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Abstract 7 

The mining and processing of copper from the Kilembe mine between 1956 and 1982 left behind 8 
millions of tons of cupriferous and cobaltferrous mine tailings within the Kilembe mine 9 
catchment.  Subsequent erosion and deposition of the tailings into adjacent areas led to increased 10 
concentrations of Cu, Co, Ni, Zn, and Pb in the catchment soils. The Kilembe catchment is 11 

utilised for subsistence farming, producing mainly food crops, but there are also a number of 12 
settlements in the contaminated area. A study was conducted in 2016 to establish the 13 

concentrations of trace elements in a range of food crops grown within the catchment.  Samples 14 
of maize, bananas, cassava, sweet potatoes, ground nuts, amaranthus, onions, beans and yams 15 
were collected, washed and oven dried at 80oC. The dried foods were finely ground, microwave- 16 

digested in nitric acid and analysed using inductively coupled plasma mass spectrometry 17 
(ICPMS). All the foods grown in contaminated soils showed instances of higher concentrations 18 

of Cu, Co, Ni, Zn, and in some cases Pb, compared with controls grown in uncontaminated soils. 19 
Amaranthus accumulated a range of trace elements with 26% of the samples exceeding EC 20 

thresholds for Cu in vegetables of 26 mg kg-1.Other crops with elemental concentrations 21 
exceeding recommended thresholds in some of the samples included beans (Zn), yams (Zn and 22 
Pb) and ground nuts (Zn).  The concentrations of trace elements in onions, cassava, sweet 23 

potatoes, bananas and maize were not significantly different from controls.  However, strong and 24 
positive correlations between the trace elements were found in beans, yams, amaranthus, maize 25 

and ground nuts, suggesting a common source of trace metals.  There was strong evidence of soil 26 
dust retention on leaf vegetables (Amaranthus) despite washing. The accumulation of trace 27 
elements in the edible parts of vegetables and foods could have a direct impact on the health of 28 
local people, because the foods produced from gardens are mostly consumed locally. 29 

 30 

1. Introduction 31 

Pollution by heavy metals in the natural environmental is an issue that has become a global 32 

problem and is a common feature of industrial development (Nagajyoti et al., 2010). Increasing 33 

industrialization has been accompanied throughout the world by the extraction and distribution 34 

of mineral substances from their natural deposits (Singh, 2001).  The contamination of 35 

agricultural soils is often a direct, or indirect, consequence of anthropogenic activities 36 

(McLaughlin et al., 1999). Sources of anthropogenic metal contamination in soils include urban 37 
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and industrial wastes, mining and smelting of non-ferrous metals and metallurgical industries 38 

agricultural inputs, and fallout of industrial and urban emissions (Singh, 2001; Wilson and Pyatt, 39 

2007). Excessive accumulation of trace metals in agricultural soils may have consequences for 40 

food quality and safety. Chunilall et al. (2005)  found that the concentrations of elements in plant 41 

tissues were affected by the concentrations of the heavy metals in the soil. Accumulation of 42 

heavy metals by plants can be via the root uptake or deposition on foliar surfaces (Sawidis et al., 43 

2001). So, it is essential to monitor food quality, given that plant uptake is one of the main 44 

pathways through which heavy metals enter the food supply (Antonious and Kochhar, 2009).  45 

 46 

In the Kilembe mine area, Uganda, mining and processing of copper was active between 1956 47 

and 1982. Previous studies (e.g Mwesigye et al., 2016) showed that the Kilembe catchment soils 48 

were contaminated with Cu, Co and Ni, in many cases exceeding recommended thresholds for 49 

agricultural soils. Food crops, including Amarathus vegetables, cassava and bananas, also had 50 

elevated concentrations of these three metals. Mwesigye and Tumwebaze (2017) found that the 51 

mine water and leachate flowing through Kilembe catchment soils contained elevated quantities 52 

of Cu, Co, Ni.  Despite the high concentration of trace elements in soils and catchment waters, 53 

subsistence farming of food crops remains an important means of livelihood within the Kilembe 54 

catchment. However, previous studies on food quality in the area have examined only a limited 55 

range of food crops..  This study was therefore conducted to investigate the accumulation of 56 

trace elements in a wider range of crops grown in contaminated areas of the Kilembe catchment 57 

and to further assess the potential risks posed to consumers of locally grown foods. 58 

