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Abstract
The disease-induced herd immunity level hD is the fraction of the population that
must be infected by an epidemic to ensure that a new epidemic among the remaining
susceptible population is not supercritical. For a homogeneouslymixing population hD

equals the classical herd immunity level hC , which is the fraction of the population that
must be vaccinated in advance of an epidemic so that the epidemic is not supercritical.
For most forms of heterogeneous mixing hD < hC , sometimes dramatically so. For an
SEIR (susceptible→ exposed→ infective→ recovered)model of an epidemic among
a population that is partitioned into households, in which individuals mix uniformly
within households and, in addition, uniformly at a much lower rate in the population
at large, we show that hD > hC unless variability in the household size distribution is
sufficiently large. Thus, introducing household structure into a model typically has the
opposite effect on disease-induced herd immunity thanmost other forms of population
heterogeneity. We reach this conclusion by considering an approximation h̃D of hD ,
supported by numerical studies using real-world household size distributions. For
n = 2, 3, we prove that h̃D > hC when all households have size n, and conjecture that
this inequality holds for any common household size n. We prove results comparing
h̃D and hC for epidemics which are highly infectious within households, and also for
epidemics which are weakly infectious within households.
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1 Introduction

During the ongoing COVID-19 pandemic there has been considerable discussion of
herd immunity. For a very wide range of epidemic models, specifically models for
which the basic reproduction number R0 is given by the maximal eigenvalue of a next-
generation matrix, if R0 is greater than one, then vaccinating a fraction hC = 1− R−1

0
of the population, chosen uniformly at random, with a perfect vaccine (i.e. one that
necessarily renders its recipient immune to the disease) in advance of an outbreak
reduces the reproduction number to one and thus prevents a large outbreak (see, for
example, Diekmann et al. (2013), page 199). The quantity hC is the classical (or
vaccination-induced) herd immunity level. For a disease in which infection confers
immunity to subsequent infection, herd immunity can also be attained by letting an
epidemic run its natural course, possibly with some restrictions in place, for exam-
ple, lockdown or other non-pharmaceutical interventions. The disease-induced herd
immunity level hD is the fraction of the population that needs to be infected before
the effective basic reproduction number (i.e. R0 for an epidemic among the remaining
susceptible individuals) is reduced to one. For definiteness, we define hD assuming
no restrictions are in place and the epidemic simply runs its natural course.

For an epidemic among a homogeneously mixing population, the classical and
disease-induced herd immunity levels are equal. However, that typically is not the
case for epidemics among heterogeneous populations. For example, Britton et al.
(2020) showed that in a model for COVID-19 in which the population was structured
by age and activity level, when R0 = 2.5, the disease-induced herd immunity level
hD = 0.43, which is substantially lower than hC = 0.6, and Gomes et al. (2022)
obtained even lower values for hD in amodelwhere individuals varied in susceptibility.
These observations have a simple intuitive explanation. For example, in the model
with varying susceptibility, individuals with higher susceptibility are more likely to
be infected early in the epidemic and consequently the average susceptibility of the
remaining susceptibles decreases as the epidemic progresses leading to hD < hC . It
seems likely that similar arguments hold for many other forms of heterogeneities, with
the general conclusion that introducing heterogeneity into a model has the effect of
reducing the disease-induced herd immunity level hD .

An important population structure for epidemics among human populations, which
can have a significant impact on disease dynamics and the performance of vaccination
strategies, is that induced by households. The aim of this paper is to investigate the
impact of household structure on the disease-induced herd immunity level. We use
an extension of the SIR (susceptible → infective → recovered) model introduced
by Ball et al. (1997) to include an exposed (latent) period. In this model, infective
individuals make two types of infectious contacts: local contacts with individuals
chosen uniformly at random from their household and, at a much lower rate, global
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contacts with individuals chosen uniformly at random from the whole population. In
sharp contrast tomost other forms of heterogeneity, we find that the effect of household
structure is generally to increase hD .

For most models it is difficult to calculate hD as it requires knowledge of the
trajectory of the epidemic, which typically is not available in closed form.Moreover, in
a stochasticmodel the disease-induced herd immunity level is in fact a randomvariable,
as it depends on the realised trajectory, which converges to hD as the population size
converges to infinity. The following approximation to hD , which we adapt to our
model, is used in Britton et al. (2020) in the context of a multitype SIR epidemic
model. A new model is considered in which all transmission rates are multiplied by a
factor κ < 1 and its (limiting deterministic) final outcome is determined. (Note that
this factor is denoted by α in Britton et al. (2020).) Let κ̂ be the value of κ so that
the effective R0 among the remaining susceptibles is one. Then the fraction of the
population ultimately infected by the epidemic with κ = κ̂ gives an approximation
to hD , which we denote by h̃D . Note that h̃D is not affected by the introduction of a
latent period into the model, as the distribution of the final size of a stochastic SEIR
(susceptible → exposed → infective → recovered) model is invariant to very general
assumptions concerning the latent period. We adopt a similar approach to obtain an
approximation h̃D to hD for the above households model, except that only global
transmission rates are multiplied by κ , with local transmission rates unchanged.

The above definition of hD assumes that no restrictions are in place. Let ĥD be
a generic notation for the disease-induced herd immunity level under restrictions. In
practice, ĥD may depend on the precise pattern of restrictions imposed prior to herd
immunity being reached (see, for example, Di Lauro et al. (2021)). A commonly-made
assumption in modelling restrictions is that at time t ≥ 0 all transmission rates are
multiplied by a factor κ(t). Under this assumption, Britton et al. (2021) show that ĥD

is independent of {κ(t) : t ≥ 0} if mixing is separable. Moreover, for the examples
in Britton et al. (2020, 2021), numerical studies showed that the precise timings of
restrictions hadminimal, if any, effect on ĥD . The situation ismore subtle if restrictions
are not applied uniformly, where for some models ĥD can be highly dependent on the
pattern of restrictions (Di Lauro et al. 2021). However, numerical studies indicate that
is not the case for the present households model, with restrictions affecting only global
transmission rates. Note that h̃D = ĥD when such restrictions with factor κ̂ are applied
throughout the epidemic. Numerical studies suggest that, under many restrictions, h̃D

is a better approximation than hD to ĥD .
The usual definition of R0 as the maximal eigenvalue of a next-generation matrix,

or in non-mathematical terms as the mean number of infectious contacts made by a
typical infective in an otherwise susceptible population, does not hold for the present
households SEIR model, since even in the early stages of an epidemic there are likely
to be repeat local contacts within a household. Pellis et al. (2012) give an alternative
definition of R0 via a linear approximation of the early phase of an epidemic in
terms of generations of infections, which coincides with the usual definition when
it is applicable but can also be extended to models with small mixing groups such
as the households SEIR model. Calculation of R0 for the households SEIR model is
quite complex. A simpler to calculate reproduction number for the households SEIR
model is R∗ (see Ball et al. 1997), which is based on the proliferation of infected
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households (rather than infected individuals). Precise definitions of R0 and R∗ and
discussion of their properties are given in Sect. 2.2. The reproduction number R∗ is
useful for determining herd immunity levels, owing to its ease of calculation. However,
it is not comparable between different household structures, unlike R0, because it is a
households-based rather than an individual-based reproduction number.

Before describing the main results of the paper, we need some more notation. Let
λL denote the individual-to-individual local infection rate and λG denote the overall
rate that an infective makes global contacts. Further, let H be a random variable
describing the size of a household chosen uniformly at random and H̃ , the size-biased
version of H , be a random variable describing the size of the household to which an
individual chosen uniformly at random from the population belongs (see Sect. 2.1).
Let μH̃ = E[H̃ ]. For i = 1, 2, . . . , let μ[i]

H̃
denote the i th factorial moment of H̃ and

μ̂
[i]
H̃

= i !μH̃

(
μH̃ − 1

)i−1 be the i th factorial moment of a geometric distribution with

success probability μ−1
H̃
.

The complexities of the households model render analytical results comparing h̃D

and hC hard to obtain in general. First, we consider epidemics which are highly locally
infectious, in that if one individual in the household becomes infected then the whole
household becomes infected. This assumption, which was introduced in Becker and
Dietz (1995), is obtained by letting λL = ∞ in our model. Under this assumption, the
following are our main results.

• Theorem 4.1. If all households have size n > 1 and R∗ > 1, then h̃D > hC .
• Theorem 4.2. Under the conditions of Theorem 4.1, h̃D − hC is maximised as a
function of λG when R0 = 2.

• Theorem 4.3. h̃D = hC for all λG such that R∗ > 1 if and only if H̃ follows a
geometric distribution, so H follows a logarithmic distribution.

• Theorem 4.4. Suppose that the epidemic is only just above threshold (i.e. R∗ is
only just above 1) and l∗ = infk≥2{k : μ

[k]
H̃

�= μ̂
[k]
H̃

} < ∞. Then h̃D > hC if

μ
[l∗]
H̃

< μ̂
[l∗]
H̃

and h̃D < hC if μ
[l∗]
H̃

> μ̂
[l∗]
H̃

.

• Corollary 4.5. Under the conditions of Theorem 4.4, h̃D > hC if var(H̃) <

E[H̃ ]E[H̃ − 1] and h̃D < hC if var(H̃) > E[H̃ ]E[H̃ − 1].
• Theorem 4.6 gives an ordering of h̃D and hC for epidemics which are both highly
locally and highly globally infectious. The result is not given explicitly here as it
requires appreciable further notation.

• Theorem 4.7. Suppose that n > 1 and P(H̃ = n) = p = 1 − P(H̃ = 1), where
0 < p < 1, so a fraction p of individuals reside in households of size n and the
remainder in households of size 1. If n = 2, then h̃D > hC for all p. For n ≥ 3,
if p ≤ n−2

2(n−1) then h̃D < hC for all λG . If p > n−2
2(n−1) then there exists λ∗

G(n, p)

such that h̃D > hC for λG < λ∗
G(n, p) and h̃D < hC for λG > λ∗

G(n, p). An
expression for λ∗

G(n, p) involving the root of an algebraic equation is given in
Theorem 4.7. If p is close to 1 (i.e. the households are nearly all of size n) then
λG , and thus R0, must be exceedingly large in order to obtain h̃D < hC .

Analysis is also possible for epidemics that are weakly locally infectious, i.e. when
λL is close to 0. We assume without loss of generality that the infectious period TI
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has mean 1, and write h̃D(λL) and hC (λL) to show explicitly the dependence of these
herd immunity levels on λL . Note that the model reduces to a standard homogeneously
mixing SEIR epidemic when λL = 0, for which R0 = λG since E[TI ] = 1. Thus,
h̃D(0) = hC (0) = 1 − R−1

0 = 1 − λ−1
G . Suppose that λG > 1, so R∗ > 1, and let

π(0) = 1
λG

.

• Theorem 4.8. As λL ↓ 0,

h̃D(λL) − hC (λL) = 2λ2Lπ(0)2(1 − π(0))
[
E[H̃ − 1] − var(H̃)

]
+ o(λ2L).

• Corollary 4.9. If var(H̃) < E[H̃ − 1] then h̃D > hC for all sufficiently small
λL > 0. If var(H̃) > E[H̃ − 1] then h̃D < hC for all sufficiently small λL > 0.

• Corollary 4.10. Suppose all households are the same size n > 1. Then, for all
sufficiently small λL > 0, we have h̃D > hC .

The final theorem concerns the case when 0 < λL < ∞ and all households have
the same size n.

• Theorem 4.11. For a common household size n = 2 or n = 3, and for any λG and
λL > 0 such that R∗ > 1, we have h̃D > hC .

We conjecture, supported by numerical studies, that Theorem 4.11 holds for all n > 1.
The remainder of the paper is structured as follows. In Sect. 2, we define the stochas-

tic SEIR households model underlying our analysis, describe briefly its threshold
behaviour, calculation of the reproduction numbers, R∗ and R0, and of the final out-
come in the event of an epidemic taking off. We also present a deterministic model
which approximates epidemics that take off. In Sect. 3, we describe calculation of the
vaccine-induced herd immunity level hC , discuss the definition of the disease-induced
herd immunity level hD and describe in detail its approximation h̃D . Theorems con-
cerning comparison of h̃D and hC are given in Sect. 4, with some of the longer proofs
being deferred to an appendix. Numerical comparisons of herd immunity levels are
given in Sect. 5, including illustration of theorems and study of herd immunity lev-
els for real-world household size distributions. In Sect. 6, we give some concluding
comments and discuss possible directions for future research.

2 SEIR households model

2.1 Model definition

We consider an SEIR (susceptible → exposed → infective → recovered) model for
an epidemic among a closed and finite population separated into households. This is
similar to the model in Ball et al. (1997) with an extra (exposed) state. The household
structure is given as follows.We suppose, for n = 1, 2, . . . , there aremn households of
size n. There are m = ∑∞

n=1mn households (with m < ∞), and the total population
size is N = ∑∞

n=1 nmn .
The epidemic begins at time t = 0 with one initial infective (chosen uniformly at

random from the population) andwith all othermembers of the population susceptible.
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When a given susceptible is contacted by an infective, they become exposed (latent
infective) for a time that is distributed according to a non-negative random variable TE ,
with an arbitrary but specified distribution which is almost surely finite. When their
exposed period ends, an individual becomes infectious for a time distributed according
to a non-negative randomvariableTI ,with an arbitrary but specifieddistributionhaving
finite mean. During their infectious period any given infective makes global contacts
with any given susceptible according to a Poisson process with rate λG

N . Further, any
given infective makes local contacts with any given susceptibles member of their
household according to a Poisson process with rate λL . Once their infectious period
ends, an infective recovers and has no further role in the epidemic. When there are
no infectives or exposed infectives remaining, the epidemic terminates. Finally, all
Poisson processes describing infectious contacts (whether or not either or both of the
individuals involved are the same), as well as the random variables for exposed and
infectious periods, are assumed to be mutually independent.

