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Extendibility of bosonic Gaussian states is a key issue in continuous-variable quantum information. We
show that a bosonic Gaussian state is k-extendible if and only if it has a Gaussian k-extension, and we
derive a simple semidefinite program, whose size scales linearly with the number of local modes, to
efficiently decide k-extendibility of any given bosonic Gaussian state. When the system to be extended
comprises one mode only, we provide a closed-form solution. Implications of these results for the
steerability of quantum states and for the extendibility of bosonic Gaussian channels are discussed. We then
derive upper bounds on the distance of a k-extendible bosonic Gaussian state to the set of all separable
states, in terms of trace norm and Rényi relative entropies. These bounds, which can be seen as “Gaussian
de Finetti theorems,” exhibit a universal scaling in the total number of modes, independently of the mean
energy of the state. Finally, we establish an upper bound on the entanglement of formation of Gaussian k-
extendible states, which has no analogue in the finite-dimensional setting.
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Entanglement is the mainspring of modern quantum
technologies. To tally the performance of such technolo-
gies, a comprehensive characterization and quantification
of entanglement is needed. One of the defining features of
entanglement is itsmonogamy [1–7], the fact that entangled
states cannot be shared among arbitrarily many subsystems.
Exploring the middle ground of partially shareable states
or, precisely, partially extendible states, offers a rich and
practically meaningful lookout into the virtues of entangle-
ment as a resource.
A bipartite quantum state ρAB of systems A and B

is called k-extendible on B if there exists a quantum state
ρ̃AB1…Bk

on A and k copies B1;…; Bk of B that is
permutation-invariant with respect to the systems Bi and
satisfies TrB2…Bk

½ρ̃AB1…Bk
� ¼ ρAB, where B1 ≡ B. It is well

known that a state ρAB is separable if and only if it is k-
extendible for all k ≥ 2 [3–6]. The nested sets of k-
extendible states can thus be used to approximate the set
of separable states, which has resulted in work on quantum
de Finetti theorems [8–14] and other studies of entanglement
[15,16]. Extendibility also arises in the contexts of security of
quantum key distribution [17–19], capacities of quantum
channels [20–22], Bell’s inequalities [23,24], and other
information-theoretic scenarios [25,26]. More broadly, the
extendibility problem is a special case of the QMA-complete
quantummarginal problem [27–33], which has been referred
to in quantum chemistry as the N-representability problem
[34–36]. For fixed k, the extendibility problem can be

formulated as a semidefinite program (SDP), making it
efficiently solvable for low-dimensional systems A and B
[5,6]. Analytic conditions for k-extendibility in finite-
dimensional systems are known only for particular values
of k and/or for special classes of states [24,37–40].
In the infinite-dimensional case, of central relevance for

quantum-optical realizations, the theory of Gaussian entan-
glement has been explored thoroughly in the past two
decades [41–43]. However, more general extendibility
questions have been approached sparingly. The only work
that we are aware of is Ref. [44], where it was shown that a
Gaussian state is separable if and only if it is Gaussian
k-extendible for all k.
Here we study and characterize the full hierarchy of

extendibility for quantum Gaussian states. After showing
that any Gaussian state is k-extendible if and only if it is
Gaussian k-extendible, we derive a simple SDP in terms of
the state’s covariance matrix in order to decide its k-
extendibility. The size of our SDP scales linearly with the
number of local modes. We also provide an analytic con-
dition that completely characterizes the set of k-extendible
states in the case of the extended system containing one
mode only, generalizing the well-known positive partial
transpose (PPT) criterion [45–47]. We then discuss several
applications of this result, deriving the following along the
way: (i) analytic conditions for k-extendibility for all
single-mode Gaussian channels, (ii) a tight de Finetti-type
theorem bounding the distance between any k-extendible
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Gaussian state and the set of separable states, tight upper
bounds on (iii) Rényi relative entropy of entanglement, and
(iv) Rényi entanglement of formation for any k-extendible
Gaussian state. Our results reach unexplored depths in the
ocean of continuous-variable quantum information.
Gaussian states.—We recall the basic theory of

quantum Gaussian states [41,42,48,49]. Let xj and pj

(1 ≤ j ≤ n) denote the canonical operators of a system
of n harmonic oscillators (modes), arranged as a vector
r ≔ ðx1; p1;…; xn; pnÞT. The canonical commutation rela-
tions can be compactly written as ½r; rT� ¼ iΩ, where

Ω ≔
�

0
−1

1
0

�
⊕n

is the standard symplectic form. Given

any (not necessarily Gaussian) n-mode state ρ, its mean
or displacement vector is s ≔ Tr½rρ� ∈ R2n, while its
quantum covariance matrix (QCM) is the 2n × 2n real
symmetric matrix V ≔ Tr½fr − s; ðr − sÞTgρ�. Gaussian
states ρG are (limits of) thermal states of quadratic
Hamiltonians and are uniquely identified by their displace-
ment vector s and QCM V. We shall often assume s ¼ 0,
since the mean can be adjusted by local displacement
unitaries that do not affect k-extendibility. Physically
legitimate QCMs V satisfy the Robertson-Schrödinger
uncertainty principle V ≥ iΩ, hereafter referred to as the
bona fide condition [50]. Any matrix obeying this condition
can be the QCM of a Gaussian state.
Extendibility of Gaussian states.—Let ρAB be a (not

necessarily Gaussian) state of a bipartite system of n ¼
nA þ nB modes. We assume that ρAB has vanishing first
moments and finite second moments, so that we can
construct its QCM

VAB ¼
�
VA X

XT VB

�
: ð1Þ

It can be shown [51] that every k-extension ρ̃AB1���Bk
of ρAB

also has (i) vanishing first moments and (ii) finite second
moments, arranged in a QCM of the form

ṼAB1���Bk
¼

0
BBBBBBBB@

VA X X … X

XT VB Y … Y

XT Y VB
. .
. ..