  59 

1.1 Methods 60 

A total of 97 food samples were collected between October 2016 to February 2017 from 61 

Kilembe catchment, Kasese district, Uganda.  The area previously housed the (now defunct) 62 

Kilembe copper mines where copper ores were mined and processed. The wastes from copper 63 

processing (mine tailings) were dumped within the Kilembe mine valley, an area that is now 64 

predominantly agricultural but also residential. The food crops collected included beans (n=21), 65 

yams (n=14), onions (n=4), cassava (n=13), sweet potatoes (n=4), bananas (n=13), amarant 66 

(n=18), maize (n=7) and ground nuts (n=3). The foods  were sampled from locations within the 67 

Kilembe mine catchment which had earlier been confirmed to have high concentrations of trace 68 
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elements in top soils, especially Cu, Co and Ni (Mwesigye et. al, 2016).  The food samples were 69 

collected from household gardens. In addition, at least 5 control samples of each specific food 70 

crop were collected in un contaminated soils within Kilembe mine catchment.  71 

 72 

Figure 1: Map of Kilembe mine catchment showing the study area and sampling sites 73 

Preparation of food samples involved rinsing vegetables twice using tap water and finally 74 

washing with distilled water before oven-drying at 80oC for 24 hours. After washing, yams, 75 

cassava, sweet potatoes, bananas and ground nuts were peeled using a stainless-steel knife and 76 

sliced into small pieces before being oven dried at 90oC for a period of 24 hours. Grains of maize 77 

and seeds of beans were washed in distilled water and oven dried as other crops; onions were 78 

washed then cut into smaller pieces and oven dried. Fresh and dry weights of each food crop 79 

sample were taken before and after oven drying to determine fresh-to-dry weight conversion 80 

factors. 81 

All the dried samples were ground into fine powder using a centrifugal mill with a titanium 82 

screen (Retsch ZM 200) and stored in plastic zip lock bags. Following exportation to the United 83 
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Kingdom, approximately 0.2 g of each sample was microwave digested in nitric acid (70%, 84 

Trace Analytical Grade-TAG), and the resultant solution was diluted with Milli-Q water (18.2 85 

MΩ cm) before analysis using ICP-MS. All laboratory tests were conducted at the University of 86 

Nottingham School of Biosciences.  87 

A survey was conducted, comprising 21 households and 3 schools, to assess the type and 88 

quantity of foods consumed. In the homes, volunteers had the food apportioned for their 89 

consumption measured during lunch time meals. Within schools, childrens’ lunch time meals 90 

were characterized and weighed. In all cases, permission was sought after explanations of the 91 

importance of the exercise. Local people were informed that they were free to decline to 92 

participate and those who declined were omitted from the study.   93 

1.1.1 Sample analysis 94 

The concentrations of 31 elements in food samples, including Zn, Cu, Co, Ni, As, Cd, Cr, As and 95 

Pb were measured using ICP-MS (Model iCAPQ; Thermo Scientific, Bremen) with ‘in-sample 96 

switching’ between three operational modes; standard mode, hydrogen cell mode and kinetic 97 

energy discrimination with He as the cell gas to reduce polyatomic interferences. Internal 98 

standards included Sc (10 μg L−1), Ge (10 μg L−1), Rh (5 μg L−1) and Ir (2 μg L−1) in 2% trace 99 

analytical grade (TAG) HNO3. External multi-element calibration standards (Claritas-PPT grade 100 

CLMS-2, Certiprep) included elements in the concentration range 0–100 μg L−1.  101 

 102 

1.1.2 Estimation of soil dust in foods 103 

Although food crops were washed in water, it was considered that they could still have some soil 104 

dust particles on the substrate. This is a particularly important consideration on contaminated 105 

sites partially denuded of vegetation, such as minespoil areas. Some trace elements have very 106 

poor bioavailability and can be used to estimate the likely proportion of the metal content of 107 

plants arising from external contamination from soil dust. Thus, vanadium (V) may be a reliable 108 

indicator of extraneous contamination with soil dust because (i) vanadate (VO4
3-) ions are poorly 109 

available to plants in soil, (ii) vanadium is unlikely to follow a similar uptake path to that of Fe3+ 110 