Many of the results in the paper are based on approximations which become exact
in the limit as the number of households m → ∞ in an appropriate fashion. For
n = 1, 2, . . . , let α

(m)
n = mn

m be the fraction of households that have size n. Precise
conditions for such asymptotic results are beyond the scope of this paper. We assume
that limm→∞ α

(m)
n = αn (n = 1, 2, . . . ), where

∑∞
n=1 αn = 1 and

∑∞
n=1 nαn < ∞.

To ease the presentation we suppress the dependence onm of parameters such as α
(m)
n

and just use their asymptotic values.

2.2 Threshold behaviour

Suppose that the number of households (m) is large. Since the epidemic begins with
one initial infective, the probability that an individual contacted globally belongs to
a previously infected household is small during the early stages of the epidemic.
Thus the early stages of the epidemic can be approximated by a branching process,
describing the proliferation of infected households, in which every global contact
is with a previously uninfected household (Ball 1996). The offspring mean R∗ of
this branching process, i.e. the expected number of global contacts occurring from
a typical contacted household, is a threshold parameter for the households model.
Standard branching process theory implies that, in the limit as m → ∞, the epidemic
takes off with strictly positive probability if and only if R∗ > 1. In the event the
epidemic takes off, a non-negligible fraction (a large number of households) of the
population becomes infected.

The derivation of R∗ is as follows. For n = 1, 2, . . . , let α̃n = nmn
N be the probability

an individual chosen uniformly at random from the population resides in a household
of size n. Consider a globally contacted individual in an otherwise fully susceptible
household of size n. This individual begins a local outbreak within their household
with dynamics determined by local infection since, in the branching process, global
contacts are with previously fully susceptible households. Letμn(λL) denote themean
size, including the initial infective, of a single-household epidemic with n members
and local infection rate λL with only the initial infective infected globally. Global
contacts from a given individual occur at rate λG , and such an individual has mean
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infectious period E[TI ]. Wald’s identity for epidemics (see Ball 1986, Theorem 2.1)
then gives the mean number of global contacts from a given contacted household of
size n to beμn(λL)λGE[TI ]. By conditioning on the size of a household of a contacted
individual, we have that

R∗ =
∞∑

n=1

α̃nμn(λL)λGE[TI ]. (2.1)

In Ball (1986) it is shown that

μn(λL) = n −
n−1∑

k=1

(
n − 1

k

)
βk(λL)φ(kλL)n−k (n = 1, 2, . . . ), (2.2)

where φ(θ) = E[e−θTI ] and βk(λL) (k = 1, 2, . . . ) are defined recursively by

k∑

i=1

(
k

i

)
βi (λL)φ(iλL)k−i = k (k = 1, 2, . . . ).

As explained in Sect. 1, a drawback of R∗ is that it is not comparable betweenmodels
with different household structures. An alternative threshold parameter, which does
not suffer from that defect, is the basic reproduction number R0. As also explained in
Sect. 1, the usual definition of R0 does not hold for households models. Instead, R0 can
be defined by considering generations of infectives, via a directed graph associated
with an epidemic (Pellis et al. 2012 andBall et al. 2016). Such a graph is constructed by
having populationmembers as the vertices. If, during their infectious period, individual
x would contact x ′, a directed edge is drawn from x to x ′. The initial infective is the
onlymember of generation 0. The generation of a given individual x is the shortest path
length from the initial infective to x . Note that this may not coincide with real-time
generations of infectives. Then R0 is defined by the limit, as the population size goes to
infinity, of the asymptotic geometric growth rate of the mean generation size (for a full
definition, see Ball et al. (2016), Section 1). For k = 1, 2, . . . and i = 0, 1, . . . , k−1,
let μ

(k)
i be the mean size of the i th generation for an epidemic in a household of

size k with 1 initial infective. (For the present SEIR model, these quantities can be
computed using methods described in appendix A of Pellis et al. (2012).) Then R0 in
the households model is the unique positive solution λ of

1 − λGE[TI ]
∞∑

i=0

μi

λi+1 = 0, (2.3)

where μi = ∑∞
n=1 α̃nμ

(n)
i ; see Ball et al. (2016), Section 2.2 for details.

Note that, like R∗, the critical value of R0 is 1. More precisely, R0 = 1 if and only
if R∗ = 1; R0 > 1 if and only if R∗ > 1; and R0 < 1 if and only if R∗ < 1. We use
R∗ for calculating or proving results pertaining to herd immunity levels, as it is far
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simpler to determine than R0. We use R0 when making comparisons between models,
owing to its improved interpretability.

2.3 Final outcome

Consider an epidemic initiated by one initial infective in a population of size N (m
households). Let Zm denote the proportion of individuals infected in the epidemic.
Provided R∗ > 1, as m → ∞, Zm converges in probability to a discrete random
variable Z with probability mass function

P(Z = z) = 1 − P(Z = 0),

for some 0 < z < 1 defined below. (The mass at zero in the random variable Z
corresponds to the branching process in the previous section going extinct.) We define
amajor outbreak to have occurred if Zm ≈ z and it follows that the sumof the infectious
periods of all infected individuals in a major outbreak, Sm , is approximately NzE[TI ].
Hence, the probability that a randomly chosen individual avoids global infection during
the course of a major outbreak is approximately π = exp(−λGE[TI ]z), since to avoid
global infection there must be no points in a Poisson process of intensity λG/N run
for time Sm ≈ NzE[TI ].

Let μ̃n(λL , π) denote the mean size of a single-household epidemic in a household
of size n with local infection rate λL and Bin(n, 1 − π) initial (globally infected)
infectives; using the standard Bin(n, p) notation to denote the binomial distribution.
Denote this epidemic model, which is considered in Addy et al. (1991), by Ẽn(λL , π).
Returning to the households model, suppose that a major outbreak occurs and let T̃n
denote the total number of individuals infected in a typical household of size n, all
of whom are initially susceptible. In the limit as m → ∞, individuals independently
avoid global infection with probability π . Thus in a household of size n, Bin(n, 1−π)

will be infected globally and hence E[T̃n] = μ̃n(λL , π). Then equation (3.10) of Ball
et al. (1997) yields

μ̃n(λL , π) = n −
n∑

k=1

(
n

k

)
φ(kλL)n−kπkβk(λL).

The probability that a given individual in an initially susceptible household of size n
is infected during the epidemic is approximately μ̃n(λL , π)/n. Conditioning on the
household size of a randomly chosen individual then establishes

z =
∞∑

n=1

α̃n
μ̃n(λL , π)

n
. (2.4)

Note that for large m the effect of the atypical behaviour of the household containing
the initial infective becomes negligible and disappears in the limit as m → ∞. Thus,
since π = exp(−λGE[TI ]z), (2.4) admits an implicit equation for z, whereby z = 0
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is always a solution and a second solution z ∈ (0, 1) exists if and only if R∗ > 1.
A similar argument can be used to establish, in the event of a major outbreak, the
proportions (Pn,v) (n = 1, 2, . . . ; v = 0, 1, . . . , n) of households of size n with v

members ultimately infected. For n = 1, 2, . . ., (Pn,v) satisfies the system of equations
(see Addy et al. (1991), equation 4)

v∑

i=0

(
n − i

v − i

)
Pn,i

φ((n − v)λL)iπn−v
=

(
n

v

)
(v = 0, 1, . . . , n). (2.5)

The above arguments are made rigorous in Ball et al. (1997), Section 4.2 and hold
with or without the inclusion of a latent period, see Ball et al. (1997), Section 3.1.

2.4 Deterministic model

In House and Keeling (2008), Section 2, a system of ordinary differential equations
(ODEs) is derived for the evolution over time of the SIR epidemic model with house-
holds, assuming that TI ∼ Exp(γ ), i.e. the infectious period distribution is exponential
with mean γ −1. House and Keeling’s ODEs represent the deterministic limit of the
stochastic process defined in Sect. 2.1 as m → ∞, under the assumptions that all
households are the same size and there is no latent period. We extend the system of
ODEs to allow for variable household size and a latent period TE ∼ Exp(δ).

Consider the model in Sect. 2.1 with maximum household size nmax. Let

H (nmax) = {(s, e, i, r) ∈ Z
4+ : 1 ≤ s + e + i + r ≤ nmax}, (2.6)

whereZ+ = {0, 1, . . . }, and for t ≥ 0 and (s, e, i, r) ∈ H (nmax), denote by H (m)
s,e,i,r (t)

the number of households with s susceptible, e exposed, i infectious and r recovered
members at time t . For n = 1, 2, . . . , nmax, let

Hn = {(s, e, i, r) ∈ H (nmax) : s + e + i + r = n}.

Then,
∑

(s,e,i,r)∈Hn
H (m)
s,e,i,r (t) = mn for all t ≥ 0. Let

H (nmax)+ = {(s, e, i, r) ∈ H (nmax) : e + i > 0} (2.7)

be the set of states in which there is at least one infective or exposed individual. For
(s, e, i, r) ∈ H (nmax), we assume that 1

m H (m)
s,e,i,r (0) → hs,e,i,r (0) as m → ∞, where∑

(s,e,i,r)∈H (nmax)
+

hs,e,i,r (0) > 0, so a strictly positive fraction of the population is

initially either exposed or infective in the limit asm → ∞. Then, under theMarkovian
assumption, we have that 1

m H (m)
s,e,i,r (t) converges in probability to a deterministic

process hs,e,i,r (t) as m → ∞; see Ethier and Kurtz (1986), Theorem 11.2.1. Clearly,
for n = 1, 2, . . . , nmax, we have

∑
(s,e,i,r)∈Hn

hs,e,i,r (t) = αn for all t . Let ī(t) =∑
(s,e,i,r)∈H (nmax) ihs,e,i,r (t). The deterministic model can be obtained by considering
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the possible transition rates between household states and yields, for (s, e, i, r) ∈
H (nmax),

d

dt
hs,e,i,r = δ

(−ehs,e,i,r + (e + 1)hs,e+1,i−1,r
)

+ γ
(−ihs,e,i,r + (i + 1)hs,e,i+1,r−1

)

+ λGī(t)
(−shs,e,i,r + (s + 1)hs+1,e−1,i,r

)

+ λL
(−sihs,e,i,r + (s + 1)ihs+1,e−1,i,r

)
,

(2.8)

where, on the right-hand side, hs′,e′,i ′,r ′(t) = 0 if (s′, e′, i ′, r ′) /∈ H (nmax).

3 Herd immunity in SEIR households model

In this section we outline the various versions of herd immunity that we consider. We
start by recapping vaccine-induced herd immunity; we then describe and explore the
details of the disease-induced herd immunity level hD and its approximation h̃D which
are outlined in Sect. 1. In this section, and throughout the remainder of the manuscript,
we assume that R∗ > 1, since if this is not the case then herd immunity is already
achieved.

3.1 Vaccine-induced herd immunity level hC

Suppose some members of the population are vaccinated before an epidemic occurs.
Assume that such a vaccine is given to each member of the population independently
with probability c, and is perfect, so that vaccinated individuals are completely immune
to infection. Then, for v = 0, 1, . . . , n, a given household of size n has v members
vaccinated according to the (binomial) probability

(n
v

)
cv(1− c)n−v . We obtain a post-

vaccination threshold parameter R̂U (c) by considering a branching process of potential
global contacts. If a potential global contact is with a susceptible individual then it
triggers a local epidemic; if the contact is with a vaccinated individual then nothing
happens.

The mean number of potential global contacts emanating from a single-household
epidemic for a household in state (n, v) that is contacted globally, with the initial
infective chosen uniformly at random from members of the household (μn,v , say) is
given by

μn,v =
(
n − v

n

)
μn−v(λL)λGE[TI ],

for n = 1, 2, . . . and v = 0, 1, . . . , n. This is because a vaccinated member being
contacted leads to no global contacts at all, and an unvaccinated member being con-
tacted initiates a single-household epidemic amongst the n−v non-immunemembers.
Such an unvaccinated individual is contacted with probability n−v

n . Conditioning on
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the vaccination status of an individual’s household, as well as the individual’s house-
hold size, and using the same argument as for equation (2.1) yields a post-vaccination
threshold parameter

R̂U (c) =
∞∑

n=1

α̃n

n∑

v=0

(
n

v

)
cv(1 − c)n−v

(
n − v

n

)
μn−v(λL)λGE[TI ], (3.1)

with μ0(λL) = 0. The function R̂U (c) is continuous and strictly decreasing, with
R̂U (0) = R∗ > 1 and R̂U (1) = 0. (To show that R̂U (c) is strictly decreasing, let
fn(c) = ∑n

v=0

(n
v

)
cv(1 − c)n−v(n − v)μn−v(λL). Then fn(c) = E[g(X)], where

g(x) = xμx (λL) and X ∼ Bin(n, 1 − c). The function g is strictly increasing and X
is stochastically decreasing in c. Thus, fn(c) is strictly decreasing in c, whence so is
R̂U (c).) This implies there is a critical value, hC say, such that R̂U (hC ) = 1 and amajor
outbreak can be avoided. The quantity hC is the vaccine-induced herd immunity level.
Note that by ensuring R̂U (c) ≤ 1, the whole population is considered protected as a
major outbreak is no longer possible. This argument regarding uniform vaccination is
considered (among other vaccination strategies) in Ball and Lyne (2006).