.

..

. ..
. . .

. . .
.

Y

XT Y … Y VB

1
CCCCCCCCA
; ð2Þ

where Y is a symmetric matrix. A similar structure had
already been identified in Ref. [44]; however, there the
crucial fact that Y needs to be symmetric was not observed.
We are now concerned with the k-extendibility of Gaussian
states. Our first result indicates that Gaussian states are in
some sense a closed set under k-extensions:
Theorem 1. A Gaussian state ρGAB is k-extendible if and

only if it has a Gaussian k-extension.

Proof.—Let ρ̃AB1���Bk
be a (not necessarily Gaussian)

k-extension of ρGAB. Consider m identical copies of it
across the systems AlBl1;…; Blk, where 1 ≤ l ≤ m. For
1 ≤ j ≤ k, let Uj be a passive unitary that acts on the
annihilation operators blj of the systems Blj so that

U†
jb1jUj ¼ ðb1j þ � � � þ bmjÞ=

ffiffiffiffi
m

p
. Set

ωðmÞ
A1B11���Bmk

≔ ðU1 ⊗ � � � ⊗ UkÞ

×

�
⊗
m

l¼1
ρ̃AlBl1���Blk

�
ðU1 ⊗ � � � ⊗ UkÞ†: ð3Þ

By the quantum central limit theorem [65,66], the

reduced state ωðmÞ
A1B11���B1k

satisfies limm→∞kωðmÞ
A1B11���B1k

−
ρ̃GAB1���Bk

k1 ¼ 0, where ρ̃GAB1���Bk
is the Gaussian state with

the same first and second moments as ρ̃AB1���Bk
, and A1 ≡ A,

B1j ≡ Bj [51].
We now show that ρ̃GAB1���Bk

is indeed a Gaussian
k-extension of ρGAB. First, it is symmetric under the
exchange of any two B systems, say B1 ↔ B2. In fact,
(i) the state in Eq. (3) is invariant under the exchange
ðB11;…; Bm1Þ ↔ ðB12;…; Bm2Þ, (ii) consequently, the

reduced state ωðmÞ
A1B11���B1k

is invariant under the exchange
B11 ↔ B12, and (iii) symmetry is preserved under limits.
Finally, to show that ρ̃GAB1

¼ ρGAB under the identification
B1 ≡ B, we observe that the QCM of ρ̃GAB1���Bk

, which is the
same as that of ρ̃AB1���Bk

, is as in Eq. (2). Since its upper-left
2 × 2 corner corresponds to the QCM of ρGAB, we conclude
that ρ̃GAB1

and ρGAB have the same first and second moments;
being Gaussian, they must coincide. ▪
By virtue of Theorem 1, we can confine the search of

k-extensions of Gaussian states to the same Gaussian realm.
The next result shows that this reduces to an efficiently
solvable SDP feasibility problem, with the size of the SDP
scaling linearly in the number of modes of the B system. In
the case of B being composed of one mode only, we find an
analytic solution in the form of a simple necessary and
sufficient condition for k-extendibility.
Theorem 2. Let ρAB be a k-extendible (not necessarily

Gaussian) state of nA þ nB modes with QCM VAB. Then
there exists a 2nB × 2nB quantum covariance matrix ΔB ≥
iΩB such that

VAB ≥ iΩA ⊕
��

1 −
1

k

�
ΔB þ 1

k
iΩB

�
: ð4Þ

Moreover, the above condition is necessary and sufficient
for k-extendibility when ρAB ¼ ρGAB is Gaussian. If in
addition nB ¼ 1, then ρGAB is k-extendible if and only if
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VAB ≥ iΩA ⊕
�
−
�
1 −

2

k

�
iΩB

�
: ð5Þ

In the proof of Theorem 2, we employ the following
characterization of positive semidefiniteness of Hermitian
block matrices [67, Theorem 1.12]:

M ¼
�

P Z

Z† Q

�
≥ 0 ⇔ P ≥ 0;

M=P ≔ Q − Z†P−1Z ≥ 0; ð6Þ
where the matrixM=P is called the Schur complement ofM
with respect to P. For details concerning the degenerate
case of noninvertible P, see the Supplemental Material
[51]. Using Eq. (6), for any QCM VAB as in Eq. (1), the
inequality in Eq. (4) and the condition ΔB ≥ iΩB can be
written together as

iΩB ≤ ΔB ≤
k

k − 1
½VB − XTðVA − iΩAÞ−1X� −

1

k − 1
iΩB:

