987), (B) (1, 0.945), (C) (1, 0.987),
and (D) (0.2, 1) and g4 = gs > gc > gp- (b) The average phonon
number (n) as a function of time calculated with the full master
equation with the parameters of A-D, respectively. (c) Cooling limit
(n),s as functions of detuning A /v and effective Rabi frequency of
red sideband transition 2/y. (d) (n), as a function of effective Rabi
frequency of red sideband transition €2/y, with A/v = 0.987 (red
dashed line), 0.95 (blue solid line), and 0.91 (green dot-dashed line).
The other parameters are the same as in Fig. 7.

Then the optimal condition of gy,.x shown in Eq. (17) becomes

2
n’ A, 2y (VR AT+ A, 2
—(1-—=| 5 — Ay =V

2 J2+Az)E
2D

(c)

|+,n)
v
\_H_’n —1)

VA
lg,n)
|g’n _1>

FIG. 10. (a) Levels and transitions of the electromagnetically
induced transparency (EIT) cooling scheme (found in many species
used for ion trapping). (b) The dressed levels that the cooling laser
2, couples. (c) When the cooling laser is near resonant with the red
sideband transition of the dressed state |+), this EIT cooling model
can be equivalent to the model we discussed in Sec. IV A.
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Re[) /v

FIG. 11. (a) Real and (b) imaginary parts of 1, (red) and A, (blue).

If we ignore the higher-order terms O(n?), Eq. (22) can be
rewritten as

VI AZ+ A,

2

It is in accordance with the generalized cooling condition
given in the experimental works of Ref. [7,9]; thus, our
LEP method offers a fresh understanding of optical cooling
condition.

—Ag=84A —Ay=v. (22

V. DISCUSSION

In summary, we have studied how to engineer relaxation
dynamics of Markovian open quantum systems with an ar-
bitrary initial state. Our results have shown, for an arbitrary
initial state, a speedup relaxation can be achieved by setting
the parameters of the system at LEP, where the slowest decay
mode degenerates with a faster decay mode. In addition, our
LEP-based accelerated approach can be applied to acceler-
ate the relaxation in Floquet dissipative quantum dynamics.
We have shown the relaxation processes can be dramatically
faster than the static case by periodically modulating the
dissipation strength. Finally, we have demonstrated the appli-

J

The eigenvalues of £ are

1 1 1 y
Ao =0, 11(2)=—Z(V—K), 13(4)=—Z(V+K), )»5,6=—§(V:FK), )L7(8)=_5,

00 0 0 0
o0 % 0 0
0o £ - o0 0
00 0 0 0
£=]0 0 0 0 0
o 0 o o
0o 0 o -2 o0
oo o o -2
00 0 0 0

cations of our method for speeding up cooling processes in
ground-state cooling of trapped ions. In a broader view, our
ideas may still be instructive for optimal parameter options to
accelerate the cooling process even for simultaneous cooling
of multiple phonon modes in a ion crystal. Therefore, our
method is general and would facilitate the optical parameter
settings in the experiments with open quantum many-body
systems. Together with well-developed techniques of engi-
neering quantum states, in this paper, we provide a powerful
tool for exploring and utilizing true quantum LEP effects as
examples of engineered relaxation dynamics [69].
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APPENDIX A: LIOUVILLIAN SPECTRUM
OF A DISSIPATIVE THREE-LEVEL SYSTEM

We consider a simple dissipative three-level system of
Fig. 2(b), and the dynamics is described by a Lindblad master
equation:

Lp = —i[H, pl+JpJ" = 1{JJ, p}. (A1)

with the Hamiltonian H = Q2/2(|c)(b| + |b){c|) and a jump
operator J = ,/y|a){c|.

To study the Liouvilian spectra and LEPs, we first rep-
resent the Liouvillian superoperator £ in a matrix form
by recasting the above master equation as a matrix dif-
ferential equation for the vectorized state of the density
operator p. With the definitions that |a) = (1,0, 0)7, |b) =
(0,1,0)7, and |c) = (0,0, 1)7, the Liouvillian superoperator
is given by

o 0 0
0 0 0 0
0 0 0 0
27 N
4o, o a "
2 2
0 -5 0o 0
o o0 -r 2
-2 0 g 5
(A3)

with « = /y2 — 4Q2. Both the right and left eigenmatrices of the Liouvillian superoperators can be constructed to be Hermitian;

they are
1 0 0 0 o
Ri=ps=[0 0 0f. R o[l g
0 0 O 1 0

2Q

(y+K)
! (ng) ym :
o], R o|%E 0 o]
0 —i 0 0
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1 0 0 —i 0 0 0 o 1
2y —
—ir 0 0 2 0 O 0 0 0
2 i(y—« i
Reoc| O 3% S el Lol R o |0 0 1 (A4)
0 _z(};;zk) 1 0 _% 1 0O 1 0
i(y+x) (y+«) ;
1 0 0 _0 5 0 5o !
L=|0 1 o], Li o[- 0o of L, «[%2 o o],
0 0 1 1 0 0 i 0 0
i(y—x) (y—K) .
0 = 0 ux 00 0
Lo[-052 0 of L oo|% 0 0] L |0 -1 -G
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1 0 0 i 0 0 0 L 1
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i(y—K) i
0 L 1 0 55 1 0 1 0
[
If the initial state is in this subspace {|b), |c)}, it is easily N 3y — k'«
get that a4 = Tr[Li4pin] = 0. It means that the coeffi- A=A == 2 'y
cients of subspace {|b), |c)} decomposing into L; 4 are all 3y + i’ o
vanished. Az =AY, =— 2 — iE, As = =Y, (B1)
APPENDIX B: LIOUVILLIAN SPECTRUM OF THE with
SUBSYSTEM OF GROUND-STATE COOLING PROCESS K = \/ (y +2iB)? — 4Q2, (B2)
For the subsystem {|e)|1), |e)|0), [g)|1), |g)|0)}, we calcu- _
late the spectrum of its superoperator £ and get a=Aa+2+v, (B3)
=0, a=i=-7 ;" i%, ¢ :\/—2\/(4(ﬂ2+92)+y2)2—16)/2{22—8;32—1—2)/2—892,
/ (B4)
M:x::—”j" i,
i , 2y Fe € = /2 (4(B2 4 Q%) + y2)* — 16y2Q2 — 882 4 22 — 8Q2,
k5:k6:——+za, )\7(8):_ VY y \/
4 (BS)
2y F € . . .
Ao(10) = — I where B = 26 + A — v. The corresponding eigenmatrices are
0O 0 0 O 0 0 0 0 0 0 0 0
00 0 0 00 0 g 0 0 0 -5t
Fo=t1o 0 0o o B>]o o o "1 Reocty 0 0 T4
20 2i0 .
0 0 0 0 0 0 0 0
0 0 0 ——2 0 0 0 22
—2if—y+«k'"* —2if—y+«k"™*
Ry oy 0 0 1 Riocty 0 0 i
2Q 2iQ .
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We are interested in the low-lying eigenvalues, especially A; which determines the spectral gap g = }1()/ — k’). We can see
that, when 8 =28 + A —v =0and y = 2Q, we get«’ = 0 and A12) = A3y, A1112) = A13014) (see Fig. 11). As a result, we can

find sets of simultaneous second-order LEPs.
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