As noted at the start of Sect. 1, for epidemic models in which R0 is given by the
maximal eigenvalue of a next generation matrix, hC = 1 − R−1

0 . For the present
households model, R0 is computed differently, see Sect. 2.2; if λL ∈ (0,∞) then it
follows from Ball et al. (2016), Theorem 1, that hC ≥ 1 − R−1

0 with equality if and
only if nmax ≤ 3. In the highly locally infectious case (λL = ∞), hC = 1 − R−1

0 for
all nmax; see Remark 2 following the aforementioned Theorem 1. If λL = 0, the model
reduces to a standard homogeneously mixing SEIR epidemic and hC = 1 − R−1

0 .

3.2 Disease-induced herd immunity

3.2.1 Limiting disease-induced herd immunity level hD

An alternative method of achieving herd immunity in a population arises from the
spread of a first wave of infection, in which infected members from the first wave are
considered immunised thereafter.

Consider the SIR version of the households model described in Sect. 2.1, with TI ∼
Exp(γ ) and assume this epidemic takes off. As the epidemic progresses somemembers
of the population are infected, lowering the overall susceptibility of the population.
Suppose that the first epidemic is stopped (i.e. all infectious spread, including that
within households, is stopped) at time t > 0. Consider a second epidemic initiated
at time t with one initial infective and all those individuals infected by time t in the
first epidemic immune to infection in the second. Recalling that m is the number
of households in the population, let R(m)

V (t) be the threshold parameter (R∗) for this
second epidemic, which is a random variable owing to its dependence on the trajectory
of the first epidemic. If R(m)

V (t) ≤ 1, then the second epidemic is not supercritical and
a major outbreak cannot occur. Disease-induced herd immunity is achieved when
the trajectory of R(m)

V (t) crosses one. Write T (m)∗ = inf{t ≥ 0 : R(m)
V (t) ≤ 1} and
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denote the fraction of the population that is still susceptible at time t in the first
epidemic by S(m)(t). Then the disease-induced herd immunity level H (m)

D is given by

H (m)
D = 1 − S(m)

(
T (m)∗

)
and is also a random variable determined by the trajectory

of the first epidemic. We conjecture that H (m)
D

p−→ hD as m → ∞, where hD is a

constant, and in the presence of a latent period TE ∼ Exp(δ), that H (m)
D

p−→ hLD as
m → ∞. Moreover, we conjecture that, under suitable conditions, these convergence
results hold also when TI and TE follow non-exponential distributions.

To compute hLD when TI ∼ Exp(γ ) and TE ∼ Exp(δ), we use the deterministic

model in Sect. 2.4. Recall the definitions of H (nmax) and H (nmax)+ at (2.6) and (2.7).
Let h(t) = (

hs,e,i,r (t) : (s, e, i, r) ∈ H (nmax)
)
and suppose that h(0) = ε. Then the

deterministic model given by (2.8) can be used in the obvious fashion to define a
disease-induced herd immunity level hLD(ε). Let H0rec = {(s, e, i, r) ∈ H (nmax) :
r = 0}. We conjecture that hLD(ε(k)) → hLD as k → ∞ for any sequence (ε(k))

satisfying
∑

(s,e,i,r)∈H (nmax)
+

ε
(k)
s,e,i,r ↓ 0 and

∑
(s,e,i,r)∈H0rec

ε
(k)
s,e,i,r ↑ 1 as k → ∞.

Other than in Appendix A, when computing hLD , we assume that initially a fraction
ε = 10−5 of households are in state (nmax − 1, 0, 1, 0), with all other households
being fully susceptible. An equivalent assumption is made when computing hD . Note
that, if the largest household is of size n, the system in (2.8) contains exact order n4/24
equations (or n3/6 in the SIR case) and becomes computationally expensive to solve
when n is large.

The proofs of the above conjectures require extending the theory of Barbour and
Reinert (2013) to the households model and are beyond the scope of this paper. Some
brief comments, together with numerical evidence in support of these conjectures are
given in Appendix A.

3.2.2 Approximate disease-induced herd immunity level h̃D

Calculation of hD requires deterministic limiting equations, which are not tractable
in general; in the Markovian setting, for example, hD can be found numerically. For
other infectious period distributions, such a calculation is generally not available;
we consider an approximation (h̃D) to hD . We adapt the approach taken in Britton
et al. (2020) to the households setting, using the final outcome of an epidemic with
reduced global infection rate to approximate the state of the population at the time
herd immunity is achieved. The method of approximation is as follows: Let κ ∈(
R−1∗ , 1

)
. Run to its conclusion an epidemic in which the global infection parameter

λG is replaced by κλG and all other parameters are unchanged, i.e. an epidemic
with prevention measure applied to global infection only. Then expose the population
to a second epidemic with κ = 1, with members infected in the first epidemic now
immune. The threshold parameter R∗ for this second epidemic is a function of κ , which
we denote by R̂DI (κ). Determine κ̂ , the smallest value of κ such that R̂DI (κ) ≤ 1
by solving R̂DI (κ̂) = 1. Then h̃D is the fraction of the population infected in the
first epidemic with κ = κ̂ . In summary, we adjust the global infection rate in the first
epidemic to force criticality in the second, and then consider the final size of the first
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Fig. 1 Distribution of the number of susceptibles in a typical household when herd immunity is achieved
under hD and h̃D when all households have size 4. For each pL , λG is chosen so that R0 = 2

epidemic. Note that this method relies on final size results, which are more amenable
to study than time-dependent results.

3.2.3 Accuracy of the approximation of hD by h̃D

The disparity between hD and its approximation h̃D depends on the distribution of
susceptibles inside households when herd immunity is achieved. When λL = 0, there
is no within-household spread; this distribution is the same under hD as under h̃D .
The same conclusion holds when λL = ∞, since all single-household epidemics end
immediately (everyone in a contacted household becomes infected as soon as that
household is contacted). Thus, when λL = 0 or λL = ∞, we have hD = h̃D . For
epidemics with 0 < λL < ∞, local epidemics are run to termination under h̃D , but
not under hD . This, coupled with a lower global infection rate under h̃D , leads to h̃D

being more strongly governed by within-household spread. A consequence of this is
the distribution of susceptibles among households being more clumped under h̃D than
hD , leading to a larger proportion of households with no susceptible individuals than
under hD , which often results in both h̃D > hD and the approximation becoming
worse as nmax increases (cf. the discussion following Theorem 4.1 in Sect. 4.2.2).
The above-mentioned clumping is illustrated in Fig. 1, which considers the case of a
common household size n = 4, with pL varying in [0, 1] and λG being chosen so
that R0 = 2. When pL = 0, there is no within-household spread and the distribution
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Fig. 2 Heat maps of the percentage error 100
∣
∣∣h̃D − hD

∣
∣∣ /hD as a function of (pL , R0) for common

household sizes n = 2, 3, 4 and 5

of the number of susceptibles in a typical household when herd immunity is reached
is Bin(4, 0.5) under both hD and h̃D . Note the agreement in the two distributions of
susceptibles when pL = 1. For pL ∈ (0, 1), the distribution has greater mass at the
extremes 0 and 4 under h̃D than hD . We suspect that h̃D > hD holds generally for
a common household size n > 1 (with 0 < λL < ∞) and give numerical examples
supporting this claim in Sect. 5.1. It is possible (but atypical) for h̃D < hD to occur,
and the difference is small in the cases we have met. An example is a household
structure comprised of households of size 1 and n > 1 only; see Fig. 7 in Sect. 5.1.

The accuracy of the approximation of hD by h̃D is explored in Fig. 2, which shows

heat maps of the percentage error 100
∣∣∣h̃D − hD

∣∣∣ /hD as a function of (pL , R0) for

common household sizes n = 2, 3, 4 and 5. Observe that the percentage errors are all
small, increase with n and are greatest for intermediate values of pL . The maximum
percentage error as (pL , R0) varies over [0, 1] × (1, 25] for each choice of n and
for some other household size distributions are given in Table 1. Note that the value
of pL at which this maximum is attained tends to decrease with mean household
size μH = ∑∞

n=1 nαn . This may be a consequence of the fact that for fixed pL the
fraction infected by a single-household epidemic increases with household size. The
maximum percentage errors are small, except for countries with large mean household
sizes. Moreover, these are maximum errors and even if they are not small, the error is
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Fig. 3 Values of ĥD with global
restrictions scaled by a factor κ

for the duration of the first
epidemic, using the UK
household size distribution
(solid lines) and Morocco’s
household size distribution
(dashed lines), taking λL = 0.5
and considering several values
of R0

Table 1 The maximum percentage error for h̃D approximating hD when (pL , R0) ∈ [0, 1] × (1, 25],
together with the parameter values for which the maximum is attained

Household μH Max error (%) R0 pL λG λL

n = 2 2 2.051 3.711 0.718 3.109 2.547

n = 3 3 4.019 3.509 0.629 2.555 1.698

n = 4 4 5.711 3.332 0.551 2.167 1.226

n = 5 5 7.161 3.179 0.484 1.883 0.939

α̃1 = α̃4 = 0.5 1.6 1.269 1.646 0.517 1.057 1.068

Sweden 2.0 1.859 2.135 0.566 1.418 1.306

UK 2.3 2.533 2.401 0.566 1.585 1.306

Argentina 3.3 4.236 2.479 0.495 1.386 0.979

Morocco 4.6 7.367 2.633 0.393 1.293 0.649

Chad 5.8 7.350 2.350 0.343 0.990 0.521

Pakistan 6.8 8.444 2.528 0.338 1.103 0.511

The first four rows correspond to a common household of size n. The fifth row corresponds to α̃1 = α̃4 = 0.5
and the remaining rows correspond to real-world household size distributions (see Sect. 5.2)

small for many choices of parameter values, as illustrated by the n = 5 heat map in
Fig. 2. Thus, h̃D is generally a very good approximation of hD .

3.2.4 Impact of restrictions

Note that the parameter κ corresponds to restrictions being placed on the population
which affect only the global infection rate; the severity of such restrictions increases
as κ decreases. Since κ̂ is chosen such that the second epidemic is at criticality, κ̂

corresponds to the most severe restrictions that can be placed for the whole duration
of the first epidemic, such that the second epidemic is not supercritical; more severe
restrictions will leave the second epidemic supercritical, so herd immunity will not
be achieved. Recall that ĥD denotes the disease-induced herd immunity level when
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restrictions are in place. Numerical investigations suggest that as κ increases from κ̂ to
1, ĥD decreases; see Fig. 3. In this example,which uses theUKandMorocco household
size distributions (see Sect. 5.2), such restrictions have only a small effect on the herd
immunity level ĥD , with the effect being larger for Morocco. Moreover, when λL is
fixed, we observe that κ̂ decreases as R0 increases. Repeating these calculations for
other values of λL (not shown) reveals similar patterns and suggests that the effect is
largest whenλL is around 0.5. All of these observations regarding theUKandMorocco
household size distribution are also seen with larger and more variable household size
distributions: the effect of κ on ĥD remains small but becomes slightly larger if the
household size distribution is more variable, κ̂ decreases with increasing R0 and the
effect of varying κ seems greatest when λL ≈ 0.5.

4 Comparison of h̃D and hC

4.1 Outline

This section presents results concerning orderings of h̃D and hC . Since both of these
quantities depend only on final outcome properties of the epidemic, they are invariant
to the distribution of the latent period and we therefore take TE = 0, corresponding
to the SIR setting, in this section. The problem of solving for h̃D is not analytically
tractable when 0 < λL < ∞. We hence begin with the highly locally infectious
case where λL = ∞, considered in Becker and Dietz (1995), for which a framework
for comparison of h̃D and hC is established in Sect. 4.2.1 and explicit progress is
made. This is then applied to several household size distributions, beginning with
all households being the same size, where h̃D > hC is established (Theorem 4.1).
Further, in Sect. 4.2.2 we show that for a common household size n, the maximum of
h̃D − hC as a function of λG occurs when λG = 4

(1+n)E[TI ] , corresponding to R0 = 2

(Theorem 4.2). A necessary and sufficient condition for h̃D = hC in the highly locally
infectious case (Theorem 4.3) is derived in Sect. 4.2.3, leading to study of h̃D and
hC for epidemics just above criticality (Theorem 4.4 in Sect. 4.2.4), as well as highly
locally and globally infectious epidemics (Theorem 4.6 in Sect. 4.2.5). In Sect. 4.2.6
we derive a result for household structures with only households of size 1 and n > 1
(Theorem 4.7). The weakly locally infectious case λL → 0 is treated in Sect. 4.3 and
a condition for h̃D > hC is derived (Corollary 4.9).