ð7Þ
Analogously, Eq. (5) is equivalent to

VB − XTðVA − iΩAÞ−1X ≥ −
�
1 −

2

k

�
iΩB: ð8Þ

Proof of Theorem 2.—We first establish necessity of
Eq. (4) for k-extendibility of an arbitrary state ρAB. If ρAB is
k-extendible, then there exists a matrix ṼAB1���Bk

as in
Eq. (2) that obeys the bona fide condition ṼAB1���Bk

≥
iðΩA ⊕ ΩB1���Bk

Þ. Using Eq. (6), and noting that VA ≥
iΩA holds because ρA is a valid state, we arrive at the
inequality ðṼAB1���Bk

− iΩAÞ=ðṼA − iΩAÞ ≥ iΩB1���Bk
. Using

Eq. (2), and letting jþi ≔ ð1= ffiffiffi
k

p ÞPk
j¼1 jji ∈ Rk, upon

elementary manipulations this can be rephrased as

ð1k− jþihþjÞ⊗ ðVB−Y− iΩBÞþ jþihþj
⊗ ½VBþðk−1ÞY−kXTðVA− iΩAÞ−1X− iΩB�≥ 0:

Since the first factors of the above two addends are
orthogonal to each other, positive semidefiniteness can
be imposed separately on the second factors. Letting
ΔB ≔ VB − Y, we obtain Eq. (7), whose equivalence to
Eq. (4) follows by applying Eq. (6). To deduce Eq. (5) from
Eq. (4), simply substitute the complex conjugate bona fide
condition ΔB ≥ −iΩB into Eq. (4).
By Theorem 1, the condition ṼAB1���Bk

≥ iðΩA ⊕
ΩB1���Bk

Þ is also sufficient to ensure k-extendibility when
ρAB ¼ ρGAB is Gaussian. By the above reduction, this
condition is equivalent to that in Eq. (4).
We now prove that when nB ¼ 1, Eq. (5) implies the

existence of a real ΔB such that Eq. (7) is satisfied. By [43,
Lemma 7], we know that Eq. (7) is satisfied for some real
ΔB if and only if

k
k − 1

½VB − XTðVA − iΩAÞ−1X� −
1

k − 1
iΩB ≥ �iΩB; ð9Þ

meaning that both inequalities are satisfied. Using Eq. (6),
we see that the condition with the þ reduces to
VAB ≥ iΩAB, which is guaranteed to hold by hypothesis.
That with the − yields instead Eq. (8), which is in turn
equivalent to Eq. (5). ▪
Although some of the above manipulations formally

resemble those in Ref. [44], the two arguments are
conceptually different and lead to different conclusions
[51]: in fact, in Ref. [44], the question of k-extendibility of
Gaussian states is explicitly mentioned as an outstanding
problem.
Recall that a bipartite state is separable if and only if it is

k-extendible for all k [3–6] and that any k-extendible state
is also (k − 1)-extendible. Thus, taking the limit k → ∞ of
Eq. (4) shows that ρGAB is separable if and only if there exists
a 2nB × 2nB matrix ΔB ≥ iΩB such that VAB ≥ iΩA ⊕ ΔB.
This reproduces the analytic condition for separability of
Gaussian states found in [43, Theorem 5]. In the same limit
k → ∞, it is also easy to verify that Eq. (5) reduces to the
PPT criterion [43,45–47,68].
It turns out that the necessary condition in Eq. (5) is no

longer sufficient when nB > 1. This is demonstrated by the
example of the (2þ 2)-mode bound entangled Gaussian
state constructed in Ref. [68], which obeys Eq. (5) for all k
(because it is PPT) yet it is not even 2-extendible [51].
Theorem 2 also reveals an implication of 2-extendibility

for Gaussian steerability, i.e., Einstein-Podolsky-Rosen
steerability via Gaussian measurements [69–73]. The k ¼
2 case of Eq. (5) shows that any Gaussian state that is
2-extendible on B is necessarily B → A Gaussian unsteer-
able, and hence useless for one-sided-device-independent
quantum key distribution. When nB ¼ 1, this condition is
also sufficient; i.e., 2-extendibility is equivalent to B → A
Gaussian unsteerability.
Extendibility of Gaussian channels.—We now apply

Theorem 2 to study k-extendibility of single-sender sin-
gle-receiver Gaussian quantum channels. A quantum
channel N A→B is called k-extendible [21,74] if there exists
another quantum channel Ñ A→B1…Bk

from the sender A to k
receivers B1;…; Bk such that the reduced channel from the
sender to any one of the receivers is the same as the original
channel N A→B.
A Gaussian channel N A→B with n input modes and m

output modes maps Gaussian states to Gaussian states and
is uniquely characterized by a real 2m × 2nmatrix X, a real
symmetric 2m × 2m matrix Y, and a real vector δ ∈ R2m,
such that Y þ iΩ ≥ iXΩXT [42]. Its action can be described
directly in terms of the mean vector s and QCM V of the
input Gaussian state as follows: s ↦ Xsþ δ, V ↦
XVXT þ Y. In what follows, we set δ ¼ 0 without loss
of generality.
To any channel N A→B we can associate its Choi-