or Fe2+ but (iii) trivalent V3+ ions substitute for Fe3+ in soil iron hydrous oxide particles and 111 

vanadate anions are strongly adsorbed by iron oxides (Joy et al., 2015). Thus, a strong 112 

correlation between Fe and V concentrations is more likely to reflect the inclusion of Fe oxide 113 
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particles from soil dust within the foods rather than systemic uptake of V and Fe via the plant 114 

root system. The levels of soil dust contamination in foods were therefore estimated, for each 115 

element (M), from the soil V concentration and knowledge of the M:V ratio in the surrounding 116 

soil (Eq. 1; Joy et al., 2015) The average soil V and other elemental concentrations for the area 117 

were obtained from Mwesigye et. al, (2016).  118 

 119 

Py (%) =
Vp xMs) 100

Vs x Mp
………………………………………………………..…..1 120 

 121 

In Eq. 1,  Py (%) is the percentage contamination from soil dust for a given element (M) in a 122 

plant sample, Vp and Vs are the vanadium concentrations in the plant and in the local soil, Mp 123 

and Ms are the concentrations of the test element in the plant and the local soil respectively. It 124 

must be stressed that this approach provides only an approximate estimate of Py because it 125 

assumes (i) no systemic uptake of V and (ii) that the ratio of M:V in the local soil also applies to 126 

fine dust particles embedded in plant tissue.  127 

 128 

1.1.3 Risk assessments of foods 129 

Hazard quotients (HQs) have been widely used to express ‘non-cancer’ health risk from 130 

consumption of foods grown in contaminated soils (e.g. Hough et al., 2004). Values of trace 131 

element specific HQ were calculated according to Eq. (3) (Datta and Young, 2005): 132 

HQ =
Cp x ADI x Fwc

RfD x BW
……………………………………………………………2 133 

 134 

where Cp is the trace element concentration in the edible portion of vegetables or food (mg kg−1 135 

dry weight-DW), ADI is the average daily intake (fresh weight) of vegetable and foods 136 

(established from the survey to be 0.74 kg day−1 for children  and 0.94 kg day-1 for adults), FWC 137 

is a dry-to-fresh weight conversion factor, obtained as a ratio of dry weight to fresh weight of the 138 

same food type. Fresh and dry weights of each food crop were taken before and after drying the 139 

food samples. The reference dose (RfD) is a numerical estimate of the daily exposure to the 140 

human population, including sensitive subgroups, that is not likely to cause adverse health 141 

effects during a lifetime (EPA, 2002). The average body weight (BW in Eq. (2) was obtained 142 

from a past study in the area (Mwesigye et. al, 2016) where average body weight of children 143 
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between 7-18 years was measured at 29.6 kg while average body weight of adults above 18 years 144 

was 65.5 kg. 145 

 146 

1.1.4 Quality control 147 

All samples were prepared, digested and analysed in duplicate. The reagents used for sample 148 

preparation were trace analysis grade (TAG) supplied by Fisher Scientific, UK. Operational 149 

(digestion) blanks were run to determine limits of detection (LODs).  A certified reference 150 

material (NIST 1573a; tomato leaves) was included in each run; average recoveries (%) for the 151 

CRM were As (140), Cd (100), Co (107), Cu (89), Fe (105), Mn (115), Ni (99), Zn (110).  152 

 153 

1.1.5 Statistical analysis 154 

The analytical data was processed using Minitab to determine correlations between the elements 155 

in food crops. A two-sample t-test was used to assess the significance of differences in trace 156 

element concentrations between Kilembe catchment food samples and their controls. Statistical 157 

analyses were conducted to generate means, medians and standard deviations for all food 158 

sampled. All statistical tests were conducted at a 95% confidence level.  159 

 160 

2. Results and discussion 161 

Most of the food crops sampled from the Kilembe valley where concentrations of trace elements 162 

in soils are high (Mwesigye et.  al, 2016) contained higher concentrations of trace elements 163 

compared with controls which were collected from uncontaminated soils. Table 1 shows the 164 

median and range of elemental concentrations in Kilembe crops and the median value for the 165 

control crops. The trace elements in soils originated from contamination of the area with mine 166 

tailings and eroded mine water. Mwesigye et.al (2016) found that tailings in Kilembe Mine area 167 

contained Co in the range of 80-152 mg kg compared with average world crust of 1-15mg kg, Ni 168 

ranged between 101-164 mg kg compared with world crust average of 20 mg kg, Copper ranged 169 

between 101-10200 mg kg, compared with World crust average of 25-75 mg kg, and these were 170 

eroding by wind and water into surrounding soils. The soils were also highly contaminated with 171 