We consider the general case 0 < λL < ∞, both analytically and numerically,
when all households are of the same size. In Sect. 4.4, we prove that h̃D > hC for
a common household size n = 2 and n = 3 (Theorem 4.11). We conjecture that
h̃D > hC holds for common household size n ≥ 4; supporting evidence for this
conjecture is provided in Sect. 5.1.
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4.2 Highly locally infectious case

4.2.1 General framework

In the highly locally infectious case (λL → ∞) explicit analytical progress is possi-
ble, as any infected individual will infect their whole household. We therefore have
μn(λL) = n for n = 0, 1, . . . . Using (2.1), we find that R∗ = λGE[TI ]μH̃ , where
μH̃ = E[H̃ ] = ∑∞

n=1 nα̃n is the mean size of the household of an individual chosen
uniformly at random from the population. Thus, R∗ > 1 if and only if λG > 1

μH̃E[TI ] .
Substituting μn(λL) = n into (3.1) and solving R̂U (c) = 1 gives hC as the unique
solution c of

∞∑

n=1

α̃n

n∑

v=0

(
n

v

)
cv (1 − c)n−v (n − v)2

n
λGE[TI ] = 1. (4.1)

The inner sum in (4.1) can be evaluated using the second moment of a Bin(n, 1 − c)
random variable. Using the definition of μH̃ , it follows that hC is given by the unique
solution in (0, 1) of the quadratic equation

hC (1 − hC ) + μH̃ (1 − hC )2 − 1

λGE[TI ] = 0, (4.2)

yielding

hC = 1 −
√
1 + 4(μH̃−1)

λGE[TI ] − 1

2(μH̃ − 1)
. (4.3)

As noted at the end of Sect. 3.1, hC = 1− R−1
0 in the present highly locally infectious

case.
Turning to the disease-induced herd immunity level h̃D , consider the first epi-

demic with global infection rate κ̂λG , where κ̂ solves R̂DI (κ̂) = 1 as described in
Sect. 3.2.2. Let z(κ̂) be the fraction of the population infected by that epidemic and
π = exp(−κ̂λGE[TI ]z(κ̂)), the probability that any given susceptible avoids global
contact during that epidemic. For n = 1, 2, . . . and v = 0, 1, . . . , n, let xn,v(π) be
the proportion of households with n members which have v infected in this epidemic
and thus immune to the second epidemic.

Letting RDI (π) = R̂DI (κ̂), we have

RDI (π) =
∞∑

n=1

α̃n

n∑

v=0

xn,v(π)
(n − v)2

n
λGE[TI ]. (4.4)

In the highly locally infectious case, a given individual escapes infection if and
only if their whole household avoids global infection. Thus xn,0(π) = πn , xn,n(π) =
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1 − πn , and xn,v(π) = 0 for v /∈ {0, n}. Substitution into (4.4) yields

RDI (π) =
∞∑

n=1

nα̃nπ
nλGE[TI ]. (4.5)

Note that μ̃n(∞, π) = n(1−πn), so equation (2.4) implies that the final proportion
infected in the first epidemic is h̃D = z(κ̂) = 1 − ∑∞

n=1 α̃nπ
n . Thus,

h̃D = 1 − f H̃ (π), (4.6)

where f H̃ (π) = ∑∞
n=1 α̃nπ

n is the probability-generating function of H̃ . Setting
RDI (π) = 1 in (4.5) yields

π f ′
H̃

(π) = 1

λGE[TI ] . (4.7)

Combined with (4.2), we have a framework to compare h̃D and hC . Note, however,
that the system given by (4.6) and (4.7) does not always allow closed-form calculation
of h̃D .

Note that in this subsection dealing with the highly local infectious case, the dis-
tribution of TI only enters our results through its mean E[TI ].

4.2.2 Common household size

Suppose that all households are of size n. When n = 1 the model reduces to the
standard homogeneously mixing model, so h̃D = hC = 1 − R−1

0 . Therefore assume
that n > 1. Using (4.3),

hC = 1 −
√
1 + 4(n−1)

λGE[TI ] − 1

2(n − 1)
. (4.8)

Note that f H̃ (π) = πn , so (4.6) and (4.7) yield

h̃D = 1 − 1

nλGE[TI ] . (4.9)

Theorem 4.1 Consider the highly locally infectious case with common household size
n > 1. Then h̃D > hC if R∗ > 1.

Proof The claim is established by subtracting equation (4.8) from (4.9), and letting
x = 1

λGE[TI ] for ease of exposition, so R∗ = nλGE[TI ] = n
x . Expressing explicitly

the dependence of h̃D and hC on x , we obtain
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h̃D(x) − hC (x) =
√
1 + 4x(n − 1) − 1

2(n − 1)
− x

n
= n

√
1 + 4x(n − 1) − n − 2x(n − 1)

2n(n − 1)
.

(4.10)

The result then follows by elementary manipulations of (4.10), since R∗ > 1 implies
x ∈ (0, n). ��

A heuristic justification for Theorem 4.1 is as follows. In disease-induced herd immu-
nity, after the first epidemic, households contain either 0 or n susceptibles, depending
on whether that household was infected. Consider a randomly chosen individual con-
tacted globally in the second epidemic. If this individual is immune, this contact
contributes no further infection. Otherwise, they begin an epidemic within their house-
hold which, in the highly locally infectious case, will infect all non-immune members.
Hence, under disease-induced herd immunity, the potential for within-spread is as
high as possible (the rest of the household is susceptible). Thus disease-induced herd
immunity corresponds to the worst possible vaccination strategy for a given coverage,
resulting in h̃D > hC .

A further result provides a link between the highly locally infectious case and R0
for the households model, in which we treat h̃D − hC as a function of λG .

Theorem 4.2 Under the same assumptions as Theorem 4.1, h̃D − hC has a unique
maximum as a function of λG which is attained when λG = 4

(1+n)E[TI ] , corresponding
to R0 = 2.

Proof We show that h̃D(x) − hC (x) has a unique stationary point, which must be a
maximum since, from (4.10), h̃D(x)−hC (x) → 0 as x ↓ 0 and x ↑ n, corresponding
to R∗ → ∞ and R∗ → 1, respectively, and by Theorem 4.1, h̃D(x) − hC (x) > 0 for
x ∈ (0, n). Then we find the value of x which yields the maximum and compute the
corresponding R0 value.

Ignoring the denominator in (4.10), differentiation with respect to x and equating
to 0 leads us to solve

4n(n − 1)

2
√
1 + 4x(n − 1)

− 2(n − 1) = 0 ⇐⇒ x̂ = n + 1

4
⇐⇒ λ̂G = 4

(1 + n)E[TI ] .

In the highly locally infectious case, all secondary infections in a household are
attributed to the primary case, so μ

(k)
0 = 1, μ(k)

1 = k − 1 and μ
(k)
j = 0 for j /∈ {0, 1}.

Setting λG = λ̂G in (2.3) gives that R0 is the unique positive root of gn(λ) = 0, where

gn(λ) = 1 − 4

1 + n

(
1

λ
+ n − 1

λ2

)
.

Now gn(2) = 0, so the maximum of h̃D − hC is attained when R0 = 2, as claimed. ��
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4.2.3 Necessary and sufficient condition for h̃D = hC for all �G

The framework given in Sect. 4.2.1 for the highly locally infectious case enables proof
of the following result. For θ ∈ (0, 1], we write H̃ ∼ Geom(θ) if H̃ has a geometric
distribution with probability mass function

P(H̃ = x) = θ(1 − θ)x−1 (x = 1, 2 . . . ).

Theorem 4.3 In the highly locally infectious case, h̃D = hC for all λG such that
R∗ > 1 if and only if H̃ ∼ Geom(μ−1

H̃
).

Proof Recall that R∗ > 1 if and only if λG > 1
μH̃E[TI ] . We begin by assuming

h̃D − hC = 0 for all λG > 1
μH̃E[TI ] and solving for H̃ . Equations (4.2) and (4.6) give

f H̃ (π)(1 − f H̃ (π)) + μH̃ ( f H̃ (π))2 = 1

λGE[TI ] .

Equation (4.7) implies that

G(π) := f H̃ (π)(1 − f H̃ (π)) + μH̃ ( f H̃ (π))2 − π f ′
H̃

(π) = 0 (π ∈ [0, 1)).
(4.11)

Further, f H̃ (1) = 1 since f H̃ (π) is a probability-generating function. This separable
ODE can be solved to yield, for 0 ≤ π ≤ 1,

f H̃ (π) =
πμ−1

H̃

1 − π
(
1 − μ−1

H̃

) , (4.12)

which is precisely the probability-generating function of a Geom(μ−1
H̃

) random vari-
able. This establishes the only if part of the equivalence claim. For the converse,
assume that H̃ follows a geometric distribution with parameterμH̃ . Then (4.11) holds
and the logic for the above proof is reversible thereafter, so the result follows. ��
When H̃ follows a geometric distribution, H follows a logarithmic distribution. Note
that real-life household size distributions will have a finite maximum size, so for any
realistic household size distribution h̃D = hC will not hold for all λG in the highly
locally infectious case. We typically observe h̃D > hC for real-life household size
distributions and comment upon this further in Sect. 5.1.

4.2.4 Just supercritical epidemics

We can use the framework provided in Sect. 4.2.1 to give an ordering of h̃D and hC
for epidemics which are just above threshold, i.e. when R∗ is just above 1, so π is just
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below 1. We hence establish an ordering of h̃D and hC by considering G(π), given
in (4.11), in the neighbourhood of π = 1. Assuming a fraction z(π) of individuals
are infected in the first epidemic gives a threshold parameter RDI (π) for the second
epidemic, as given in (4.4). Vaccinating the same proportion uniformly at randomgives
a threshold parameter RU (π) = R̂U (z(π)). Here, RU (π)−RDI (π) = λGE[TI ]G(π).
Clearly we have G(1) = 0, since f H̃ (1) = 1 and f ′

H̃
(1) = μH̃ . Let G

(k) be the kth

derivative of G and define

k∗ = inf
k≥1

{k : G(k)(1) �= 0}. (4.13)

Suppose that G(k∗)(1) > 0. Then G(π) < 0 for π just below 1, so RU (π) < RDI (π)

for such π . Hence, RU (π) < 1 if RDI (π) = 1 and it follows that h̃D > hC for
epidemics which are just above threshold. A similar argument shows that h̃D < hC if
G(k∗)(1) < 0. If H̃ follows a geometric distribution then G(k)(1) = 0 for all k ≥ 1,
otherwise h̃D �= hC . Determining the ordering of h̃D and hC reduces to comparing
factorial moments of H̃ to those of a geometric distribution with parameter μ−1

H̃
.

For a random variable H̃ define, for i = 1, 2, . . . , the factorial moments μ
[i]
H̃

=
E[H̃(H̃ − 1) . . . (H̃ − i + 1)], with μ

[0]
H̃

= 1. Note that μ[1]
H̃

= μH̃ .

Theorem 4.4 Let H̃ be a given size-biased household size distribution with mean
μH̃ and factorial moments μ

[i]
H̃

(i = 0, 1, . . . ). Suppose that l∗ = inf
k≥2

{k : μ
[k]
H̃

�=
k!μH̃ (μH̃ − 1)k−1} < ∞. Then h̃D > hC for highly locally infectious epidemics

which are just above threshold if μ[l∗]
H̃

< l∗!μH̃ (μH̃ − 1)l
∗−1, otherwise h̃D < hC for

such epidemics.

Proof For i = 0, 1, 2 . . . , let μ̂
[i]
H̃

be the i th factorial moment of H̃ when H̃ ∼
Geom(μ−1

H̃
). Then μ̂

[0]
H̃

= 1 and

μ̂
[n]
H̃

= n!μH̃

(
μH̃ − 1

)n−1
(n = 1, 2, . . . ).

We compute G(k)(1) using the general Leibniz rule. For k = 1, 2, . . . we have

G(k)(π) = (1 − k) f (k)
H̃

(π) + (μH̃ − 1)

×
k∑

i=0

(
k

i

)
f (i)
H̃

(π) f (k−i)
H̃

(π) − π f (k+1)
H̃

(π), (4.14)

leading to

G(k)(1) = (1 − k)μ[k]
H̃

+ (μH̃ − 1)
k∑

i=0

(
k

i

)
μ

[k−i]
H̃

μ
[i]
H̃

− μ
[k+1]
H̃

. (4.15)
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Note thatG(k)(1) ≡ δn−μ
[k+1]
H̃

, where δk depends only onμ
[0]
H̃

, μ
[1]
H̃

, . . . , μ
[k]
H̃
. Recall

that G(k)(1) = 0 for all k = 0, 1, . . . when H̃ ∼ Geom(μ−1
H̃

). Now suppose that

l∗ < ∞ and μ
[l∗]
H̃

< l∗!μH̃ (μH̃ − 1)l
∗−1. Then G(k)(1) = 0 for k = 0, 1, . . . l∗ − 1,

since μ
[k]
H̃

= μ̂
[k]
H̃

for k = 0, 1, . . . , l∗ − 1, and G(l∗)(1) > 0 since μ
[l∗]
H̃

< μ̂
[l∗]
H̃

.

Hence, h̃D > hC by the observation following (4.13). A similar argument holds when
μ

[l∗]
H̃

> l∗!μH̃ (μH̃ − 1)l
∗−1.

��
In many cases only the first derivative ofG is required. The following corollary, which
involves only the mean and variance of H̃ , is an immediate consequence of Theorem
4.4 in the case l∗ = 2.

Corollary 4.5 If var(H̃) < E[H̃ ]E[H̃ − 1] then h̃D > hC for highly locally infectious
epidemics which are just above threshold. If var(H̃) > E[H̃ ]E[H̃ − 1] then h̃D < hC
for highly locally infectious epidemics which are just above threshold.