Jamiołkowski state ρNABðrÞ ≔ N A0→Bðjψ rihψ rj⊗n
AA0 Þ, where
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for r > 0 the two-mode squeezed vacuum is defined as
jψri ≔ sechðrÞP∞

j¼0 tanhðrÞjjj; ji [75]. It can be seen that
N A→B is k-extendible if and only if ρNABðrÞ is k-extendible
on B for some (and hence all) r > 0 [51]. The same
conclusion follows from arguments in Refs. [76–78]. For
any Gaussian channel N , the state ρNABðrÞ is Gaussian.
Hence, via Theorem 2, we deduce that a Gaussian channel
is k-extendible if and only if there exists a 2m × 2m real
matrix Δ such that

iΩ ≤ Δ ≤
k

k − 1
ðY þ iXΩXTÞ − 1

k − 1
iΩ: ð10Þ

When m ¼ 1, this is equivalent to Y þ iXΩXTþ
ð1 − 2=kÞiΩ ≥ 0. If also n ¼ 1 ¼ m, a simplified equiv-
alent condition that incorporates also the complete pos-
itivity requirements is

ffiffiffiffiffiffiffiffiffiffi
detY

p
≥ 1 −

1

k
þ
				 detX −

1

k

				: ð11Þ

By applying Eq. (11), we find necessary and sufficient
conditions for the k-extendibility of all possible single-
mode Gaussian channels, which play a prominent role in
modeling optical quantum communication [42,79,80]. By
the results of Ref. [79], the following characterization of
k-extendibility for three fundamental single-mode
Gaussian channels suffices to solve the problem for all
single-mode Gaussian channels [51]. (i) The thermal
channel of transmissivity η ∈ ð0; 1Þ and environment ther-
mal photon number NB ≥ 0 is defined by X ¼ ffiffiffi

η
p

1 and
Y ¼ ð1 − ηÞð2NB þ 1Þ1. It is k-extendible if and only if
η ≤ ðNB þ 1=kÞ=ðNB þ 1Þ. For the case NB ¼ 0, corre-
sponding to a pure-loss channel, this reduces to η ≤ 1=k.
(ii) The amplifier channel of gain G > 1 and environment
thermal photon number NB ≥ 0 is defined by X ¼ ffiffiffiffi

G
p

1
and Y ¼ ðG − 1Þð2NB þ 1Þ1. This channel is k-extendible
if and only if NB > 0 and G ≥ ðNB þ 1 − 1=kÞ=NB.
(iii) The additive noise channel with noise parameter ξ >
0 is defined by X ¼ 1 and Y ¼ ξ1. This channel is
k-extendible if and only if ξ ≥ 2ð1 − 1=kÞ.
As expected, the above conditions reduce to their

entanglement-breaking counterparts from Ref. [81]
for k → ∞.
Distance between k-extendible and separable states.—A

problem of central interest in quantum information theory
is determining how close k-extendible states are to the set of
separable states. In Ref. [10] [Theorem II.7’], it was found
that a finite-dimensional k-extendible state is 4d2=k close to
the set of separable states in trace norm, where d is the
dimension of the extended system. Moreover, it was also
shown [10 Corollary III.9] that the error term in the
approximation necessarily depends on d at least linearly.
One can instead obtain a ln d dependence by resorting to
different norms [82].

Can similar estimates be provided in the Gaussian case?
Results in this setting have been obtained in Ref. [12] for
fully symmetric systems of the form B1;…; Bk. Here we
extend these de Finetti theorems to the case where the
symmetry is relative to a fixed reference system A. We are
interested in the distance of a given Gaussian state ρGAB to
the set SEPðA∶BÞ of bipartite separable states on systems A
and B, as measured by either (i) the trace norm, yielding the
quantity kρGAB−SEPðA∶BÞk1≔ infσAB∈SEPðA∶BÞkρAB−σABk1,
or (ii) the quantum Petz-Rényi relative entropy DαðρkσÞ ≔
½1=ðα − 1Þ� ln Tr½ρασ1−α� for α > 0 [83], which leads to the
measureER;αðρGABÞ≔infσAB∈SEPðA∶BÞDαðρABkσABÞ. For α¼1

the Petz-Rényi relative entropy reduces to the Umegaki
relative entropy [84], and we obtain the standard relative
entropy of entanglement [85]. We find the following:
Theorem 3. Let ρGAB be a k-extendible Gaussian state of

n ≔ nA þ nB modes. Then,

kρGAB − SEPðA∶BÞk1 ≤
2n
k
; ð12Þ

ER;αðρGABÞ ≤ n ln

�
1þ ηk;α

k − 1

�
≤

nηk;α
k − 1

; ð13Þ

where ηk;α ¼ 1 if α ≤ kþ 1, and ηk;α ¼ 2 otherwise.
The proof is in the Supplemental Material [51].