Co in the range of 8-52 mg kg compared with world average of 10 mg kg in soils. Ni in Kilembe 172 

contaminated soils was in the range of 19-102 mg kg compared with the normal range of 13-37 173 
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mg kg while Cu in Kilembe soils ranged between 7-399 mg kg  compared with world range of 14-174 

109 mg kg. The sulphides of Co, Ni and Cu were associated with Zn, As, Cd and Pb. Therefore 175 

Kilembe soils were highly contaminated with trace metals that were geologically associated with 176 

Cu and the sulphides in the mining area. The trace metals in contaminated soils were being taken 177 

up and accumulated by crops during growth. 178 

Table 1. Trace elements in foods grown in Kilembe mine catchment contaminated soils (mg kg-1) 179 

 Co Ni Cu Zn As Cd Pb 

Food crops (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) 

Yams n=13        

range 0.04-5.8 0.2-3.3 4.5-12.5 11-159.3 0.003-

0.07 

0.001-

0.05 

0.01-0.04 

median 0.21 0.71 8.23 28.14 0.006 0.02 0.03 

Controls median (n=6) 0.07 0.23 4.32 18.4 <LOD   0.004 0.01 

Maize n=7        

range 0.008-

0.15 

0.09-

0.78 

1.2-3.25 18.5-

64.22 

0-0.003 0.001-

0.006 

0.0-0.1 

median 0.03 0.3 2.3 24.13 0.001 0.002 0.002 

Controls median 0.007 0.06 1.01 9.9 <LOD   0.001 0.02 

Cassava  n=13        

range 0.08-3.4 0.8-3.7 1.4-11.3 3.4-16.1 0-0.005 0.001-

0.008 

0-0.08 

median 0.44 2.15 2.42 6.32 0.002 0.008 0.01 

Controls median (n=5) 0.03 2.31 3.13 9.91 <LOD   0.03 0.08 

Sweet potatoes n=4        

range 0.5-3.3 1.2-3.81 5.4-7.6 6.1-10.34 0.001-

0.004 

0.002-

0.004 

0.004-0.03 

median 1.34 1.41 6.63 8.36 0.003 0.003 0.006 

Controls median (n=5) 0.04 0.16 3.01 7.84 0.001 0.001 0.03 

 

Bananas n=13 

       

range 0.003- 0.1-3.2 2.4-6.5 5.5-9.9 0 -0.006 0-0.002 0-0.06 
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0.6 

median 0.06 0.36 4.13 7.73 0.002 0.001 0.007 

Controls median (n=6) 0.02 0.53 3.21 8.84 <LOD   0.001 0.012 

Thresholds for foods - 67.9a 73.3b 99.1a - 0.05c 0.3b 

 

Vegetables 

       

Amaranthus n=18        

range 0.034-

72.01 

0.24-

13.26 

5.8-

41.06 

39.4-

271.16 

0.01-

0.13 

0.03-0.37 0.07-3.9 

median 1.3 1 13 56 0.04 0.08 0.2 

Controls median (n=7) 0.14 0.34 7.51 58.33 0.03 0.03 0.55 

Beans (n=21)        

range 0.29-

5.53 

0.74-

9.51 

5.2-

11.64 

22-

139.11 

0.005-

0.32 

0.002-

0.007 

0.002-0.06 

median 0.84 2.64 7.44 27.24 0.01 0.004 0.02 

Controls median (n=7) 0.25 2.93 6.91 31.19 0.001 0.002 0.02 

 