4.2.5 Highly locally and globally infectious epidemics

The framework in Sect. 4.2.1 can also be used to consider highly locally and highly
globally infectious epidemics. This corresponds to the case where π , the global escape
probability, is small. Considering π ↓ 0 yields the following theorem. (Recall that,
for n = 1, 2, . . . , α̃n = P(H̃ = n).)

Theorem 4.6 Suppose that n∗ = infn≥2{n : G(n)(0) �= 0} < ∞. Then h̃D > hC for
all sufficiently small π > 0 if α̃n∗ < α̃n∗

1 (μH̃ − 1)n
∗−1, otherwise h̃D < hC for such

π .

Proof Note that, for i = 0, 1, . . . , we have f (i)
H̃

(0) = i !α̃i , with α̃0 = 0. Substituting

π = 0 into (4.14) yields, after elementary algebra, that G(1)(0) = 0 and, for n ≥ 2,

G(n)(0) = n!
(

(1 − n)α̃n + (μH̃ − 1)
n−1∑

k=1

α̃n−k α̃k

)

. (4.16)

Suppose that G(n)(0) = 0 for n = 1, 2, . . . . Iterating (4.16) gives α̃n = α̃n
1 (μH̃ −

1)n−1. Then α̃1 = μ−1
H̃

(since
∑∞

n=1 α̃n = 1), so H̃ ∼ Geom(μ−1
H̃

). With n∗ as

in the statement of the theorem, we have that G(n∗)(0) > 0 implies h̃D < hC , and
G(n∗)(0) < 0 implies h̃D > hC , from which the result follows.

��
Similarly to the just supercritical case, the only distribution for H̃ which hasG(n)(0) =
0 for all n is the geometric distribution with parameterμ−1

H̃
. Theorem 4.6 then reduces

the ordering of h̃D and hC to iterative comparison of the probability mass function of
H̃ with the relevant geometric distribution.
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4.2.6 Households of size 1 and n > 1

Theorem 4.1 in Sect. 4.2.2 shows that, in the highly locally infectious case, h̃D > hC
for all λG when the households all have the same size. We now consider the simplest
setting when there is variability in household size, i.e. the case where there are only
two household sizes, 1 and n > 1. For 0 < p < 1, let p denote the proportion of
individuals who belong to a household of size n. Thus α̃n = p and α̃1 = 1 − p.
We consider how h̃D − hC varies with p, with a view towards obtaining different
orderings of h̃D and hC as the household structure changes. The following theorem,
proved in Appendix B.1, shows that the ordering of h̃D and hC is less straightforward
when household size is variable.

Theorem 4.7 Suppose that α̃n = p = 1 − α̃1, where n > 1 and 0 < p < 1,
and R∗ > 1. If n = 2, then h̃D > hC for all p. For n ≥ 3, if p ≤ n−2

2(n−1) then

h̃D < hC for all λG. If p > n−2
2(n−1) then there exists λ∗

G(n, p) such that h̃D >

hC for λG < λ∗
G(n, p) and h̃D < hC for λG > λ∗

G(n, p). Further, λ∗
G(n, p) =

[
E[TI ]π̂n(p)

(
1 − p + npπ̂n(p)

n−1
)]−1

, where π̂n(p) is the unique root in (0, 1) of

π
n
2−1 − pπn−1 − (1 − p) = 0. (4.17)

One can solve (4.17) for π̂ numerically and thereby determine λ∗
G(n, p), and the

corresponding value R∗
0(n, p) of R0 (which is independent of E[TI ]), such that the

change in the ordering of h̃D and hC occurs. Figure4 shows R∗
0(n, p) as a function

of p for various n, with h̃D < hC above the plotted line and h̃D > hC below it. If
p ≤ (n − 2)/2(n − 1) then no change of sign occurs and h̃D > hC for all values of
R0 > 1.

We see immediately that R∗
0(n, p) decreases with n and increases with p. One can

also show that, for fixed n, lim p↑1 R∗
0(n, p) = ∞. Further, var(H̃) = (n−1)2 p(1−p),

so the variability in household size is small when p is close to one. Thus Theorem 4.7

Fig. 4 The value of R∗
0 (n, p)

(on a logarithmic scale) as a
function of p for n ∈ {3, 4, 5, 6}
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shows that, even with low variability in household size, we can have h̃D < hC ;
however, in this example, R0 has to be unrealistically large for this to happen.

4.3 Weakly locally infectious case

Consider now the case when the extra local infection is small but non-zero, corre-
sponding to λL → 0, with R∗ > 1, E[TI ] = 1 and var(TI ) < ∞. Assume also that
nmax < ∞.

Theorem 4.8 Let π(0) = 1
λG

. We have

h̃D(λL) − hC (λL) = 2λ2Lπ(0)2(1 − π(0))
[
E[H̃ − 1] − var(H̃)

]
+ o(λ2L).

The proof of Theorem 4.8 involves computing the first three terms of theMaclaurin
expansion of h̃D(λL) − hC (λL) and is given in Appendix B.2, where the assumption
that nmax < ∞ is also explained. The assumption that E[TI ] = 1 involves no loss
of generality (since time can be rescaled appropriately) and is made to simplify the
presentation of the proof. The assumption var(TI ) < ∞ is required for the third term in
the above-mentioned Maclaurin expansion. Note that when λL = 0, R∗ = R0 = λG ,
whence hC = h̃D = 1− π(0). The following corollary is an immediate consequence
of Theorem 4.8.

Corollary 4.9 If var(H̃) < E[H̃ − 1] then h̃D > hC for all sufficiently small λL > 0.
If var(H̃) > E[H̃ − 1] then h̃D < hC for all sufficiently small λL > 0.

If var(H̃) = E[H̃ −1], higher terms in the Maclaurin expansion of h̃D(λL)− hC (λL)

are required in order to give an ordering. Note that Corollaries 4.5 and 4.9 produce
contrasting orderings of h̃D and hC if E[H̃ ] − 1 < var(H̃) < E[H̃ ](E[H̃ ] − 1). (See
Sect. 5.2 for a numerical exploration of this.)

A result for a common household size n > 1 follows immediately from Corol-
lary 4.9.

Corollary 4.10 Suppose all households are the same size n > 1. For all sufficiently
small λL > 0, we have h̃D > hC .

Proof When the common household size is n > 1, we have var(H̃) = 0 and E[H̃ −
1] > 0. Applying Corollary 4.9 then establishes the claim. ��

4.4 Common household size with 0 < �L < ∞

We have shown that, for a common household size n and any λG such that R∗ > 1,
we have h̃D > hC when λL → 0 and λL = ∞. The following theorem considers
λL ∈ (0,∞).

Theorem 4.11 For a common household size n = 2 or n = 3, and for any λG and
λL > 0 such that R∗ > 1, we have h̃D > hC .
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Proof Suppose a fraction z of the population is infected by afirst epidemic in the house-
holdsmodel with the above parameters. This leads to a threshold parameter R̂DI (z) for
the second epidemic. Further, assuming the same proportion are vaccinated uniformly
at random gives threshold parameter R̂U (z). We show that R̂DI (z)− R̂U (z) > 0, from
which h̃D > hC is immediate.

Let PD
i (i = 0, 1, . . . , n) be the proportion of households with i members immune

owing to the first epidemic and let PU
i (i = 0, 1, . . . , n) be the analogous quantity

with uniformly at random vaccination, both assuming a fraction z of the population is
immune. Then we can write

R̂U (z) = λGE[TI ]
n∑

v=0

(
1 − v

n

)
PU

v μn−v(λL)

and

R̂DI (z) = λGE[TI ]
n∑

v=0

(
1 − v

n

)
PD

v μn−v(λL).

Assuming n = 2 and considering the proportion of susceptibles remaining after vac-
cination also yields

2PD
0 + PD

1 = 2PU
0 + PU

1 .

Now A := PD
0 − PU

0 = π2 − (1− z)2 > 0, since the probability an individual avoids
global infection π is larger than the overall probability it avoids infection 1 − z. We
then find

R̂DI (z) − R̂U (z) = λGE[TI ]
[(

PD
0 − PU

0

)
μ2(λL) + 1

2
(PD

1 − PU
1 )μ1(λL)

]

= AλGE[TI ] [μ2(λL) − μ1(λL)] > 0,

since μ2(λL) > μ1(λL) and A > 0. The result follows and the claim is established
for n = 2. The proof for n = 3 uses a similar (but more involved) argument and is
deferred to Appendix B.3. ��

A proof for n > 3 has not been forthcoming, but we make the following conjecture,
which is supported by numerical evidence (Fig. 6) in Sect. 5.1.

Conjecture 4.12 For any common household size n > 1, and for any λG and λL such
that R∗ > 1, we have h̃D > hC .

In Theorem 4.2 we show that for a common household size in the highly locally
infectious case, the difference h̃D −hC is maximised at R0 = 2.We show numerically
that this does not hold when λL < ∞. For ease of visualisation wework in terms of the
probability that an infectious individual makes local infectious contact with a given
individual in their household, pL = pL(λL) = 1 − φ(λL), instead of λL directly.
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Fig. 5 Plot of R0 such that
h̃D − hC is maximised, where
the common household size
n ∈ {2, 3, 4, 5, 6} and
TI ∼ Exp(1)

Note that pL is a monotonic function of λL , with pL(0) = 0 and pL(∞) = 1. Taking
TI ∼ Exp(1), we have pL = λL(1 + λL)−1. In Fig. 5 we fix n ∈ {2, 3, 4, 5, 6}
and pL(λL), determine λ̂G = argmax

λG

(h̃D − hC ), the global infection rate which

maximises the difference (assumed to be positive on the basis of Conjecture 4.12)
between the herd immunity levels, then calculate the resulting value of R0.

We see that the ‘optimal’ value of R0 broadly increases with pL and tends to 2
as pL → 1, consistent with Theorem 4.2. The dip near pL = 0 becomes more
pronounced as n increases. Similar behaviour occurs for other choices of infectious
period distribution.

When pL = 0 we have h̃D = hC , so any value of λG maximises h̃D − hC . As
such, the value of R0 when λL = 0 is not well-defined, leading to instability when
solving numerically. However, in the general setting with variable household sizes we
can proceed analytically using Theorem 4.8. We have, as λL ↓ 0,

h̃D(λL) − hC (λL) = 2λ2Lπ(0)2(1 − π(0))
[
E[H̃ − 1] − var(H̃)

]
+ o(λ2L),

(4.18)

where π(0) = 1
λG

. If E[H̃ − 1] > var(H̃) (E[H̃ − 1] < var(H̃)), the right-hand-side

of (4.18), ignoring the o(λ2L) term, is maximised (minimised) at π̂0 = 2
3 , yielding

λ̂G = 1.5. The value of R0 maximising
∣∣
∣h̃D(λL) − hC (λL)

∣∣
∣ then satisfies R0 → 1.5

as λL → 0.

5 Numerical comparisons of herd immunity levels

We begin in Sect. 5.1 by numerically illustrating some of the results from Sect. 4, then
in Sect. 5.2 we explore how our findings play out in the context of realistic household
size distributions. Throughout this section, we restrict attention to theMarkovian case,
i.e. we assume that TI ∼ Exp(γ ), and TE ∼ Exp(δ) if a latent period is present.
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Fig. 6 Herd immunity levels for fixed R0 = 2 with common household size n ∈ {2, 3, 4, 5} and δ = γ = 1

5.1 Illustrative examples

In this subsection we assume that γ = 1 and, where applicable, δ = 1 also. We begin
by plotting in Fig. 6 how hD , hLD , h̃D and hC vary with pL for a common household
size n when λG is chosen so that R0 = 2 is fixed.

Figure6 provides an illustration of Theorem 4.11 and support for its extension in
Conjecture 4.12; we observe h̃D > hC throughout Fig. 6. We also observe from Fig. 6
that we have hD > hLD . Analytical comparison of hLD and hD is often not tractable,
however we can show that hD > hLD for pL sufficiently close to 1 as follows. When
pL = 1, under the SIR model disease-induced herd immunity leaves households
either fully susceptible or fully non-susceptible. As noted in the discussion following
Theorem 4.1, this corresponds to the worst possible vaccination strategy for a given
coverage, implying hD > hLD , since under the SEIR model there may be households
in which only the initial case in that household is non-susceptible.

In Fig. 7 we consider the same comparisons as in Fig. 6, but with a variable house-
hold size distribution. Specifically, we take α̃1 = α̃n = 0.5 for some n > 1; half
the individuals in the population are in households of size 1 and the other half are in
households of size n. This implies that α1 = n/(n + 1) and αn = 1/(n + 1).
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Fig. 7 Herd immunity levels for fixed R0 = 2 with household size distribution such that α̃1 = α̃n = 0.5
for n ∈ {2, 3, 4, 5}

A first observation based on Fig. 7 is that the behaviour near pL = 0 is consistent
with the predictions of Sect. 4.3. Specifically, since E[H̃ ] = (n − 1)/2 and var(H̃) =
(n − 1)2/4, Theorem 4.8 predicts that hC > h̃D near pL = 0 if and only if n ≥ 4.
There is contrasting behaviour in terms of the shape of the herd immunity levels as n
increases. When n = 2 and n = 3, hC is the smallest of the considered herd immunity
levels for all pL . By contrast, when n = 4 or n = 5 there are values of pL such that
hC is the largest of the considered herd immunity levels. As n increases in Fig. 7, the
approximation h̃D for hD gets worse, cf. Sect. 3.2.3. Introducing a latent period does
not necessarily lead to a reduction in the disease-induced herd immunity level; we
observe that hLD > hD when n = 4 and n = 5.