Remarkably, the upper bounds in Eqs. (12)–(13) hold
universally for all Gaussian states, independently, e.g., of
their mean photon number. This is in analogy with the main
results of Ref. [12], and constitutes a quantitative improve-
ment over the finite-dimensional case, where—as we
mentioned before—the bound has to depend on the under-
lying dimension. Furthermore, for two-mode states, the
bounds in Eqs. (12)–(13) can be shown to be tight up to a
constant for all k and all α ≥ 1. Namely, for all k ≥ 2 there
exists a k-extendible two-mode Gaussian state ρGAB such
that kρGAB − SEPðA∶BÞk1 ≥ 1=ð2k − 1Þ and ER;1ðρGABÞ ≥
EDðρGABÞ ≥ ln½k=ðk − 1Þ� − oð1Þ as r → ∞, where ED

denotes the distillable entanglement [51].
Entanglement of formation of Gaussian k-extendible

states.—We now show that one can also obtain an upper
bound on the entanglement of formation of Gaussian
k-extendible states. This is a qualitative improvement
over the finite-dimensional case, as a result of this kind
has no analogue in that setting. We employ the recently
developed theory of Rényi-2 Gaussian correlation quanti-
fiers [70,73,86,87], and especially the monogamy of
the Gaussian Rényi-2 version of the entanglement of
formation [73], which stems in turn from the equality
between this measure and the Gaussian Rényi-2 squashed
entanglement [87].
For a bipartite state ρAB and for some α ≥ 1, the

Rényi-α entanglement of formation EF;αðρABÞ is defined

as the infimum of
P

i piSαðψ ðiÞ
A Þ over all pure-state
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decompositions
P

i piψ
ðiÞ
AB ¼ ρAB of ρAB [88]. Here,

SαðσÞ ≔ ½1=ð1 − αÞ� ln Tr½σα� is the Rényi-α entropy.
For a Gaussian state ρGAB with QCM VAB, we can derive

an upper bound on EF;αðρGABÞ by restricting the decom-
positions to include pure Gaussian states only. This leads to
the Gaussian Rényi-α entanglement of formation, given by
[87,89]

EG
F;αðρGABÞ ¼ inffSαðγAÞ∶ γAB pureQCMand γAB ≤ VABg;

ð14Þ
where we denote by SαðWÞ the Rényi-α entropy of a
Gaussian state with QCM W, and “pure” QCMs are those
that correspond to pure Gaussian states. While the typical
choice α ¼ 1 yields the standard entanglement of forma-
tion, Rényi-2 quantifiers arise naturally in the Gaussian
setting, as they reproduce Shannon entropies of measure-
ment outcomes [86,87]. For α ¼ 2, Eq. (14) becomes

EG
F;2ðρABÞ ¼minfMðγAÞ∶γAB pureQCMand γAB ≤ VABg;

ð15Þ

where for a positive definite matrix V we set
MðVÞ ≔ S2ðVÞ ¼ 1

2
ln detV. We then find the following:

Theorem 4. The Rényi-2 Gaussian entanglement of
formation of a k-extendible Gaussian state ρGAB of nA þ
nB modes with QCM VAB is bounded from above as
EG
F;2ðρGABÞ ≤ MðVAÞ=k. Consequently, the standard

entanglement of formation of ρGAB satisfies EF;1ðρGABÞ ≤
EG
F;1ðρGABÞ ≤ nAφ(MðVAÞ=ðnAkÞ), where φðxÞ ≔

½ðex þ 1Þ=2� ln½ðex þ 1Þ=2� − ½ðex − 1Þ=2� ln½ðex − 1Þ=2�.
Observe that the function M plays the role of some

“effective dimension” in the bounds above. It is related to
other quantities conventionally thought of as infinite-
dimensional substitutes for the dimension, such as the
mean photon number, defined for a state ρ of n modes
as hNi ¼ hNiρ ≔ Tr½ðPja

†
jajÞρ�. When ρ is zero-mean

Gaussian and has QCM V, one has hNi ¼ 1
4
ðTrV − 2nÞ. By

applying the arithmetic-geometric mean inequality, one can
show that MðVÞ ≤ n ln ½ð2hNi=nÞ þ 1�, which can be
further relaxed to MðVÞ ≤ 2hNi.
Summary and outlook.—We accomplished a compre-

hensive analysis of the k-extendibility of Gaussian quantum
states. We determined that a Gaussian state is k-extendible
if and only if it is Gaussian k-extendible, which allowed us
to derive a simple semidefinite program that solves the
problem completely in a computationally efficient way.
When the extended system contains one mode only, we
fully characterized the set of k-extendible Gaussian states
by a simple analytic condition reminiscent of the PPT
criterion. We demonstrated further applications to Gaussian
state steerability, k-extendiblity of Gaussian channels,
bounding the distance between k-extendible and separable
states, and the Rényi entanglement of formation for

Gaussian states. Our results also yield necessary criteria
for k-extendibility of non-Gaussian states based on second
moments. This Letter sheds novel light onto the fine
structure of entanglement and its uses in continuous-
variable systems.
It remains an intriguing open problem to find an analytic

condition for k-extendibility of arbitrary Gaussian states.
Another topic for future work is to explore applications of
Theorem 2 to the nonasymptotic capacities of Gaussian
channels, in light of recent work [21,22] exploiting
k-extendibility to bound the performance of quantum
processors.