Ground nuts n=3        

range 0.6-0.62 1.1-3.1 6.6-8.3 24-

621.01 

0.005-

0.01 

0.004-

0.03 

0.01-0.04 

median 0.6 2.24 8.81 35.27 0.006 0.01 0.01 

Controls median (n=5) 0.04 2.13 8.63 26.06 <LOD   0.01 0.11 

Onions n=4        

range 0.08-

0.15 

0.3-0.43 3.5-4.07 13-19.21 0-0.004 0.007-

0.01 

 

median 0.14 0.43 3.60 19.6 0.002 0.01 0.01 

Controls median (n=5) 0.03 0.34 5.80 24.25 0.004 0.06 0.04 

Thresholds for vegetables 50a 66.9a 20b 99.4a - 0.05c 0.3a 

a = WHO/FAO (2011); b = EC standards (2006), Codex Alimentarius Commission (CAC), 2001; c = 180 
General Standardisation Organisation (GSO) 2013 . <LOD  : Less than limit of detection  181 
 182 
 183 

2.1 Trace elements in food crops 184 
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Beans (Phaseolus vulgalis) appeared to accumulate mainly Co compared with controls (p=0.0014). 185 

Although Cu and Ni concentrations in beans were higher in Kilembe foods compared with controls, the 186 

differences were not statistically significant (p>0.05). Pearson’s correlation of the elements revealed very 187 

strong and positive associations between Cu and Co (r=0.786, P<0.001) suggesting co-existence in the 188 

soil. These same correlation of elements were identified in earlier studies of soils in the Kilembe mine 189 

catchment (Mwesigye et. Al, 2016) and are associated with the area’s mineralogy.  The concentrations of 190 

Zn in only 5% of bean samples appeared to exceed the threshold of 99.4 set by WHO/FAO. 191 

The concentrations of Cu, Co, Ni and As in yams (Dioscorea species) were generally higher than control 192 

samples, but only Ni (p=0.021), Cu (p=0.022) and As (p=0.02) were significantly higher than in control 193 

samples. Concentrations of Zn in 14% of yams appeared to exceed the thresholds for consumable foods 194 

set by WHO /FAO. Yams revealed very strong and positive correlations between all the trace elements 195 

again suggesting a common source.   196 

Elemental concentrations in onions (Allium sepa) showed an unexpected trend because concentrations of 197 

Ni, Cu, Zn, and Pb in control samples were higher than in onions grown on Kilembe contaminated soils. 198 

Lead in the control samples was significantly higher than in Kilembe catchment onions (p=0.012). 199 

However the concentration of Co in Kilembe catchment onions was significantly higher than in controls 200 

(p=0.019).  Onions showed a strong negative correlation between Co and Zn (r= -998, P= 0.002).  This 201 

might suggest competition for uptake between Co and Zn. However, the relative concentrations of Co and 202 

Zn in the crop suggest that Co is very unlikely to influence uptake of Zn and so the negative correlation is 203 

more likely to reflect a negative correlation in soil metal loadings. The number of onion samples were 204 

quite limited (n=4) and extensive surveys of the crop in Kilembe mine catchment are required to generate 205 

meaningful inferences.  206 

Cobalt concentration in cassava (Manihot esculenta) was significantly higher (P=0.025) than in controls.  207 

This finding is in accord with previous studies such as Kríbek, et al. (2014) who found that cassava 208 

cultivated in areas affected by mining contained higher concentrations of heavy metals and metalloids 209 

when compared with those grown in uncontaminated areas. Nester et al. (2015) also found that Co, Ni, 210 

and Zn were elevated in cassava grown on mine-contaminated soils in Ghana. Cassava appeared to show 211 

strong and positive correlations between Ni and Cu (r=0.733, P=0.004), Co and Cu (r=0.692, P=0.009) 212 

and, in contrast to onions, between Co and Zn (r=0.633, P=0.2).   213 

 214 

Sweet potatoes (Ipomea batatas) grown in Kilembe catchment soils generally showed higher 215 

concentrations of the trace elements known to be contaminants in Kilembe soils, i.e. Cu, Co and Ni, 216 
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compared with controls. However, only Cu was significantly higher than in the controls (P=0.019).  217 

Strong positive correlations in potatoes was only observed between Ni and Co concentrations (r=0.975, 218 

P=0.025). 219 

For bananas (Musa species) in the Kilembe catchment, Cu (P=0.04) and Co (P=0.045) were significantly 220 

higher than in controls. Much of the Pb in bananas also appeared to originate from extraneous soil dust 221 

rather being systemically taken up by the plant during growth. Nesta et al. (2015) also found that 222 

concentrations of Cu in Musa species planted in contaminated soils in Ghana were higher than in plants 223 

grown in non-contaminated soils.   224 

In Amaranthus species, with the exception of Ni, the concentrations of all trace elements were higher in 225 