Note that in Figs. 6 and 7 we have hC ≥ 1− 1/R0, with strict inequality unless all
households are of size 3 or less; this follows from Theorem 1 of Ball et al. (2016).

5.2 Real-world household size distributions

This section is motivated by the study in Britton et al. (2020), which considers the
influence of population heterogeneity on the disease-induced herd immunity level for
the COVID-19 pandemic. Britton et al. (2020) uses aMarkov SEIRmodel in a popula-
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tion that is structured by age and activity level, in which for all individuals the exposed
and infectious periods follow Exp(1/3) and Exp(1/4) distributions, respectively, with
the unit of time being a day. Thus, the mean exposed and infectious periods are 3 and
4 days, respectively. Using the approximation to hD described in Sect. 1, Britton et al.
(2020) find that, when R0 = 2.5, hD for a homogeneously mixing model and hC are
both 60%; for the model with both age and activity structure, hD is reduced to 43.0%.

The aim of the present numerical study is to investigate the effect of household
structure on hD , using a model with the above values of δ and γ and a range of
real-world household size distributions. In order to achieve that we need a way of
calibrating models with different choices of (λL , λG). One possibility is to keep the
basic reproduction number R0 fixed. However, R0 is not uniquely defined for house-
hold models. The definition in Sect. 2.2 uses so-called rank generations and a different
value for R0 would typically be obtained if real-time generations were used instead,
as for example in Neal and Theparod (2019). In practice, for an emerging epidemic,
R0 is often estimated indirectly, via an estimate of the epidemic’s early exponential
growth rate r ; see, for example, Wallinga and Lipsitch (2007). For the multitype SEIR
model used in Britton et al. (2020), R0 and r satisfy

R0 =
(
1 + r

δ

) (
1 + r

γ

)
; (5.1)

see Sections 1.3.1 and 1.5 of the supplementary material of Trapman et al. (2016).
Note that the relationship (5.1) between R0 and r is the same for all models in this
class of multitype Markov SEIR epidemics and in particular matches that for the
homogeneously mixing Markov SEIR model (Trapman et al. 2016).

We adopt the following method of calibrating models with different (λL , λG),
based on the early exponential growth rate r . For a given choice of R0 in Britton et
al.’s model, which we denote by RBBT

0 , we use (5.1) to calculate the corresponding
value of the early exponential growth rate r under a multitype SEIR model. Then for
a given value of λL ∈ [0,∞), we choose λG so that the early exponential growth rate
of our households SEIR model equals r ; see Appendix C for details. As previously,
we use the local infection probability pL = 1 − φ(λL) in the figures.

We consider real-world household size distributions from demographically diverse
countries. Note that the exact distribution is not available for some countries we con-
sider andhence is estimated bymaximum likelihood estimation using the available data
(mean household size and summaries of the household size distribution). The house-
hold structures, their corresponding sources and estimation procedures are given in
Appendix D.

We begin by considering weakly locally infectious epidemics and just supercritical
epidemics in Fig. 8, which illustrates Corollaries 4.5 and 4.9. This implicitly gives
orderings of h̃D and hC for such epidemics, for a range of realistic household size
distributions. Countries with (μH̃ , σ 2

H̃
) below (above) the solid curve have h̃D > hC

(h̃D < hC ) for just supercritical epidemics in the highly locally infectious case; those
below (above) the dashed curve have h̃D > hC (h̃D < hC ) in the weakly locally
infectious case.
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Fig. 8 Critical values of
(μH̃ , σ 2

H̃
) from Corollaries 4.5

and 4.9, together with values of
these quantities for several
countries’ household size
distributions

The region enclosed between the solid and dashed black curves in Fig. 8 represents
the set of values of (μH̃ , σ 2

H̃
) for which Corollary 4.5 and Corollary 4.9 give different

orderings of h̃D and hC . We see that all countries considered have household size
distributions in this set; though some are very close to the critical line E[H̃ − 1] =
var(H̃) in the weakly locally infectious case.

Wenowexplore the various herd immunity levels in our SIRandSEIRmodels, using
the household size distributions of theUK (Fig. 9) andMorocco (Fig. 10) as exemplars.
These countries are chosen because of their quite different household size distributions
(cf. Fig. 8). The computation of hLD is omitted for Morocco as its calculation becomes
numerically infeasible, since the dimension of the system of ODEs (2.8) becomes too
large owing to the high maximum household size.

Considering the UK household size distribution, which has μH̃ = 3.02 and σ 2
H̃

=
2.26, we see that hD > hC , which is as expected given we have observed hD < hC
only in cases where household sizes have very high variability. We also observe less
variation in hLD than in the other herd immunity levels. Increasing RBBT

0 leads to the
growth rate r being fixed at a higher value, in turn causing higher herd immunity
levels. We also observe that hLD and hD are very close for fixed r as pL increases from
0, until around pL = 0.6.

Weobserve very similar qualitative behaviour for other household size distributions,
as shown for the Morocco household size distribution (which has μH̃ = 5.74 and
σ 2
H̃

= 6.12) in Fig. 10.
We now explore the quantitative differences between the herd immunity levels in

detail for a wider range of countries’ household size distributions. Specifically, in
Fig. 11 we compare the various herd immunity levels between several countries in
the absence of a latent period, with RBBT

0 = 3. (Estimates of R0 for COVID-19 vary
greatly even for the same country, but other choices for RBBT

0 produce qualitatively
similar results.)

We observe h̃D > hD in Fig. 11, as well as h̃D = hD at pL = 0 and pL = 1. For
countries with generally smaller household sizes (i.e. Finland, Japan and the UK), h̃D

and hD are very close in value. Countries with a larger value of μH̃ give larger values
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Fig. 9 Herd immunity levels maintaining a fixed growth rate r implied by a given value of RBBT
0 , for the

UK household size distribution

for hD and h̃D but lower values of hC . We generally observe h̃D > hC ; the exceptions
to this are for Morocco, Finland and Japan when pL is close to zero, and even then
the difference between h̃D and hC is very small. We see hC decreases monotonically
with pL , whereas h̃D and hD are not monotone in their dependence on pL . Finally,
considering the last plot in Fig. 11, we find that the difference h̃D − hD is maximised
at a smaller value of pL , with a larger maximum difference, when μH̃ is larger.

6 Concluding comments

We have presented a general framework for investigating disease-induced herd immu-
nity in epidemic models with household structure. Calculating the disease-induced
herd immunity level hD for suchmodels is not straightforward andwe have introduced
a useful approximation h̃D , which is more amenable to analysis. In sharp contrast to
most forms of heterogeneous mixing, for which hD is less than the vaccine-induced
herd immunity level hC , the imposition of household structure generally leads to hD

being greater than hC , unless the variability in the household size distribution is suffi-
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Fig. 10 Herd immunity levels maintaining a fixed growth rate r implied by a given value of RBBT
0 , for

Morocco’s household size distribution

ciently large. This is proved using h̃D for epidemics which are either highly or weakly
locally infectious, and numerical studies support the conjecture that it holds more
generally.

It would be worthwhile to consider more fully the impact of restrictions, such as
lockdown, on ĥD , the disease-induced herd immunity level when restrictions are in
place. In Sect. 3.2.2, we give an example where such restrictions affect only the global
infection parameter λG , for which the impact of the restrictions on ĥD is minimal;
moreover, the approximation of ĥD by h̃D improved with increasing restrictions.
Similar results were found with other examples. However, in that example restrictions
were applied uniformly with time which is unlikely to be the case in practice. Further,
in practice restrictions may also affect the local infection rate λL ; indeed it is not hard
to envisage scenarios in which λL might increase.

Anotherworthwhile avenue for future research is to considermodelswhich combine
household structure with other forms of heterogeneous mixing. This can be done using
the multitype households model and a similar approximation to h̃D for the disease-
induced herd immunity level can be calculated using results in Ball and Lyne (2001).
We are currently investigating this for a model with activity levels, as in Britton et al.
(2020), and also household structure.

123



The impact of household structure... Page 33 of 47    83 

Fig. 11 Comparison of hD , h̃D , h̃D − hD and hC respectively by country for RBBT
0 = 3 (with r held

fixed) comparing Iraq, Chad, Morocco, UK, Japan and Finland

We have assumed throughout that the individual-to-individual local infection rate
λL is independent of household size n. Although this assumption is often made with
householdmodels and is usually reasonable for small n, such as in theUK, Sweden and
Finland household size distributions, it is less easily justified for countries with large
household sizes, such as Iraq, Pakistan and Chad. One would expect λL to decrease
with n and it would be interesting to explore the consequent impact on hD . Note that
the results of Sect. 4.2 concerning the highly locally infectious case are unaffected but
other results may change.

Throughout a large part of this work we have used h̃D as an approximation to hD .
The only models in which we have computed hD are those in which the infectious
and latent periods follow exponential distributions. In real-life epidemics, the distri-
butions of these quantities are usually far from exponential. Moreover, the impact of
departures from exponential distributions on epidemic properties is usually greater in
models incorporating small mixing groups, such as households. Although it is possible
in principle to use the method of stages to extend the deterministic model in Sect. 2.4
to include Erlang distributed infectious and latent periods, and to allow for varied
local and global infection rates between stages of infection, in practice, the number
of ODEs soon becomes infeasible. However, it is straightforward to calculate h̃D for
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such models, and indeed for models in which individuals have infectivity profiles (for
example, Goldstein et al. (2009)), since such calculation only requires final outcome
properties of an epidemic. We have found that h̃D > hD in most of our numerical
studies with exponentially distributed infectious and latent periods, and that the dif-
ference is typically small unless the mean household size is large. We expect a similar
conclusion to hold for models with other, more realistic, choices of infectious and
latent period distributions.
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A Convergence of H(m)
D to hD

In this appendix, we comment briefly on a possible approach to proving the conjecture

in Sect. 3.2.1 that H (m)
D

p−→ hLD asm → ∞.We also present some numerical evidence
in support of that conjecture for the SIR model and for the conjecture underlying the
calculation of hD in that model.

A possible proof of H (m)
D

p−→ hLD asm → ∞ is to extend the theory of Barbour and
Reinert (2013) to the households SEIR model. Briefly, such an extension would imply
that, asm → ∞, in the event of a major outbreak, the process

{
m−1H(m)(t) : t ≥ 0

}
,

where H(m)(t) =
(
H (m)
s,e,i,r (t) : (s, e, i, r) ∈ H (nmax)

)
(see Sect. 2.4), converges in

probability to a random time translation of a deterministic process {h̃(t) : −∞ <

t < ∞} in which the fraction of the population that is either exposed or infective
converges to 0 as t → −∞. The random time translation arises from the randomness
in the initial behaviour of the approximating branching process (see Sect. 2.2) before it
settles into its exponentially growing regime.One can use h̃(t) to define (deterministic)
analogues of R(m)

V (t) and S(m)(t) above, R̃V (t) and s̃(t) say, and hLD = 1−s̃(t̃∗), where
t̃∗ = inf{t ∈ (−∞,∞) : R̃V (t) ≤ 1}.
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Table 2 Empirical evidence for the convergence of H (m)
D to a limiting value as m → ∞, using 10000

simulations of major outbreaks with (λG , λL , γ ) = (2, 0.25, 1) and an equal number of households of size
1 and size 2

m 102 103 104 105

H̄ (m)
D 0.533495 0.532459 0.532260 0.532240

σ̂ (m) 1.70 × 10−2 1.67 × 10−3 5.29 × 10−4 1.67 × 10−4

m(σ̂ (m))2 2.90 × 10−2 2.78 × 10−3 2.80 × 10−3 2.80 × 10−3

The sample mean (H̄ (m)
D ) and sample standard deviation (σ̂ (m)) of H (m)

D are given for various total number
of households (m). Themean appears to converge toward a fixed value,with the standard deviation appearing
to decrease toward 0 as m → ∞

Table 3 Empirical evidence of convergence of hD(ε) to hD , using (λG , λL , γ ) = (2, 0.25, 1) and an
equal number of households of size 1 and size 2, with an initial fraction ε of infected households, where
ε = ∑

(s,e,i,r)∈H (nmax)
+

εs,e,i,r

ε 10−2 10−3 10−4 10−5

Initially Size 1 0.532274 0.532242 0.532238 0.532239

infected Size 2 0.532032 0.532218 0.532237 0.532239

households Sizes 1 & 2 0.532312 0.532246 0.532237 0.532239

The different rows correspond to different choices of initial condition in terms of which household sizes
contain initial infectives. In the first row, all initial infectives reside in size 1 households, and in the second
row all initial infectives reside in size 2 households. In the third row, a fraction ε

2 households contain one
initial infective and a fraction ε

2 households contain two initial infectives. As ε ↓ 0, hD(ε) approaches a

value consistent with Table 2. Smaller values of ε give the same value as hD(10−5) to this level of accuracy

In Table 2 we present an example showing empirical evidence in support of this
conjecture for the households SIR model when TE ∼ Exp(γ ). We also see in the
bottom row of Table 2 evidence that mvar(H (m)

D ) converges to a constant as m → ∞,

which is consistent with a central limit theorem for H (m)
D .

Recall from Sect. 3.2.1 that we calculate hLD by considering a sequence of deter-
ministic epidemics in which the initial fraction of the population that is infected tends
to 0. Further, we conjecture that hLD(ε(k)) → hLD as k → ∞ for any sequence (ε(k))

satisfying
∑

(s,e,i,r)∈H (nmax)
+

ε
(k)
s,e,i,r ↓ 0 and

∑
(s,e,i,r)∈H0rec

ε
(k)
s,e,i,r ↑ 1 as k → ∞.