L. L. and G. A. acknowledge financial support from the
European Research Council under the Starting Grant
GQCOP (Grant No. 637352). S. K. and M.M.W. acknowl-
edge support from the NSF under Grant No. 1714215.
S. K. acknowledges support from the NSERC PGS-D.
G. A. thanks S. J. Burton for insightful discussions on
quantum entanglement and its sociological impact.

*ludovico.lami@gmail.com
†skhatr5@lsu.edu
‡gerardo.adesso@nottingham.ac.uk
§mwilde@lsu.edu

[1] B. M. Terhal, Is entanglement monogamous? IBM J. Res.
Dev. 48, 71 (2004).

[2] V. Coffman, J. Kundu, and W. K. Wootters, Distributed
entanglement, Phys. Rev. A 61, 052306 (2000).

[3] M. Fannes, J. T. Lewis, and A. Verbeure, Symmetric states
of composite systems, Lett. Math. Phys. 15, 255 (1988).

[4] G. A.Raggio andR. F.Werner, Quantum statisticalmechanics
of general mean field systems, Helv. Phys. Acta 62, 980
(1989).

[5] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Distin-
guishing Separable and Entangled States, Phys. Rev. Lett.
88, 187904 (2002).

[6] A. C. Doherty, P. A. Parrilo, and F.M. Spedalieri, Complete
familyof separability criteria, Phys.Rev.A69, 022308 (2004).

[7] C. Lancien, S. Di Martino, M. Huber, M. Piani, G. Adesso,
and A. Winter, Should Entanglement Measures be Monoga-
mous or Faithful?, Phys. Rev. Lett. 117, 060501 (2016).

[8] R. L. Hudson and G. R. Moody, Locally normal symmetric
states and an analogue of de Finetti’s theorem, Z. Wahrsch.
Verw. Geb. 33, 343 (1976).

[9] C. M. Caves, C. A. Fuchs, and R. Schack, Unknown
quantum states: The quantum de Finetti representation, J.
Math. Phys. (N.Y.) 43, 4537 (2002).

[10] M. Christandl, R. König, G. Mitchison, and R. Renner, One-
and-a-half quantum de Finetti theorems, Commun. Math.
Phys. 273, 473 (2007).

[11] R. König and R. Renner, A de Finetti representation for
finite symmetric quantum states, J. Math. Phys. (N.Y.) 46,
122108 (2005).

[12] R. König and M.M. Wolf, On exchangeable continuous
variable systems, J. Math. Phys. (N.Y.) 50, 012102 (2009).

PHYSICAL REVIEW LETTERS 123, 050501 (2019)

050501-5

https://doi.org/10.1147/rd.481.0071
https://doi.org/10.1147/rd.481.0071
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1007/BF00398595
https://doi.org/10.1103/PhysRevLett.88.187904
https://doi.org/10.1103/PhysRevLett.88.187904
https://doi.org/10.1103/PhysRevA.69.022308
https://doi.org/10.1103/PhysRevLett.117.060501
https://doi.org/10.1007/BF00534784
https://doi.org/10.1007/BF00534784
https://doi.org/10.1063/1.1494475
https://doi.org/10.1063/1.1494475
https://doi.org/10.1007/s00220-007-0189-3
https://doi.org/10.1007/s00220-007-0189-3
https://doi.org/10.1063/1.2146188
https://doi.org/10.1063/1.2146188
https://doi.org/10.1063/1.3043788


[13] F. G. S. L. Brandao and A.W. Harrow, Quantum de Finetti
theorems under local measurements with applications, in
Proceedings of the 45th ACM Symp. on Theory of Comput-
ing, STOC ’13 (ACM, New York, NY, USA, 2013),
pp. 861–870.

[14] J. Chen, Z. Ji, N. Yu, and B. Zeng, Detecting consistency of
overlapping quantum marginals by separability, Phys. Rev.
A 93, 032105 (2016).

[15] M. Navascués, M. Owari, and M. B. Plenio, Power of
symmetric extensions for entanglement detection, Phys.
Rev. A 80, 052306 (2009).

[16] F. G. S. L. Brandão and M. Christandl, Detection of Multi-
particle Entanglement: Quantifying the Search for Sym-
metric Extensions, Phys. Rev. Lett. 109, 160502 (2012).

[17] T. Moroder, M. Curty, and N. Lütkenhaus, One-way
quantum key distribution: Simple upper bound on the secret
key rate, Phys. Rev. A 74, 052301 (2006).

[18] G. O. Myhr, J. M. Renes, A. C. Doherty, and N. Lütkenhaus,
Symmetric extension in two-way quantum key distribution,
Phys. Rev. A 79, 042329 (2009).

[19] S. Khatri and N. Lütkenhaus, Numerical evidence for bound
secrecy from two-way postprocessing in quantum key
distribution, Phys. Rev. A 95, 042320 (2017).

[20] M. L. Nowakowski and P. Horodecki, A simple test for
quantum channel capacity, J. Phys. A 42, 135306 (2009).

[21] E. Kaur, S. Das, M.M. Wilde, and A. Winter, Extendibility
limits the performance of quantum processors, arXiv:
1803.10710.