Kilembe contaminated soils  than in control vegetable samples. Over 26% of the vegetable samples 226 

exceeded consumption thresholds of 20 mg kg-1 of Cu recommended by the European Community 227 

(2006). The vegetables also showed a strong correlation between Co and Cd (r=0.574, P= 0.013). 228 

Chunilall et al. (2005) also found that Amaranthus species appeared to take up Pb from contaminated 229 

soils in large quantities. Kachenko and Balwant (2005) also found that vegetables grown in contaminated 230 

soils in Australia accumulated large quantities of Zn, Cd and Cu.   231 

Maize (Zea maize) grown in Kilembe mine soils contained higher concentrations of Co, Cu and Zn but 232 

only Co (P=0.046) and Ni (P=0.04) concentrations were significantly higher than in control maize plants. 233 

None of the elemental concentrations in maize exceeded thresholds recommended for human 234 

consumption.  Maize also appeared to show strong and positive correlations between Cr and Zn (r= 0.862, 235 

r=0.013).  236 

Groundnuts (Arachis hypogaea) grown in the Kilembe mine catchment soils contained significantly 237 

higher concentrations of Co than in controls (P=0.001).  However none of the elements in ground nuts 238 

exceeded thresholds for human consumption. It should be noted that the number of ground nut samples 239 

were too limited (n=3) to provide meaningful inferences and extensive surveys of the crop are necessary. 240 

Figure 1 shows the trace element concentration profiles (FW) for the range of food crops included in the 241 

survey as box and whisker plots.  We can draw only limited conclusions from what is still a limited 242 

reconnaissance survey of the area.  However, crops grown within Kilembe were frequently more enriched 243 

with trace metals than controls. Furthermore, the high frequency of skewed distributions indicate 244 

instances of relatively high concentrations on both a crop-specific and element-specific basis.  Examples 245 

were almost exclusively from the Kilembe (K) area and included: (i) Co in beans, yams, cassava, sweet 246 

potato and amaranthus, (ii) Ni in amaranthus, (iii) Cu in amaranthus, (iv) Zn in ground nuts, (v) As in 247 
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beans, groundnuts, yams and amaranthus, and (vi) Cd in groundnuts, onions and amaranthus. Cadmium 248 

concentrations were generally low across all crops and there were also higher outliers in control cassava 249 

and groundnuts. Similarly, (vii) Pb concentrations were also low and there were high control outliers in 250 

cassava and amaranthus. 251 
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Figure 2:  Box and whisker plots comparing the range of trace element concentrations in food crops and 252 

vegetables grown in the Kilembe area with those grown at control sites or procured from markets.Yams 253 

(n=13), Maize (n=7), Cassava (n=13), Sweet potatoes (n=4), bananas (n=13 ), Amaranth (n=18), 254 

Beans (n=18_), Ground nuts (n=3) and Onions (n-4) 255 

2.2 Elemental contributions from soil dust 256 

The estimated elemental contributions to washed food samples from residual soil dust contamination (Eq. 257 

1) were very low for Cu, Co, Zn and Ni, lying within the range of 0.07-1.4%. However a significant 258 

proportion of Pb appeared to originate from extraneous soil dust, ranging between 26% and 45%. This 259 

implies that, with the exception of Pb, most of the elemental concentrations measured in the washed 260 

vegetables and foods resulted from plant root uptake during growth.  It should also be noted that this 261 

study used average soil elemental concentrations from a previous study in the area (Mwesigye et al., 262 

2016) and so the soil concentrations used may differ from actual elemental concentrations in a given plot 263 

or the wind-blown dust affecting individual crops. 264 

Comparing a range of crops (beans, yams, cassava, banana and amaranthus), it was clear that the 265 

amaranthus showed the greatest influence of residual dust contamination after washing. Figure 3 shows a 266 

very strong correlation between Fe and V for amaranthus, implying significant contributions of other 267 

elements from soil dust (Joy et al., 2015). Other food crops showed a poor correlation between Fe and V, 268 

at much lower concentrations, implying that contribution of the elements from soil dust was minimal. 269 