We give an example for an SIR model in Table 3.
Tables 2 and 3 suggest that limm→∞ H (m)

D can be computed as the solution of the
appropriate corresponding deterministic equations, along with the stopping condition
RV (t) = 1.

Figure12 gives an example showing that, as m increases, the trajectories {S(m)(t)}
and {R(m)

V (t)} become smoother, with a random time translation capturing the time it

takes for the stochastic epidemic to take off. As a result, the trajectories of R(m)
V (t)

and 1 − S(m)(t) against t can, for large m, be thought of as random time shifts of the
corresponding deterministic trajectories. The random time shift is absent, however,
when considering R(m)

V (t) against 1 − S(m)(t), since the time shifts of R(m)
V (t) and
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Fig. 12 Realised trajectories of R(m)
V (t) and 1− S(m)(t) for m = 100 (left column) and m = 10000 (right

column), with (λG , λL , γ ) = (2, 0.25, 1) and an equal number of households of size 1 and size 2 with a
single initial infective residing in a household of size 2. The top row plots the trajectories of 1 − S(m)(t)

against t . The second row plots the trajectories of R(m)
V (t) against t . The final row plots the trajectories of

R(m)
V (t) against 1 − S(m)(t), with the epidemic progressing from left to right and with the corresponding

deterministic trajectory superimposed

1− S(m)(t) are the same for a given realisation of the process. In light of the definition
above of H (m)

D , we thus find, for large m, that H (m)
D � limε→0 hD(ε). Owing to the

random time shift, however, it is not the case that T (m)∗ � t∗ even for large m.

B Proofs

B.1 Proof of Theorem 4.7

Proof Let π ∈ (0, 1). Using (4.5), RDI (π) = λGE[TI ][(1− p)π + npπn]. Note that
the proportion z infected in the first epidemic satisfies z = 1 − (1 − p)π − pπn .

123



The impact of household structure... Page 37 of 47    83 

We compare RDI (π) with the corresponding reproduction number RU (π), when this
fraction z of the population is vaccinated uniformly at random. Using (4.1) (cf. (4.2)),

RU (π) = λGE[TI ][1 − z + p(n − 1)(1 − z)2]
= λGE[TI ]

{
(1 − p)π + pπn + p(n − 1)[(1 − p)π + pπn]2

}
.

Hence,

RU (π) − RDI (π) = p(n − 1)λGE[TI ]
([

(1 − p)π + pπn]2 − πn
)

.

Let hn(π) = π
n
2−1− pπn−1. Elementary algebra shows that RU (π)−RDI (π) < 0

if hn(π) > 1− p, RU (π)−RDI (π) = 0 if hn(π) = 1− p, and RU (π)−RDI (π) > 0
if hn(π) < 1 − p. Now h2(π) = 1 − pπ > 1 − p for all π ∈ (0, 1), so when n = 2,
RU (π) < RDI (π) for all π ∈ (0, 1), whence h̃D > hC for all λG (more precisely
all λG such that the epidemic is supercritical). Suppose n ≥ 3. Now hn(0) = 0,
hn(1) = 1 − p and

h′
n(π) =

(n
2

− 1
)

π
n
2−2 − p(n − 1)πn−2.

If p ≤ n−2
2(n−1) then h

′
n(π) > 0 for all π ∈ (0, 1), so hn(π) < 1− p for all π ∈ (0, 1),

leading to h̃D < hC for all λG . Suppose that p > n−2
2(n−1) and letπ

∗
n (p) =

(
n−2

2p(n−1)

) 2
n
.

Then h′
n(π) > 0 for π ∈ (0, π∗

n (p)) and h′
n(π) < 0 for π ∈ (π∗

n (p), 1). Hence,
hn(π) = 1− p has a unique solution, π̂n(p) say, in (0, 1). Further, hn(π) < 1− p for
π ∈ (0, π̂n(p)), implying RU (π) > RDI (π), and hn(π) > 1− p for π ∈ (π̂n(p), 1),
implying RU (π) < RDI (π). It follows that there exists λ∗

G(n, p) such that h̃D > hC
if λG < λ∗

G(n, p), and h̃D < hC if λG > λ∗
G(n, p). The change in behaviour occurs

when RDI (π̂n(p)) = RU (π̂n(p)) = 1. Substituting π̂n(p) into the above expression

for RDI (π) yields λ∗
G(n, p) =

[
E[TI ]π̂n(p)

(
1 − p + npπ̂n(p)

n−1
)]−1

, as required.
��

B.2 Proof of Theorem 4.8

For k = 0, 1, . . . , n, let n[k] = n!/(n − k)! denote the falling factorial. Consider the
single-household epidemic Ẽn(λL , π) described in Sect. 2.3. Let S̃n = n − T̃n be the
number of susceptibles remaining at the end of the epidemic. Define μn(λL) as in
Sect. 2.2 and also define, for k = 1, 2,

μ̂n,k(λL , π) = E[(S̃n)[k]].

Recall we assume that E[TI ] = 1 and var(TI ) < ∞. We start with a preliminary
lemma.
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Lemma B.1 For n = 1, 2, . . . , we have μn(0) = 1 and μ′
n(0) = n − 1. Let

π = π(λL). For n = 1, 2, . . . and k = 1, 2, we have μ̂n,k(0, π(0)) = n[k]π(0)k ,
∂

∂λL
μ̂n,k(0, π(0)) = −kn[k+1]π(0)k(1−π(0)) and ∂

∂π
μ̂n,k(0, π(0)) = n[k]kπ(0)k−1.

Further, ∂2

∂π2 μ̂n,1(0, π(0)) = 0 and ∂2

∂λL∂π
μ̂n,1(0, π(0)) = −n(n − 1)(1 − 2π(0)),

where all derivatives are evaluated at λL = 0. For example, ∂
∂λL

μ̂n,k(0, π(0)) =
∂

∂λL
μ̂n,k(λL , π)

∣∣
∣∣
(λL ,π)=(0,π(0))

.

Proof We make use of Gontcharoff polynomials; see Lefèvre and Picard (1990),
Sect. 2, for details. For a given sequence U = u0, u1, . . . of real numbers, the corre-
sponding Gontcharoff polynomials, G0(x | U ),G1(x | U ), . . . , are defined by

n∑

i=0

n[i]un−i
i Gi (x | U ) = xn (n = 0, 1, . . . ). (B.1)

We consider the real sequence with ui = φ(iλL). For k = 1, 2 and i = 0, 1, . . . ,
let Gi,k(λL) = Gi (1 | EkU ), where EkU denotes the sequence uk, uk+1, . . . . Using
Ball (2019), Proposition 3.1 and Properties 2.1 and 2.2, gives

μn(λL) = n −
n−1∑

i=1

(n − 1)[i]φ(iλL)n−i Gi−1,1(λL) (B.2)

and

μ̂n,k(λL , π) =
n∑

i=k

n[i]φ(iλL)n−iπ i Gi−k,k(λL) (k = 1, 2). (B.3)

Consider Gi,k(0) for k = 1, 2. Substituting λL = 0 into (B.1) implies that∑n
i=0 n[i]Gi,k(0) = 1. Recalling n[0] = 1 then gives G0,k(0) = 1, leading to

Gi,k(0) = δi,0 for i = 0, 1, . . . , where

δi, j =
{
1 if i = j

0 if i �= j .

Differentiating (B.1) with respect to λL and setting λL = 0 yields

n∑

i=0

n[i]
(
G ′

i,k(0) − Gi,k(0)(n − i)(i + k)
) = 0.

Using Gi,k(0) = δi,0 then gives G ′
i,k(0) = kδi,1, for i = 0, 1, . . . and k = 1, 2. We

now take the appropriate partial derivatives of (B.2), (B.3) and substitute λL = 0,
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noting that φ(0) = 1 and φ′(0) = −E[TI ] = −1. Differentiating (B.2) with respect
to λL gives

μ′
n(λL) = −

n−1∑

i=1

(n − 1)[i](n − i)iφ(iλL)n−i−1φ′(iλL)Gi−1,1(λL)

−
n−1∑

i=1

(n − 1)[i]φ(iλL)n−i G ′
i−1,1(λL).

(B.4)

Substituting λL = 0 into (B.2), (B.4) and (B.3) respectively then establishes that
μn(0) = 1, μ′

n(0) = n − 1 and μ̂n,k(0, π(0)) = n[k]π(0)k .
Differentiating (B.3) with respect to λL , we find

∂

∂λL
μ̂n,k(λL , π) =

n∑

i=k

n[i](n − i)iφ(iλL)n−i−1φ′(iλL)π i Gi−k,k(λL)

+
n∑

i=k

n[i]φ(iλL)n−iπ i G ′
i−k,k(λL),

(B.5)

from which letting λL = 0 gives ∂
∂λL

μ̂n,k(0, π(0)) = −kn[k+1]π(0)k(1 − π(0)).
Next, taking the derivative of (B.3) with respect to π yields

∂

∂π
μ̂n,k(λL , π) =

n∑

i=k

n[i]φ(iλL)n−i iπ i−1Gi−k,k(λL), (B.6)

which gives ∂
∂π

μ̂n,k(0, π(0)) = n[k]kπ(0)k−1 by setting λL = 0. For the second
derivatives, we require further differentiation. Firstly, differentiating (B.5)with respect
to π , we have

∂2

∂λL∂π
μ̂n,k(λL , π) =

n∑

i=k

n[i](n − i)i2φ(iλL)n−i−1φ′(iλL)π i−1Gi−k,k(λL)

+
n∑

i=k

n[i]φ(iλL)n−i iπ i−1G ′
i−k,k(λL).

(B.7)

Taking λL = 0 and k = 1 in (B.7), we find ∂2

∂λL∂π
μ̂n,1(0, π(0)) = −n(n − 1)(1 −

2π(0)). Finally, differentiating (B.6) with respect to π gives

∂2

∂π2 μ̂n,k(λL , π) =
n∑

i=k

n[i]φ(iλL)n−i i(i − 1)π i−2Gi−k,k(λL). (B.8)

Letting λL = 0 and k = 1 in (B.8) causes all terms to vanish, so that
∂2

∂π2 μ̂n,1(0, π(0)) = 0, which then establishes the final result of Lemma B.1. ��
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We are now in a position to prove Theorem 4.8. For ease of exposition in the
following proof, we denote hC (λL) by c(λL). Similarly, we denote hD(λL) by z(λL).
Recall that nmax < ∞, so all sums in the proof contain only finitely many terms and
hence are easily differentiated.

Proof of Theorem 4.8 Suppose a fraction c(λL) are vaccinated prior to an epidemic,
such that the epidemic becomes critical. Note c(0) = 1 − 1

λG
(recall E[TI ] = 1).

Now considering disease-induced herd immunity, assume that a fraction z(λL) are
infected in a first epidemic such that the second epidemic is critical. Let π(λL) be the
proportion who avoid global infection in the first epidemic. Then z(0) = 1 − 1

λG
and

π(0) = 1
λG

. We show that c′(0) = z′(0) = μH̃−1

λ2G
and that

z′′(0) − c′′(0) = 4π(0)2(1 − π(0))
(
E[H̃ − 1] − var(H̃)

)
,

from which Theorem 4.8 follows immediately by Taylor’s theorem.
We begin by considering the derivatives of c(λL) at λL = 0. The post-vaccination

threshold parameter R̂U (c) defined at (3.1) satisfies R̂U (c(λL)) = 1, so by substituting
i = n − v in the inner sum in (3.1) we have that

λG

∞∑

n=1

α̃n

n∑

i=1

i

n

(
n

i

)
(1 − c(λL))i c(λL)n−iμi (λL) = 1. (B.9)

Let qn,i (c) = i
n

(n
i

)
(1− c)i cn−i . Then

∑n
i=1 qn,i (c) = 1− c,

∑n
i=1 q

′
n,i (c) = −1 and∑n

i=1 q
′′
n,i (c) = 0, by exchanging the order of derivative and summation.We also have

∑n
i=1(i − 1)qn,i (c) = (n − 1)(1 − c)2, so

∑n
i=1(i − 1)q ′

n,i (c) = −2(n − 1)(1 − c).
Differentiating (B.9) gives

∞∑

n=1

α̃n

n∑

i=1

[
q ′
n,i (c(λL))c′(λL)μi (λL) + qn,i (c(λL))μ′

i (λL)
] = 0. (B.10)

Substituting λL = 0 in (B.10) and recalling c(0) = 1 − 1
λG

yields c′(0) = μH̃−1

λ2G
.

Differentiating (B.10) gives

∞∑

n=1

α̃n

n∑

i=1

[
q ′′
n,i (c(λL))c′(λL)2 + q ′

n,i (c(λL))c′′(λL)
]
μi (λL)

+
∞∑

n=1

α̃n

n∑

i=1

2q ′
n,i (c(λL))c′(λL)μ′

i (λL)

+
∞∑

n=1

α̃n

n∑

i=1

qn,i (c(λL))μ′′
i (λL) = 0.