[22] M. Berta, F. Borderi, O. Fawzi, and V. Scholz, Semidefinite
programming hierarchies for quantum error correction,
arXiv:1810.12197.

[23] B. M. Terhal, A. C. Doherty, and D. Schwab, Symmetric
Extensions of Quantum States and Local Hidden Variable
Theories, Phys. Rev. Lett. 90, 157903 (2003).

[24] M. Kumari, S. Ghose, and R. B. Mann, Sufficient condition
for nonexistence of symmetric extension of qudits using
Bell inequalities, Phys. Rev. A 96, 012128 (2017).

[25] C. Lancien, k-Extendibility of high-dimensional bipartite
quantum states, Random Matrices Theory Appl. 05,
1650011 (2016).

[26] K. Li andA.Winter, Squashed entanglement, k-extendibility,
quantum Markov chains, and recovery maps, Found. Phys.
48, 910 (2018).

[27] A. A. Klyachko, Quantum marginal problem and N-
representability, J. Phys. Conf. Ser. 36, 72 (2006).

[28] J. Eisert, T. Tyc, T. Rudolph, and B. C. Sanders, Gaussian
quantummarginal problem, Commun. Math. Phys. 280, 263
(2008).

[29] E. A. Carlen, J. L. Lebowitz, and E. H. Lieb, On an
extension problem for density matrices, J. Math. Phys.
(N.Y.) 54, 062103 (2013).

[30] C. Schilling, The quantum marginal problem, arXiv:1404
.1085.

[31] T. Tyc and J. Vlach, Quantum marginal problems, Eur. Phys.
J. D 69, 209 (2015).

[32] Y.-K. Liu, Consistency of local density matrices is QMA-
complete, in Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, edited by
J. Díaz, K. Jansen, J. D. P. Rolim, and U. Zwick (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006), pp. 438–449.

[33] Y.-K. Liu, M. Christandl, and F. Verstraete, Quantum
Computational Complexity of the N-Representability
Problem: QMA Complete, Phys. Rev. Lett. 98, 110503
(2007).

[34] R. H. Tredgold, Density matrix and the many-body prob-
lem, Phys. Rev. 105, 1421 (1957).

[35] C. A. Coulson, Present state of molecular structure calcu-
lations, Rev. Mod. Phys. 32, 170 (1960).

[36] A. J. Coleman, Structure of Fermion density matrices, Rev.
Mod. Phys. 35, 668 (1963).

[37] K. S. Ranade, Symmetric extendibility for a class of qudit
states, J. Phys. A 42, 425302 (2009).

[38] P. D. Johnson and L. Viola, Compatible quantum correla-
tions: Extension problems for Werner and isotropic states,
Phys. Rev. A 88, 032323 (2013).

[39] J. Chen, Z. Ji, D. Kribs, N. Lütkenhaus, and B. Zeng,
Symmetric extension of two-qubit states, Phys. Rev. A 90,
032318 (2014).

[40] C.-H. F. Fung, C.-K. Li, N.-S. Sze, and H. F. Chau, Con-
ditions for degradability of tripartite quantum states, J. Phys.
A 47, 115306 (2014).

[41] G. Adesso, S. Ragy, and A. R. Lee, Continuous variable
quantum information: Gaussian states and beyond, Open
Syst. Inf. Dyn. 21, 1440001 (2014).

[42] A. Serafini, Quantum Continuous Variables: A Primer of
Theoretical Methods (CRC Press, Taylor & Francis Group,
2017), https://www.crcpress.com/Quantum-Continuous-
Variables-A-Primer-of-Theoretical-Methods/Serafini/p/book/
9781482246346.

[43] L. Lami, A. Serafini, and G. Adesso, Gaussian entanglement
revisited, New J. Phys. 20, 023030 (2018).

[44] B. V. Rajarama Bhat, K. R. Parthasarathy, and R. Sengupta,
On the equivalence of separability and extendability of
quantum states, Rev. Math. Phys. 29, 1750012 (2017).

[45] A. Peres, Separability Criterion for Density Matrices, Phys.
Rev. Lett. 77, 1413 (1996).

[46] M. Horodecki, P. Horodecki, and R. Horodecki, Separability
of mixed states: Necessary and sufficient conditions, Phys.
Lett. A 223, 1 (1996).

[47] R. Simon, Peres–Horodecki Separability Criterion for Con-
tinuous Variable Systems, Phys. Rev. Lett. 84, 2726 (2000).

[48] X.-B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi,
Quantum information with Gaussian states, Phys. Rep. 448,
1 (2007).

[49] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum
information, Rev. Mod. Phys. 84, 621 (2012).

[50] R. Simon, N. Mukunda, and B. Dutta, Quantum-noise
matrix for multimode systems: U(n) invariance, squeezing,
and normal forms, Phys. Rev. A 49, 1567 (1994).

[51] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.123.050501, which in-
cludes Refs. [52–64], for proofs and additional technical
derivations.

[52] J. S. Ivan, K. K. Sabapathy, and R. Simon, Operator-sum
representation for bosonic Gaussian channels, Phys. Rev. A
84, 042311 (2011).

[53] K. R. Parthasarathy and R. Sengupta, Exchangeable,
stationary, and entangled chains of Gaussian states, J. Math.
Phys. (N.Y.) 56, 102203 (2015).