This general pattern is consistent with the relatively exposed situation of leafy vegetables, and their ability 270 

to retain sub-micron sized particulates in leaf cuticles.  By contrast, the ‘protected’ nature of the edible 271 

components in beans, maize and bananas and the removal of peel required in preparation of yams and 272 

cassava suggests that the influence of dust on food prepared from those crops would be very limited. 273 
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 274 

Figure 3: Soil V and Fe concentrations (mg kg-1) in all food samples collected from locations 275 

within the Kilembe mining area. 276 

2.3. Provisional risk assessment (hazard quotients) 277 

Table 2 shows hazard quotients calculated for key crops and assuming, as a comparative 278 

exercise, that the crops are consumed at rates equivalent to the parameter values given in Section 279 

1.1.3. Yams appeared to present a possible risk to children through excessive Co and Zn 280 

consumption while adults were exposed to high Zn concentrations. Maize consumption presented 281 

a hazard quotient that was of risk to children through excessive Zn intake while cassava 282 

consumption presented risks to children through excessive Ni and Cu consumption.   283 

Consumption of Kilembe catchment sweet potatoes could present risks for children due to 284 

excessive Ni intake. Amaranthus also appeared to present a risk to children from Co and Ni and 285 

this could be attributed to root uptake during growth but also aerial deposition of the trace 286 

elements from tailings and soil dust which may not be washed off completely during food 287 

preparation. Of all the foods considered, only bananas revealed no potential hazards to 288 

consumers from trace elements for all the Kilembe samples, possibly because of limited trace 289 
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element uptake or because of reduced contamination of the edible part from extraneous dust. The 290 

risks found for all the foods exceeded the earlier levels reported by Mwesigye et al. (2016) partly 291 

because the estimated food consumption in the earlier study was less than measured values in 292 

this study. 293 

Table 2. Hazard quotients of foods grown within contaminated soils around Kilembe mine 294 

 Co 

 

Ni 

 

Cu Zn Pb 

RfD 

(mg kg-1 

day-1) 

0.02c 0.02b 0.4a 0.3b 0.0035a 

 children adults children adults children adults children adults children adults 

Yams 

(n=13) 

cf=0.5 

1.3 0.62 0.74 0.43 0.28 0.16 2.2 1.2 0.12 0.04 

Maize 

(n=7) 

cf=0.43 

0.24 0.04 0.20 0.04 0.06 0.04 1.2 0.63 0.12 0.06 

Cassava 

(n=13) 

cf=0.4 

0.44 0.24 1.2 0.62 1.60 0.84 0.28 0.14 0.062 0.04 

Potatoes 

(n=4) 

cf=0.22 

0.82 0.44 1.03 0.42 0.14 0.08 0.24 0.14 0.02 0.014 

Bananas  

(n=13)  

cf=0.33 

0.06 0.030 0.26 0.14 0.14 0.04 0.22 0.12 0.04 0.02 

Amaranthus 

(n=18) 

cf=0.15 

1.6 0.84 0.46 0.26 0.16 0.08 1.1 0.56 0.54 0.28 

Beans 0.54 0.32 1.5 0.93 0.22 0.13 1.1 0.62 0.07 0.04 
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(n=21) 

cf= 0.47 

Ground 

nuts (n=3) 

cf= 0.4 

0.3 0.18 1.1 0.6 0.02 0.013 1.2 0.68 0.03 0.16 

 295 

cf = dry weight to fresh weight conversion factor; RfD = reference dose. 296 

a. Hough et al. (2004). 297 

b. US EPA Iris Database (2015). 298 

c. New Jersey Department of Environmental Protection (2008). 299 

Bold figures represent HQs that exceed 1  300 

Locally, most households prepare one main meal comprising 80% carbohydrate foods, such as 301 

bananas, cassava, yams, maize and sweet potatoes. The main meal is consumed with a vegetable 302 

sauce, made of either beans, ground nuts or amaranthus, which makes up approximately 20% of 303 

the meal. Calculations have been developed to establish HQ values for typical meal 304 