(B.11)
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Let An = ∑n
i=1 qn,i (c(0))μ′′

i (0). Then we set λL = 0 in (B.11) which yields

c′′(0) =
∞∑

n=1

α̃n An − 4c′(0)(1 − c(0))μH̃−1. (B.12)

Turning now to z(λL), let P̃n,i (λL , π(λL)) = P(S̃n = i) be the probability i
members of a household avoid infection in the epidemic Ẽn(λL , π(λL)). Suppose
all individuals infected (no longer susceptible) in the first epidemic are immune to
infection in the second epidemic. Suppose the second epidemic is critical, so that
RDI (π(λL)) = 1. Then considering the remaining susceptibles yields

λG

∞∑

n=1

α̃n

n∑

i=1

i

n
P̃n,i (λL , π(λL))μi (λL) = 1. (B.13)

Further, the proportion of the population infected in the first epidemic is given by
(cf. (2.4))

z(λL) = 1 −
∞∑

n=1

α̃n
1

n
μ̂n,1(λL , π(λL)). (B.14)

Differentiating (B.13) gives

∞∑

n=1

α̃n

n∑

i=1

i

n

[
μi (λL)

{
∂

∂λL
P̃n,i (λL , π(λL)) + ∂

∂π
P̃n,i (λL , π(λL))π ′(λL)

}]

+
∞∑

n=1

α̃n

n∑

i=1

i

n

[
μ′
i (λL)P̃n,i (λL , π(λL))

]
= 0, (B.15)

which can be used to solve for π ′(0) by setting λL = 0. Applying Lemma B.1 and
noting that μ̂n,k(λL , π(λL)) = ∑n

i=1 i[k] P̃n,i (λL , π(λL)) yields π ′(0) = (π(0) −
2π(0)2)μH̃−1. Differentiating (B.14), we have

z′(λL) = −
∞∑

n=1

α̃n
1

n

{
∂

∂λL
μ̂n,1(λL , π(λL)) + ∂

∂π
μ̂n,1(λL , π(λL))π ′(λL)

}
.

(B.16)
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Substituting λL = 0 in (B.16), we find that z′(0) = μH̃−1

λ2G
= c′(0). Before proceeding

with further differentiation, let Bn = 1
n

∂2

∂λ2L
μ̂n,1(0, π(0)). Differentiating (B.15), we

reach

∞∑

n=1

α̃n

n∑

i=1

i

n

[
2μ′

i (λL )

{
∂

∂λL
P̃n,i (λL , π(λL )) + ∂

∂π
P̃n,i (λL , π(λL ))π ′(λL )

} ]

+
∞∑

n=1

α̃n

n∑

i=1

i

n

[

μi (λL )

{
∂2

∂λ2L
P̃n,i (λL , π(λL )) + 2π ′(λL )

∂2

∂λL∂π
P̃n,i (λL , π(λL ))

}]

+
∞∑

n=1

α̃n

n∑

i=1

i

n

[
μi (λL )

{
π ′′(λL )

∂

∂π
P̃n,i (λL , π(λL )) + [π ′(λL )]2 ∂2

∂π2 P̃n,i (λL , π(λL ))

}]

+
∞∑

n=1

α̃n

n∑

i=1

i

n

[
μ′′
i (λL )P̃n,i (λL , π(λL ))

]
= 0,

from which substituting λL = 0 and applying Lemma B.1 as well as the definition of
Bn gives

− π ′′(0) =
∞∑

n=1

α̃n

[
An + Bn − 4(n − 1)(n − 2)π(0)2(1 − π(0))

]

+
∞∑

n=1

α̃n
[
4(n − 1)π(0)π ′(0) + 2(n − 1)π ′(0)(2π(0) − 1)

]
. (B.17)

Differentiating (B.16), we find

z′′(λL ) = −
∞∑

n=1

α̃n
1

n

{
∂2

∂λ2L
μ̂n,1(λL , π(λL )) + 2π ′(λL )

∂2

∂λL∂π
μ̂n,1(λL , π(λL ))

}

−
∞∑

n=1

α̃n
1

n

{
[π ′(λL )]2 ∂2

∂π2 μ̂n,1(λL , π(λL )) + π ′′(λL )
∂

∂π
μ̂n,1(λL , π(λL ))

}
.

We hence observe that

z′′(0) =
∞∑

n=1

α̃n
[
2(n − 1)π ′(0)(1 − 2π(0)) − Bn − π ′′(0)

]
.

(B.18)

Combining (B.17) and (B.18) establishes that

z′′(0) =
∞∑

n=1

α̃n

[
An + 4(n − 1)π(0)π ′(0) − 4(n − 1)(n − 2)π(0)2(1 − π(0))

]
.

(B.19)

123



The impact of household structure... Page 43 of 47    83 

Finally, noting that c(0) = 1 − π(0) and that c′(0) + π ′(0) = μH̃−1π(0)(1 − π(0)),
we subtract (B.12) from (B.19) to reach

z′′(0) − c′′(0) = 4π(0)2(1 − π(0))

[

μ2
H̃−1

−
∞∑

n=1

α̃n(n − 1)(n − 2)

]

= 4π(0)2(1 − π(0))
[
(E[H̃ − 1])2 − E[(H̃ − 1)(H̃ − 2)]

]

= 4π(0)2(1 − π(0))
[
E[H̃ − 1] − var(H̃)

]
.

This establishes Theorem 4.8. ��

B.3 Proof of Theorem 4.11 (n = 3)

We begin by making the notation in Theorem 4.11 explicit for the case n = 3. For
i ∈ {0, 1, 2, 3}, PD

i is the probability of i members being infected in a household of size
3 during an epidemic in the householdsmodel inwhich a proportion z are infected in the
first epidemic. Similarly, PU

i is the probability of a household containing i vaccinated
individuals, assuming vaccination uniformly at random with probability z. Note that
PD
i , PU

i and z are considered as functions of π ∈ (0, 1). We begin with a preliminary
lemma. Write q1 = φ(λL) and q2 = φ(2λL) and observe that 0 < q2 < q1 < 1
for all λL > 0. Further, PU

0 = (1 − z)3, PU
1 = 3z(1 − z)2 and PU

2 = 3z2(1 − z).
The system in (2.5), or direct calculation, gives PD

0 = π3, PD
1 = 3π2(1 − π)q2 and

PD
2 = 3π(1 − π)q1 (2π(q1 − q2) + (1 − π)q1).

Lemma B.2 Let A = 3(PD
0 − PU

0 ), B = 2(PD
1 − PU

1 ) and C = PD
2 − PU

2 . Then
A − C > 0.

Proof Considering the remaining susceptibles, note that

3PD
0 + 2PD

1 + PD
2 = 3(1 − z) and 3PU

0 + 2PU
1 + PU

2 = 3(1 − z).

(B.20)

Hence, A + B + C = 0, so

A − C = 2A + B = 6
(
π3 + π2(1 − π)q2 − (1 − z)2

)
.

Using the first equation in (B.20),

1 − z = π
(
π2 + 2π(1 − π)[q2(1 − q1) + q21 ] + (1 − π)2q21

)
≡ πh(π),

so A > C if and only if f (π) > 0, where

f (π) = π + (1 − π)q2 − h(π)2.
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Jensen’s inequality gives q2 > q21 , so f (0) = q2 − q41 > 0. Further, f (1) = 0, so
f (π) > 0 for π ∈ (0, 1) if f is concave on [0, 1]. Now,

f ′′(π) = −2[h(π)h′′(π) + h′(π)2],

whilst we also have h(π) > 0 and

h′′(π) = 2(1 − q1)(1 + q1 − 2q2) > 0.

Thus f ′′(π) < 0 for π ∈ [0, 1], so f is concave on [0, 1] and A > C , as required. ��
We now prove Theorem 4.11 in the case n = 3.

Proof We show that R̂DI (z) > R̂U (z), from which the desired result follows.
We have that

3

λGE[TI ]
(
R̂DI (z) − R̂U (z)

)
=Aμ3(λL) + Bμ2(λL) + Cμ1(λL)

=A[μ3(λL) − μ2(λL)] − C[μ2(λL) − μ1(λL)].
(B.21)

Using (2.2) gives μ1(λL) = 1, μ2(λL) = 2 − q1, and μ3(λL) = 3 − 2q1(q1 −
q2) − 2q2. Therefore

μ3(λL) − μ2(λL) − [μ2(λL) − μ1(λL)] = 2(q1 − q2)(1 − q1) > 0. (B.22)

Since (byLemmaB.2) A > C , it follows from(B.21) and (B.22) that R̂DI (z) > R̂U (z).
��

C Early exponential growth rate r of SEIR households model

The early exponential growth rate (Malthusian parameter) r is defined as follows.
Consider the branching process of infected households described in Sect. 2.2. Then
the Malthusian parameter, r , for the branching process satisfies

∫ ∞

0
e−r tβ(t) dt = 1, (C.1)

where β(t) is the mean rate of global contacts emanating from a typical single-
household epidemic, t time units after the household is infected. For many choices of
distributions for TE and TI , the left-hand-side of (C.1) is not tractable; in Ball et al.
(2016) Section 2.8, ways to approximate it are considered. We restrict attention to the
case TE ∼ Exp(δ) and TI ∼ Exp(γ ), in which case the dynamics are Markovian and
the left-hand side of (C.1) can be computed as outlined below, cf. Pellis et al. (2011),
Section 4.2, which considers an SIR model.
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In the branching process in Sect. 2.2, individuals correspond to infected households,
and an individual gives birth whenever a global contact arises from the corresponding
single-household epidemic. We extend Ball and Shaw (2015), Section 4.1, to include
an exposed state. Forn = 1, 2, . . . , let Ẽ (n)

H denote a typical single-household epidemic
in a household of size n, initiated by one member becoming exposed at time t = 0. For
t ≥ 0, let S(n)

H (t), E (n)
H (t) and I (n)

H (t) denote respectively the number of susceptibles,

exposed and infected individuals in Ẽ (n)
H at time t . Let F (n) = {(s, e, i) ∈ Z

3+ :
s + e + i ≤ n} be the set of possible household states for a household of size n. For

(s, e, i) ∈ F (n) and t ≥ 0, let p(n)
s,e,i (t) = P

(
(S(n)

H (t), E (n)
H (t), I (n)

H (t)) = (s, e, i)
)
.

Let Sn = ∣∣F (n)
∣∣ = n

6

(
n2 + 6n + 11

)
. For a given household of size n, we have, in

an obvious notation,

β(n)(t) = λG

∑

(s,e,i)∈F (n)

i p(n)
s,e,i (t),

which after conditioning on the size of a typical household in the approximating
branching process yields

β(t) = λG

∞∑

n=1

α̃n

∑

(s,e,i)∈F (n)

i p(n)
s,e,i (t).

Hence, using (C.1), r satisfies

λG

∞∑

n=1

α̃n

∑

(s,e,i)∈F (n)

i p̃(n)
s,e,i (r) = 1, (C.2)

where

p̃(n)
s,e,i (r) =

∫ ∞

0
e−r t p(n)

s,e,i (t) dt .

To calculate p̃(n)
s,e,i (r), let Q

(n) =
[
q(n)
i, j

]
be the Sn × Sn transition-rate matrix of

Ẽ (n)
H , with states labelled such that (n − 1, 1, 0) is state 1. Suppose k ∈ {1, 2, . . . , Sn}

corresponds to the state (s, e, i) ∈ F (n). Then

p(n)
s,e,i (t) =

(
et Q

(n)
)

1,k
,

where eA = ∑∞
i=0

Ai

i ! denotes the matrix exponential. Hence,

p̃(n)
s,e,i (r) =

(
[r ISn − Q(n)]−1

)

1,k
(C.3)

and r can then be computed using (C.2) and (C.3).
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Further, if δ, γ, λL and the household structure are known and fixed then, for a
given value of the early growth rate r , the corresponding λG is readily obtained using
(C.2) and (C.3).

DHousehold data

The household data used for Finland, Sweden, Italy and theUKare taken fromEurostat
(EU-SILC survey 2022). The remaining data are from the United Nations household
size and composition around the world data booklet (2017) and for these countries the
proportion of households of each type is not readily available; the information available
is E[H ] as well as P(H = 1), P(H = 2 or H = 3), P(H = 4 or H = 5) and
P(H > 5). For these countries we then wish to estimate, for x = 1, 2, . . . , P(H = x),
from which we can also estimate P(H̃ = x) = α̃x . To do so, we use maximum
likelihood estimation assuming H has a shifted negative binomial distribution having
probability mass function

fr ,p(x) = �(x)

�(r)�(x − r + 1)
pr (1 − p)x−1, x = 1, 2, . . . ,

where r ∈ (0,∞) and p ∈ (0, 1) are parameters to be estimated. Since E[H ] is known,
this reduces to a one-parameter maximisation (for r , say) using E[H ] = 1 + r(1−p)

p .
Then, letting p̃ = p̃(r) = r

E[H ]+r−1 and xi be the proportion of households of size i
(i = 1, 2, . . . ), we have the likelihood

L(r) = [
fr , p̃(1)

]x1 [
fr , p̃(2) + fr , p̃(3)

]x2+x3 [
fr , p̃(4) + fr , p̃(5)

]x4+x5

×
[

1 −
5∑

i=1

fr , p̃(i)

]1−∑5
i=1 xi

,

which can be optimised numerically over r to find the maximum likelihood estimate
of r .

We note also that calculating any herd immunity level when the household size
distribution has unbounded support requires truncation of that distribution. The trun-
cation pointmust be chosen carefully to ensure that results are insensitive to the precise
choice. For the household size distributions that we use we find that the approximation
α̃15 = 1 − ∑14

n=1 α̃n is sufficient.
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