PHYSICAL REVIEW LETTERS 123, 050501 (2019)

050501-6

https://doi.org/10.1103/PhysRevA.93.032105
https://doi.org/10.1103/PhysRevA.93.032105
https://doi.org/10.1103/PhysRevA.80.052306
https://doi.org/10.1103/PhysRevA.80.052306
https://doi.org/10.1103/PhysRevLett.109.160502
https://doi.org/10.1103/PhysRevA.74.052301
https://doi.org/10.1103/PhysRevA.79.042329
https://doi.org/10.1103/PhysRevA.95.042320
https://doi.org/10.1088/1751-8113/42/13/135306
http://arXiv.org/abs/1803.10710
http://arXiv.org/abs/1803.10710
http://arXiv.org/abs/1810.12197
https://doi.org/10.1103/PhysRevLett.90.157903
https://doi.org/10.1103/PhysRevA.96.012128
https://doi.org/10.1142/S2010326316500118
https://doi.org/10.1142/S2010326316500118
https://doi.org/10.1007/s10701-018-0143-6
https://doi.org/10.1007/s10701-018-0143-6
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.1007/s00220-008-0442-4
https://doi.org/10.1007/s00220-008-0442-4
https://doi.org/10.1063/1.4808218
https://doi.org/10.1063/1.4808218
http://arXiv.org/abs/1404.1085
http://arXiv.org/abs/1404.1085
https://doi.org/10.1140/epjd/e2015-60191-7
https://doi.org/10.1140/epjd/e2015-60191-7
https://doi.org/10.1103/PhysRevLett.98.110503
https://doi.org/10.1103/PhysRevLett.98.110503
https://doi.org/10.1103/PhysRev.105.1421
https://doi.org/10.1103/RevModPhys.32.170
https://doi.org/10.1103/RevModPhys.35.668
https://doi.org/10.1103/RevModPhys.35.668
https://doi.org/10.1088/1751-8113/42/42/425302
https://doi.org/10.1103/PhysRevA.88.032323
https://doi.org/10.1103/PhysRevA.90.032318
https://doi.org/10.1103/PhysRevA.90.032318
https://doi.org/10.1088/1751-8113/47/11/115306
https://doi.org/10.1088/1751-8113/47/11/115306
https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1142/S1230161214400010
https://www.crcpress.com/Quantum-Continuous-Variables-A-Primer-of-Theoretical-Methods/Serafini/p/book/9781482246346
https://www.crcpress.com/Quantum-Continuous-Variables-A-Primer-of-Theoretical-Methods/Serafini/p/book/9781482246346
https://www.crcpress.com/Quantum-Continuous-Variables-A-Primer-of-Theoretical-Methods/Serafini/p/book/9781482246346
https://www.crcpress.com/Quantum-Continuous-Variables-A-Primer-of-Theoretical-Methods/Serafini/p/book/9781482246346
https://www.crcpress.com/Quantum-Continuous-Variables-A-Primer-of-Theoretical-Methods/Serafini/p/book/9781482246346
https://doi.org/10.1088/1367-2630/aaa654
https://doi.org/10.1142/S0129055X1750012X
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1016/j.physrep.2007.04.005
https://doi.org/10.1016/j.physrep.2007.04.005
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevA.49.1567
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.050501
https://doi.org/10.1103/PhysRevA.84.042311
https://doi.org/10.1103/PhysRevA.84.042311
https://doi.org/10.1063/1.4932959
https://doi.org/10.1063/1.4932959


[54] W. Pusz and S. L. Woronowicz, Functional calculus for
sesquilinear forms and the purification map, Rep. Math.
Phys. 8, 159 (1975).

[55] T. Ando, Concavity of certain maps on positive definite
matrices and applications to Hadamard products, Linear
Algebra Appl. 26, 203 (1979).

[56] A. S. Holevo, On the Choi–Jamiolkowski correspondence in
infinite dimensions, J. Math. Phys. (N.Y.) 52, 042202
(2011).

[57] S. L. Braunstein and H. J. Kimble, Teleportation of Con-
tinuous Quantum Variables, Phys. Rev. Lett. 80, 869 (1998).

[58] A. S. Holevo, in Quantum Systems, Channels, Information,
de Gruyter Studies in Mathematical Physics (Book 16) (de
Gruyter, 2012), p. 349.

[59] A. S. Holevo and V. Giovannetti, Quantum channels and
their entropic characteristics, Rep. Prog. Phys. 75, 046001
(2012).

[60] F. Caruso, V. Giovannetti, and A. S. Holevo, One-mode
bosonic Gaussian channels: A full weak-degradability
classification, New J. Phys. 8, 310 (2006).

[61] M. Tomamichel, Quantum Information Processing
with Finite Resources Mathematical Foundations Vol. 5
(Springer, 2015), https://link.springer.com/book/10.1007%
2F978-3-319-21891-5.

[62] N. Datta, Min- and max-relative entropies and a new
entanglement monotone, IEEE Trans. Inf. Theory 55,
2816 (2009).

[63] K. P. Seshadreesan, L. Lami, and M.M. Wilde, Rényi
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