combinations consumed by locals and the results are shown in Table 3.  305 

Table 3: HQ calculation based on a typical balance of dietary components.  306 

Trace element 
Food combinations 

Co Ni Cu Zn Pb 

CHL ADL CHL ADL CHL ADL CHL ADL CHL ADL 

Bananas + Beans 0.16 0.08 0.43 0.23 0.15 0.09 0.32 0.24 0.05 0.03 

Bananas + Gnuts 0.11 0.06 0.51 0.31 0.12 0.06 0.40 0.26 0.04 0.003 

Bananas + Amaranth 0.37 0.21 0.31 0.16 0.14 0.12 0.40 0.21 0.14 0.06 

Yams +Beans 1.15 0.56 0.82 0.46 0.26 0.16 1.9 1.1 0.12 0.06 

Yams + Gnuts 1.1 0.54 0.9 0.54 0.23 0.13 1.98 1.01 0.11 0.03 

Yams +Amaranth 1.36 0.67 0.7 0.39 0.25 0.19 1.98 1.1 0.21 0.1 

Cassava + Beans 0.46 0.25 1.18 0.62 1.32 0.7 0.36 0.25 0.07 0.04 

Cassava + Gnuts 0.41 0.23 1.26 0.7 1.29 0.67 0.44 0.16 0.06 0.03 

Cassava + Amaranth 0.67 0.36 1.06 0.55 1.31 0.73 0.44 0.25 0.16 0.1 

Maize + Beans 0.3 0.1 0.38 0.42 0.09 0.06 1.1 0.64 0.12 0.08 

Maize + Gnuts 0.25 0.07 0.46 0.23 0.06 0.03 1.18 0.55 0.11 0.05 

Maize +Amaranth 0.51 0.2 0.26 0.08 0.08 0.09 1.18 0.61 0.21 0.11 

Sweet potatoes + 
Beans 

0.77 0.41 1.04 0.46 0.15 0.09 0.34 0.25 0.04 0.02 

Sweet Potatoes + 
Gnuts 

0.72 0.39 1.12 0.54 0.12 0.06 0.42 0.16 0.03 0.01 
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Sweet potatoes + 
Amaranth 

1.1 0.52 0.92 0.39 0.14 0.12 0.42 0.22 0.13 0.07 

Bold figures represent HQs that exceed 1  307 

The combination of Yams with amaranth, ground nuts (Gnuts) and beans presented possible 308 

health risks to children through excessive consumption of Co  and Zn while adults could also get 309 

excessive  Zn intakes. A combination of cassava with either beans, amaranth and ground nuts 310 

also posed health risks to children due to excessive Ni and Cu intakes. A combination of maize 311 

with either beans, amaranth or ground nuts posed health risks to children due to excessive zinc 312 

contents in the diets while  sweet potatoes consumed with beans, amaranth or ground nuts posed 313 

risks to children due to high amounts of  Co, Ni and Cu.    314 

3. Conclusions 315 

The findings of this study revealed that most food crops grown in Kilembe contaminated 316 

catchment soils accumulated the trace elements Cu, Co, Ni, Pb and Zn to concentrations greater 317 

than equivalent crops from control sites. The elevated trace elements found in food crops grown 318 

in the Kilembe catchment are known contaminants within the Kilembe area associated with past 319 

copper mining and processing activities. Some leafy vegetables of Amaranthus species had 320 

concentrations of Cu which exceeded recommended human consumption thresholds (20 mg kg-321 

1). In some instances, concentrations of Co, Zn, Cd and Pb in Amaranthus vegetables also 322 

exceeding human consumption thresholds, suggesting possible exposure of consumers but also 323 

suggesting the presence of soil dust despite washing of samples.   324 

Hazard quotients for yams, maize, sweet potatoes and amaranthus suggest that further 325 

investigation of the food crops grown in contaminated Kilembe soils is needed with more focus 326 

on cultivation approaches and the suitability of specific crops for specific types of location. 327 

Leafy vegetables, especially Amaranthus, may pose a particularly strong risk to consumers 328 

because of retention of extraneous soil dust which cannot be eliminated completely through 329 

washing. This is potentially very dangerous on an ex-mining site with poor vegetative cover on 330 

more contaminated areas.  Permitting cultivation of selected crops in the right places and 331 

avoiding minespoil patches could allow local people to produce less contaminated food.  332 

However, community sensitization is needed so as to be able to identify hotspots to avoid during 333 

cultivation but also taking measures against soil dust contaminations during food harvesting and 334 
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preparations. Additional studies are needed in the area so as to design appropriate remediation 335 

and phytostabilisation programs on contaminated areas to prevent tailing erosion into agricultural 336 

soils and water systems.  337 
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